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Abstract

Many decoding schemes rely on the log-likelihood ratio (LLR) whose derivation depends on the knowledge of the
noise distribution. In dense and heterogeneous network settings, this knowledge can be difficult to obtain from
channel outputs. Besides, when interference exhibits an impulsive behavior, the LLR becomes highly non-linear and,
consequently, computationally prohibitive. In this paper, we directly estimate the LLR, without relying on the
interference plus noise knowledge. We propose to select the LLR in a parametric family of functions, flexible enough
to be able to represent many different communication contexts. It allows limiting the number of parameters to be
estimated. Furthermore, we propose an unsupervised estimation approach, avoiding the need of a training
sequence. Our estimation method is shown to be efficient in large variety of noises and the receiver exhibits a
near-optimal performance.

Keywords: Receiver design, Log-likelihood ratio (LLR) estimation, Impulsive noise, Unsupervised learning

1 Introduction
5G will have to deal with dense and heterogeneous net-
works. In such situations, interference may exhibit an
impulsive behavior [1–3] and the Gaussian assumption is
no longer suited. In order to establish reliable and effi-
cient communications, one needs to take into account this
impulsive nature while designing the receivers. Indeed,
traditional linear receivers exhibit a dramatic performance
degradation [4] under impulsive noise. Several papers
proposed ways to overcome this issue by using different
metrics to make the decision, e.g., a robust metric mixing
euclidean distance and erasure [5], p-norm [6], Hubber
metric [7], . . . Nevertheless, the approaches are designed
for a specific noise model and their robustness against a
model mismatch is not ensured. The choice of a more
universal solution that can be used for various impulsive
noise is thus salutary.
Many receivers rely on the likelihood of the channel

outputs according to its hypothetical input. In the binary
case, this can be captured through the LLR. This is very
attractive when noise is Gaussian because it leads to a
linear receiver, straightforward to implement. However,
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when rare events with large amplitudes (impulsive noise)
arise, the LLR becomes a non-linear function. Its imple-
mentation is complex and highly depends on the noise
distribution. Consequently, to obtain the optimal receiver,
the noise distribution has to be known and if it falls in a
parametric family, the parameters have to be estimated.
In this paper, we propose to approximate the LLR by

a parametric function. If the family is large enough, it
allows to adapt to many different types of noises without
requiring any noise distribution assumption. Besides, if we
consider a family defined by a limited number of param-
eters and easy to implement, both the estimation and
implementation complexities are reduced. This work can
thus be seen as a generalization of some previous works
that dealt with an approximation of the LLR function [8–
10]: if the soft limiter and the hole puncher [11] are prob-
ably the best-known solutions, we previously proposed
the approximation function f (y) = sgn(y)min(a|y|, b/|y|)
[12], where sgn(y) extracts the sign of y. Nevertheless, we
will not focus in this paper on the best family choice but on
a generic way to estimate the approximation parameters
in an unsupervised manner.
Our main contributions are the following:

• First, we propose to approximate the LLR by a
function chosen in a parametric family large enough
to adapt to various noise types but characterized by a
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enough limited number of parameters to obtain an
efficient implementation.

• Second, we introduce an unsupervised estimation of
the approximated LLR. Using an unsupervised
method avoids the need of training data that reduces
the useful information rate and allows to take benefit
from the whole data sequence to improve the
accuracy of the estimation.

The remaining of the paper is organized as follows.
Once the system model and some background material
are given in Section 2.2, Section 2.3 presents the opti-
mization problem and Section 2.4 discusses the parame-
ters’ optimization in an unsupervised manner. Section 3
presents the application of our proposed scheme to low-
density parity check (LDPC) coding; our simulation setup
is explained and results are presented for different noise
conditions. Finally, Section 4 concludes the paper.

2 Methods
2.1 Notations
We use notations like p(x) for probability mass function
(pmf) or probability density function (pdf) according to
the random variables involved. We keep uppercase letters
for random variables and their corresponding lowercase
for their realizations. We will denote +1 by + and −1 by
− for short. In the remaining, H(X) denotes the entropy
of the source X, H(X|Y ) the conditional entropy of X
given Y, and I(X;Y ) themutual information of the random
variables X and Y.

2.2 Systemmodel and channel capacity
In information theory, channels are completely described
by the conditional probability p(y|x) of the output Y given
the input X. The channels we are considering in this paper
are memory less, binary input, and symmetric output
(MBISO) channels defined by Y = X + N , whose inputs
X are perturbed by an additive noiseN. A channel belongs
to the MBISO family as long as the additive perturba-
tions are symmetric, i.e., such that p(y|+) = p(−y|−), and
independent from the input. Furthermore, we assume uni-
form input distribution. The noise may represent thermal
noise but also impulsive interference. In the latter, N can
be modeled, for instance, by a Middleton class A distribu-
tion [13] or a symmetric α-stable distribution [4]. Further
details are given in Section 3.1.2.
In our considered case, the log-likelihood ratio (LLR) is

given by

�(y) = log
p(y|+)

p(y|−)
= log

p(+|y)
p(−|y) . (1)

Notably, the LLR �(y) is a rewrite of the posterior prob-
ability p(x|y) = 1/

(
1 + e−x�(y)). The LLR is a prime tool

in information theory as it constitutes a sufficient statistic

relative to the channel input [14]; in other words, knowing
�(Y ) or Y is equivalent for the decoding process. More-
over, in practice, the LLR provides also a lingua franca to
represent the input of most soft decoder algorithms such
as the belief propagation (BP) algorithm.
The capacity of such a MBISO channel is given as

C = 1 − E

[
log2

(
1 + e−X�(Y )

)]
, (2)

where E[ ·] denotes the expectation operator. This expres-
sion comes from the decomposition I(X,Y ) = H(X) −
H(X|Y ) and the expression given above of the condi-
tional density p(x|y) as a function of the likelihood ratio,
H(X|Y ) = E

[− log2 p(X|Y )
] = E

[
log2

(
1 + e−X�(Y )

)]
.

2.3 LLR approximation and optimization problem
To decode the received packets, computing the LLR is
unfortunately often too demanding either because of the
lack of a closed-form expression, such as for α-stable
noise, or because it needs high computational burden such
as for Middleton noise. Furthermore, the LLR depends on
the channel state information which should be estimated
by the receiver: for example, the LLR is linear in AWGN
channel but the slope depends on the signal to noise ratio.
In this paper, we consider a parametric approximation

Lθ of the LLR �(y). The family of functions Lθ is chosen
for its simplicity and for its flexibility to match the LLR
of different channel types. In order to narrow down the
search space and to have an easy to implement approxi-
mation, we assume that the estimated LLR Lθ is an odd
piece-wise affine function of the optimization parameter
θ . More precisely, we are interested in functions that can
be represented as

Lθ (y) = sgn(y)min
{
θ1φ1(y), θ2φ2(y), . . . , θnφn(y)

}
, (3)

where φi(y) are functions depending solely on y but not
necessarily linear in y, and θ , given as θ =[ θ1, θ2, . . . , θn],
is the optimization parameter that needs to be estimated.
This approach was already investigated in previous works
[8, 12]. In [12], we considered the case of two parame-
ters, which showed good results according to bit error rate
(BER).
A suitable criterion is thus needed to select the best

parameter θ . Of course, we aim at the smallest BER, but
this criterion is not within reach in practice. We thus
follow the idea from [15] that proposed to evaluate the
accuracy of the approximation using

ĈLθ = 1 − E

[
log2

(
1 + e−XLθ (Y )

)]
. (4)

In fact, using the approximated LLR is equivalent to approx-
imate p(x|y) by the density q(x|y) = 1/

(
1 + e−xLθ (y)),

and thus to approximate H(X|Y ) by Ĥ(X|Y ) =
E

[
log2

(
1 + e−XLθ (Y )

)]
.
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Whereas the previous derivation is only an heuristic,
it appears to be a good criterion. Indeed, the differ-
ence between the approximated and the true conditional
entropies is

H(X|Y ) − Ĥ(X|Y ) = E
[
log2 p(X|Y )

] − E
[
log2 q(X|Y )

]

= E

[
log2

p(X|Y )

q(X|Y )

]

= D
(
p(x|y)∥∥q(x|y)) , (5)

where D(p‖q) is the Kullback-Leibler divergence between
densities p and q [16]. We draw several facts from (5): the
non-negativity of the divergence implies that our criterion
is lower bounded, H(X|Y ) ≤ Ĥ(X|Y ), and the bound is
reached when q(x|y) = p(x|y). In other words, ĈLθ = C
for Lθ = � if the LLR � belongs to the parametric family
Lθ .
However, in our setting, the approximated conditional

entropy Ĥ(X|Y ) is not available directly, since the expec-
tation operator depends on the noise distribution that we
assume unknown. We thus rely on the law of large num-
bers to estimate it, replacing the expectation by an empir-
ical average ĤK (X|Y ). Hence, Ĥ(X|Y ) can be obtained as

Ĥ(X|Y ) ≈ ĤK (X|Y ) = 1
K

K∑

k=1
log2

(
1 + e−xk Lθ (yk)

)
, (6)

where xk and yk are samples that represent the input and
output of the channel respectively.
Our objective is to minimize ĤK in (6) over the possible

choices of θ . This will allow us to find an approxima-
tion of the LLR in the considered family that should be a
good choice for our decoding algorithm.Our optimization
problem is therefore given as

θ∗ = argmin
θ

ĤK (X|Y )

= argmin
θ

1
K

K∑

k=1
log2

(
1 + e−xkLθ (yk)

)

= argmin
θ

1
K

K∑

k=1
log2

(
1 + e−Lθ (xkyk)

)
,

(7)

where the last equality holds since Lθ (·) is an odd function
and since xk belongs to ±1.
Finally, one can rewrite the objective function as

ĤK (X|Y ) = 1
K

K∑

k=1
xkyk≥0

log2
(
1 + e−Lθ (xkyk)

)

+ 1
K

K∑

k=1
xkyk<0

log2
(
1 + e−Lθ (xkyk)

)
.

(8)

In order to minimize (8), one needs to minimize the two
sums, which can be treated separately according to the
sign of xkyk . On the one hand, if xkyk > 0 then

log2
(
1 + e−min{θ1φ1(xkyk),...,θnφn(xkyk)})

= max
i

{
log2

(
1 + e−θiφi(xkyk)

)}
.

(9)

Consequently, in order to minimize (9), one needs to
increase the parameters θi. On the other hand, if xkyk < 0,
then

log2
(
1 + e−max{θ1φ1(xkyk),...,θnφn(xkyk)})

= min
i

{
log2

(
1 + e−θiφi(xkyk)

)}
.

(10)

In order to minimize (10), one thus needs to decrease
the parameters θi. Thus, minimizing ĤK (X|Y ) results in a
compromise between minimizing each of the two sums in
(8), one of it tends to increase the value of the parameters
while the other tends to decrease it.
Unfortunately, based on this study, the optimization

problem we are considering is not convex: indeed, if xy >

0, one can show that the objective function is convex in
θ , but this does not hold in the case xy < 0. Despite
the non-convexity of the problem, we will use a simplex
method based algorithm [17] to obtain at least a local
minimum. This method converges within ten iterations,
which is suited for our application, and the use of an algo-
rithm adapted to non-convex methods could not result in
any significant gain. It could however be different for other
approximation families but the best optimization method
as well as its complexity study remain out of the scope of
this paper.

Remark 1 Note that various LLR approximations can
fit into the proposed affine framework, for instance, in
[12], the approximation Lθ (x) = sgn(x)min(θ1|x|, θ2/|x|).
Other examples of piece-wise affine LLR approxima-
tions can be found in the literature. A classical solu-
tion is the clipping demapper [18] defined as Lθ (x) =
sgn(x)min(θ1|x|, θ2). Nevertheless, other approximations
that do not belong to our considered piece-wise affine func-
tion can also be found, as for instance the Hole puncher
demapper [19] or non-linear approximation like in [8].
The proposed framework remains valid but attention has
to be paid to the optimization algorithm that will be used.

2.4 Unsupervised optimization
To solve (7), one needs a received sequence Y as well as the
corresponding transmitted one X. This is usually obtained
thanks to the use of a training sequence [20]. However, this
induces an increase in the signaling and a decrease in the
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useful data rate. Unsupervised optimization is thus attrac-
tive since it does not imply any overload. Besides, a good
aspect of having such an unsupervised approach is that
we optimize the approximation function directly from the
sequence that we are going to decode. In other words,
the noise impacting the training phase and the decoding
phase will be the same ensuring the best knowledge of the
actual channel state.
Since one needs the sent sequence X as well as the cor-

responding channel output Y, we propose thus to extract
a noise sequence Ñ directly from the received channel
output Y and to simulate at the receiver side the transmis-
sion of a known sequence X̃. The corresponding channel
output is build as Ỹ = X̃ + Ñ , as depicted in Fig. 1. To
do so, we propose to use a sign-detector yielding Ñ =
Y − sgn(Y ). The simulated channel input is an i.i.d. BPSK
random variable that is independent of Ñ . The optimiza-
tion parameter θ can thus be estimated based on (7) but
with the newly generated input and output as

θ∗ = argmax
θ

ĈLθ (X̃, Ỹ ). (11)

Once adapted parameters θ∗ are obtained, the LLR will
be approximated by Lθ∗(y), where Y is the true received
sequence over the MBISO channel.
In the next section, we propose to apply our unsuper-

vised LLR approximation optimization to LDPC coding
where the noise exhibits an impulsive nature. However,
our solution is not limited to these codes, but could be
applied to any code families whose decoding relies on the
LLR, as for instance convolutional codes or turbo-codes.

3 Results and discussion
In this section, we first present our simulation setup.
Then, we investigate the accuracy of the unsupervised
optimization process and evaluate the BER performance
of our proposed demapper. For clarity reasons, we first
focus on SαS noise distributions, while we will extend to
Middleton for the robustness study.

3.1 Simulation setup
3.1.1 Source
We use an LDPC code associated with a BP-decoding
algorithm. This case is well-suited to our proposal because
the LLR have to be estimated and fed to the BP algo-
rithm. We refer the interested reader to [21] for a detailed
treatment of LDPC codes.
Throughout this paper, we assume that the binary mes-

sage X is encoded using a regular (3,6) LDPC code of
length 20000.We performed the same study over different
LDPC codes and the conclusions are the same.

3.1.2 Non-Gaussian noise
In the following, we assume that the additive noise
impacting the transmission exhibits an impulsive nature.
In a first step, we will use symmetric α-stable (SαS) dis-
tributions to model this impulsive interference, since the
heavy tail property of their pdf has been shown to coincide
with the impulsive nature of network interference in vari-
ous environment types [22–25]. One way to define stable
distributions is as follows: if for any n ≥ 2 there exist a
strictly positive constant Cn and a real Dn such that the
sum of n independent copies of X, X1 +X2 +· · ·+Xn, and
CnX+Dn have the same distribution, then X is an α-stable
distribution. The finite variance case leads to the central
limit theorem and X being Gaussian (α = 2), whereas the
non finite variance case leads to the generalized central
limit theorem and X being α-stable (0 < α < 2). The
parameter α (0 < α ≤ 2) is the characteristic exponent
indicating the heaviness of the tail: the smaller α, the more
frequent rare events are, which we call impulsive. If X is
in addition symmetric, only a second parameter is neces-
sary to characterize the distribution: the dispersion γ that
plays a similar role to the variance in the Gaussian case.
Further details on these distributions can be found in [26]
and their interest for network interference can be found
for instance in [4]. Unfortunately, in general for SαS distri-
bution, no closed-form expression of the pdf exists, which
prevents the extraction of a simple metric based on the

Fig. 1 Unsupervised LLR demapper
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Fig. 2 LLR demapper approximations. The following parameters were used in our case: α = 1.4 and γ = 0.5

noise pdf in the decoding algorithm. Transmission over an
additive SαS noise channel is thus a perfect example where
one can use our proposed LLR approximation.
Since we do not want to enforce restriction on the noise

distribution, we will study the behavior of our approach
with two other classical noise models: Gaussian and Mid-
dleton class A. The latter was proposed by Middleton
[13] to model thermal noise plus impulsive interference.
This distribution is a mixture of centered Gaussian dis-
tributions of increasing variances, whose weights follow a
Poisson’s law of parameter A called the impulsive index.
The remaining parameters are the total noise power σ 2

and the thermal to interference power ratio �.

3.1.3 LLR approximation under impulsive noise
Note that when the noise exhibits a Gaussian nature,
the LLR is given as La∗(y) = 2

σ 2
N
y, which belongs to

our proposed parametric function. Nevertheless, using
only a linear scaling whose slope depends on the addi-
tive noise variance leads to severe performance loss
as soon as noise is impulsive. This performance loss
occurs because with this linear scaling, large values in Y
result into large LLR. However, under impulsive noise,
large values in Y are more likely due to an impulsive
event so that the LLR should be small, meaning a less
reliable sample due to the presence of a large noise
sample.
Figure 2 lightens the non-linearity of the LLR func-

tion for the channel output Y when the noise is α-stable.
Even if Fig. 2 delineates a specific noise model, the over-
all appearance of the LLR exhibits a similar behavior when
noise is impulsive.
At a first look, two different parts in the LLR can be

observed: a first one when y is close to zero and another

one when y becomes large enough.When y is close to zero,
the LLR is almost linear, whereas when y is large enough,
the LLR presents a power-law decrease. The presence of
these two parts has been used in the literature to propose
several LLRs [12, 18, 27–29] and justifies the proposed
piece-wise affine set for the LLRs approximation.
In the remainder of the paper and without loss of gen-

erality, we focus on a LLR approximation based on two
parameters θ = {a, b} and Lθ (x) = sgn(x)min(a|x|, b/|x|),
which exhibits performance close to the true LLR [8, 30].

3.2 Estimation in additive sαS noise
In a first step, we investigate the shape of the function ĤK
given in (7). In this paper, we present the obtained results
for a highly impulsive noise when α = 1.4, but similar
observations and conclusions would be made for other
choices.
In Fig. 3, we represent a 3D plot of the function ĤK

for three values of γ , namely γ = 0.35, γ = 0.45, and
γ = 0.55, as well as a contour plot representing the levels
of ĤK under the supervised criterion using a learning
sequence of length 20000. The values of γ are selected in
a way to represent the shape of the function ĤK before,
within, and after the waterfall region1 respectively. First,
note that ĤK is quite flat around its minimum value. As a
consequence, it may be quite sensitive to errors and thus
to the length of the training sequence. Using the whole
data set in an unsupervised approach can then be a source
of robustness.

1In iterated sparse graph-based error correcting codes, as for instance LDPC
codes, the BER decreases quickly with the increase of the SNR up to a given
point, where the performance starts to flatten. The waterfall region
corresponds the set of SNRs before the change of speed in the BER decrease.
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Fig. 3 Behavior study of the ĤK function. We studied the behavior of ĤK as a function of parameters a and b for different values of γ , under highly
impulsive SαS noise with α = 1.4

In Fig. 4, we illustrate the link between the function
ĤK and the obtained BER. The contour plot delineates
different BER values, ranging from 10−5 to 10−1.
The two white symbols correspond to the mean value

of the optimization parameters a and b obtained under
supervised and unsupervised optimization, respectively,
as provided on Figs. 5 and 6. Furthermore, the white
contour delineates the set of a and b values yielding the
smallest values of ĤK within a small precision error. First
note that the obtained mean values of a and b under
both types of optimization fall within the set of points
achieving a BER less than 10−5.The sensitivity to errors
due to the flatness of the landscape of ĤK is thus less-
ened by the flatness of the BER region. Moreover, the
set of points minimizing the optimization function ĤK
belongs to the set of points achieving a BER less than 10−5,
which means that using ĤK as a criterion turns out to be

a relevant choice robust to lightly non-perfect optimiza-
tion. Through intensive simulations, we noticed that the
connection between ĤK and the BER is always assessed,
irrespective from the noise model and noise parameters
value.
We next evaluate the performance of the estimation

process. To perform so, we compare the obtained θ∗ under
unsupervised optimization with the one obtained under
a supervised approach. In the latter, instead of building
a training sequence X̃ at the decoder, we directly use
the learning sequence to estimate the optimal θ∗. More
details on the supervised optimization can be found in our
previous work [29].
Figures 5, respectively 6, compares the evolution of the

mean and variance of the estimated parameter a, respec-
tively b, as a function of the dispersion γ , of a SαS noise
with α = 1.4 under supervised and unsupervised opti-

Fig. 4 Link between the BER and minimizing ĤK function. BER evolution as a function of a and b parameters with γ = 0.45 and α = 1.4 under the
supervised approximation
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Fig. 5 Estimation of the a parameter. Comparison of the mean and standard deviation evolution for parameter a as a function of the dispersion γ of
a SαS noise with α = 1.4 for the supervised and unsupervised optimization

mization. However, the same behaviors can be obtained
for other values of α between 0 and 2. For each noise
dispersion, we ran 5000 experiments. For the supervised
case, we use a learning sequence of 20000 samples to esti-
mate a and b. This allows to have a good idea of the
results with a very small estimation error. In a practical
setting, such a long training sequence is not reasonable
and additional errors can be expected as the length of
the learning sequence decreases, which would benefit our
proposal.

We can see from Fig. 5 that the gap between the
obtained values for parameter a under supervised and
unsupervised optimization is small. Unfortunately, as
shown in Fig. 6, the one obtained for b is significantly
larger. This difference can be explained since b mainly
depends on large noise samples which are rare events;
consequently, its estimation is less accurate.
We can however expect that the error on b will have a

limited impact in terms of BER performance. Indeed, as
shown in Fig. 4 when γ = 0.45, the estimated mean values

Fig. 6 Estimation of the b parameter. Comparison of the mean and standard deviation evolution for the parameter b as a function of the dispersion
γ of a SαS noise with α = 1.4 for the supervised and unsupervised optimization
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Table 1 Parameter estimation

μa σa μb σb

α = 1.8 γ = 0.53 Unsupervised 3.43 0.06 5.73 0.15

SupLS=20000 3.25 0.05 7.59 0.28

SupLS=1200 3.27 0.24 8.50 14.48

SupLS=900 3.27 0.27 11.72 46.15

γ = 0.55 Unsupervised 3.23 0.05 5.61 0.14

SupLS=20000 3.05 0.05 7.62 0.28

SupLS=1200 3.07 0.22 7.97 1.54

SupLS=900 3.07 0.26 10.73 30.41

Comparison of the mean and standard deviation evolution for the parameters (a, b)
as a function of the dispersion γ of a SαS noise with α = 1.8 for the supervised with
different learning sequence sizes and unsupervised optimization

under both the supervised and the unsupervised approach
fall in the small BER region. Besides, the small variance of
the estimated θ∗ ensures that most of the estimated values
will fall in the region yielding the smallest BER.
To complete the study, we present in Table 1 the influ-

ence of the training sequence length. In this table, the
mean and the variance of the estimation of the parameters
a and b are collected for 20000, 1200, and 900 bits long
learning sequences and also compared to the unsuper-
vised algorithm. The mean value of a is only slightly
affected by the learning sequence length even for short
or moderate length sequences. However, the standard
deviation of the estimation significantly increases. On
another hand, parameter b is more volatile and the mean
of its estimation varies significantly with the training
sequence length. Such variability will affect the perfor-
mance of the system and degrade the BER, asking for
a trade-off between the targeted BER and the sequence
length.

3.3 BER performance under Sαs additive noise
Once our demapper is tuned with the estimated value θ , it
is used as a front-end to the 20000 bits long regular (3,6)
LDPC decoder using the BP algorithm. We study a highly
impulsive situation with α = 1.4 and a more moderate
case with α = 1.8.
Figures 7 and 8 present the obtained BER for α = 1.4

and α = 1.8 respectively, as a function of the dispersion
γ of the α-stable noise2. In both cases, we compare the
BER obtained via the demapping function, either in an
unsupervised or supervised manner, to the BER obtained
with the true LLR computed via numerical integration.
For each channel set, we use a learning sequence of length
(1200 or 20000) to optimize θ in the supervised case; the

2In case of an impulsive environment with α < 2, the second-order moment
of a stable variable is infinite ([22], Theorem 3), making the conventional noise
power measurement infinite. Accordingly, we present our simulation results
as a function of the dispersion parameter γ , which is used as a measurement
of the strength of the α-stable noise.

long training sequence (20000) allows to assess the opti-
mal performance of the supervised estimation, the shorter
one (1200) allows to evaluate the loss due to estimation
with more realistic training sequences.
First, we note that the estimation with a long train-

ing sequence gives performance close to the optimal LLR
which shows the good behavior of our demapping func-
tion. Moreover, the unsupervised approach does not per-
form as well as the supervised one with long training
sequence but the gap is not so large and the gain in com-
parison to a linear receiver is enormous. However, when
the training sequence is shortened, the supervised estima-
tion degrades and the performance of the unsupervised
approach is then much better.
In order to show the robustness of our proposed demap-

per Lθ , we investigate in the next subsection its perfor-
mance when the channel exhibits different statistics.

3.4 Robustness study of the proposed LLR approximation
We use a linear approximation La(y) = ay and the pro-
posed LLR approximation with θ = {a, b} and test them
under two different configurations:

• Highly impulsive Middleton class A with A = 0.1 and
� = 0.1 taken from [31], where one varies the total
noise variance σ 2,

• Gaussian noise.

Note that in these cases, one can compute the noise
variance, thus the numerical simulations can be given as
a function of the normalized signal-to-noise ratio Eb/N0.
For each scenario, we compare the BER performance
using the true LLR, obtained via numerical integration
to the one using LLR approximations under supervised
and unsupervised parameter estimation and Gaussian
designed demapper La. For each channel set, in the super-
vised way, a learning sequence of length 20000 is used to
optimize θ .

3.4.1 Other additive impulsive noise channels
In the impulsive context, we choose a highly impulsive
Middleton class A model. Figure 9 shows the evolution of
the BER as a function of the Eb/N0.
The high robustness of our demapper can be seen

through the close performance obtained between the
unsupervised and supervised case from one side and
between the approximations and the true LLR from the
other side in spite of the change of the type of noise and
the degree of impulsiveness.

3.4.2 Additive Gaussian noise channel
It is important that our receiver behaves well even if the
noise does not present impulsiveness characteristics. The
approximated LLR Lθ is thus tested in the presence of a
Gaussian noise and the obtained BER is shown in Fig. 10.
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Fig. 7 BER comparison in low impulsive SαS noise. Evolution comparison of the BER as a function of the dispersion γ of a SαS noise in low impulsive
environment with α = 1.8, between the supervised with different learning sequence sizes, unsupervised, Gaussian designed LLR approximations,
and the LLR obtained by numerical integration

We note that all curves, i.e., the BER obtained
under both the supervised and unsupervised optimiza-
tion, the linear demapper La∗ , designed for Gaussian
noise and the optimal receiver obtained with the true
LLR are almost superposed, with a negligible perfor-
mance loss under the unsupervised optimization. We
can conclude that our proposed approach Lθ does not
degrade the decoding performance in a purely Gaussian
case.

3.4.3 Analysis
These numerical simulations illustrate the universality of
the approach. The LLR family has to be wide enough to
be able to represent the linear behavior of exponential-tail
noises like the Gaussian and the non-linear behavior of
sub-exponential distributions of the impulsive noises. The
estimation of the LLR approximation parameter relies on
an information theory criteria which does not depend on
any noise assumption.

Fig. 8 BER comparison in highly impulsive SαS noise. Evolution comparison of the BER as a function of the dispersion γ of a SαS noise in highly
impulsive environment with α = 1.4, between the supervised with different learning sequence sizes, unsupervised, Gaussian designed LLR
approximations and the LLR obtained by numerical integration



Mestrah et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:26 Page 10 of 11

Fig. 9 BER comparison in highly impulsive Middleton class A noise. BER comparison as a function of Eb/N0 between the supervised, unsupervised,
Gaussian designed LLR approximations and the LLR obtained by numerical integration, in highly impulsive Middleton class A noise with A = 0.1 and
� = 0.1

The gap between the unsupervised optimization and the
true LLR is small in all the studied examples. We extended
this study to other noises parameters or distribution like
the ε-contaminated [32] and obtained similar conclusions.
Besides, this gap is partly due to the choice of an approxi-
mation function described by only two parameters.
In impulsive situations, the gap between the non linear

(with respect to y) LLR approximation Lθ and the linear
receiver La is huge. It proves the influence of handling
correctly the impulses that arise due to the presence of
interference. Moreover, our demapper function does not
significantly impact the performance when noise is not

impulsive, so that we do not need a detection step to
distinguish between Gaussian and impulsive situations.

4 Conclusion
We proposed in this paper a receiver design that can adapt
to various noise models ranging from very impulsive to
non-impulsive by approximating the LLR fed to the itera-
tive decoder. We choose an LLR approximation function
Lθ in a parametric family. The parameters θ are estimated
through the maximization of the mutual information. An
unsupervised solution is proposed in order to benefit from
the whole received sequence and to increase the useful

Fig. 10 BER comparison in Gaussian noise. BER comparison as a function of Eb/N0 between the supervised and unsupervised LLR approximations
and the optimal LLR in additive Gaussian noise channel
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data rate. Our results show that the receiver design is effi-
cient in a large variety of noises and that the unsupervised
estimation allows to reach performance close to the opti-
mal and even better than the supervised approach if the
training sequence is not sufficiently long.
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