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A micromechanics-based plastic damage model including localised failure is proposed in the present work for heterogenous materials which can be treated as a porous matrix reinforced by mineral inclusions. This model explicitly considers the influences of pores and inclusions volume fractions, also the solid phase dilatancy on the overall mechanical performance. The induced damage in solid phase is also considered. Based on this two-scale model, the bifurcation analysis is performed to detect both the onset and orientation of localization band. Numerical simulations are carried out for different cases. It is found that the material's microstructure affects importantly the onset point of the localization and the post-localization behavior. As an example of validation, the proposed model enhanced with localization analysis is then adopted to predict the overall mechanical response before and post localization of this typical claystone. Comparing with the experimental results, the capacity of this enhanced modelling is clearly demonstrated.

Introduction

In many engineering applications (like nuclear waste storage, mining engineering, etc.), rock and cement-based material are the most studied materials for the safety and durability [START_REF] Homand | Mechanical behavior of a porous chalk and water/chalk interaction. part i: Experimental study[END_REF][START_REF] Papamichos | An experimental and theoretical study partially saturated collapsible rock[END_REF][START_REF] Schroeder | Du coccolithe au réservoir pétrolier ; approche phénoménologique du comportement mécanique de la craie en vue de sa modélisation à différentes échelles[END_REF][START_REF] De Gennaro | On the collapse behaviour of oil reservoir chalk[END_REF][START_REF] Alam | Biot's coefficient as an indicator of strength and porosity reduction: Calcareous sediments from kerguelen plateau[END_REF][START_REF] Niandou | Laboratory investigation of the mechanical behaviour of tournemire shale[END_REF]. In the context of the radioactive waste storage, the Callovo-Oxfordian (COx) claystone has been chosen as a possible natural protection of the radioactive waste disposal in French [START_REF] Chiarelli | Etude expérimentale et modélisation du comportement mécanique de l'argilite de l'est[END_REF][START_REF] Robinet | Mineralogie, porosite et diffusion des solutes dans l'argilite du callovo-oxfordien de bure (meuse/haute-marne, france) de l'echelle centimetrique a micrometrique[END_REF][START_REF] Armand | Fundamental aspects of the hydromechanical behaviour of callovo-oxfordian claystone: From experimental studies to model calibration and validation[END_REF]. These materials are generally heterogeneous with complex microstructures which affect their overall mechanical performance. Many constitutive modellings were established for describing the mechanical response of such materials. For example, [START_REF] Chiarelli | Modeling of elastoplastic dammage behavior of a claystone[END_REF][START_REF] Shao | A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions[END_REF][START_REF] Hoxha | Saturated and unsaturated behaviour modelling of meuse haute marne argillite[END_REF] have developed phenomenological models for the COx claystone. These models are essentially generally formulated and calibrated from macroscopic laboratory tests. The material's microstructural information is not explicitly taken into account. For instance, experimental results indicates that the material strength is affected by the volume fraction of pore and mineral compositions [START_REF] Chiarelli | Etude expérimentale et modélisation du comportement mécanique de l'argilite de l'est[END_REF][START_REF] Robinet | Mineralogie, porosite et diffusion des solutes dans l'argilite du callovo-oxfordien de bure (meuse/haute-marne, france) de l'echelle centimetrique a micrometrique[END_REF][START_REF] Armand | Fundamental aspects of the hydromechanical behaviour of callovo-oxfordian claystone: From experimental studies to model calibration and validation[END_REF]. To overcome these weaknesses, many researchers focus on the micromechanics-based constitutive modelings by using the up-scaling approach.

Based on the pioneer's work [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF] for a hollow sphere with a pressure independent matrix (von Mises type), a high number of strength criteria have been formulated for different kinds of porous materials. For example, some authors have considered effects of pore size and spatial distribution at different scales [START_REF] Monchiet | A Gurson-type model accounting for void size effects[END_REF][START_REF] Fritzen | Computational homogenization of elasto-plastic porous metals[END_REF][START_REF] Brach | Nanoporous materials with a general isotropic plastic matrix: Exact limit state under isotropic loadings[END_REF][START_REF] Monchiet | Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials[END_REF][START_REF] Vincent | Ductile damage of porous materials with two populations of voids[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations[END_REF][START_REF] Shen | Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media[END_REF][START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF][START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF][START_REF] Shen | Modelisations micro-macro du comportement mecanique des materiaux poreux ductiles : application à l'argilite du callovo-oxfordien[END_REF]; others have studied the void shape effects [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric oblate ellipsoidal cavities[END_REF][START_REF] Keralavarma | A constitutive model for plastically anisotropic solids with nonspherical voids[END_REF][START_REF] Monchiet | Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids[END_REF][START_REF] Monchiet | Macroscopic yield criteria for ductile materials containing spheroidal voids: An eshelby-like velocity fields approach[END_REF][START_REF] Shen | Macroscopic yield criterion for ductile materials containing randomly oriented spheroidal cavities[END_REF]. Different matrix properties have been investigated: Mises-Schleicher type matrix [START_REF] Lee | Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials[END_REF][START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF][START_REF] Monchiet | Exact solution of a plastic hollow sphere with a mises-schleicher matrix[END_REF][START_REF] Shen | A new macroscopic criterion of porous materials with a mises-schleicher compressible matrix[END_REF][START_REF] Shen | A micro-mechanics-based elastic-plastic model for porous rocks: applications to sandstone and chalk[END_REF], Green type one [START_REF] Shen | Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media[END_REF][START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF][START_REF] Shen | Improved criteria for ductile porous materials having a green type matrix by using eshelby-like velocity fields[END_REF][START_REF] Shen | Homogenization of saturated double porous media with eshelby-like velocity field[END_REF][START_REF] Shen | Macroscopic criteria for green type porous materials with spheroidal voids: application to double porous materials[END_REF][START_REF] Shen | An incremental micro-macro model for porous geomaterials with double porosity and inclusion[END_REF] and Drucker-Prager type one [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF][START_REF] Barthélémy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Shen | Approximate macroscopic yield criteria for drucker-prager type solids with spheroidal voids[END_REF][START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF][START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF][START_REF] Shen | Evaluation and improvement of macroscopic yield criteria of porous media having a drucker-prager matrix[END_REF] have also been investigated. On the other hand, some studies have focused on the effects of mineral grains in heterogeneous materials. Macroscopic strength criteria have been derived in [START_REF] Garajeu | Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles[END_REF][START_REF] Barthélémy | A micromechanical approach to the strength criterion of druckerprager materials reinforced by rigid inclusions[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Bignonnet | Strength of a matrix with elliptic criterion reinforced by rigid inclusions with imperfect interfaces[END_REF]]. What's more, the Hill's incremental approach is adopted in [START_REF] Guery | A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial[END_REF][START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF] by including both effects of mineral grains and pores on the macroscopic behaviors of COx claystone. With two-step homogenization procedures, some authors [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF][START_REF] He | Strength properties of a drucker-prager porous medium reinforced by rigid particles[END_REF][START_REF] Bignonnet | Strength of a matrix with elliptic criterion reinforced by rigid inclusions with imperfect interfaces[END_REF] have even proposed analytical elastic-plastic modelings which simultaneously consider the meso-inclusions and micro-porosity. However, in most previous studies, only elastic-plastic deformations are investigated. The progressive failure due to onset of localized bands has not been taken into account. Indeed, in most experimental studies [START_REF] Chiarelli | Etude expérimentale et modélisation du comportement mécanique de l'argilite de l'est[END_REF][START_REF] Robinet | Mineralogie, porosite et diffusion des solutes dans l'argilite du callovo-oxfordien de bure (meuse/haute-marne, france) de l'echelle centimetrique a micrometrique[END_REF][START_REF] Armand | Fundamental aspects of the hydromechanical behaviour of callovo-oxfordian claystone: From experimental studies to model calibration and validation[END_REF], it is found that a single or multiple localized cracks are formed after the peak stress in laboratory tests. The stress and strain fields in tested samples are no more uniform after the onset of localization. The orientation of localized zones (shear band or compaction band) depends on loading paths [START_REF] Ottosen | Properties of discontinuous bifurcation solutions in elasto-plasticity[END_REF]. The description of localization is a crucial issue for the analysis of failure process and excavation induced damaged and fractured zones. Recently, the localised failure processes of sandstone have been investigated by some interesting studies [START_REF] Nguyen | A size-dependent constitutive modelling framework for localised failure analysis[END_REF][START_REF] Nguyen | Constitutive modelling of progressive localised failure in porous sandstones under shearing at high confining pressures[END_REF][START_REF] Nguyen | Constitutive modelling of compaction localisation in porous sandstones[END_REF] by using an enhanced macroscopic constitutive model including the analysis of localization onset and post-localization behavior.

In this work, we focus on the analysis of localization phenomena in heterogenous rock-like materials by developing an enhanced micromechanicas-based elastic-plastic damage model.

As a novelty, we shall investigate the influences of micro-structures (pores and mineral inclusions) on the onset of localized bands and on the post-localization behavior of such materials.

There are five principal parts in this work: adopting the macroscopic strength criterion issued from nonlinear homogenization procedure [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF], a basic constitutive modelling is presented in section 2 for heterogeneous materials with micro porosity and meso inclusions. This basic model is enhanced in section 3 by including the analysis of localization onset and post-localization response. Then, it is fully studied in section 4, especially by considering the influences of microstructure parameters on the localised failure process. Finally, an application is carried out in section 5 to study both the pre-and post-localization behaviors of COx claystone, with different material composition and different loading condition.

Micromechanics-based constitutive model with microstructural information

In this section, a micromechanics-based elastic-plastic damage modelling is firstly proposed to predict the macroscopic strength of heterogeneous materials with effects of porosity, mineral grains and the dilatation of the solid phase. Figure 1 shows the representative volume element (RVE) of the studied heterogeneous material. At the mesoscopic scale, the inclusions are embedded in a matrix which is a porous medium at the microscopic scale.

The pores and inclusions are both assumed to be spherical. In the RVE, the total domain is denoted as V, the ones occupied by the inclusion, the pore and the solid phase are given as:

V i , V p and V m , respectively. With these definitions, the micro-porosity at the microscopic scale and the volume fraction of inclusion at the mesoscopic scale can be calculated:

f = V p V p + V m , ρ = V i V i + V m + V p (1) 
Mineral grains The effective elastic bulk moduli κ pm and the shear one κ pm of the porous medium depend on the local ones of the solid phase (κ s , µ s ) and also the local volume fraction of pore f . Due to the spherical form, the Mori-Tanaka solution [START_REF] Mori | Average stress in a matrix and average elastic energy of materials with misfitting inclusions[END_REF] is adopted here:

Porous medium

Solid phase Pore

κ pm = 4(1 -f )κ s µ s 4µ s + 3 f κ s ; µ pm = (1 -f )µ s 1 + 6 f κ s + 2µ s 9κ s + 8µ s (2) 
At the macroscopic scale, the overall elastic properties κ hom , µ hom can be calculated by using the same homogenization procedure (2), considering the inclusion volume fraction ρ and the values of κ pm , µ pm obtained in the first up-scaling for porous medium.

The meso-inclusions are elastic, while the solid phase is elastoplastic and is described by the following Drucker-Prager model:

Φ m (σ s ) = σ s d + α(σ s m -σ 0 ) ≤ 0 (3) 
where σ s m = trσ s /3, σ s d = √ σ s : σ s as a function of deviatoric part (σ s = σ sσ s m 1) of the local solid phase stress σ s . The stress in porous medium is defined as σ. σ is the overall stress of the composite. α and σ 0 are material parameters, the frictional coefficient and the strength in the case of purely shear loading, respectively.

Based on the material's microstructure, a two-step up-scaling is adopted for the overall yield function. The micro-porosity f and the matrix's dilatation at the microscopic scale is considered in the first homogenization. The yield criterion obtained in [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] is adopted here to describe the effective response of this porous medium:

F mp ( σ, f, α) = 1 + 2 f /3 α 2 σ2 d + 3 f 2α 2 -1 σ2 m + 2(1 -f )σ 0 σm -(1 -f ) 2 σ 2 0 = 0 (4) 
Considering the normality rule, the support function of the porous matrix can be calculated according to (4):

π mp = (1 -f )σ 0 3 f 3 f -2α 2 α 2 1 + 2 f /3 d 2 d + 1 + 2 f /3 3 f /2 -α 2 d 2 v -(1 -f )σ 0 2α 2 3 f -2α 2 d v (5) 
in which d denotes the strain rate,

d v = trd, d d = √ d : d with d = d -d m 1.
It is interesting to note that both the plastically dilatant and contractant behaviors can be observed even with the normality rule for the porous matrix. Differently from the Drucker-Prager criterion (3) of the solid phase at the microscopic scale (black line in Figure 2), the yield criterion (4) with the influence of porosity gives a closed surface as indicated by the illustrated blue lines. The dilatant and contractant behaviours can be predicted by this same yield surface, depending on the loading path and material microstructure information.

For example, in the case with a porosity of f = 0.1, the plastic dilatancy can be obtained with a low confining pressure (green dashed line) while the contractancy can be observed with a high confining pressure (yellow dashed line). The porosity also has a great influence on the dilatant and contractant responses of porous material with the same loading condition.

For example, following the triaxial compression test with a 2 MPa confining pressure (red dashed line), the porous matrix is plastically dilatant for the porosity f = 0.1. Inversely, it has a contractant behaviour when the porosity is f = 0.35. Taking into account the microstructure effect is the main advantage of micro-mechanical model comparing with the traditional phenomenological models. According the equation [START_REF] Barthélémy | A micromechanical approach to the strength criterion of druckerprager materials reinforced by rigid inclusions[END_REF], the relations between the stress and strain can be expression as follows:

σ = ∂π mp ∂d = 2µ mp d + κ mp d v 1 + σ p 1, κ mp = 1+2 f /3 3 f /2-α 2 N M , 2µ mp = N M , σp = -(1 -f )σ 0 2α 2 3 f -2α 2 , M = d 2 d + 1+2 f /3 3 f /2-α 2 d 2 v , N = (1 -f )σ 0 3 f 3 f -2α 2 α 2 1+2 f /3 (6)
Based on the effective behavior of porous matrix, the influence of inclusion volume fraction on the macroscopic elastoplastic properties will be accounted in the second up-scaling.

By adopting the modified secant method, [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF] established a strength function for the studied material considering simultaneously the effects of f , ρ and and the dilatation property α of the solid phase, as illustrated in Figure 1. Here we take the main results and more details can be found in [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF] for the derivation.

Φ(σ, f, ρ, α) = Θσ 2 d + 3 f 2α 2 -1 σ 2 m + 2(1 -f )σ 0 σ m - 3 + 2 f + 3 f ρ 3 + 2 f (1 -f ) 2 σ 2 0 = 0 (7)
where

Θ = 1+2 f /3 α 2 + 2 3 ρ 3 f 2α 2 -1 4α 2 -12 f -9 6α 2 -13 f -6 ρ + 1 .
For the purpose to consider the plastic hardening phenomena observed in the experimental and to construct a complete constitutive modelling, the frictional parameter α at the microscopic scale is chosen here as the plastic hardening law, which is a function of equivalent plastic strain ε p eq in the solid phase:

ᾱ = α m -(α m -α 0 )e -b 1 ε p eq (8) 
Then the yield function ( 7) can be rewritten as follows:

Φ(σ, f, ρ, ᾱ) = Θσ 2 d + 3 f 2 ᾱ2 -1 σ 2 m + 2(1 -f )σ 0 σ m - 3 + 2 f + 3 f ρ 3 + 2 f (1 -f ) 2 σ 2 0 = 0 (9)
where Θ =

1+2 f /3 ᾱ2 + 2 3 ρ 3 f 2 ᾱ2 -1 4 ᾱ2 -12 f -9 6 ᾱ2 -13 f -6 ρ + 1 .
For a general case, a non-associated flow rule is chosen in this constitutive modelling.

Based on the yield criterion ( 9), a macroscopic plastic potential is introduced which depends on the microstructural information ( f , ρ, ᾱ, β and σ 0 ):

G(σ, f, ρ, ᾱ, β) = Θσ 2 d + 3 f 2 ᾱ β -1 σ 2 m + 2(1 -f )σ 0 σ m - 3 + 2 f + 3 f ρ 3 + 2 f (1 -f ) 2 σ 2 0 ( 10 
)
where

Θ = 1+2 f /3 ᾱ β + 2 3 ρ 3 f 2 ᾱ β -1 4 ᾱ β-12 f -9 6 ᾱ β-13 f -6 ρ + 1
. β denotes the dilatancy parameter which controls the volumetric deformation. Similar to the plastic hardening law (8), β is chosen as function of

ε p eq : β = β m -(β m -β 0 )e -b 2 ε p eq (11) 
Based on the plastic potential [START_REF] De Gennaro | On the collapse behaviour of oil reservoir chalk[END_REF], the macroscopic plastic deformation can be computed:

D p = λ ∂G ∂σ (σ, f, ρ, ᾱ, β) (12) 
With the process of loading, the solid phase can be damaged because of the micro-cracks generations. This may be at the origin of macroscopic materials softening. For the simplicity, this softening effect will be considered by the degradation of the cohesion coefficient σ 0 in local criterion (3) of the solid phase:

σ 0 = c 0 + c 1 e -b 3 <ε p eq -ε p r > (13) 
where c 0 is the residual resistance of the solid phase; < xx 0 > is a mathematical operator which is 0 when x ≤ x 0 , otherwise x-x 0 ; ε p r is the reference values which controls the beginning of softening. For the simplicity, the equivalent plastic deformation at the microscopic scale will be taken as the reference value. In order to consider the microstructure effect and loading influence, this value is related to the macroscopic strain and the ratio of incremental values Ėp eq / Ėeq is chosen as the critical point. In this work, the value Ėp eq / Ėeq = 0.98 is taken as the beginning of softening.

Based on [START_REF] Fritzen | Computational homogenization of elasto-plastic porous metals[END_REF], the local equivalent plastic strain can be computed:

εp = σ : D p (1 -f )(1 -ρ) ᾱσ 0 + ( β -ᾱ) σ m 1-f (14) 
The variations of pore and inclusion volume fractions are determined as:

ḟ = 1 -f 1 -ρ trD p -(1 -f ) β εp eq , ρ = -ρtrD p (15) 
The plastic multiplier λ used in ( 12) can be fixed with the help of consistency condition:

λ = ∂Φ ∂σ : C : D ∂Φ ∂σ : C : ∂G ∂σ -∂Φ ∂ f 1-f 1-ρ ∂G ∂σ m -β(1 -f )Z -∂Φ ∂ρ (-ρ ∂G ∂σ m ) -∂Φ ∂ ᾱ ∂ ᾱ ∂ε p eq Z -∂Φ ∂σ 0 ∂σ 0 ∂ε p eq Z (16) 
where

Z = σ: ∂G ∂σ (1-f )(1-ρ) ᾱσ 0 +( β-ᾱ) σm 1-f
, C is a fourth order elastic stiffness tensor which depends on material's microstructure (porosity f , inclusion volume fraction ρ) as shown in equation [START_REF] Alam | Biot's coefficient as an indicator of strength and porosity reduction: Calcareous sediments from kerguelen plateau[END_REF].

In the elastoplastic case, the tangent one C tan of the studied material can be calculated:

C tan =            C if Φ(σ, f, ρ, ᾱ) ≤ 0, Φ(σ, f, ρ, ᾱ) < 0 C - C : ∂G ∂σ ⊗ ∂Φ ∂σ : C H L if Φ(σ, f, ρ, ᾱ) = 0, Φ(σ, f, ρ, ᾱ) = 0 (17) 
with

H L = ∂Φ ∂σ : C : ∂G ∂σ -∂Φ ∂ f 1-f 1-ρ ∂G ∂σ m -β(1 -f )Z -∂Φ ∂ρ (-ρ ∂G ∂σ m ) -∂Φ ∂ ᾱ ∂ ᾱ ∂ε p eq Z -∂Φ ∂σ 0 ∂σ 0 ∂ε p eq Z.
This proposed multiscale constitutive model now is adopted to predict the overall mechanical behavior of heterogeneous materials as illustrated in Figure 1. The material's microstructure informations are explicitly and simultaneously accounted by this micromechanics based model, for example, volume fractions of pore and inclusion ( f , ρ), also the dilatation α of solid phase. At the constitutive level, the studied material is homogeneous and the heterogeneous properties are directly considered in the criterion [START_REF] Chiarelli | Modeling of elastoplastic dammage behavior of a claystone[END_REF] and the plastic potential [START_REF] De Gennaro | On the collapse behaviour of oil reservoir chalk[END_REF]. The prediction is well adopted before the peak strength of the material. The post-peak behavior will accounted in the following section due to the localization zone.

Analysis of localization onset and post-localization behavior

Onset condition of the localization band

At the beginning of the loading, the material is assumed as homogeneous and its mechanical behavior is described by the micromechanics based model presented in section 2. With the loading process, the material may loss is stability and the discontinuous bifurcation will be generated. To predict the localization effects on macroscopic behaviors of the studied heterogeneous materials through this micro-macro constitutive model, one need to specify its onset and orientation. For this purpose, the classical method for the determination of discontinuous bifurcation is adopted in this study as in [START_REF] Nguyen | A size-dependent constitutive modelling framework for localised failure analysis[END_REF]. We first present the acoustic tensor A which can be expressed as A = n • C tan • n, in which C tan is the tangent stiffness and calculated in the above constitutive model by the equation [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF]; n is the unit direction vector. As illustrated in the Figure 3, here n is the direction of the localization band. In spherical coordinate, n is given as:

n = [n 1 , n 2 , n 3 ] t = [sin θ sin ϕ, sin θ cos ϕ, cos θ] t (18) 
According to the symmetric property, the ϕ is taken as 90

• ; the range of θ is [-90 • , 90 • ].
The beginning of localization is fixed at the point when the definiteness of this acoustic tensor A becomes negative:

det(A) ≤ 0 (19) 
With the loading path, the first stress-strain state for which det(A) ≤ 0 is checked to fix the bifurcation inception. According to the C tan given by ( 17), the value of det(A) can be calculated by scanning all the possible directions n. Once one gets det(A) ≤ 0, usually a range of orientation n can be mathematically found to satisfy the onset condition and any n in this range is a possible direction of the localization band. In this work, the direction which makes the minimum value of det(A) in the domain det(A) ≤ 0 is chosen as the most probable band orientation and adopted in the following loading process.

Post-localization behavior

After this beginning of localization band, the studied material will be no longer homogeneous. There are two principal parts in the studied volume: the localization zone and the Ω . The width of the localisation band depends on both microstructure of the studied material and also the loading conditions. With the process of loading, it will also change during the deformation. For the simplicity, the localization band thickness here is treated as a material property and fixed throughout the failure process. At this step, the constitutive presented in the above section well be applied separately to describe the mechanical behaviors inside and outside the localization zone. To be clarity, σ i and ε i denote the stress and strain inside the localization zone while the outside ones are defined as σ o and ε o , respectively. The total ones at the macroscopic scale are defined as Σ and E. The strain rate relation between Ė, εi and εo can be found:

Ė = φ εi + (1 -φ) εo (20) 
Then, it is necessary to calculate the strain rate εi inside the localization zone. According to the works of [START_REF] Neilsen | Bifurcations in elastic-plastic materials[END_REF][START_REF] Nguyen | A size-dependent constitutive modelling framework for localised failure analysis[END_REF][START_REF] Nguyen | Constitutive modelling of progressive localised failure in porous sandstones under shearing at high confining pressures[END_REF], it takes the following simple form:

εi = εo + 1 h (n ⊗ [u]) s (21) 
According to [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF], the tensor of strain rate is composed of two parts. The first part is the homogeneous strain rate. The second one is kinematically due to the discontinuous field of displacement rate, denoted as [u], with n being the unit normal vector of the localization band. Therefore, unlike strain localization problems commonly studied by using the bifurcation theory, in this study, we consider crack-like localization problems in rock-like materials.

There are displacement discontinuities crossing the localized band. However, it is assumed that this crack-like localization is generated by a progressive strain and micro-cracks localization process. It is a priori assumed that the classical bifurcation criterion can be still used for the detection of localization inception.

According equations ( 20) and ( 21), the local strain rates εi and εo can be derived as functions of the macroscopic one Ė and [u]:

εo = Ė - φ h (n ⊗ [u]) s , εi = Ė + 1 -φ h (n ⊗ [u]) s (22) 
Based on the equilibration between the macroscopic work and the average value of local one, the following relation can be derived:

Σ : Ė = φσ i : εi + (1 -φ)σ o : εo (23) 
Combining equations (20) ( 22) and ( 23), we obtain:

Σ -φσ i -(1 -φ)σ o : Ė - φ(1 -φ) h (σ i • n -σ o • n) • [u] = 0 (24) 
The equation ( 24) should be satisfied for any values of [u] and Ė. With this condition, the following results can be derived [START_REF] Nguyen | Constitutive modelling of progressive localised failure in porous sandstones under shearing at high confining pressures[END_REF]:

         σ i • n = σ o • n, Σ = φσ i + (1 -φ)σ o (25) 
The localization zone and the outside part are assumed to be homogeneous. By using the inside and outside tangent stiffness: C tan i and C tan o , the local stress rate can be computed: σi = C tan i : εi , σo = C tan o : εo . Considering the traction condition of equation ( 25), the velocity jump [u] is given as:

[u] = hB • C tan o -C tan i : Ė • n, with B = φ n • C tan o • n + (1 -φ) n • C tan i • n -1 (26) 
Substituting the expression of [u] in ( 22) and ( 25), the macroscopic tangent stiffness C tan m can be obtained ( [START_REF] Nguyen | Constitutive modelling of progressive localised failure in porous sandstones under shearing at high confining pressures[END_REF]):

Σ = C tan m : Ė, with C tan m = φC tan i + (1 -φ)C tan o -φ(1 -φ) C tan o -C tan i : n ⊗ B • C tan o -C tan i • n (27) 
in which the macroscopic tangent stiffness C tan m reduces to the homogeneous one in the case of C tan i = C tan o . Before the beginning of the bifurcation, the studied material is homogeneous. Its macroscopic mechanical behavior is described by this micromechanics-based constitutive modelling established in above section. According to the state of C tan calculated by equation ( 17), the condition of the onset localization zone is checked. Once the equation ( 19) is satisfied, the studied material will be separated into two parts: the localization zone and the outside part.

In each part, the sub-materials are homogeneous respectively. As assumed in [START_REF] Nguyen | Constitutive modelling of compaction localisation in porous sandstones[END_REF][START_REF] Nguyen | A size-dependent constitutive modelling framework for localised failure analysis[END_REF][START_REF] Nguyen | Constitutive modelling of progressive localised failure in porous sandstones under shearing at high confining pressures[END_REF], the zone outside the localization unloads elastically at the initial bifurcation while the inside behavior is inelastic. According to the distributions of the incremental loading Ė for the zone inside ( εi ) and outside ( εo ) the localization zone, each part can exhibit either elastic or elastoplastic behavior which is determined separately by the proposed constitutive model. At this step, the inside and outside mechanical states are different and the corresponding plastic parameters in the constitutive model are conserved and updated separately. In the following section, this model will be fully studied.

Model's sensitivity study

The proposed micromechanics-based constitutive modelling is firstly implemented in Abaqus. As presented in [START_REF] Nguyen | Constitutive modelling of compaction localisation in porous sandstones[END_REF], the implicit stress return algorithms are adopted here. The influences of parameter f , ρ, φ and b 3 on the localization zone and material's macroscopic performance will be emphatically studied. Table 1 shows the common parameters used in this constitutive model. the mechanical behavior in each part, there is a sudden drop of material strength. The corresponding evolutions of f and ρ are illustrated on Figure 4-e and f, respectively. One can see that the evolutions of porosity are totally different inside and outside localization zone. The inside porosity are much smaller than the outside one because of the localization effects. The variation of ρ are complex but relatively small. The effects of inclusion content ρ is investigated in Figure 5 with f = 0.25, other parameter are kept the same. According to the Figure 5-a, the inclusion content ρ increases the material strength. However, the value of det(A) shown in Figure 5-b indicates that the higher content of inclusion makes the material more unstable and the happens of bifurcation are more possible. Unlike the case of porosity, the inclusion content ρ affect importantly the onset localization zone, as the three point A, B and C given in the Figures 5-c and-d.

With the process of loading, the porosity inside the zone decreases quickly after the point of bifurcation. Comparing with the porosity, the evolution of inclusion is small. By taking f = 0.25 and ρ = 0.4, the influence of the localization band thickness φ is studied in Figure 6. Different values are considered as φ = 0.15, 0.25, 0.35 and 0.45. We can see that its onset point and orientation have no relation with φ (Figure 6-b). But it affects the post-behavior. As shown in Figure 6-a of the stress-strain relation, the strength drop becomes more gradual with the increasing of φ, which means that the material is more homogeneous. The corresponding evolutions of the inside and outside axial deformations, the plastic equivalent deformations in the solid phase, the porosities and inclusion contents are illustrated in Figure 6-c In the nuclear waste storage investigation, the layer of COx has been chosen as a possible geological disposal of radioactive wastes in French. Many experimental and theoretical investigations has been performed to better under stand this clayey rock. According to [START_REF] Robinet | Mineralogie, porosite et diffusion des solutes dans l'argilite du callovo-oxfordien de bure (meuse/haute-marne, france) de l'echelle centimetrique a micrometrique[END_REF], the clay matrix is quasi continuous and reinforced essentially by quartz and calcite at the mesoscopic scale. Its composition varies with the depth. Generally, the clay has 40 to 50%, the volume fraction of calcite is about 20 to 27% and the one of quartz is from 23 to 25%. The average porosity is 11 ∼ 14% which mostly located in clay. Normally, initially anisotropy and damage induced anisotropy can be found in rock-like materials. Some works have been done for this point(such as [START_REF] Qi | Damage and plastic friction in initially anisotropic quasi brittle materials[END_REF][START_REF] Qi | A numerical damage model for initially anisotropic materials[END_REF]). The purpose of this study is to study the localization effect due to different constituents of composite. For the simplicity, the isotropic material will be firstly Comparing with the clay matrix, the quartz calcite can be treated as rigid inclusions. For this reason, the studied COx can be presented by the RVE in Figure 1.

The above complete constitutive modelling with the effects of localization is now applied to describe the macroscopic performance of this claystone with different material compositions and different confining pressures. The porosity is taken f = 0.25 as an average value for all simulations. The inclusion content ρ varies with depth. The elastic and plastic parameters are chosen as the ones adopted in [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF]. For the simplicity, the volume fraction of the localization zone is taken as φ = 0.2. The parameters are summarized in Table 2.

Solid phase Inclusion

Elastic 

E s = 5GPa E i = 98GPa parameters v s = 0.33 v i = 0.15 Plastic T 0 = 10 -10 , T m = 0.68, b 1 = b 2 = 200 parameters t 0 = -1.1, t m = 0.3, c 0 = c 1 = 15 

Conclusion

By combining nonlinear homogenization technique and localization analysis, we have developed a new enhanced micro-macro constitutive model with localization analysis for heterogeneous materials with micro-porosity and meso-grains. Compared with existing models, this enhanced multiscale constitutive modelling not only considers the influences of microstructural information on the overall mechanical behaviors of heterogeneous materials, but also captures the onset of localized failure and the post localization behavior. The localization analysis is made at the constitutive level. This makes it very easy for engineering applications. According to the results obtained, the localization behavior is strongly affected by the volume fraction of pores and grains. The local material softening rule has an important influence on the onset point of localization. Further, the proposed enhanced model with localization analysis is well able to predict the overall response of COx claystone in both pre-and post-localization regimes. Therefore, this proposed model gives a fundamental tool for the numerical study of localized damaged and fractured zones around underground structures.
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 1 Figure 1: Heterogeneous material with micro-porosity and meso-inclusions

Figure 2 :

 2 Figure 2: Yield surfaces predicted by criterion (4) with different porosity and different loading path, α = 0.3, σ 0 = 5.

Figure 3 :

 3 Figure 3: The orientation of the Localization zone

  to f. The softening rule has an important influence on the localization failure analysis. The parameter b 3 in the softening rule affects the tangent stiffness C tan (17). With the small values, for example b 3 = 60, the values of det(A) is positif for all directions θ and there is no bifurcation. So the studied material are homogeneous and the inside and outside evolutions of axial deformation, ε p eq , f and ρ are coincident (green lines). With the increasing of the value b 3 , the material softening increases and it affects the localization procedure. When b 3 = 90, the material strength drop in the stress-strain curve are much sharper than the one of b 3 = 70 due to the localization zone. The same results can be found for the inside axial deformation and plastic equivalent deformation. The higher values of b 3 makes the more possibility of localization.The effects of confining pressure on overall performance is investigated with ρ = 0.4, f = 0.25, φ = 0.2, b 3 = 90. The material resistance increases with the increasing of confining pressure which has an important effect on the values of det(A) and affects the onset point of the localization zone, as illustrated in Figure8. Concerning the post-localization behavior, the stress drop in the uniaxial loading is much more gradual than the one in triaxial loading.In the following section, this multiscale constitutive modelling with the effect of localization will be used to predict the macroscopic performances of claystone with different material compositions and different confining pressure.-Influence of porosity f det(A) as a function of localization band angle θ

  Evolution of volume fraction of inclusion ρ
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 425 Figure 4: Influence of porosity f the mechanical behaviors, ρ = 0.4, Pc = 10 Mpa, b 3 = 90, φ = 0.2

  Evolution of volume fraction of inclusion ρ
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 5245 Figure 5: Influence of inclusion volume fraction ρ on the mechanical behaviors, f = 0.25, Pc = 10 Mpa, b 3 = 90, φ = 0.2

  Evolution of volume fraction of inclusion ρ
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 6 Figure 6: Influence of localization band size φ on the mechanical behaviors, ρ = 0.4, f = 0.25, Pc = 10 Mpa, b 3 = 90
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 72 Figure 7: Influence of model parameter b 3 on the mechanical behaviors, ρ = 0.4, f = 0.25, Pc = 10 Mpa, φ = 0.2

Figure 8 :

 8 Figure 8: Confining pressure effect on the overall performance, ρ = 0.4, f = 0.25, φ = 0.2, b 3 = 90

Mpa, b 3 = 90 Table 2 :

 902 Parameters used in the constitutive model for all the simulations. Using this same set of parameters, numerical simulations are performed in Abaqus with different loading condition (P c = 0, 5 and 10MPa) on different on different samples with Depth: 482.2m, ρ = 40%, Pc=10Mpa
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 9 Figure 9: Model's predictions and experimental results with different composition and different confining pressures

  Different ρ for Pc=10 Mpa

Figure 10 :

 10 Figure 10: Evolutions of porosity in the compression tests at different depthes and different confining pressures.
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Solid phase

With the increase of porosity, there is a transition from shear band to compaction one. With the process of loading, the distributions of the axial deformation are shown in Figure 4-c.

During time 0 → 1, the confining pressure is applied firstly, then the deviatoric loading is added in time 1 → 2. Before the point B, the material is homogeneous. The bifurcation begins at this point. For the case f = 0.3, the outside part is elastic while the inside one is elastoplastic. Due to the localization zone, the axial deformation increases quickly in the localization zone (dashed line). The same phenomena can be found for f = 0.25 and 0.15.

With the same loading procedure and low porosity, the mechanical behavior becomes more complex. Combining the Figure 4-d of the local equivalent plastic deformation ε p eq evolution, one can find that the elastic behavior becomes inelastic one outside the localization zone after certain load, while the plastic deformation growth ratio decreases inside the zone.

Due to the localization, the distributions of the incremental loading inside and outside the zone are total different. There is a sudden increase inside the localization zone. Based on different mineral compositions. Figure 9-a is for a simulation with uniaxial loading, at the depth 466.8m and the corresponding ρ = 49%. Triaxial compression tests are studied in Figures 9-b andc for Pc = 5 MPa and in Figures 9-d, e and f for Pc = 10 MPa. The inclusion content in these numerical simulations are very different, changes from 40% to 56%.

Generally, model's predictions coincide well with the experimental results. With the consideration of the localization zone, the material strength is well described, especially the mechanical response after the peak point. The influence of microstructural information ( f , ρ, α) on the overall response is explicitly considered in this multiscale constitutive modelling.