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Abstract: Hexagonal boron nitrite (hBN) is an attractive material for many applications such as in 

electronics as a complement to graphene, in anti-oxidation coatings, light emitters, etc. However, 

the synthesis of high-quality hBN at cost-effective conditions is still a great challenge. Thus, this 

work reports on the synthesis of large-area and crystalline hBN nanosheets via the modified 

polymer derived ceramics (PDCs) process. The addition of both the BaF2 and Li3N, as melting-point 

reduction and crystallization agents, respectively, led to the production of hBN powders with 

excellent physicochemical properties at relatively low temperatures and atmospheric pressure 

conditions. For instance, XRD, Raman, and XPS data revealed improved crystallinity and quality at 

a decreased formation temperature of 1200 °C upon the addition of 5 wt% of BaF2. Moreover, 

morphological determination illustrated the formation of multi-layered nanocrystalline and 

well-defined shaped hBN powders with crystal sizes of 2.74–8.41 ± 0.71 µm in diameter. Despite 

the compromised thermal stability, as shown by the ease of oxidation at high temperatures, this 

work paves way for the production of large-scale and high-quality hBN crystals at a relatively low 

temperature and atmospheric pressure conditions. 
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1. Introduction 

For over a decade, an enormous scientific research effort has been devoted to the synthesis, 

tuning, and investigating of various properties and applications of metallic, semiconducting, and 

insulating two-dimensional (2D) materials. This tremendous research interest in 2D materials is due 

to the successful isolation of graphene from highly-oriented pyrolytic graphite (HOPG) [1–3]. 

Amongst the most studied 2D materials, hexagonal boron nitride (hBN) continues to attract attention 

due to its unique physicochemical properties. Owing to the strong covalent sp2 bonds in the BN 

plane, hBN exhibits a large bandgap (~5.9 eV), high mechanical strength, good thermal conductivity, 

chemical inertness, and thermal stability. Moreover, the atomically smooth surface and close 

in-plane lattice mismatch to graphene (~1.8%) [4,5], renders hBN an important layered material 

complementary to graphene and other 2D materials [4,6–10]. As a result, this has led to a myriad of 

potential applications for hBN; ranging from encapsulation of graphene [4,11], tunneling barrier [12], 

deep ultraviolet light emitters [13], protective coatings and/or lubricants [14,15], hydrogen storage 

[16], all the way to dielectric substrates [5]. For instance, graphene-based transport devices 

integrated with an hBN dielectric layer have been found to exhibit enhanced mobility and excellent 

current on-off ratios, compared to those fabricated from graphene stacked on other substrates 

[5,17–21]. Furthermore, the absence of dangling bonds or trapped charges in hBN is of significant 

importance for enhancing the film performance especially when hBN is integrated with transition 



 

 

metal dichalcogenides such as MoS2 [22–24]. Last but not least, the electrical insulating behavior of 

hBN enables it to serve as a platform for charge fluctuation, contact resistance, gate dielectric, a 

passivation layer, Coulomb drag, as well as the atomic tunneling layer in a variety of fundamental 

scientific and technological fields [12,15,23,25,26]. 

However, for hBN to reach its ultimate practical application in the optoelectronic and dielectric 

industry, synthesis of large-area high-quality single crystals of hBN, at cost effective conditions, is a 

very crucial issue. Consequently, numerous techniques have been developed and employed to 

produce hBN; these include processes such as mechanical exfoliation [5,27,28], sputtering [29,30], 

pulsed laser deposition (PLD) [31,32], atomic layer deposition (ALD) [33–35], and chemical vapor 

deposition (CVD) [36,37]. For instance, with graphene, mechanical exfoliation has been widely used 

to produce high-quality hBN nanosheets. On the contrary, mechanical exfoliation is strictly limited 

to the fabrication of small-scale devices as the process produces flakes of a limited size, inconsistent 

yields, and a variable number of hBN layers. Additionally, other techniques basically require 

extremely sophisticated equipment using high temperatures and pressures [13]. Therefore, in an 

attempt to circumvent these drawbacks, the use of the polymer derived ceramics (PDCs) [36–40] 

process coupled with the addition of a crystallization agent such as lithium nitride (Li3N) has been 

reported to provide an alternative approach for preparing large-scale and high-quality single 

crystals of hBN nanosheets for further applications in next-generation electronics. During the PDCs 

method, a polymeric precursor is synthesized from its monomers, after which it is then converted 

into ceramic after shaping. Among the various precursors that have been used for the 

PDCs-synthesis of hBN nanosheets, polyborazylene (PBN) has shown to lead to the production of 

large-area highly crystallized hBN at temperatures as low as ~1400 °C [36–40]. This is owing to its 

relatively high ceramic yield and high purity. Most importantly, the B/N ratio within PBN polymer 

is ideal to produce stoichiometric hBN, with the only contaminants being hydrogen atoms that are 

easily removed during the ceramization step. Despite the synthesis of large-area and 

well-crystallized hBN nanosheets via the conventional PDCs process, the search for further 

improvements so as to synthesize well-crystallized hBN nanosheets at relatively lower sintering 

temperatures, still remains a paramount necessity and occupies the activity of today’s scientific 

community. One such technology, which has been overlooked for almost a decade, is the use of 

halides in combination with lithium nitride (Li3N) [41]. In this process, the Li3N acts as a 

crystallization promoter to produce highly crystallized hBN, whereas the halides help to facilitate 

the melting of Li3N, leading to the synthesis of hBN nanosheets at temperatures as low as ~800 °C at 

a prolonged time of 22–56 h. As such, this work reports on the use of PDCs process coupled with 

Li3N-additives in combination with the group II halides, in particular, barium fluoride (BaF2), to 

produce large-area well-crystallized hBN nanosheets at low temperatures. The work provides a new 

platform for the large-scale synthesis of hBN nanosheets at cost-effective conditions without 

compromising the physicochemical properties of hBN nanosheets.  

2. Materials and Methods  

2.1. Procedure  

The pure monomer of borazine was prepared from a reaction between ammonium sulfate 

((NH4)2SO4, ≥ 99%, Aldrich) and sodium borohydride (NaBH4, 98% purity, Aldrich, Saint-Louis, MO, 

USA) in tetraethylene glycol dimethyl ether or tetraglyme (C10H22O5, ≥ 99%, Alfa Aesar, Ward Hill, 

MASS, USA) solvent, as reported by Wideman et al [42]. After the purification of borazine via 

distillation, the polymeric precursor was obtained by through the poly-condensation of borazine at 

55 °C inside a pressure-sealed system under argon for 5 d; generating colorless polyborazylene 

(PBN) [15,39,43,44]. For the synthesis of Boron Nitride NanoSheets (BNNSs); inside the glove-box 

and under argon atmosphere, lithium nitride (Li3N, 99.4%, Alfa Aesar, Ward Hill, MASS, USA) at a 5 

wt.% ratio, as a crystallization agent, and varying amounts (0–10 wt.%) of barium fluoride (BaF2, 

99%, Alfa Aesar, Ward Hill, MASS, USA), as a melting-point reduction agent, were added to PBN, 

then the mixture was homogenized via stirring for 10 min. After which the suspension was heated to 



 

 

200 °C in an alumina crucible and kept for 1 h to give a solid-state polymer [38,40,41]. Finally, the 

stabilized mixture was annealed for 1h at 1200 °C (1 °C/min) under inert nitrogen (N2, 98%, Air 

Liquide, Paris, France) atmosphere.  

2.2. Methods 

The morphology and electronic structure of the synthesized materials were ascertained using 

various characterization techniques. The crystal structure of the hBN nanosheets was confirmed 

using a powder X-ray diffractometer (Bruker, Billerica, MASS, USA ) (PXRD) Bruker D8 Advanced, 

equipped with the Cu-K radiation source and using the PMMA zero-background substrate. MEB 

Zeiss Merlin Compact scanning electron microscopy (SEM), at the accelerating voltage of 80 kV, was 

used to determine the morphology of the nanomaterials. Further morphological analyses were 

carried on the MET Phillips CM120 transmission electron microscope (TEM) (Philips, Amsterdam, 

Netherlands) at 120 kV. The degree of crystallization of the hBN nanosheets was determined in the 

backscattering geometry using the HORIBA Jobin-Yvon Labram Evolution Raman spectrometer 

(Horiba, Kyoto, Japan) at 532 nm laser excitation wavelength. The functional groups and surface 

interactions of the BN nanosheets nanostructures were investigated using SAFAS Monaco 

SP2000-IR700 spectrometer in the range of 4000–600 cm−1. The surface area, pore volumes, and 

diameters of the as-prepared samples were acquired from the BELsorpII mini, after degassing the 

samples for 4 h at 100 °C, thereafter, adsorption and desorption of ultra-pure N2 gas was performed. 

Chemical composition and bonding configurations for the bulk hBN samples were determined by 

XPS using a PHI Quantera SXM spectrometer (Physical Electronics, Chanhassen, MN, USA). A 

monochromatized aluminum Kα radiation was used with a 200 µm spot diameter and a take-off 

angle of 45°, before and after 2 µm sputtering with Ar+ ions. Charge compensation was provided by 

an in-lens electron flood gun and separate low energy argon ion source. Finally, thermogravimetric 

analyses were determined using the TGA/DSC2 form Mettler Toledo (Mettler Toledo, Columbus, 

Ohio, USA). An hBN sample of ~15 µL mass was placed into a 150 mg alumina crucible with pierced 

lid, after which the decomposition profile of the sample was established from 30–1400 °C, at a 

heating rate of 20 °C/min, under 50 µL mL−1 Ar. 

3. Results and Discussion 

Growth of large-area hBN nanosheets at low temperatures and atmospheric pressure 

conditions was successfully achieved through a BaF2-assisted PDCs technique. After synthesis, the 

structural, composition and electronic properties were investigated using XRD, XPS, Raman, and IR 

spectroscopies, whereas the morphological properties were determined using TEM and SEM 

microscopies. 

3.1. Structural and electronic properties 

3.1.1. Powder XRD analysis 

The composition and crystallinity of the BNNS samples synthesized with addition of various 

amounts of BaF2 and annealed at 1200 °C were examined by the powder XRD (Figure 1a), after 

which their XRD patterns were compared with that of standard hBN (ICCD card #: 34–421). The 

results for all samples showed the characteristic fingerprint diffraction patterns for highly 

crystallized hexagonal boron nitride (hBN) (Figure 1a); evident by the pronounced (002) diffraction 

peak at 2θ ≈ 26.5–26.8°, as well as the less intense (004), (110) and (112) peaks centered at 2θ ≈ 55.4°, 

2θ ≈ 76.2°, 2θ ≈ 81.7°, respectively. However, a much deeper investigation of the diffraction patterns 

revealed the formation of two phases of hexagonal (hBN) and rhombohedral (rBN) boron nitride 

(Figure 1b) for samples with low contents of BaF2 (i.e. 0 and 2.5 wt%). On the other hand, upon 

increasing the BaF2 content from 5–10 wt%, the XRD patterns indicated that the most favored 

principal phase is the hBN (Figure 1b), as the relative intensities of the (101) and (012) peaks for rBN 

are relatively diminished. As such, the results showed the significance of the addition of BaF2 to the 

PBN/Li3N pre-ceramization mixture towards improving the crystallinity of the hBN phase. It can, 

https://www.google.com/search?client=firefox-b-d&q=Billerica&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooTjarUOIAsUuqqjK0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWDmdMnNyUosykxN3sDICABWooFlTAAAA&sa=X&ved=2ahUKEwi2zI7j3fTnAhVZDWMBHSjwCpUQmxMoATARegQIDBAD


 

 

therefore, be proposed that improved crystallinity of the hBN nanosheets is achieved through the 

facilitation of faster melting of Li3N by BaF2 [41], thereby leading to lower formation temperature as 

compared to our previous studies [38,40,43]. However, it is also noteworthy to mention that 

regardless of the improved crystallinity with increasing BaF2 content (10 wt%), the presence of 

unmelted impurities from Li and Ba complexes is evident from the XRD patterns, thereby 

compromising the quality of the inherent as-synthesized BNNS samples. This was also observed 

with a further increase in BaF2 content (20–30 wt%, not shown here). Thus, the addition of equally 

small amounts (5 wt%) of both Li3N and BaF2 led to the formation of crystalline hBN nanosheets at 

relatively low temperatures and atmospheric conditions.  

 

Figure 1. (a) and (b) XRD patterns for BNNS samples annealed at 1200 °C after the addition of 5 wt% 

Li3N together with 0–10 wt% of BaF2. 

A further indication of an improved crystallinity of the hBN phase within the BNNS samples 

was through the separation of the (100) and (101) peaks accompanied by the symmetrically 

sharpening of (002), as well as increasing intensities of (102), (110), and (112) peaks. Furthermore, the 

interlayer d002-spacing values of ~3.34 Å for all samples were determined to be close to that of 

high-crystalline bulk value for the commercial hBN samples (Table 1), suggesting a good 

crystallization rate for each sample after the addition of BaF2. The slightly lower interlayer distance 

for the 5 wt% BaF2 sample (~3.331 Å) is indicative of the improved d-p interaction occurring between 

the p-orbital electrons in hBN and those in the d-orbital of barium [45], consequently resulting in a 

better-crystallized sample upon the introduction of BaF2. Similar results were observed with the 

addition of higher BaF2 contents, with the 20 wt% BaF2 sample registering a d002-spacing value of 

~3.328 Å, whereas that of the 30 wt% BaF2 sample was ~3.326 Å. Finally, the degree of crystallization 

of the hBN phase within the BNNS samples was evaluated in terms of the "graphitization index, GI" 

(Table 1), as indicated by Equation (1): 
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Table 1. XRD parameters of Boron Nitride Nanosheets samples in comparison to the commercial 

hBN. 

Amount of BaF2 

(wt%) 

Graphitization 

Index (GI) 

d002-spacing 

(Å) 

Position (2θ) 

(002) (100) (101) 

0  - 3.32 26.5 - - 

2.5 - 3.34 26.6 - - 

5  3.83 3.33 26.7 41.57 43.83 

10  1.88 3.34 26.8 41.56 43.81 

hBNcomm 1.19 3.33 26.7 41.60 43.83 

The significance of the value for the G.I. is that the higher the value is the less the 

three-dimensional ordering is within the hBN and the reverse is true [46–50], therefore implying a 

lateral growth of the hBN crystallites. So, in the light of this information, Table 1 shows that BNNS 

samples synthesized with the addition of 5 wt.% BaF2 can be considered to have a less 

three-dimensional ordering in the crystal structure, as evident by the G.I. value of 3.83c.a. This has 

later been confirmed by TEM analyses which showed the formation of larger hBN nanosheets upon 

addition of 5 wt% BaF2.  

3.1.2. XPS analysis 

The XPS analysis was used as a surface-sensitive and standard technique for determining the 

overall elemental composition (at. %) and different bonding states within the as-synthesized 

samples. Figure S1a shows a typical surface XPS survey scan for the hBN samples and the spectra 

exhibited at least five peaks: two distinct peaks corresponding to B1s (190.9 eV) and N1s (397.8 eV), 

two weak peaks corresponding to O1s (532.1 eV) and Ba3d (780.1 eV), as well as another peak 

corresponding to advantageous C1s (284.2 eV). However, after sputtering a 2 µm surface from the 

samples with Ar+ ions, no carbon was found within the bulk of the samples: thus, indicating the 

removal of any adsorbed atmospheric carbon atoms. Therefore, by taking the integrated peak areas 

of the B1s, N1s, O1s, Li1s, and Ba3d from the XPS survey spectra, the overall elemental composition 

of the bulk samples was determined as a function of increasing BaF2, as depicted in Table 2. It can be 

seen that both boron and nitrogen concentrations increased with addition of more BaF2, thereby 

leading to B/N ratios of 1.62%, 1.64%, 1.57%, and 1.50% for the hBN nanosheets grown after addition 

of 0, 2.5, 5, and 10 wt% BaF2, respectively (Table 2). The observed decrease in the B/N ratio 

corroborated XRD results by indicating that the addition of BaF2 makes coalescence of bigger hBN 

domains more, thus compromising the quality of the resultant hBN nanosheets. On the other hand, 

the increasing lithium content between the addition of 0 and 2.5 wt% BaF2 is suggestive of the 

formation of lithium complexes due to the presence of Ba as well as the formation of smaller hBN 

domains, as later confirmed by high-resolution XPS and TGA analysis. Improved growth of hBN 

domains through faster melting of these lithium complexes in the presence of Ba atoms was 

indicated by the decreasing Li1s content after the addition of 5 and 10 wt% BaF2, which was also 

followed by further reduction of the oxygen content with increasing BaF2 content. 

Table 2. Atomic compositions of bulk samples of hBN nanosheets. 

  Elements (at%)   

B/N ratio 

 
Amount of BaF2 (wt%) B N O Li Ba 

0  50.3 31.1 13.8 4.8 _ 1.62 

2.5 52.3 31.9 9.9 5.3 0.5 1.64 

5  56.9 36.3 5.8 1.0 - 1.57 

10  57.3 38.1 3.4 0.9 0.2 1.50 

To determine the different bonding configurations of each constituent element (B, N, O, Li and 

Ba) in the bulk hBN samples as a function of BaF2 content, their high-resolution XPS spectra were 

fitted with Lorentzian–Gaussian (GL30) peaks using the CasaXPS software. The B1s for all samples 



 

 

exhibited a broad spectral peak with a full width at half maximum (FWHM) was in the range of 

1.8–2.7 eV (Figure 2a). This is wider than the reported FWHM value for B in high-quality hBN (0.92 

eV) [51]. This signifies the presence of different bonding states for B atoms. Therefore, to determine 

the chemical environments of the B atoms in the nanosheets, the B1s spectral peaks were 

deconvoluted into three component peaks centered at 190.9–191.0, 192.0–192.1, and 193.2–193.4 eV, 

respectively. These corresponded to the contribution from sp2-BN bonds in high-quality hBN, B–O 

bonds in B2O2, as well as Li2B4O7 bonds, respectively [51–53]. The relatively high intensity for the 

sp2-BN peak component is an indication that the boron atoms are expectedly and predominantly 

bonded to nitrogen atoms into a hexagonal lattice to form large domains of hBN. Furthermore, an 

increase in the relative concentration of the sp2-BN up to addition of 5 wt.% BaF2 could be suggestive 

of the presence of larger hBN domains, whilst a decrease in its concentration is an indication of a 

degradation of the hBN domains, but formation of smaller fragments of hBN that are prone to be 

terminated by oxygen atoms. The results thus corroborated XRD results, as the quality of the hBN 

nanosheets was observed to be compromised with the increasing addition of BaF2. The formation of 

larger and better quality hBN domains was further ascertained by the position of the B-O bonds as a 

function of BaF2 content. For instance, the positions of the B–O bonds were found to be red-shifted 

with increasing BaF2 content up to the addition of 5 wt.% after which it continued to blue-shift with 

addition of more BaF2. This, therefore, suggested the existence of different bonding states 

around/within the B–O domains. In particular, the B–O peak position in 0 wt.% BaF2 hBN nanosheet 

sample (~193.2 eV) was closer to that of B–O bonds in B2O2 (~192.55 ± 0.05 eV) [52,54,55], an 

indication that boron atoms at the defective edges are surrounded by oxygen atoms to form regions 

of B2O2 domains. However, on increasing the BaF2 content up to addition of 5 wt.%, the B–O peak 

position red-shifted to ~192.1 eV, an indication that there is substitution of the oxygen atoms in the 

B2O2 domains with boron and/or nitrogen atoms due to the formation of larger and better quality 

hBN domains, thereby leading to presence of less saturated B2O2 domains. Due to the degradation of 

the structure as a result of impurities from Ba and Li, the peak position of B–O bonds was observed 

to blue-shift to ~193.4 eV, signifying the formation of B2O2 domains at the defect regions of the hBN 

domains and/or the small fragments of uncoalescenced PBN. 

Confirmation of the bonding states obtained from the B1s was supported by the deconvolution 

of the XPS N1s spectra (Figure 2b). At least two component peaks centered at 397.9–398.0 eV and 

398.9–399.5 eV were observed for all and these were ascribed to the formation of sp2N–B and N-H2 

bonding configurations [36,51,53,56,57]. Lack of the component peak at higher binding energies (i.e. 

~401 eV), corresponding to NOx bonding states, is indicative that all the nitrogen atoms within the 

samples have a high affinity of boron atoms to form hBN domains. Furthermore, the bonding states 

of the oxygen, lithium, and barium atoms was determined by peak fitting of the O1s, Li1s, and the 

Ba3d high-resolution XPS spectra, as shown in Figure S1. From Figure S1b, it can be seen that the 

O1s was fitted to at least two component peaks. The peaks centered at 531.8–532.4 eV and 

529.5–530.1 eV can be ascribed to the contribution from O–B and O–Ba bonds, respectively [56,58]. 

Interestingly, the component peak at 529.5–530.1 eV could be attributed to the presence of metallic 

oxide bonds such as O–Li [59,60]; thus, highlighting the ambiguity of using the O1s to assign the 

bonding configurations of the as-synthesized samples. However, the relative concentrations of the 

component peaks indicate that most of the oxygen atoms are bonded to the metallic impurities. 

Moreover, the intensity of the O1s spectra for all samples is observed to decrease with increasing 

BaF2 content, which is in good agreement with the survey spectra, thereby indicating the improved 

quality with BaF2 content. The bonding states of oxygen atoms were confirmed by the deconvolution 

of the Ba3d spectra (Figure S1c), which depicted the presence of α (779.8–781.3 eV) and β (795.1–798.8 

eV) couplings of barium oxide [61,62]. Lack of component peaks corresponding to bonding states 

such as Ba-N [63] is suggestive that the Ba atoms remain bonded to oxygen atoms to form the stable 

oxide form outside the hBN domains, thereby, having no impact on the overall structure of hBN 

nanosheets. Finally, the contribution from the residual lithium was indicated by the peak at ~55.7 eV 

on the Li1s spectra (Figure S1d), which can be attributed to the presence of Li2B4O7 bonds [59,60]. The 

presence of these bonds can be ascribed to the role played by the crystallization agent (Li3N) when it 



 

 

breaks down PBN, to form individual nucleates of B-N, that can aggregate and grow into hBN 

domains. The relatively large intensity of Li2B4O7 peak at lower BaF2 content (0 & 2.5 wt.%) could 

suggest incomplete decomposition of PBN by Li3N, whereas the decreasing intensity of peaks with 

increasing BaF2 content is indicative of the effect of BaF2 in dissolving the Li-complexes (i.e. Li2B4O7, 

Li2B2O4, or Li3BN2), thereby freeing and permitting boron and/or nitrogen atoms to contribute in the 

growth of hBN domains. 

 

Figure 2. High-resolution XPS spectra showing a deconvoluted peak of (a) B1s, and (b) N1s for all 

hBN nanosheet samples after the addition of 0–10 wt% of BaF2. 

3.1.3. Raman and FT-IR analysis 

Further structural and electronic properties of the as-synthesized BNNS materials were 

evaluated using Raman spectroscopy. Like graphene and despite the minor difference in the 

stacking sequence (i.e. ABgraphene versus AA'hBN), Raman spectroscopy is also a powerful technique for 

determining the crystallinity and quality of hBN nanomaterials. As a result, Figures 3a display 

Raman spectra taken from ~10 different areas of the BNNS samples. The spectra showed the 

first-order active Raman vibrating mode of hBN (E2g) [27,64–67] centered at ~1365.4 ± 1.6 cm−1. To 

determine the crystallinity of hBN materials, studies by Nemanich et al. have reported that there is a 

direct correlation between the finite-size effects within hBN with the inherent position and 

broadening of the Raman vibrational modes [67]. Their report indicated that the E2g vibrational mode 

blue-shifted and broadened with decreasing crystallites sizes. From Figure S2b, the full width at half 

maximum (FWHM) values for the samples was found to decrease with BaF2 content up to 5 wt%, 

from 17.01 cm−1 for the 0 wt% BaF2 hBN sample to 11.07 cm−1 for the 5 wt% BaF2 hBN sample (Figure 

S2b). The FWHM values thus signify the formation of larger crystallites and subsequently 

improvement in the crystallinity and quality of the 5 wt% BaF2 hBN sample. Further confirmation of 

improved crystallinity was observed through red-shift in the position of E2g vibrational mode from 

~1366.9 ± 0.25 cm−1 for the 0 wt% BaF2 sample to ~1365.3 ± 0.21 cm−1 for the 5 wt% BaF2 sample, after 

which the peak position blue-shift up to ~1366.4 ± 0.08 cm−1 upon increasing the BaF2 content to 10 

wt.%. The proposed growth mechanism is illustrated in scheme 1. In summary, the Raman data 

demonstrated that it is possible to achieve high-quality and crystalline BNNS at atmospheric 

conditions and reasonably moderate temperatures, in comparison with those hBN nanosheets that 

have been prepared at high temperature and high pressure [13,38–40].  



 

 

 

Figure 3. (a) Raman spectra, (b) FTIR spectra, and (c) TGA profiles for BNNS samples annealed at 

1200 °C after the addition of 5 wt% Li3N and 0–10 wt% BaF2. 

Fourier transform infrared (FT-IR) spectroscopy constitutes one of the most used techniques for 

the identification and characterization of phases in BN nanomaterials. This is due to the fact that the 

sp2 and sp3 hybridization states of B-N bonds can be easily distinguished by the well-defined 

adsorption bands [68–70]. Therefore, to determine the influence of the addition of BaF2 on the 

surface functionalizations of the hBN samples, the FTIR measurements were performed at room 

temperature. As expected, by two IR active transverse optical (TO) phonon modes of sp2 bonded 

B–N were observed (Figure 3b). The broad and asymmetrical E1u adsorption band at ~1340–1360 cm−1 

corresponded to the in-plane B–N–B stretching vibrational modes within one basal plane, whereas 

the sharp and symmetrical A2u adsorption band, centered at ~740–760 cm−1, can be ascribed to the 

out-of-plane B–N–B bending vibrational modes between two or more basal planes [68,70]. Further 

analysis of the FT-IR spectra of the modified hBN samples revealed a red-shift of the E1u adsorption 

band, whilst the A2u adsorption band was observed to blue-shift with increasing BaF2 content. 

A slight red shift of the B–N–B stretching mode up to the addition of 5 wt% BaF2 relative to the 0 

wt.% BaF2 sample (Figure S2c, blue line-circles) could be suggestive of the addition of strain in the 

crystal lattice due to the lateral growth of the crystal sizes within the basal plane. However, an 

introduction of impurities and incomplete and/or growth of individual small crystallites with 

increasing BaF2 content (10–30 wt.%), leads to a blue-shift in the A2u vibrational mode due to removal 

strain. Similarly, a blue-shift was observed for the E1u mode for 2.5 and 10 wt.% BaF2 hBN samples in 

comparison to the 5 wt.% BaF2 sample (Figure S2c, red line-squares). This can be attributed to the 

progressive loss of long-range order, in the form of the bond-angle and bond-length disorder, due to 

the formation of structural defects and distortion of the crystalline structures [71]. The results are in 

good agreement with the XRD data that indicated the presence of barium and lithium impurities 

upon the addition of more BaF2. On the contrary, a slight red-shift for the 5 wt.% BaF2 hBN sample 

further supported the formation of large-area hBN nanosheets, thus leading to the addition of strain 

in between the basal plane. 



 

 

3.1.4. Thermal stability investigation 

The thermogravimetric analysis (TGA) curves depicting the normalized percentage 

mass-change of the as-synthesized hBN samples as a function of temperature are illustrated in 

Figure 3c. The plots showed that the decomposition of the samples can be considered to occur in at 

least four steps. The samples are observed to be stable up to ~60 °C, after which subsequent 

decomposition begins at different on-set temperatures (region I), which can be ascribed to the 

varying crystallinity of the samples. In particular, the on-set temperature for the 0 wt% BaF2 sample 

was determined to be ~74 °C; whilst those for modified samples were found to be ~67 °C, ~82 °C, and 

~69 °C, for 2.5, 5, and 10 wt% BaF2 hBN samples, respectively. The highest on-set temperature for the 

5 wt% BaF2 sample is in corroboration with XRD and Raman analyses which indicated improved 

crystallinity, thus indicating the difficulty of breaking the stable bonds at relatively low 

temperatures. On the other hand, the lowest onset decomposition temperature for 2.5 wt% BaF2 

sample can be attributed to the incomplete restructuring of the hBN lattice to form larger crystallites 

due to insufficient amount of BaF2. Owing to the formation of these incomplete crystallites, the entire 

bond structure is weakened, thereby leading to faster degradation. In the case of 10 wt% BaF2 

sample, the earlier onset decomposition temperature can be ascribed to the disruption of the lattice 

of the hBN structure due to the fast melting of Li3N in the presence of larger content of BaF2 and 

formation of impurity complexes, as depicted by XRD analysis. Consequently, a weakened structure 

that is prone to easy loss of hydrogen atoms and faster decomposition is formed. Region II, with 

mass losses occurring at temperatures between 150–600 °C, is due to the decomposition of lower 

energy bonds, such as dehydrogenation of intercalated H2 (~436 kJ/mol) between the hBN 

nanosheets as well as hydrogen atoms bonded to the edge-defects (i.e. B–H bonds at ~330 kJ/mol; 

N-H bond at 314 kJ/mol; O–H bond at ~428 kJ/mol; adsorbed H–OH bonds at ~498 kJ/mol) [72–74] 

within the hBN lattice. The decomposition of the entire hBN lattice also occurs within this region (i.e. 

B–N bond at ~398 kJ/mol).  Decomposition and removal of other compounds such as Ba–F (~487 

kJ/mol), Ba–OH (~477 kJ/mol), N-F (~301 kJ/mol), Li-H (~247 kJ/mol), Li–OH (~427 kJ/mol), and/or 

Li–F (~577 kJ/mol) [72–74] are also observed within this region. The decomposition of these low 

energy bonds is thus depicted by the presence of two peaks on the DTG curves (Figure S1d). 

Between 600–1200 °C (region III), an increase in mass of 0.22%, 0.35%, and 0.42% was observed 2.5, 5, 

and 10 wt% BaF2 hBN samples, respectively. On the contrary, further decrease in the decomposition 

profile of the 0 wt% BaF2 hBN sample was recorded in this region, and corresponds to the removal of 

α-Li3BN2 and β-Li3BN2 complexes at ~860 °C and 920 °C, respectively [75,76], depicted by XPS. 

Thereafter, the final degradation of the 0 wt% BaF2 hBN sample is observed beyond 1200 °C. 

Interestingly, the 0 wt% BaF2 hBN sample does not decompose completely to 0 wt% (Figure S1d), 

however, only ~1.2 mg (8.52%) of the sample was decomposed (region IV). This can be attributed to 

the oxidation of BN by residual O2 inside the TGA oven from the inert gas used (i.e. Ar, 99%, 

Alphagaz), leading to the subsequent formation of thin layer of thermally stable boron trioxide 

(B2O3, ~1850 °Cboiling , and ~1500 °Csublimation) [77,78] on the surface of the nanosheets as well as 

evolution of a certain amount of nitrogen oxides (NOx) [79], which ultimately prevents further 

decomposition. Upon addition of 2.5 wt% BaF2, a mass increase of ~0.22% (~ 30.1 µg) in region III 

occurred within a temperature range of ~910–1220 °C, attributed to the removal of the α-Li3BN2 

complexes as well as the formation of thermally stable B2O3 layer. However, with the addition of 

more BaF2 from 5 to 10 wt%, the mass increase was recorded to be ~0.27% (~36.0 µg) and ~0.42% 

(~61.5 µg) in the temperature ranges of ~630–1330 °C and ~770–1310 °C, respectively. In both cases, 

the faster formation of the thermally stable B2O3 layer could suggest the lack of the Li3BN2 complexes 

as a result of the faster melting of Li3N, which was facilitated by the addition of BaF2, thereby 

corroborating the XRD data. The rate of oxidation for the BaF2-samples can be ascribed to the purity, 

crystallinity and specific surface area (SSA) [80,81]. For instance, highly-crystalline BN with a small 

SSA, as in the case of the 5 wt% BaF2 hBN nanoplatelets, provides less reactive sites for oxidation and 

thus a smaller weight gain, in comparison to moderately-crystalline BN with a small SSA (10 wt% 

BaF2 hBN) and poorly-crystalline BN (2.5 wt% BaF2 hBN). Beyond 1350 °C (region IV), the 



 

 

decomposition of the B2O3 layer by the residual boron atoms leads to the formation and removal of 

the gaseous dioxodiborane compounds (B2O2) [82–84], as based on Equation (2): 
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The differential scanning calorimetry (DSC) curve (Figure S3a) provided important information 

regarding the heat-flow arising by a series of physical or chemical procedures, such as 

decomposition, oxidation, as a function of temperature. An endothermic peak was observed for 0 

and 5 wt.% BaF2 hBN samples at ~151.1 °C and ~147.1 °C, respectively; whereas no thermal 

phenomena were observed for other samples (Figure S3i). This corresponded to the endothermic 

reactions associated with the dehydrogenation of the samples. Further endothermic reactions 

associated with the decomposition of all samples were depicted by the decrease in the heat flow in 

the temperature range of ~480–620 °C (Figure S3ii). Moreover, small exothermic peaks appeared in 

the temperature range of ~640–1400 °C (Figs. S3iii and S3iv), indicating the oxidation of the samples 

as shown by the increasing mass on TGA thermograms and hence confirming the transformation of 

BN to B2O3. All parameters related to the TGA/DSC measurements are presented in Table S2. 

 

Scheme 1. Summary of growth mechanism for BNNS samples annealed at 1200 °C after the addition 

of 5 wt.% Li3N and (a) 0-2.5 wt.%, (b) 5 wt.%, (c) 10 wt.% of BaF2. 

3.1.5. Surface area determination 

Surface area and pore-size distribution of hBN are essential properties for its potential 

application in energy storage and conversion devices as well as in biotechnological applications. As 

such the specific surface area (SSA), pore-size distribution of the as-synthesized hBN samples were 

determined using the multi-point Brunauer–Emmet-Teller (BET) method through 

adsorption/desorption measurements of N2 at 77K. From the N2 adsorption/desorption isotherm 

curves (Figure 4a), the hBN synthesized with the addition of BaF2 demonstrated a type II isotherm 

with increasing BaF2 content; an indication of the formation of macroporous or non-porous materials 

[85]. Minor N2 amounts were adsorbed under relatively lower relative pressures (P/P0 < 0.01) for all 



 

 

samples, with no hysteresis loop being observed under low pressure (P/P0 < 0.45); an indication of 

the absence of micropores and mesopores on the materials’ surface. Interestingly, the hysteresis loop 

was observed to decrease between adsorption/desorption under higher pressures (P/P0 > 0.45) with 

increasing BaF2 content. Thus, the physical adsorption mechanism on the as-synthesized hBN 

samples can be described as follows: without BaF2 content (i.e. 0 wt.%), the N2 adsorption is a 

formation of an unrestricted multilayer after the completion of a monolayer, followed by delayed 

desorption of N2. Thus, this accounts for the high specific surface area recorded for the 0 wt.% BaF2 

hBN sample (~8.7 m2/g), which can then be attributed to the presence of a relatively small amount of 

macropores (Figure. 4b) and/or the external rough surface [80,86]. On the other hand, with the 

addition of BaF2 content, the adsorption mechanism can be presumed to be following the adsorption 

and desorption of the monolayer of N2 onto the material’s external rough surface of the basal planes 

due to the non-porous morphology of the samples. This is shown by the adsorption curve which 

does not reach a plateau at a relatively high pressure close to unity (P/P0 ∼ 0.99), but rather extends 

indefinitely. Therefore, based on the multi-point BET method, the specific surface areas for the 

samples were then determined from the BET plots extracted using points between 0.05 < P/P0 < 0.30 

(Figure. S4) and these were found to be 8.7, 3.5, 3.6, and 2.9 m2/g for samples prepared after addition 

of 0, 2.5, 5, and 10 wt% of BaF2, respectively. Table S2 gives a summary of the textual properties of 

these samples.  

 

Figure 4. (a) N2 adsorption/desorption isotherms and (b) pore-size distribution plots for the 

as-synthesized hBN samples annealed at 1200 °C after addition of 0–10 wt.% of BaF2. 

3.2. Morphological Analysis 

The morphological properties of the hBN nanosheets obtained at 1200 °C after the addition of 

varying amounts of BaF2 were investigated by scanning electron microscopy (SEM). Figure 5a 

displays the typical SEM micrographs of the as-synthesized 5 wt.% BaF2 hBN nanosheets, whereas 

the micrographs of other samples, as well as the commercial sample of hBN (99.5%, Alfa Aesar), are 

represented in Figure S4. The dimensions of crystals of the hBN samples were then determined to be 

2.74 ± 0.67, 8.41 ± 0.71, and 5.30 ± 0.31 µm for samples annealed after the addition of 2.5, 5, and 10 

wt.% of BaF2, respectively. On the contrary, it was difficult to determine the flake-size for the 0 wt.% 

Ba F2 hBN sample since the sample was an agglomerated mass of irregular shaped and jagged-edged 

plate-like crystals (Figure S5a). However, upon the introduction of BaF2, the morphology of the 

crystals becomes more defined (Figures 5a and S5b,c); like that of the well-defined disc-shaped and 

homogenous nanoplatelets of the commercial hBN sample (Figure S5d). For instance, with the 

addition of 5 wt.% BaF2, the hBN nanosheets display a much more well-defined, smooth-edged and 

homogenous plate-like morphology. This is expected as both Raman and XRD data suggested an 

improved crystallinity of the hBN nanosheets upon the addition of 5 wt% BaF2. Although an increase 

in the BaF2 content to 10 wt% (Figure S5c) also led to the formation of well-defined and plate-like 

nanosheets, the size of the nanosheets was compromised as evident by the breakage of the 

nanoplatelets. More degradation in the size of the nanoplatelets was also observed with samples 



 

 

synthesized with the addition of 20 and 30 wt% BaF2. The formation of smaller hBN nanosheets with 

increasing BaF2 content may be attributed to the abrupt melting of Li3N due to the presence of more 

cations form BaF2, thus consequently leading to incomplete crystallization of hBN from PBN. Similar 

results were reported by various groups, whereby they showed that not only does the different 

usage of cations led to the formation of different morphologies of hBN nanosheets, but an increase in 

these cations resulted in compromised morphologies of such hBN nanostructures [87,88]. The final 

determination of the morphological properties of the hBNNS samples was performed using the 

transmission electron microscopy (TEM). Low magnification TEM micrographs (Figures 5b and 

Figure S6) illustrated that the samples are mainly composed of overlapping sheet-like structures, 

with crystal sizes of 0.89 ± 0.01, 2.88 ± 0.74, 3.32 ± 0.25, and 3.15 ± 0.67 µm, for samples annealed after 

addition of 0, 2.5, 5, and 10 wt.% of Ba F2, respectively. Remarkably, the low-magnification TEM 

images further corroborated the SEM micrographs by depicting the formation of thinner and larger 

hBN nanosheets, with well-defined disc-shape, after the addition of 5 wt% of BaF2.  

 

Figure 5. (a) SEM and (b) TEM micrographs of as-synthesized BNNS materials annealed at 1200 °C 

after the addition of 5 wt.% BaF2. 

4. Conclusions 

Hexagonal boron nitride (hBN) nanosheets exhibiting well-defined morphology and large 

crystal size were successfully synthesized at low temperatures (1200 °C) and atmospheric pressure 

through modification of the polymer-derived ceramics (PDCs) technique with varying amounts of 

barium fluoride (BaF2). The XRD, Raman, and XPS data revealed the formation of highly-crystalline 

hBN nanosheets with the FWHME2g of 11.07 cm−1 and a G.I. value of c.a. 3.83 upon addition of 5 wt% 

BaF2 to the pre-ceramization mixture of PBN and 5 wt% Li3N. Morphological analysis revealed 

formation well-defined shape for the nanosheets with an average size ranging from 2.74 ± 0.67 µm to 

8.41 ± 0.71 µm from SEM and 2.88 ± 0.74 µm to 3.32 ± 0.25 µm from TEM after chemical exfoliation. 

On the other hand, thermogravimetric analysis showed that the addition of BaF2 led to the formation 

of less stable samples, as evidenced by the ease of oxidation at high temperatures. However, this 

work paves the way for the production of large-scale and good-quality hBN crystals at relatively low 

temperature and atmospheric pressure conditions. 
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