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Introduction

At the inital time n = 0, an urn is filled with α ≥ 0 red balls and β ≥ 0 white balls. Then, at any time n ≥ 1 one ball is drawn randomly from the urn and its color observed. If it is red it is then returned to the urn together with a additional red balls and b ≥ 0 white ones. If it is white it is then returned to the urn together with c ≥ 0 additional red balls and d white ones. The model corresponding replacement matrix is given, for a, b, c, d ∈ N, by

R = a b c d . ( 1.1) 
The urn processe is said to be balanced if the total number of balls added at each step is a constant, S = a + b = c + d ≥ 1. Thanks to the balance assumption, S is the maximum eigenvalue of R T . Moreover, the second eigenvalue of R T is given by m = ac = db.

Throughout the rest of this paper, we shall denote σ = m/S ≤ 1 the ratio of the two eigenvalues. It is straightforward that the respective eigenvectors of R T are given by

v 1 = S b + c c b and v 2 = S b + c 1 -1 .
We can rewrite R T under the following form

R T = PDP -1 = 1 b + c c 1 b -1 S 0 0 m 1 1 b -c .
Hereafter, let us define the process (U n ), the composition of the urn at time n, by

U n = X n Y n and U 0 = α β
where X n is the number of red balls and Y n is the number of white ones. Then, let τ = α + β ≥ 1 and τ n = τ + nS be the number of ball inside the urn at time n. In particular, one can observe that X n + Y n = τ n is a deterministic quantity.

The traditionnal P ólya urn model corresponds to the case where the replacement matrix R is diagonal, while the generalized P ólya urn model corresponds to the case where the replacement matrix R is at least triangular. The questions about the asymptotic behavior of (U n ) have been extensively studied, firstly by Freedman [START_REF] Freedman | Bernard friedman's urn[END_REF] and by many after, see for example [START_REF] Chauvin | Limit distributions for large p ólya urns[END_REF][START_REF] Flajolet | Some exactly solvable models of urn process theory[END_REF][START_REF] Flajolet | Analytic urns[END_REF][START_REF] Janson | Functional limit theorems for multitype branching processes and generalized p ólya urns[END_REF][START_REF] Pouyanne | An algebraic approach to p ólya processes[END_REF][START_REF] Janson | Moment convergence of balanced p ólya processes[END_REF]. We also refer the reader to Pouyanne's CIMPA summer school lectures 2014 [START_REF] Pouyanne | CIMPA Summer School[END_REF] for a very comprehensive survey on P ólya urn processes that has been a great source of inspiration. The reader may notice that this paper is related to Bercu [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] on the elephant random walk. This is due to the paper of Baur and Bertoin [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] on connection between elephant random walks and P ólya-type urns.

Our strategy is to use the martingale theory [START_REF] Duflo | Random iterative models[END_REF][START_REF] Hall | Martingale limit theory and its application[END_REF] in order to propose a direct proof of the asymptotic normality associated with (U n ). We also establish new refinements on the almost sure convergence of (U n ). The paper is organized as follows. In Section 2, we briefly present the traditional P ólya urn model, as well as the martingale related to this case. We establish the almost sure convergence and the asymptotic normality for this martingale. In Section 3, we present the generalized P ólya urn model with again the martingale related to this case, and we also give the main results for this model. Hence, we first investigate small urn regime where σ ≤ 1/2 and we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for (U n ). The asymptotic normality of the urn composition is also provided. We finally study the large urn where σ > 1/2 and we prove the almost sure convergence as well as the mean square convergence of (U n ) to a non-degenerate random vector whose moments are given. The proofs are postponed to Sections 4 and 5.

Traditional P ólya urn model

This model corresponds to the case where the replacement matrix is diagonal

R = S 0 0 S .
It means that at any time n ≥ 1, one ball is drawn randomly from the urn, its color observed and it is then returned to the urn together with S ≥ 1 additional balls of the same color. Let us define the process (M n ) by M n = X n τ n and write

X n = α + S n ∑ k=1 ε k (2.1)
where the conditional distribution of ε n+1 given the past up to time

n is L(ε n+1 |F n ) = B(M n ). We clearly have E[M n+1 |F n ] = M n which means that (M n ) is a martingale. We have ∆M n+1 = S τ n+1 ε n+1 -M n . Hence, E ∆M 2 n+1 |F n = S 2 τ 2 n+1 E ε 2 n+1 |F n -M 2 n = S 2 M n (1 -M n ) τ 2 n+1
.

We now focus our attention on the asymptotic behavior of (M n ).

Theorem 2.1 . The process (M n ) converges to a random variable M ∞ almost surely and in any L p for p ≥ 1. The limit M ∞ has a beta distribution, with parameters α S and β S .

Remark 2. [START_REF] Baur | Elephant random walks and their connection to p ólya-type urns[END_REF] This results was first proved by Freedman, Theorem 2.2 in [START_REF] Freedman | Bernard friedman's urn[END_REF].

Our first new result on the gaussian fluctuation of (M n ) is as follows.

Theorem 2.3 . We have the following convergence in distribution

√ n M ∞ -M n M n (1 -M n ) L -→ n→∞ N 0, 1 (2.2) 

Gereralized P ólya urn model

This model corresponds to the case where the replacement matrix is not diagonal,

R = a b c d .
Let us rewrite

X n = α + a n ∑ k=1 ε k + c n ∑ k=1 (1 -ε k )
where the conditional distribution of ε n+1 given the past up to time

n is L(ε n+1 |F n ) = B(τ -1 n X n ). We have U n+1 = U n + R T ε n+1 1 -ε n+1 and U n -E[U n ] = X n -E[X n ] Y n -E[Y n ] = X n -E[X n ] 1 -1 = b + c S X n -E[X n ] v 2 .
Hence, we obtain that

E U n+1 -E[U n+1 ]|F n = U n -E[U n ] + R T E ε n+1 1 -ε n+1 -E ε n+1 1 -ε n+1 |F n = I 2 + τ -1 n R T U n -E[U n ] = (X n -E[X n ] I 2 + τ -1 n R T 1 -1 = 1 + τ -1 n m X n -E[X n ] 1 -1 = 1 + τ -1 n m U n -E[U n ] . (3.1)
Finally, denote

σ n = n-1 ∏ k=0 1 + τ -1 k m -1 = Γ(n + τ S )Γ( τ S + σ) Γ( τ S )Γ(n + τ S + σ) . (3.2)
One can observe that

lim n→∞ n σ σ n = Γ( τ S + σ ) Γ( τ S ) . (3.3)
Hereafter, we define the process (M n ) by

M n = σ n U n -E[U n ] . (3.4) 
Thanks to equation (3.1) we immediatly get that

E[M n+1 |F n ] = M n .
Hence, the sequence (M n ) is a locally bounded and square integrable martingale. We are now allowed to compute the quadratic variation of (M n ). First of all

∆M n+1 = mσ n+1 ε n+1 -E[ε n+1 |F n ] 1 -1 = mσ n+1 ε n+1 -τ -1 n X n 1 -1 . (3.5)
Moreover,

E ε n+1 -τ -1 n X n 2 F n ] = τ -1 n X n 1 -τ -1 n X n . (3.6)
Consequently, we obtain from (3.5) and (3.6) that

E ∆M n+1 ∆M T n+1 F n ] = m 2 σ 2 n+1 τ -1 n X n 1 -τ -1 n X n 1 -1 -1 1 . ( 3.7) 
Therefore

M n = n-1 ∑ k=0 E ∆M k+1 ∆M T k+1 F k ] = m 2 1 -1 -1 1 n-1 ∑ k=0 σ 2 k+1 τ -1 k X k 1 -τ -1 k X k . (3.8) It is not hard to see that Tr M n ≤ m 2 w n where w n = n ∑ k=1 σ 2 k . (3.9)
The asymptotic behavior of (M n ) is closely related to the one of (w n ) with the following trichotomy -The diffusive regime where σ < 1/2 : the urn is said to be small and we have

lim n→∞ w n n 1-2σ = λ 2 1 -2σ where λ = Γ( τ S + σ ) Γ( τ S )
.

-The critical regime where σ = 1/2 : the urn is said to be critically small and we have

lim n→∞ w n log n = Γ( τ S + 1 2 ) Γ( τ S )
.

-The superdiffusive regime where σ > 1/2 : the urn is said to be large and we have

lim n→∞ w n = ∞ ∑ k=0 Γ(k + τ S )Γ( τ S + σ ) Γ( τ S )Γ(k + τ S + σ ) 2 .
Proposition A . We have for small and large urns

E[U n ] = nv 1 + σ -1 n bα -cβ S v 2 + τ S v 1 . (3.10) Proof of Proposition A. First of all, denote Λ n = I 2 + τ -1 n R T = P I 2 + τ -1 n D P -1 and T n = ∏ n-1 k=0 Λ k .
For any n ∈ N, T n is diagonalisable and

T n = PD n P -1 = 1 b + c c 1 b -1 τ n /τ 0 0 σ -1 n 1 1 b -c . Since E[U n+1 |F n ] = Λ n U n we easily get that E[U n ] = T n U 0 , which leads to E[U n ] = 1 b + c τ n τ c c b b + σ -1 n b -c -b c U 0 = nv 1 + τ S v 1 + σ -1 n bα -cβ S v 2 .

Small urns

The almost sure convergence of (U n ) for small urns is due to Janson, Theorem 3.16 in [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized p ólya urns[END_REF].

Theorem 3.1 . When the urn is small, σ < 1/2, we have the following convergence

lim n→∞ U n n = v 1 (3.11)
almost surely and in any L p , p ≥ 1.

Our new refinements on the almost sure rates of convergence are as follows.

Theorem 3.2 . When the urn is small and bc = 0, we have the quadratic strong law

lim n→∞ 1 log n n ∑ k=1 1 k 2 (U k -kv 1 )(U k -kv 1 ) T = 1 1 -2σ bcm 2 (b + c) 2 1 -1 -1 1 a.s. (3.12)
In particular,

lim n→∞ 1 log n n ∑ k=1 U k -kv 1 2 k 2 = 2 1 -2σ bcm 2 (b + c) 2 a.s. (3.13)
Moreover, we have the law of iterated logarithm When the urn is small and bc = 0, we have the following convergence asymptotic normality

lim sup n→∞ U n -nv 1 2 2n log log n = 2 1 -2σ bcm 2 (b + c) 2 a.s. ( 3 
U n -nv 1 √ n L -→ n→∞ N 0, Γ (3.15) 
where

Γ = 1 1 -2σ bcm 2 (b + c) 2 1 -1 -1 1 .
Remark 3.5 An invariance principle for (X n ) was proved by Gouet, see Proposition 2.1 in [START_REF] Gouet | Martingale functional central limit theorems for a generalized polya urn[END_REF].

Critically small urns

The almost sure convergence of (U n ) for critically small urns is again due to Janson, Theorem 3.16 in [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized p ólya urns[END_REF].

Theorem 3.6 . When the urn is critically small, σ = 1/2, we have the following convergence

lim n→∞ U n n = v 1 (3.16)
almost surely and in any L p , p ≥ 1.

Once again, we have some refinements on the almost sure rates of convergence.

Theorem 3.7 . When the urn is critically small and bc = 0, we have the quadratic strong law

lim n→∞ 1 log log n n ∑ k=1 1 (k log k) 2 (U k -kv 1 )(U k -kv 1 ) T = bc 1 -1 -1 1 a.s. (3.17)
In particular, Theorem 3.9 . When the urn is critically small and bc = 0, we have the following asymptotic normality

lim n→∞ 1 log log n n ∑ k=1 U k -kv 1 2 (k log k) 2 = 2bc a.s. ( 3 
U n -nv 1 n log n L -→ n→∞ N 0, Γ (3.20) 
where Γ = bc 1 -1 -1 1 .

Remark 3.10 An invariance principle for (X n ) was also proven by Gouet, see Proposition 2.1 in [START_REF] Gouet | Martingale functional central limit theorems for a generalized polya urn[END_REF].

Large urns

The convergences of n -σ (U nnv 1 ) to Wv 2 first appeared in Pouyanne [START_REF] Pouyanne | An algebraic approach to p ólya processes[END_REF], Theorem 3.5.

The almost sure convergence of (U n ) for large urns is again due to Janson, Theorem 3.16 in [START_REF] Janson | Functional limit theorems for multitype branching processes and generalized p ólya urns[END_REF]. The explicit calculation of the moments of W are new.

Theorem 3.11 . When the urn is large, σ > 1/2, we have the following convergence

lim n→∞ U n n = v 1 (3.21)
almost surely and in any L p , p ≥ 1. Moreover, we also have

lim n→∞ U n -nv 1 n σ = Wv 2 (3.22)
almost surely and in L 2 , where W is a real-valued random variable and We denote the maximum eigenvalue of M n by λ max M n . We make use of the strong law of large numbers for martingales given e.g. by Theorem 4.3.15 of [START_REF] Duflo | Random iterative models[END_REF], that is for any γ > 0,

E[W] = Γ( τ S ) Γ( τ S + σ ) bα -cβ S , (3.23) E[W 2 ] = σ 2 Γ( τ S ) Γ( τ S + 2σ) bc 2σ -1 τ S + (b -c) bα -cβ σ S + (bα -cβ) 2 σ 2 S 2 . ( 3 
M n 2 λ max M n = o (log Tr M n ) 1+γ a.s.
It follows from (3.9) that

M n 2 = o w n (log w n ) 1+γ a.s. which implies M n 2 = o n 1-2σ (log n) 1+γ a.s.
Hence, we deduce from (3.3) and (3.4) that

U n -E[U n ] 2 = o n(log n) 1+γ a.s.
which completes the proof for the almost sure convergence. The convergence in any L p for p ≥ 1 holds since n -1 U n -E[U n ] is uniformly bounded by 2 √ 2(τ + S).

Proof of Theorem 3.2. We shall make use of Theorem 3 of [START_REF] Bercu | On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications[END_REF]. For any u ∈ R 2 let M n (u) = u, M n and denote f n = σ 2 n w n . We have from (3.3) that f n is equivalent to (1 -2σ)n -1 and converges to 0. Moreover, we obtain from equations (3.8), (3.11) and Toeplitz lemma that

lim n→∞ 1 w n M n = lim n→∞ m 2 w n 1 -1 -1 1 n-1 ∑ k=0 σ 2 k+1 τ -1 k X k 1 -τ -1 k X k = bcm 2 (b + c) 2 1 -1 -1 1 a.s. which implies that lim n→∞ 1 w n M n = (1 -2σ )Γ a.s. (4.1)
Therefore, we get from (4.1) that

lim n→∞ 1 log w n n ∑ k=1 f k M k (u) 2 w k = (1 -2σ )u T Γ u a.s. which leads to lim n→∞ 1 log n n ∑ k=1 f 2 k u T (U k -E[U k ])(U n -E[U k ]) T u = (1 -2σ) 2 u T Γ u a.s.
Furthermore, we have from (3.10) that E[U n ] is equivalent to nv 1 . Consequently, we obtain that

lim n→∞ 1 log n n ∑ k=1 1 k 2 (U k -kv 1 )(U k -kv 1 ) T = Γ a.s.
We now focus our attention on the law of iterated logarithm. We already saw that

∞ ∑ n=1 σ 4 n w 2 n < ∞.
Hence, it follows from the law of iterated logarithm for real martingales that first appeared in Stout [START_REF] Stout | A martingale analogue of kolmogorov's law of the iterated logarithm[END_REF][START_REF] Stout | Maximal inequalities and the law of the iterated logarithm[END_REF], that for any u ∈ R d , lim sup

n→∞ 1 2w n log log w n M n (u) = -lim inf n→∞ 1 2w n log log w n M n (u) = (1 -2σ )u T Γ u a.s. Consequently, as M n (u) = σ n u, U n -E[U n ] , we obtain that lim sup n→∞ 1 2n log log n u, U n -E[U n ] = -lim inf n→∞ 1 2n log log n u, U n -E[U n ] = √ u T Γ u a.s.
In particular, for any vector u ∈ R 2 lim sup

n→∞ 1 2n log log n u T (U n -E[U n ])(U n -E[U n ])u = u T Γ u a.s.
Finally, we deduce once again from (3.10)

lim sup n→∞ 1 2n log log n (U n -nv 1 )(U n -nv 1 ) T = Γ a.s.
which completes the proof of Theorem 3.2.

Generalized urn model -critically small urns

Proof of Theorem 3.6. Again, we make use of the strong law of large numbers for martingales given e.g. by Theorem 4.3.15 of [START_REF] Duflo | Random iterative models[END_REF], that is for any γ > 0,

M n 2 λ max M n = o (log Tr M n ) 1+γ a.s.
Since Tr M n ≤ m 2 w n and the quadratic version of M n is a semi-definite positive matrix we have λ max M n ≤ m 2 w n so that

M n 2 = o w n (log w n ) 1+γ a.s. which implies M n 2 = o log n(log log n) 1+γ a.s.
Moreover, by definition of M n and using σ n equivalent we get

U n -E[U n ] 2 = o √ n log n(log log n) 1+γ a.s.
which completes the proof for the almost sure convergence. The convergence in any L p for p ≥ 1 holds by the same arguments as in the proof of Theorem 3.1.

Proof of Theorem 3.7. We shall once again make use of Theorem 3 of [START_REF] Bercu | On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications[END_REF]. For any u ∈

R 2 let M n (u) = u, M n and denote f n = σ 2 n w n
. We have from (3.3) that f n is equivalent to

(n log n)-1 and converges to 0. When σ = 1/2 we have b + c = m. Moreover, we obtain from equations (3.8), (3.16) and Toeplitz lemma that

lim n→∞ 1 w n M n = lim n→∞ m 2 w n 1 -1 -1 1 n-1 ∑ k=0 σ 2 k+1 τ -1 k X k 1 -τ -1 k X k = bc 1 -1 -1 1 a.s. which implies that lim n→∞ 1 w n M n = Γ a.s. (4.2)
Therefore, we get from (4.1) that

lim n→∞ 1 log w n n ∑ k=1 f k M k (u) 2 w k = u T Γ u a.s. which leads to lim n→∞ 1 log log n n ∑ k=1 f 2 k u T (U k -E[U k ])(U n -E[U k ]) T u = u T Γ u a.s.
Consequently, we obtain from (3.10) that

lim n→∞ 1 log log n n ∑ k=1 1 (k log k) 2 (U k -kv 1 )(U k -kv 1 ) T = Γ a.s.
We now focus our attention on the law of iterated logarithm. It is not hard to see that

∞ ∑ n=1 σ 4 n w 2 n < ∞.
Hence, it follows from the law of iterated logarithm for real martingales that first appeared in Stout [START_REF] Stout | A martingale analogue of kolmogorov's law of the iterated logarithm[END_REF][START_REF] Stout | Maximal inequalities and the law of the iterated logarithm[END_REF], that for any u ∈ R d , lim sup

n→∞ 1 2w n log log w n M n (u) = -lim inf n→∞ 1 2w n log log w n M n (u) = √ u T Γ u a.s.
Consequently, we obtain that lim sup

n→∞ 1 2 log n log log log n u, U n -E[U n ] = -lim inf n→∞ 1 2 log n log log log n u, U n -E[U n ] = √ u T Γ u a.s.
In particular, for any vector u ∈ R 2 lim sup

n→∞ 1 2 log n log log log n u T (U n -E[U n ])(U n -E[U n ])u = u T Γ u a.s.
Finally, we deduce once again from (3.10) that lim sup

n→∞ 1 2 log n log log log n (U n -nv 1 )(U n -nv 1 ) T = Γ a.s.
which completes the proof of Theorem 3.7.

Generalized urn model -large urns

Proof of Theorem 3.11. First, as Tr M n ≤ m 2 w n < ∞, we have that (M n ) converges almost surely to a random vector Mv 2 , where M is a real-valued random variable and

lim n→∞ σ n X n -E[X n ] = S b + c M = 1 1 -σ M a.s.
Hence, it follows from (3.4) that

lim n→∞ σ n (U n -E[U n ]) = Mv 2 a.s. (4.3) which implies via (3.3) that lim n→∞ σ n (U n -E[U n ]) = lim n→∞ λ n σ U n -E[U n ] = Mv 2 a.s.
Therefore, we obtain that

lim n→∞ U n -E[U n ] n = 0 a.s. (4.4) 
Hence, we deduce (3.21) from (4.3) and (4.4). The convergence in any L p for p ≥ 1 holds again by the same arguments as before. We now focus our attention on equation (3.22). We have from (3.10) and (4.3) that

lim n→∞ σ n U n -E[U n ] = lim n→∞ σ n U n -nv 1 - bα -cβ S v 2 = Mv 2 a.s. Consequently, lim n→∞ U n -nv 1 n σ = Wv 2 a.s.
where the random variable W is given by

W = 1 λ M + bα -cβ S (4.5) 
Hereafter, as

E M n 2 = E Tr M n ] ≤ m 2 w n , we get that sup n≥1 E M n 2 < ∞ which means that (M n ) is a martingale bounded in L 2 , thus converging in L 2 . Finally, as E[M n ] = 0 and (M n ) converges in L 1 to M, E[M] = 0. Hence, we find from (4.3) that E[W] = Γ( τ S ) Γ( τ S + σ ) bα -cβ S .
We shall now proceed to the computation of E[W 2 ]. We have from (4.5) that

E[M 2 ] = λ 2 E[W 2 ] - (bα -cβ) 2 S 2 , ( 4.6) 
so that we only need to find E[M 2 ]. It is not hard to see that

E (X n+1 -E[X n+1 ]) 2 = (1 + 2mτ -1 n )E (X n -E[X n ]) 2 + m 2 τ -1 n E[X n ] 1 -τ -1 n E[X n ]) wich leads to E X n -E[X n ] 2 = m 2 Γ(n + τ S + 2σ ) Γ(n + τ S ) n-1 ∑ k=0 Γ(k + 1 + τ S ) Γ(k + 1 + τ S + 2σ ) τ -1 k E[X k ] 1 -τ -1 k E[X k ]) = σ 2 (1 -σ) 2 Γ(n + τ S + 2σ ) Γ(n + τ S )
S n .

It follows from (3.10) that

S n = (b + c) 2 n-1 ∑ k=0 τ -1 k E[X k ] 1 -τ -1 k E[X k ]) Γ(k + 1 + τ S ) Γ(k + 1 + τ S + 2σ ) = bcA n + (b -c) bα -cβ S Γ( τ S ) Γ( τ S + σ ) B n - (bα -cβ) 2 S 2 Γ( τ S ) 2 Γ( τ S + σ) 2
C n where A n , B n and C n are as follows, and we obtain from lemma B.1 in [START_REF] Bercu | A martingale approach for the elephant random walk[END_REF] that

A n = n ∑ k=1 Γ(k + τ S ) Γ(k + τ S + 2σ ) = 1 2σ -1 Γ( τ S + 1) Γ( τ S + 2σ) - Γ(n + τ S + 1) Γ(n + τ S + 2σ ) , B n = n ∑ k=1 Γ(k -1 + τ S + σ) Γ(k + τ S + 2σ) = 1 σ Γ( τ S + σ) Γ( τ S + 2σ ) - Γ(n + τ S + σ ) Γ(n + τ S + 2σ ) , C n = n ∑ k=1 Γ(k -1 + τ S + σ) 2 Γ(k + τ S )Γ(k + τ S + 2σ) = 1 σ 2 Γ(n + τ S + σ ) 2 Γ(n + τ S )Γ(n + τ S + 2σ ) - Γ( τ S + σ ) 2 Γ( τ S )Γ( τ S + 2σ )
.

Consequently, we have

E[M 2 ] = σ 2 λ 2 Γ( τ S ) Γ( τ S + 2σ ) bc 2σ -1 τ S + (b -c) bα -cβ σ S + (bα -cβ) 2 σ 2 S 2 - (bα -cβ) 2 S 2 (4.7)
and we achieve the proof of Theorem 3.11 via (4.6) and (4.7).

5 Proofs of the asymptotic normality results

Traditional urn model

Proof of Proof 2.3. We shall make use of part (b) of Theorem 1 and Corollaries 1 and 2 from [START_REF] Heyde | On central limit and iterated logarithm supplements to the martingale convergence theorem[END_REF]. Let

s 2 n = ∞ ∑ k=n E[∆M 2 k ].
It is not hard to see that lim

n→∞ s 2 n = 0 since ∞ ∑ n=1 E[∆M 2 n ] ≤ S 2 4 ∞ ∑ n=1 1 τ 2 n < +∞.
Moreover, using the convergence of (M n ) in L 2 and the moments of a beta distribution with parameters α S and β S , we get that

lim n→∞ ∞ ∑ k=n 1 τ 2 k+1 -1 s 2 n = αβS 2 (α + β)(α + β + S) , leading to lim n→∞ ns 2 n = where = αβ (α + β)(α + β + S) . Hence lim n→∞ 1 s 2 n ∞ ∑ k=n E ∆M 2 k+1 |F k = lim n→∞ 1 s 2 n ∞ ∑ k=n c 2 M k (1 -M k ) τ 2 k+1 a.s. = lim n→∞ 1 S 2 ∞ ∑ k=n 1 τ 2 k+1 -1 ∞ ∑ k=n S 2 M k (1 -M k ) τ 2 k+1 a.s. = M ∞ (1 -M ∞ ) a.s.
Consequently, the first condition of part (b) of Corollary 1 in [START_REF] Heyde | On central limit and iterated logarithm supplements to the martingale convergence theorem[END_REF] is satisfied with

η 2 = -1 M ∞ (1 -M ∞ ).
Let us now focus on the second condition of Corollary 1 in [START_REF] Heyde | On central limit and iterated logarithm supplements to the martingale convergence theorem[END_REF] and let ε > 0. On the one we get that for all ε > 0

1 s 2 n ∞ ∑ k=n E ∆M 2 k+1 1 |∆M k+1 |>εs n ≤ 1 ε 2 s 4 n ∞ ∑ k=n E ∆M 4 k+1 ≤ 7S 4 ε 2 s 4 n ∞ ∑ k=n 1 τ 4 k ≤ 7 ε 2 s 4 n ∞ ∑ k=n 1 k 4 .
On the other and, using that s 4 n increases at speed n 2 and that

lim n→∞ 3n 3 ∞ ∑ k=n 1 k 4 = 1, we can conclude that lim n→∞ 1 s 2 n ∞ ∑ k=n E ∆M 2 k 1 |∆M k |>εs n = 0 a.s.
Hereafter, we easily get that

∞ ∑ k=1 1 s 4 k E ∆M 4 k |F k-1 ≤ 7 ∞ ∑ k=1 1 k 2 < +∞. (5.1) Noting that n ∑ k=1 1 s 2 k |∆M k | 2 -E |∆M k | 2 |F k-1
is a martingale, the equation (5.1) proves that its bracket is convergent, wich implies that the martingale is also convergent. This gives us

∞ ∑ k=1 1 s 2 k |∆M k | 2 -E |∆M k | 2 |F k-1 < +∞ a.s.
Hence, the second condition of Corollary 1 in [START_REF] Heyde | On central limit and iterated logarithm supplements to the martingale convergence theorem[END_REF] is satisfied. Therefore we obtain that

M ∞ -M n M ∞ -M n L -→ n→∞ N 0, 1 . (5.2) Moreover, since lim n→∞ M n (1 -M n ) n( M ∞ -M n ) = 1 a.s.
we finally obtain from Slutky's Lemma that

√ n M ∞ -M n M n (1 -M n ) L -→ n→∞ N 0, 1 . (5.3) 
which achieves the proof of Theorem 2.3.

Generalized urn model -small urns

Proof of Theorem 3.4. We shall make use of the central limit theorem for multivariate martingales given e.g. by Corollary 2.1.10 in [START_REF] Duflo | Random iterative models[END_REF]. First of all, we already saw from (4. 

∑ k=0 σ 4 k = 0.
Hence, Lindeberg's condition is satisfied and we find that

M n √ w n L -→ n→∞ N 0, Γ .
As M n = σ n U n -E[U n ] and σ n n log n is equivalent to √ w n , together with (3.10), we can conclude that

U n -nv 1 √ n L -→ n→∞ N 0, Γ .
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  .14) The law of iterated logarithm for (X n ) was previously established by Bai, Hu and Zhang via a strong approximation argument, see Corollary 2.1 in[START_REF] Bai | Gaussian approximation theorems for urn models and their applications[END_REF].

	Remark 3.3 Theorem 3.4 .

  .18) 

	Moreover, we have the law of iterated logarithm			
	lim sup n→∞	2 2 log n log log log n U n -nv 1	= 2bc	a.s.	(3.19)

Remark 3.

[START_REF] Flajolet | Analytic urns[END_REF] 

The law of iterated logarithm for (X n ) was also established by Bai, Hu and Zhang via a strong approximation argument, see Corollary 2.2 in

[START_REF] Bai | Gaussian approximation theorems for urn models and their applications[END_REF]

.

3 Generalized urn model -critically small urns Proof of Theorem 3.9.

  It only remains to show that Linderberg's condition is satisfied, that is for all ε > 0, -2σ )Γ .As M n = σ n U n -E[U n ] and√ nσ n is equivalent to (1 -2σ)w n , together with (3.10), we obtain that U nnv 1 √ n We shall also make use of the central limit thoerem for multivariate martingales. We already saw from (4.2) that

	which ensures Lindeberg's condition is satisfied. Consequently, we can conclude that
								M n √ w n		L -→
								lim n→∞	1 w n	M n = bc	1 -1 -1 1	.
	Once again, it only remains to show that Linderberg's condition is satisfied, that is for all
	ε > 0,											
						1 w n	n-1 ∑ k=0	E ∆M k+1	2 1 ∆M k+1 ≥ε	√ w n |F k	P -→ n→∞	0.
	As in the proof of Theorem (3.4), we have
	1 w n	n-1 ∑ k=0	E ∆M k+1	2 1 ∆M k+1 ≥ε	√ w n |F k ≤	1 εw 2 n	n-1 ∑ k=0	E ∆M k+1	4 ≤	m 2 2εw 2 n	k=0 n-1 ∑	σ 4 k .	a.s.
	It is not hard to see that once again			
											n→∞ lim	n w 2 1	n-1
														1) that
							lim n→∞	1 w n	M n = (1 -2σ )Γ	a.s.
						1 w n	n-1 ∑ k=0	E ∆M k+1	2 1 ∆M k+1 ≥ε	√ w n |F k	P -→ n→∞	0.
	We clearly have								
	1 w n	n-1 ∑ k=0	E ∆M k+1	2 1 ∆M k+1 ≥ε	√ w n |F k ≤	1 εw 2 n	n-1 ∑ k=0	E ∆M k+1	4 ≤	m 2 εw 2 n	k=0 n-1 ∑	σ 4 k	a.s.
	However, it is not hard to see that			
											lim n→∞	1 w 2 n	k=0 n-1 ∑	σ 4 k = 0

n→∞ N 0, (1 L -→ n→∞ N 0, Γ .

5.