
HAL Id: hal-02503004
https://hal.science/hal-02503004v1

Submitted on 9 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The High-Level Variability Language: An Ontological
Approach

Angela Villota, Raúl Mazo, Camille Salinesi

To cite this version:
Angela Villota, Raúl Mazo, Camille Salinesi. The High-Level Variability Language: An Ontological
Approach. International Systems and Software Product Line Conference-Volume B, 2019, Paris,
France. �10.1145/3307630.3342401�. �hal-02503004�

https://hal.science/hal-02503004v1
https://hal.archives-ouvertes.fr

The High-Level Variability Language: An Ontological Approach
Angela Villota

CRI, Université Panthéon-Sorbonne
Paris, France

i2t, Universidad Icesi
Cali, Colombia

apvillota@icesi.edu.co

Raúl Mazo
CRI, Université Panthéon-Sorbonne

Lab-STICC, ENSTA Bretagne
France

GIDITIC, Universidad EAFIT
Medellín, Colombia

raul.mazo@univ-paris1.fr

Camille Salinesi
CRI, Université Panthéon-Sorbonne

Paris, France
camille.salinesi@univ-paris1.fr

ABSTRACT
Given its relevance, there is an extensive body of research for mod-
eling variability in diverse domains. Regretfully, the community
still faces issues and challenges to port or share variability models
among tools and methodological approaches. There are researchers,
for instance, implementing the same algorithms and analyses again
because they use a specific modeling language and cannot use some
existing tool. This paper introduces the High-Level Variability Lan-
guage (HLVL), an expressive and extensible textual language that
can be used as a modeling and an intermediate language for vari-
ability. HLVL was designed following an ontological approach, i.e.,
by defining their elements considering the meaning of the concepts
existing on different variability languages. Our proposal not only
provides a unified language based on a comprehensive analysis
of the existing ones but also sets foundations to build tools that
support different notations and their combination.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Software product lines.

KEYWORDS
domain specific language, variability language, variability specifi-
cation

ACM Reference Format:
Angela Villota, Raúl Mazo, and Camille Salinesi. 2019. The High-Level
Variability Language: An Ontological Approach. In 23rd International Sys-
tems and Software Product Line Conference - Volume B (SPLC ’19), Septem-
ber 9–13, 2019, Paris, France. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3307630.3342401

1 INTRODUCTION
Variability modeling is an extensively studied subject. Research in
this subject includes several variability modeling languages that
have been proposed in academia and industry [3]. Most research
in the area focuses on feature-based modeling languages since the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342401

introduction of FODA [13]. However, other modeling approaches
exist, variation point-based models [20], decision-based models
[6], goal-oriented models [19], constraint-based languages [24] and
industrial languages (e.g., Kconfig[28], Gears[15]) can be used to
describe variability. These proposals have contributed to a universe
of languages, notations, transformations, and tools supporting the
creation of variability models.

Variability modeling languages are neither completely different
nor completely the same. Indeed, these languages share most vari-
ability concepts such as variability units, and constraints, but also
differ in concepts that are relevant to particular domains or model-
ing styles. For example, Figure 1 presents three variability models
written in different languages: FODA [13], Dopler [6], OVM [20].
These models have (1) different structures (e.g., hierarchical, non-
hierarchical); (2) different types of variability units (e.g., Boolean,
non-Boolean); (3) heterogeneous rules (e.g., cross-tree constraints,
visibility, and validity conditions); among others.

Currently, variability modeling relies upon existing domain-
specific languages and modeling tools. These tools are developed
and taught in-house and frequently are used only by the few people
associated with the development team. This diversity of languages
and tools causes lack of portability in models and interoperability is-
sues between SPL engineering tools. One of the poor consequences
is that modeling tools require numerous parsers and transforma-
tions that might cause expressiveness loss. To solve this gap, the
Common Variability Language (CVL) was proposed as a standard
language for variability modeling [12]. However, this initiative did
not succeed, and the community still faces issues caused by the
diversity of languages, dialects, and tools.

This paper presents our proposal for moving forward the initia-
tive of defining a standard variability language. Particularly, this
paper introduces: (i) a glossary of basic concepts from variability
modeling languages, and (ii) a variability language able to describe
these concepts and to work with/for/in combination with most
languages and tools, the High-Level Variability Language (HLVL).

Developing a standard language can be an effort-intensive en-
deavor. Therefore, we followed an ontological approach for con-
ceptualizing and structuring knowledge about variability modeling
concepts. In this case, an ontological approach is favorable to deter-
mine a set of constructs to describe variability comprehensively and
to define the characteristics of a language capable of representing
constructs from different variability languages.

HLVL belongs to an ongoing project in which we envision a
language capable of supporting concepts of many variability lan-
guages to reduce interoperability and sharing issues. The general
idea is that variability models can be compiled into an intermediate

https://doi.org/10.1145/3307630.3342401
https://doi.org/10.1145/3307630.3342401
https://doi.org/10.1145/3307630.3342401

SPLC ’19, September 9–13, 2019, Paris, France Angela Villota, Raúl Mazo, and Camille Salinesi

Payment

E-shop

Customer type
Connection

InsecureSecure

PayPal Card Gift

Credit

RegularSporadic

Constraints

Regular => Customer profile
~(Insecure /\ Credit)

Name:
confidentiality

 Domain: integers
Value: 5

Name:
confidentiality

 Domain: integers
Value: 3..5

Excludes
Requires

Mandatory
Optional

OR Alternative

feature Attribute

Debit

AppServer

Implementation

Machines

[1, 5]

[2, 10]

[0, 1]

(a)

V

V1: Medium-
class car

VP

Mandatory Optional

V

Variant
Mandatory Optional

[min, max]

Alternative
Requires Excludes

VP

VP

VP1: Type
 of vehicle

VP

VP2: Activation

VP

VP3:

Confort functions

VP

VP4: Other
signs

VP

VP5:

Prohibition signs

V

V2: Upper-
class car

V

V3: Small
truck(3, 5t)

V

V4: Big
truck(7, 5t)

1, 1

V

V5: Switchable
V

V6: Durable

1, 1
V

V7: No stopping
warning

V

V8: Overspeed
warning

V
V11: No
vehicles

V

V9: Road w/right
of way start

V
V12: No

cars

V

V10: City limitMAX

(b)

What to buy?
(name: scope; expected val 1:1):

{"assemble yourself", "complete suite"})

Which tools?
(name: tools; expected val 1:3):

{"CW", "DK", "PK"})

Include glossary?
(name: glossary;

expected val: bool)

Default resolution?
(name: resolution; expected val 1:1):

{"800x600", })

Width?
(name: width;

expected val: number)

!"#$%&'()*+!(,#--#.$/001200.3#+4&,#5!6+4#-#/00

Decision effect Validity Cond.

5!6+4#7-#/00#88

5!6+4#9-#:2/0 ;(,+<!,'$+(()'=#.>?.3

Visibility Cond.

!'@<A&,$';(B&3 ';(B&#--.<''&CD)&#E(*%'&)".

Decision

(c)

Figure 1: Variability models using three graphical languages. (a) FODA [13] with the extension proposed in [2]. (b) Orthogonal
Variability Model (OVM) [20]. (c) Dopler Modeling Language (DoplerML) [6]

form and can be interpreted on other tools. In fact, if variability
models are written in an intermediate language, such as HLVL, they
could be integrated analyzed and configured into a single model
in an integrated way. This research gives continuity to previous
works [8, 17, 19, 24] that exploit the idea of relying on a variability
language that unifies existing notations to provide genericity to the
methods, techniques, and tools used for modeling, analysis, and
configuration.

Section 2 the ontological approach used to design HLVL. Sec-
tion 3 presents our proposal for a glossary of variability concepts.
Section 4 introduces the syntax of HLVL and shows how HLVL
supports different styles of variability modeling using examples.
Sections 5 and 6 present the discussion and related work, respec-
tively, and Section 7 concludes the paper concludes the paper with
our final remarks.

2 DESIGNING HLVL FOLLOWING AN
ONTOLOGICAL APPROACH

The ontological approach followed to structure the domain knowl-
edge for designing the HLVL consisted of three steps depicted in
Figure 2 and described below. Note that though this proposal unifies
concepts from different variability languages, it does not subsume
all variability languages, nor is our language capable of representing
every single variability language. A broader ontological compar-
ison would be necessary to produce such a language; which is a
cumbersome and not scalable task.

Ontological analysis: in this step, we conducted an ontological
analysis of the expressiveness of an initial version of the variability
language. In this study, we used the variability patterns introduced
by Asadi et al. [1] to determine the criteria for completeness and
clarity from the ontological expressiveness perspective. The results
showed that (1) the language closely represents the concepts in the
ontological framework. However, some variability concepts should
be integrated for obtaining a 100% level of completeness. (2) The
language’s high-level of abstraction impacts its clarity because sev-
eral elements in the ontology are represented by the same language
construct. A broader description of this analysis and its results are
available in [27].

Legend

Asadi's
et al. ontology

Knowledge
sources

Completeness
and clarity criteria

Theory of ontological
expressiveness

Variability
Modeling glossary

HLVL

Ontological
analysis

1
Conceptualization

2

Refinement and
synthesis

3

Process

input/

output

Figure 2: Process for designing HLVL

Conceptualization: this step consisted of the identification and
review of research about variability modeling in literature. The
studies selected for this step were gathered while conducting a sys-
tematic mapping study, an upcoming publication from the authors1.
More particularly, the conceptualization included languages that
(1) have been transformed to logic or constraint programming to
automate analysis tasks; and (2) their semantics is formally defined,
and were included in other conceptualization studies. Hence, this
step included feature-oriented languages [5, 13, 14, 26]; variation
point oriented languages [8, 12, 20, 22, 23]; and decision-oriented
languages [4, 6, 7, 25]. Finally, the review included proposals intro-
ducing constructs for modeling complex variability relations, such
as conditional and quantified constraints [8, 14, 21]. Based on the
reviewed literature, a collection of variability modeling concepts
were organized and structured in a glossary. Section 3 presents the
result obtained in this step.

Refinement and synthesis: using the results from the previous
steps, we proposed the characteristics of HLVL language. Section 4
presents the HLVL in detail.

3 VARIABILITY MODELING GLOSSARY
Variability languages enable the modeler to answer two questions
about the product line to be modeled: what does vary? and how does
it vary? [20]. These languages provide a collection of constructs
1Protocol available at http://bit.ly/2IVBde5

http://bit.ly/2IVBde5

The High-Level Variability Language: An Ontological Approach SPLC ’19, September 9–13, 2019, Paris, France

enabling themodeler (1) to identify and document the variable items
in a product line; (2) to identify the set of possible options or variants
associated to variable items in the system; (3) to identify the rules for
determining how items can be combined into new configurations;
and finally (4) to produce variability models. Language constructs in
variability languages define thevariability units and the variability
relations.

3.1 Variability Units
Variability Units (VUs) are the key concept used to model variability
in a language [4]. VUs represent variable items in a system or
domain, that is, those aspects that must be chosen by the customer
or engineer in a configuration process. For example, features are the
VUs in feature models, decisions in decision models, and variation
points, variants are the units in OVMmodels. VUs are characterized
by their type and multiplicity.

Type. The type of a VU is defined by the number of variants it
represents. VUs are Boolean when they are associated with exactly
two options: {selected, unselected}, as in featuremodels. Non-Boolean
VUs have more than two options, as attributes in attributed-based
feature models, or decisions in decision models. Some languages
such as Gears allow the declaration of complex data-types such as
enumerations, sets, and records [15].

Multiplicity. It represents the number of instances of a VU that
may appear in a configuration. Then, VUs are annotated using
cardinalities in a UML style. For example, features with the interval
[m,n] have at leastm and at most n instances in a configuration [5].

3.2 Variability relations
Variability relations determine the rules to select and recombine
items into new products. Variability relations are often presented
as dependencies or constraints and are usually denoted graphically
(i.e., using arrows) or textually (i.e., logic formulas, OCL). Variability
relations can be classified as follows:

Inclusion/exclusion rules. Are the set of basic rules for de-
scribing variability in a product line. In this set, we placed the rules
for defining conditional inclusion/exclusion and commonalities.

Conditional inclusion/exclusion are rules for restricting the inclu-
sion/exclusion of variable items given a condition. This condition
can be simple as in FODA requires and excludes constructs where the
inclusion/exclusion of a feature B is conditioned to the inclusion of
a feature A. Languages such as CO-OVM[8], and extended-feature
models in [14] allow the usage of complex expressions to condition
the inclusion/exclusion of variable items using logical expressions.

Commonality. Rules for defining items that always appear in any
configuration. This rule is implicit in some languages (e.g., root
feature in feature models, mandatory variation points in OVM) or
inexistent (e.g., decision models). This is different from calculating
the set of core items, an analysis operation that requires extra
processing.

Hierarchy - Decomposition. In decomposition relations, one
item plays the role of parent, and the other is the child. This parent-
child relation imposes a constraint in the configuration because
no child can be part in a configuration without the inclusion of its
parent. There are two types of decompositions:

On-to-one decompositions relate pairs of items. There are two
types of decompositions: mandatory and optional. In mandatory
decompositions, the child is included in all products in which its
parent appears. Instead, in optional decompositions, the child can
be optionally included in all products in which its parent appears.

One-to-many decompositions relate one parent and a group of
children. This relation restricts the minimum and the maximum
number of children that may be included in a configuration when
their parent is selected.

Hierarchy - visibility. Visibility rules condition the availability
of other variability items. Visibility relations are considered a type
of hierarchical relations because they are used to compartmentalize
items, as in different views, e.g., for different stakeholders [4]. Visi-
bility relations are a common construct in decision-based languages
such as Dopler [6].

Constraint expressions. Constraint expressions are used to in-
clude complex rules between variable items in a product line model.
This rules can be composed using relational, arithmetic and global
operators among others. These constraint expressions are often
used to specify extra-functional information or to include contex-
tual rules. For instance, the extended-feature models in [14] allow
the inclusion of expressions and operators for adding constraints
between feature’s attributes and instances.

4 THE HIGH-LEVEL VARIABILITY
LANGUAGE

HLVL is a variability modeling language that addresses the follow-
ing three requirements:

Rq1. HLVL provides constructs to model the concepts in the
variability modeling glossary to describe variability comprehen-
sively.

Rq2. HLVL specifies variability models in different approaches
such as feature-oriented, variation point oriented, and decision-
oriented modeling.

Rq3. HLVL’s syntax should be understandable for humans to
create and edit models, but also should be formally defined to be
generated and interpreted by modeling tools.

The following subsections present an overview of the HLVL
syntax (see Section 4.1) and further examples of the HLVL’s usage
(see Section 4.2).

4.1 Syntax
Variability models in HLVL are defined in terms of constructs called
elements, variants, and variability relations. These constructs
map the concepts defined in the variability modeling glossary pre-
viously presented in Section 3. The collection of elements, variants,
and variability relations describing a model in HLVL conform a
script. Scripts in HLVL start with the keyword model followed by
an identifier. Each block of the script also starts with a keyword (i.e.,
elements, and relations). A simple E-shop product line adapted
from [22] (see Figure 1a) serves us to illustrate the HLVL’s syntax
(see Table 1). This example describes a basic scenario that will grow
as we introduce language constructs. These constructs are formally
defined using the BNF grammar summarized in Table 2.

SPLC ’19, September 9–13, 2019, Paris, France Angela Villota, Raúl Mazo, and Camille Salinesi

Table 1: Running Example

The online-shopping product line is a collection of similar e-commerce
web applications. All products in the E-shop domain must have a module
to handle the customer type, a module for manage the payment, and
optionally, some modules for managing users’ connection. In this product
line, the payment method may be provided by PayPal services, or card.
Additionally, the system must guarantee a secure connection when the
transaction is performed by a regular customer o when the payment
is performed using a credit card. Finally, each payment module has a
confidentiality level that represents the privacy level of payment details.
The confidentiality levels range from one to five.

4.1.1 Elements and Variants. Elements are the variability unit in
HLVL. Elements in HLVL are typed, and optionally include a key-
word to define attributes or comments introduced by the modeler.
HLVL supports boolean, integer, and symbolic data types. Each
element is associated with a set of variants that represents the avail-
able choices. The configuration process selects exactly one choice
from the set of variants (i.e., enumeration). The variants associated
to an element are declared using intervals or lists of values regard-
ing the data type. The following example shows the declaration of
a group of Boolean elements and a symbolic element. As shown in
the example, in HLVL, Boolean variants do not require an explicit
declaration (syntactic sugar).

model eShop
elements:
boolean connectionType, secureConnection, insecureConnection,

payment, payPal
symbolic customerType variants : [' sporadic ' , ' regular ']

comment: {"This element represents the customer type" }

Note that HLVL’s identifiers can be composed in a flexible pro-
gramming language fashion. Then, the only rules regarding iden-
tifiers are that they cannot start with digits, special characters, or
contain spaces.

Attributes. Elements can be used to represent attributes. In
HLVL, we differentiate an attribute from a regular element using
the keyword att in the element declaration. For example, to define
an integer attribute representing confidentiality in HLVL, we write
the following:

att integer confidentiality variants : 1..5
att integer confBounded is 2

The example also shows the definition of confBounded as a
bounded attribute to a value by the keyword is. We included this
definition to support the simplification of attributes introduced by
some tools.

Multiplicity. Elements in HLVL can have multiple instances
with local semantics as described in [18]. Syntactically, multiplicities
are declared as properties for dependency relations as we explain
below.

4.1.2 Variability Relations. Variability relations in HLVL can be
used for (1) defining inclusion/exclusion rules; (2) describing hier-
archies; (3) constraining the visibility of other variability relations;
and (4) including complex expressions such as arithmetic, logic, and

Table 2: Syntax for variability relations in HLVL

⟨element ⟩ ::= {att}?
⟨data_type ⟩ E1variants:⟨var iants ⟩ (R1)
{comment:Str inд }? |

{att} ⟨data_type ⟩ E1is ⟨value ⟩ (R2)
⟨var iants ⟩ ::= ⟨inteдer ⟩.. ⟨inteдer ⟩ | (R3)

[⟨value ⟩ {, ⟨value ⟩ }∗] (R4)
⟨data_type ⟩ ::= boolean | integer | symbolic (R5)
⟨value ⟩ ::= true | false | {0..9}+ | ’⟨str inд ⟩’ (R6)
⟨sentence ⟩ ::= ⟨identif ier ⟩ : ⟨r elation ⟩ (R7)
⟨r elation ⟩ ::= common(E1, E2, . . . , Ek) | (R8)

mutex(E1,E2) | (R9)
mutex(⟨expression ⟩,E1, . . . , Ek) | (R10)
implies(E1,E2) | (R11)
implies(⟨expression ⟩,E1, . . . , Ek) | (R12)
decomposition(P,[C1, C2, . . . , Ck], [m,n]) | (R14)
group(P,[C1, C2, . . . , Ck], [m,n]) | (R15)
visibility(⟨expression ⟩,[R1, . . . , Rk]) (R16)
expression(⟨expression ⟩) (R17)

relational. Table 2 presents the syntactic rules for HLVL’s variabil-
ity relations (i.e., R7 − R17). As shown in this table, all variability
relations in HLVL contain an identifier for referencing.

Commonality. HLVL provides a construct to declare common
elements in a product line explicitly. In the running example, the
modules for handling the customer type and the payment are always
part of an E-shop. In HLVL, this is expressed as follows:

com1: common(customerType, payment)

Inclusion/Exclusion relations. HLVL provides different con-
structs to describe inclusion and exclusion rules in particular, con-
straint expressions. Constraint expressions in HLVL are useful for
including complex rules between elements in the variability model
using logic, relational, arithmetic, and global operators. These com-
plex rules are written in the HLVL’s expressions language (cf. Ta-
ble 3), that is also used to write the conditions in other variability
relations. For example, to restrict the confidentiality levels of the
payment by card module to be between 3 and 5, we write the fol-
lowing relation in HLVL:

exp1: expression (3 <= card . confidentiality AND
card . confidentiality <= 5)

Conditional exclusion/exclusion relations can optionally be de-
scribed using language constructs. To this purpose, HLVL provides
the keywords mutex and implies. Through language constructs,
HLVL supports two types of conditional exclusion:mutual exclusion
and guarded exclusion. Consider the following example:

m1: mutex(creditCard , insecureConnection)
m2: mutex(customerType='sporadic' ,[giftCard , creditCard])

Here,m1 represents the mutual exclusion of the credit card pay-
ment and insecure connection. Then, these two elements cannot
be part of the same configuration. Also, the guarded exclusionm2
defines a condition to exclude the payment by gift card and debit
card for sporadic customers. Guarded exclusion may have complex
conditions using HLVL’s expressions language. Then, whenever
the condition is satisfied the group of elements won’t be included
in a configuration.

Similarly, HLVL supports implication and guarded implication
using constructs as follows.

The High-Level Variability Language: An Ontological Approach SPLC ’19, September 9–13, 2019, Paris, France

Table 3: Syntax of the expressions language

⟨expression ⟩ ::= ∼ ⟨boolExp ⟩ | ⟨boolExp ⟩ | ⟨assiдnExp ⟩
⟨boolExp ⟩ ::= ⟨boolV al ⟩ |

⟨boolExp ⟩ ⟨loдicOp ⟩ ⟨boolExp ⟩ |
⟨r elational ⟩

⟨r elational ⟩ ::= ⟨ar ithmetic ⟩ ⟨r elationalOp ⟩ ⟨ar ithmetic ⟩
⟨ar ithmetic ⟩ ::= ⟨numer icV al ⟩ |

⟨numer icV al ⟩ ⟨ar ithmeticOp ⟩ ⟨numer icV al ⟩
⟨boolV al ⟩ ::= ⟨name ⟩ | true | false
⟨numer icV al ⟩ ::= ⟨name ⟩ | ⟨inteдer ⟩
⟨loдicOp ⟩ ::= AND | OR | => | <=>
⟨RelationalOp ⟩ ::= = | != | > | >= | < | <=
⟨ar ithmeticOp ⟩ ::= + | - | * | /
⟨name ⟩ ::= ⟨name ⟩. ⟨name ⟩ | ⟨identif ier ⟩

imp1:implies (payPal, secureConnection)
imp2: implies (customerType='regular ' , [secure , customerProfile])

In this example, we use imp1 to represent that the inclusion of Pay-
Pal payment implies the use of the secure connection (i.e., requires).
Also, imp2 represents the inclusion of the modules for handling
secure connection and customer’s profile, conditioned to the selec-
tion of a regular customer. Conditions in guarded inclusions are
written using constraint expressions.

Hierarchy-Decomposition. Although HLVL is not a language
where hierarchical relations are essential for composing models, it
offers a set of constructs to describe one-to-one (parent-child), and
one-to-many (parent-children) decompositions.

One-to-one decompositions in HLVL contain the keyword
decomposition followed by the names of the parent and the child
element together with a cardinality [m,n]. This cardinality is amul-
tiplicity annotation and is used to bound the number of instances of
the child element. Decompositions of type mandatory and optional
can be considered special cases with the cardinalities [1, 1] and [0, 1],
respectively. In the running example, the relations stating that the
gift-card and debit-card modules are optional and the credit-card
module is mandatory are written in HLVL as follows:

dc1: decomposition(card , [giftCard , debitCard],[0,1])
dc2: decomposition(card , [creditCard],[1,1])

To illustrate dependencies with cardinality [m,n], let us now
make an addition to the running example: Suppose that the E-shop
product line is implemented using between one and five application
servers (e.g., Glassfish, Tomcat, Jetty, etc) supported by minimum
two and maximum ten machines (see Figure 1a). In HLVL, this is
written as follows:

dc3: decomposition(implementation, [appServer], [1,5])
dc4: decomposition(implementation, [machines], [2,10])

Decompositions with cardinality [0, 1] are used to associate
Boolean elements to one or more attributes. Let’s extend the ex-
ample, including an attribute for the type of security certificate in
the payment modules. The association of elements to attributes in
HLVL is written as follows.

a1:decomposition(payPal ,[confidentiality , certificateType],[1,1])
a2:decomposition(card ,[confidentiality , certificateType],[1,1])

The inclusion of these relations enable the qualified names
payPal.confidentiality, payPal.certificateType,

card.confidentiality, and card.certificateType to differen-
ciate each attribute. Also, note that elements cannot represent at-
tributes and have multiplicities at the same time.

one-to-many decompositions contain the group construct, the
identifier of the parent, the children identifiers enclosed in brackets
followed by an interval representing the cardinality. This cardinal-
ity is used to specify the minimum and the maximum number of
children that can appear in a product. For example, in the E-shop
product line, the variability in the payment method can be modeled
using a group relation as follows:

g1: group(payment, [payPal, card], [1,∗])

In this example, the cardinality [1,*] denotes that at least one,
and at most the number of children can be selected.

Visibility. Visibility relations in HLVL are rules to condition
the availability (i.e., hide) of a group of elements and their relations
with similar semantics than visibility rules in decision models [7].
These relations are declared startingwith the keyword visibility
followed by a constraint expression and the identifiers of the el-
ements this condition hides. For example, let’s imagine that the
implementation characteristics of the E-shop are associated with
the company business (i.e., service seller or product seller). Then,
elements implementation, appServer, and machines will be visi-
ble only if the company commercializes services. We can represent
this in HLVL as follows:

v1: visibility (productType = ' services ' , [implementation,
appServer, machines])

4.2 Other Examples in HLVL
The following subsections show how specific constructs of other
notations are represented using HLVL. First, the excerpt of the
model of the Radio Frequency Warner system (RFW) product line
taken from [23] andwritten in OVM (Figure 1b). Second, the excerpt
of the dopler model describing the variability of the Dopler tool suit
taken from [16] (Figure 1c). The examples at their full extent are
available at https://github.com/angievig/Coffee/tree/master/HLVL/
Examples/MODEVAR.

4.2.1 Modeling Variation Point Languages in HLVL. Variation Points
(VP) and variants can be modeled using Boolean elements in HLVL.
For example, the variation point VP5 in Figure 1b representing the
prohibition signs and its variants, the no vehicles sign (V11), and
no cars sign (V12) can be modeled in HLVL as follows:

boolean VP5 comment:{"Prohibition signs " }
boolean V11 comment:{"No vehicles" }
boolean V12 comment:{"No cars"}

In this example, we used the VP’s identifier to name the element in
HLVL and the keyword comment to include the extra information
in the diagram.

Mandatory VPs, that is variation points that must always be
bounded are declared using the common construct. In the RFW, VP1,
VP2, and VP3 are mandatory VPs, this is expressed in HLVL as
follows:

c1 : common(VP1, VP2, VP3)

The links between VPs and variants (i.e., mandatory, optional,
and alternative) are one-to-one and one-to-many decompositions.

https://github.com/angievig/Coffee/tree/master/HLVL/Examples/MODEVAR
https://github.com/angievig/Coffee/tree/master/HLVL/Examples/MODEVAR

SPLC ’19, September 9–13, 2019, Paris, France Angela Villota, Raúl Mazo, and Camille Salinesi

In HLVL, mandatory and optional links are represented using the
decomposition construct. Alternative [m,n] links are represented
using the group construct. For instance, the optional relation be-
tween VP5 and V11, V12, and the alternative relation between VP1
and V1, V2, V3, V4 is written in HLVL as follows:

d1: decomposition(VP5, [V11, V12], [0,1])
d2: group(VP1, [V1, V2, V3, V4], [1,1])

Alternatively, VPs and variants linked by alternative relations
with cardinality [1..1] can be represented in HLVL using a symbolic
element for the VP and symbolic values for the variants in the group.
For example, VP2 and V5, V6 can be written in HLVL as follows:

symbolic VP2 variants : ['V5' , 'V6'] comment:{"Activation" }

Constraints inOVMmodels canme represented using the implies
and mutex constructs. In the example, the implication (requires)
between V8 and V10 is expressed as follows:

imp2: implies (V8, V10)

When themodeler choose to represent alternative [1..1] relations
using symbolic elements, the constraints can be represented with
constraint expressions and guarded implications in HLVL. Let’s
imagine that VP1 and VP2 are symbolic symbols, then the implica-
tions between pairs (V4, V6), (V1, V11), and (V1, V12) can be written
in HLVL as follows:

exp1: expression (VP1 ='big truck ' => VP2 ='durable ')
imp1: implies (VP1 ='medium−class car' , [V11,V12])

Attributes and complex constraints in the CO-OVM style [8] are
represented in HLVL using constraint expressions and conditional
implications.

4.2.2 Modeling Decision Models in HLVL. Decisions with cardi-
nality 1 : 1 can be modeled using elements, their data types, and
comments. To illustrate this, the scope and glossary decisions in
the example are represented in HLVL as follows:

symbolic scope variants : ['assemble yourself ' , ' complete suite ']
comment: {"What to buy?"}

boolean glossary comment:{"Include glossary?" }

Additionally, decisions with cardinality 1 : N are represented
using Boolean elements and a group relation. For example, the
decision tools, its three variants, and its cardinality are written as
follows in HLVL:

boolean tools , confWizard, decisionKing , projectKing
g1:group(tools ,[confWizard,decisionKing, projectKing], [1,3])

Visibility conditions in decision models are modeled in HLVL us-
ing the visibility construct. In the example, the decision about
the resolution is visible if the user decides to include the configura-
tion wizard tool. Also, the glossary will be included after a decision
about the scope is taken. These visibility conditions are expressed
in HLVL as follows:

vis1 : visibility (confWizard=true, [resolution])
vis2 : visibility (entailed (scope) , [glossary])

The function entailed is used to determine if the value of an
element is already decided.

Decision effects in dopler models describe dependencies between
decisions as rules triggering values for other decisions. For example,

the rule determining that the selection of the resolution triggers
the value of the width is written using constraint expressions in
HLVL as follows:

e1: expression ((resolution = '800x600 ') => width = 800))

Validity conditions are the rules restricting the range of the
values which can be assigned to a decision. In HLVL, these rules
are written using constraint expressions. For example, the validity
condition restricting the width as a number between [800, 1680] is
written in HLVL as follows: the

val1 : expression (width >= 800 AND width <= 1680)

5 DISCUSSION
5.1 Intermediate Language for Variability
One of the main characteristics of HLVL is that it contains con-
structs for comprehensively modeling variability concerning the
concepts in the variability glossary presented in Section 3. Hence,
HLVL can be used as used (1) as a specification language to cre-
ate variability models; or (2) as an intermediate representation of
models specified in other variability languages. Here, we borrow
the concept of intermediate language from the compilers’ domain.
In this domain, intermediate languages are used to produce inter-
mediate representations during the process of translating a source
program into target code. Many compilers generate an explicit low-
level or machine-like intermediate representation, which can be
thought of as a program for an abstract machine, as in the case of
the Java language.

The usage of an intermediate language for variability is a viable
alternative to the interoperability problem because written in such
a language, variability models can be easily shared or distributed.
Then, modeling tools should be able to export and import models in
the intermediate language, so modelers do not have to learn a new
variability language, then, modeling tools can be used as they are
today. An intermediate language for variability can be to variability
modeling tools as the BibTeX format is for reference tools. That
is, these managing references applications (e.g., Mendeley, Zotero,
etc.) have their own formats and styles for managing references.
Yet, these applications are also capable of importing and exporting
BibTeX formats. Even electronic databases, for example, ACM data
library, IEEE Xplore, Springer, Science Direct, citeSeer, etc. have
their own way to store and display references. However, these elec-
tronic databases provide an option for downloading or exporting
references in the BibTeX format. Moreover, if the rare cases that
a publication has not an available a BibTeX format, it is possible
to define its BibTeX because the language’ syntax is simple. Also,
there exits examples and documentation for the BibTeX notations
are publicly available.

5.2 Many Languages, One Representation
To ensure the flexibility of the language, HLVL has syntactical
elements for modeling Boolean and non-Boolean variability sup-
porting the description of simple and complex variability models.
Besides, HLVL supports different styles of variability modeling. As
shown in the examples above, HLVL can be used to specify FODA
models, attribute-based feature models, cardinality-based feature
models, variation-point oriented models or even decision-based

The High-Level Variability Language: An Ontological Approach SPLC ’19, September 9–13, 2019, Paris, France

models. In the conducted literature review, we observed that vari-
ability models are often enriched with ad-hoc constraints to gain
expressiveness. These approaches contribute to the proliferation of
new dialects and language extensions. Considering that the trans-
formation of the base language into an HLVL model is viable, the
new constraints can be introduced in HLVL. Then, HLVL can be
a standard language to add variability relations not supported by
current notations to enhance variability models without increasing
the variability of variability languages.

The support of Boolean and non-Boolean variable items, the
capability of model different variability languages, and the potential
capability to enhance variability models let us envision HLVL as
a viable language for integrating variability models described in
different languages. Either written in the same editor in HLVL or
created in different modeling tools, models from different sources
can be integrated to be analyzed or configured.

5.3 What is Next for HLVL?
This paper presented the syntax, semantics, and usage scenarios
of HLVL. However, the full design of the language comprises the
formal definition of semantics and other syntactic aspects such as
well-formedness rules and lexical syntax. To this purpose, we will
consider the guidelines for defining modeling languages proposed
by Harel and Rumpe in [11]. Also, we will examine the formal se-
mantics for the variability languages supported by HLVL [7, 18, 26].
We will study carefully the semantics of visibility and multiplic-
ity relations, as well as the effects in the configuration semantics
produced by these relations.

Then, the next step in our research consists in the evaluation
of the language focusing on expressiveness. This evaluation will
measure the language’s expressiveness from two different points
of view. First, we will conduct a new ontological analysis to verify
that this new proposal solves the issues reported in our previous
work [27]. We are aware that the fact inclusion/exclusion relations
can be represented by more than one language construct produces
construct redundancy, which is one of the defects in conceptual
modeling languages. However, we consider that this defect is prefer-
able to the ambiguities created by having one construct mapping
many variability concepts. These ambiguities may interfere in the
transformation process to obtain the HLVL representation of a
model initially written in another language.

In the second part of the evaluation, we will show that HLVL’s
constructs map the constructs of variability languages implemented
by particular modeling tools. Section 4 presented three examples
used to illustrate how concepts from different academic variability
modeling languages can be represented using HLVL. In this eval-
uation, we are interested in providing transformation rules and
algorithms to produce HLVL models using as input the formats
produced by tools implementing those academic languages. The
first step in this direction was the implementation of a concept-
proof including an editor for HLVL models and the Java tools for
translating variability models specified in two different tools (Code
available at https://github.com/angievig/CoffeeProofOfConcept).
This implementation was used to demonstrate the feasibility of the
usage of HLVL as a modeling and intermediate language. We plan

to apply this proposal in the reengineering of the VariaMos SPL
tool suite.

6 RELATEDWORK
In previous works [8, 17, 19, 24] we have developed the idea to
provide full genericity to methods, techniques, and tools for vari-
ability modeling, analysis, and configuration. First, Salinesi et al.
[24] proposed to use a constraint programming language to rep-
resent variability. This proposal relied on the expression power of
constraint programming. However, the benefits of this language do
not compensate the drawbacks in the design given the language’s
lack of usability and readability. At some point, to use this lan-
guage resembled replacing a programming language by assembly
language: regardless its benefits, to work with large scale assem-
bly programs without a higher level, more abstract language is an
unfeasible task.

More recent works [17, 19] introduced different levels of meta-
models to provide a high-level view of the constraint language
that serves as generic language. This proposal is fully implemented
in the current VariaMos tool suite supporting different variabil-
ity languages and providing tools for extensions. However, this
is a complex approach with a lack of usability and poor tool per-
formance. Dumitrescu et al. [8] developed a variant of SysML to
address the design of cyber-physical systems considering industry
standards. The variability language proposed in this work contains
various constructs that are not relevant to variability specification.
This paper, presents an ontological approach introducing HLVL,
an agnostic variability representation that serves as modeling and
intermediate language. We followed a compiler’s approach where
the language provides a formal syntax. This approach eases the
generation of HLVL code from other tools.

Eichelberger and Schmid report a certain trend in product line
engineering towards textual variability modeling languages [9].
The survey and analysis of textual variability languages presented
in their work characterizes eleven textual languages, including
their own proposal the INDENICA Variability Modeling Language
(IVML). Among the results, the authors report that most textual
variability languages support feature-oriented modeling and less
frequently, variation point oriented modeling. In contrast, our pro-
posal supports feature-oriented modeling, variation-point oriented
modeling, and decision-based modeling. In consequence, the HLVL
allows the creation of models in any of these styles of modeling.
Moreover, to combine in a model constructs from different ap-
proaches that were traditionally exclusive to a set of modeling
languages.

Galindo et al. [10] present an approach to ease the integration of
variability models specified using different modeling styles, variabil-
ity languages, and tools to perform configuration. They introduce
the Invar approach to provide the user with a configuration tool
that hides the different models, their semantics, and internal repre-
sentation. Then, the configuration is performed by different tools
and is orchestrated by an API that manages the communication
between the configurator and the analysis and configuration tools.
Alternatively, our proposal considers the integration of variabil-
ity models using HLVL as an intermediate language to perform
analysis and configuration operations.

https://github.com/angievig/CoffeeProofOfConcept

SPLC ’19, September 9–13, 2019, Paris, France Angela Villota, Raúl Mazo, and Camille Salinesi

7 CONCLUDING REMARKS
Migrating or integrating models built with different languages is
challenging because many concepts and forms are not consistent
among them. To define a unified language, we have been applying
an ontological approach, i.e., we have analyzed feature-oriented,
variation point oriented, and decision-oriented languages to define
a glossary of concepts and propose a unified language based on this
glossary. This paper introduces the High-Level Variability language
(HLVL), a unified variability language defined following our onto-
logical approach. Here, we presented the HLVL using an example
containing complex rules considering Boolean and non-Boolean
elements, attributes, multiplicities, and constraint expressions. Also,
we show howHLVL supports different styles of variability modeling
using two examples in different languages.

HLVL is a declarative language with a formally defined syntax
that resembles programming languages. The formal definition of
HLVL’s syntax eases the code generation from other variability lan-
guages. Also, being a programming-like language, HLVL is a more
human-readable language than other markup languages. However,
we consider that the concrete syntax presented in this paper may
evolve as a consequence of further validation and evaluation. We
believe that the ontological approach in this research and the result-
ing unified language are viable alternatives to the interoperability
issues evidenced by the product line community. This research
contributes to reducing the lack of consensus in the concepts that
should be included in variability languages. Also, it contributes
to the proposal of a standard format useful for the portability of
variability models.

Further discussion is required in this subject since the discussion
was oriented from the modeling perspective, more particularly from
an expressiveness perspective. However, the discussion should also
focus on the characteristics of the variability language that ease the
analysis and extraction of information from variability models. This
other perspective and further evaluation of the HLVL are part of our
ongoing project about the application of constraints for variability
modeling and reasoning.

REFERENCES
[1] Mohsen Asadi, Dragan Gasevic, Yair Wand, and Marek Hatala. 2012. Deriving

Variability Patterns in Software Product Lines by Ontological Considerations. In
Conceptual Modeling – ER, Vol. 7532 LNCS. Springer Berlin Heidelberg, Berlin,
Heidelberg, 397–408. https://doi.org/10.1007/978-3-642-34002-4_31

[2] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated
Reasoning on Feature Models. In Advanced Information Systems Engineering.
Springer, 491–503. https://doi.org/10.1007/11431855_34

[3] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2013. A study of variability models and languages in the systems
software domain. IEEE Transactions on Software Engineering 39 (2013), 1611–1640.
https://doi.org/10.1109/TSE.2013.34

[4] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wąsowski. 2012. Cool Features and Tough Decisions: A Comparison of Variability
Modeling Approaches. In Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems. ACM, NY, USA, 173–182.
https://doi.org/10.1145/2110147.2110167

[5] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. 2005. Formalizing
cardinality-based feature models and their specialization. Software Process: Im-
provement and Practice 10, 1 (jan 2005), 7–29. https://doi.org/10.1002/spip.213

[6] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. 2011. The DOPLER
meta-tool for decision-oriented variability modeling: a multiple case study. Au-
tomated Software Engineering 18, 1 (mar 2011), 77–114. https://doi.org/10.1007/
s10515-010-0076-6

[7] Deepak Dhungana, Patrick Heymans, and Rick Rabiser. 2010. A Formal Semantics
for Decision-oriented Variability Modeling with DOPLER. In Fourth International

Workshop on Variability Modelling of Software-Intensive Systems, Linz, Austria,
January 27-29, 2010. Proceedings. 29–35.

[8] Cosmin Dumitrescu, Patrick Tessier, Camille Salinesi, Sebastien Gérard, Alain
Dauron, and Raul Mazo. 2014. Capturing Variability in Model Based Systems
Engineering. In Complex Systems Design & Management. Springer International
Publishing, 125–139. https://doi.org/10.1007/978-3-319-02812-5_10

[9] Holger Eichelberger and Klaus Schmid. 2015. Mapping the Design-space of Tex-
tual Variability Modeling Languages: A Refined Analysis. Int. J. Softw. Tools Tech-
nol. Transf. 17, 5 (Oct. 2015), 559–584. https://doi.org/10.1007/s10009-014-0362-x

[10] José A. Galindo, Deepak Dhungana, Rick Rabiser, David Benavides, Goetz Botter-
weck, and Paul Grünbacher. 2015. Supporting distributed product configuration
by integrating heterogeneous variability modeling approaches. Information and
Software Technology 62 (2015), 78 – 100. https://doi.org/10.1016/j.infsof.2015.02.
002

[11] D. Harel and B. Rumpe. 2004. Meaningful modeling: what’s the semantics of
"semantics"? Computer 37, 10 (oct 2004), 64–72. https://doi.org/10.1109/MC.
2004.172

[12] Øystein Haugen. [n. d.]. Common variability language (CVL) - OMG revised
submission. OMGdocumentad/2012-08-05,2012

[13] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Software Engineering Institute, Carnegie Mellon University.

[14] Ahmet Serkan Karataş, Halit Oǧuztüzün, and Ali Doǧru. 2013. From extended fea-
ture models to constraint logic programming. Science of Computer Programming
78, 12 (dec 2013), 2295–2312. https://doi.org/10.1016/j.scico.2012.06.004

[15] Charles W. Krueger. 2007. BigLever Software Gears and the 3-tiered SPL Method-
ology. In Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications Companion (OOPSLA ’07). ACM, New
York, USA, 844–845. https://doi.org/10.1145/1297846.1297918

[16] Raúl Mazo, Paul Grünbacher, Wolfgang Heider, Rick Rabiser, Camille Salinesi, and
Daniel Diaz. 2011. Using constraint programming to verify DOPLER variability
models. In Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems - VaMoS ’11. ACM Press, New York, USA, 97–103. https:
//doi.org/10.1145/1944892.1944904

[17] Raúl Mazo, Camille Salinesi, Daniel Diaz, Olfa Djebbi, and Alberto Lora-Michiels.
2012. Constraints: The Heart of Domain and Application Engineering in the
Product Lines Engineering Strategy. International Journal of Information System
Modeling and Design 3, 2 (2012), 33–68. https://doi.org/10.4018/jismd.2012040102

[18] Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. 2011.
A Formal Semantics for Feature Cardinalities in Feature Diagrams. In Proceedings
of the 5th Workshop on Variability Modeling of Software-Intensive Systems (VaMoS
’11). ACM, New York, USA, 82–89. https://doi.org/10.1145/1944892.1944902

[19] Juan C. Muñoz-Fernández, Gabriel Tamura, Irina Raicu, Raúl Mazo, and Camille
Salinesi. 2015. REFAS: a PLE approach for simulation of self-adaptive systems
requirements. In Proceedings of the 19th International Conference on Software
Product Line - SPLC ’15. ACM Press, New York, USA, 121–125. https://doi.org/
10.1145/2791060.2791102

[20] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.
org/10.1007/3-540-28901-1

[21] Clément Quinton, Daniel Romero, and Laurence Duchien. 2013. Cardinality-
based feature models with constraints. In Proceedings of the 17th International
Software Product Line Conference on - SPLC ’13. ACM Press, New York, New York,
USA, 162. https://doi.org/10.1145/2491627.2491638

[22] Fabricia Roos-Frantz, David Benavides, and Antonio Ruiz Cortés. 2010. Auto-
mated Analysis of Orthogonal Variability Models using Constraint Programming..
In JISBD. 269–280.

[23] Fabricia Roos-Frantz, David Benavides, Antonio Ruiz-Cortés, André Heuer, and
Kim Lauenroth. 2012. Quality-aware analysis in product line engineering with the
orthogonal variability model. Software Quality Journal 20, 3-4 (2012), 519–565.

[24] Camille Salinesi, Raul Mazo, Daniel Diaz, and Olfa Djebbi. 2010. Using Integer
Constraint Solving in Reuse Based Requirements Engineering. In Proceedings of
the 2010 18th IEEE International Requirements Engineering Conference (RE ’10).
IEEE Computer Society, Washington, DC, USA, 243–251. https://doi.org/10.1109/
RE.2010.36

[25] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. 2011. A comparison of decision
modeling approaches in product lines. In Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems - VaMoS ’11. ACM Press, New
York, USA, 119–126. https://doi.org/10.1145/1944892.1944907

[26] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. 2007. Generic Semantics of Feature Diagrams. Comput. Netw. 51, 2
(2007), 456–479. https://doi.org/10.1016/j.comnet.2006.08.008

[27] Angela Villota, Raúl Mazo, and Camille Salinesi. 2018. On the Ontological Expres-
siveness of the High-Level Constraint Language for Product Line Specification. In
SystemAnalysis andModeling. Languages, Methods, and Tools for Systems Engineer-
ing. Springer, Copenhagen, 46–66. https://doi.org/10.1007/978-3-030-01042-3_4

[28] Zippel and Contributors. [n. d.]. kconfig-language.txt. https://www.kernel.org/
doc/Documentation/kbuild/kconfig-language.txt

https://doi.org/10.1007/978-3-642-34002-4_31
https://doi.org/10.1007/11431855_34
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1002/spip.213
https://doi.org/10.1007/s10515-010-0076-6
https://doi.org/10.1007/s10515-010-0076-6
https://doi.org/10.1007/978-3-319-02812-5_10
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1016/j.infsof.2015.02.002
https://doi.org/10.1016/j.infsof.2015.02.002
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
OMG document ad/2012-08-05, 2012
https://doi.org/10.1016/j.scico.2012.06.004
https://doi.org/10.1145/1297846.1297918
https://doi.org/10.1145/1944892.1944904
https://doi.org/10.1145/1944892.1944904
https://doi.org/10.4018/jismd.2012040102
https://doi.org/10.1145/1944892.1944902
https://doi.org/10.1145/2791060.2791102
https://doi.org/10.1145/2791060.2791102
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1145/2491627.2491638
https://doi.org/10.1109/RE.2010.36
https://doi.org/10.1109/RE.2010.36
https://doi.org/10.1145/1944892.1944907
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1007/978-3-030-01042-3_4
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

	Abstract
	1 Introduction
	2 Designing HLVL following an ontological approach
	3 Variability Modeling Glossary
	3.1 Variability Units
	3.2 Variability relations

	4 The High-Level Variability Language
	4.1 Syntax
	4.2 Other Examples in HLVL

	5 Discussion
	5.1 Intermediate Language for Variability
	5.2 Many Languages, One Representation
	5.3 What is Next for HLVL?

	6 Related Work
	7 Concluding Remarks
	References

