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Fair in the Eyes of Others
Parham Shams1 and Aurélie Beynier1 and Sylvain Bouveret2 and Nicolas Maudet1

Abstract. Envy-freeness is a widely studied notion in resource al-
location, capturing some aspects of fairness. The notion of envy be-
ing inherently subjective though, it might be the case that an agent
envies another agent, but that she objectively has no reason to do
so. The difficulty here is to define the notion of objectivity, since no
ground-truth can properly serve as a basis of this definition. A nat-
ural approach is to consider the judgement of the other agents as a
proxy for objectivity. Building on previous work by Parijs (who in-
troduced “unanimous envy”) we propose the notion of approval envy:
an agent ai experiences approval envy towards aj if she is envious
of aj , and sufficiently many agents agree that this should be the case,
from their own perspectives. Some interesting properties of this no-
tion are put forward. Computing the minimal threshold guaranteeing
approval envy clearly inherits well-known intractable results from
envy-freeness, but (i) we identify some tractable cases such as house
allocation; and (ii) we provide a general method based on a mixed
integer programming encoding of the problem, which proves to be
efficient in practice. This allows us in particular to show experimen-
tally that existence of such allocations, with a rather small threshold,
is very often observed.

1 INTRODUCTION

Fair division is an ubiquituous problem in multiagent systems, eco-
nomics [28, 20, 29], with applications ranging from allocation of
schools, courses or rooms to students [1, 21], to division of goods
in inheritance or divorce settlement [7]. Envy-freeness (EF), is one
of the prominent notions studied in fair division [14, 6, 18, 11, 26].
An allocation of items among a set of agents is said to be envy-free if
no agent prefers the share of another agent to her own share. Unfortu-
nately, envy-freeness is a pretty demanding notion and an envy-free
allocation may not exist.

Now consider a given problem where no envy-free allocation can
be returned, but suppose instead that two allocations make a single
agent (say, ai) envious of some other agent aj (for simplicity). Now
assume that in allocation π, ai is the only agent to prefer the bundle
of aj over her own, while in allocation π′ all the other agents agree
on the fact that ai should indeed envy aj . According to Parijs [22],
π′ exhibits unanimous envy, and there seems to be no situation where
π′ should be returned in place of π. Inspired by this notion, we intro-
duce in this paper the notion ofK-approval envy, as a way to retrieve
a continuum between envy-freeness and unanimous envy. As may be
clear from the name, the idea is simply to ask agents to express their
own view about envy relations expressed by other agents. The ob-
jective will thus be to seek allocations minimizing social support for
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the expressed envy relations, i.e. minimizing the number of agentsK
approving the envy. Of course, this approach may be controversial:
after all, the notion of preference is inherently subjective. Introducing
this flavour of objectivity may lead to undesirable consequences. At
the extreme, one may simply replace individual preferences by some
unanimous “mean” profile, thus profoundly changing the very nature
of the notion. We believe there are several justifications to investigate
this new approach:

• First, note that we only seek the approval of other agents in the
case the agent herself explicitly expresses envy: absence of envy
thus remains completely subjective. While a symmetrical treat-
ment may also be justifiable in some situations, there is an obvious
reason which motivates us to start with the proposed definition,
namely the fact that the notion would no longer be a relaxation of
envy-freeness.

• Secondly, all other things being equal, we believe an allocation
minimizing K is socially more desirable. We do not necessarily
regard this notion as a compelling choice, but we think this can
enrich the picture of fallback allocations when no envy-free allo-
cation exists, as other relaxations do [2].

• Finally, one further motivation of our work that we would like
to emphasize is that our approach can be seen as providing guid-
ance regarding agents and more specifically agents’ preferences
which could be focused on, in order to progress towards envy-
freeness. In particular, if we envision systems integrating deliber-
ative phases in the collective decision-making process, our model
could be used to set the agenda of such deliberations. If a vast ma-
jority of agents contradict an agent on her envy towards another
agent, it may indicate for instance that she lacks information re-
garding the actual value of (some items of) her share. Initiating a
discussion might help to solve such “objectively unjustified” en-
vies when they occur.

Outline of the paper. The remainder of this paper is as follows.
Section 2 recalls some basic notions in fair division. Our notion of
K-approval envy is presented in Section 3. Some properties of this
notion are then studied in Section 4: it is shown in particular, that
if the hypothetical situation of allocation π described at the begin-
ning of the introduction occurs, then an EF allocation must also ex-
ist. We also show that our notion inherits from the complexity of
related problems. This motivates the MIP formulation that we detail
in Section 5. We next turn to the House Allocation setting and we
show that if each agent exactly holds a single item, then an efficient
algorithm allows for returning an allocation minimizing the value of
K. One caveat of our notion is that (unlike other relaxations) it is
not guaranteed to exist, as intuitively observed in the case of unani-
mous envy. We thus consider greatly important to provide empirical
evidence showing that both in different synthetic cultures as well as
with real datasets, allocations with reasonable values of K exist.



2 MODEL AND DEFINITIONS
We consider MultiAgent Resource Allocation problems (MARA)
where we aim at fairly dividing a set of indivisible goods (also called
items or objects) among a set of agents. A MARA instance I is de-
fined as a finite set of objects O = {o1, . . . , om}, a finite set of
agents N = {a1, . . . , an} and a profile P of preferences represent-
ing the interest of each agent ai ∈ N towards the objects. An allo-
cation π is a mapping of the objects in O to the agents in N . In the
following, πi will denote the set of objects (the share) held by agent
ai. An allocation is such that ∀ai, ∀aj with i 6= j : πi ∩ πj = ∅
(a given object cannot be allocated to more than one agent) and⋃
ai∈N πi = O (all the objects from O are allocated).
In this paper, we consider cardinal preference profiles so, the pref-

erences of an agent ai over bundles of objects is defined by a utility
function ui : 2O → Q+ measuring her satisfaction ui(πi) when she
obtains share πi. We make the assumption that utility functions are
additive i.e. the utility of an agent ai over a share πi is defined as the
sum of the utilities over the objects forming πi:

ui(πi)
def
=

∑
ok∈πi

u(i, k),

where u(i, k) is the utility given by agent ai to object ok. This as-
sumption is commonly considered in MARA [18, 24, 12, 9, for in-
stance] as additive utility functions provide a compact but yet expres-
sive way to represent the preferences of the agents. MARA instances
with additive utility functions are called add-MARA instances for
short.

Different notions have been proposed in the literature to evalu-
ate the fairness of an allocation. When the agents can compare their
shares, the absence of envy [14, 18, 10] is a particularly relevant
notion of fairness. An agent ai would envy another agent aj if she
prefers the share of aj over her own share. More formally, an agent
ai envies an agent aj iff

ui(πj) > ui(πi)

A completely fair allocation would thus be an envy-free allocation
i.e. an allocation where no agent envies another agent. Formally:

∀ai, aj ∈ N , ui(πi) ≥ ui(πj)

The notion of envy-freeness conveys a natural concept of fairness
viewed as social stability: agents are happy with their bundle and
hence would not want to swap it with any other agent’s (regarding
their own preferences). However, as soon as it is required to allocate
all the objects in O, an envy-free allocation may not exist. An alter-
native objective may be to minimize a degree of envy of the society
[18, 10], based on the notion of pairwise envy.

Definition 1 (Pairwise envy). Let π be an allocation. The pairwise
envy pe(i, j,−→π ) of an agent ai towards an agent aj in π is defined
as follows:

pe(i, j, π)
def
= max{0, ui(πj)− ui(πi)}.

The pairwise envy can be interpreted as how much agent ai envies
agent aj’s share (this envy being 0 if ai does not envy aj). We can
derive from this notion a collective measure of envy:

Definition 2 (Degree of envy of the society). The degree of envy of
the society for an allocation π is defined as follows:

de(π)
def
=

∑
ai∈N

∑
aj∈N

pe(i, j, π)

Note that an allocation π is envy-free if and only if de(π) = 0.
To cope with the possible inexistence of an envy-free allocation,

another approach is to alleviate the requirements of the fairness no-
tion. Recently, several relaxations of envy-freeness have been pro-
posed such as envy-freeness up to one good (EF1) [8] or envy-
freeness up to any good (EFX) [9]. An allocation is said to be envy-
free up to one good (resp. up to any good) if no agent ai envies the
share πj of another agent aj after removing from πj one (resp. any)
item. Existence for EF1 is guaranteed, but this is still to the best of
our knowledge an open question for EFX. Amanitidis et al. [2] stud-
ied the relations between some fairness notions and their relaxations.

3 K-APPROVAL ENVY
The notion of envy being inherently subjective, it might be the case
that an agent envies another agent, but that she objectively has no
reason to do so. The difficulty here is to define the notion of objec-
tivity, since no ground-truth can properly serve as a basis of this def-
inition. In her book, Guibet-Lafaye [17] recalls the notion of unani-
mous envy, that was initially discussed in the book by Parijs [22], and
that can be defined as follows: an agent ai unanimously envies an-
other agent aj , if all the agents think that ai indeed envies aj . Here,
unanimity is used as a proxy for objectivity.

As we can easily imagine, looking for allocations that are free of
unanimous envy will be too weak to be interesting: as soon as one
agent disagrees with the fact that ai envies aj , this potential envy will
not be taken into account. Here, we propose an intermediate notion
between envy-freeness and (unanimous envy)-freeness:

Definition 3 (K-approval envy). Let π be an allocation, ai, aj be
two different agents, and 1 ≤ K ≤ n be an integer. We say that ai
K-approval envies (K-app envies for short) aj if there is a subset
NK of K agents including ai such that:

∀ak ∈ NK , uk(πi) < uk(πj).

In other words, at least K − 1 agents amongst N \ {ai} agree with
ai on the fact that she should actually envy agent aj .

Example 1. Let us consider the following add-MARA instance with
3 agents and 6 objects:

o1 o2 o3 o4 o5 o6

a1 0 3 3 1 3 2
a2 2 0 7 2 1 0

a3 0 3 5 0 1 3

Note that there is no envy-free allocation for this instance. In the
squared allocation, a1 is not envious, a2 envies a3 and a3 envies a1.
Concerning the envy of a2 towards a3, a1 disagrees with a2 being
envious of a3 whereas agent a3 agrees. Hence, agent a2 2-app envies
agent a3. Concerning the envy of a3 towards a1, agent a1 agrees with
a3 being envious of a1 whereas agent a2 does not. Hence, a3 2-app
envies a1.

Note that in the definition, as soon as ai does not envy aj , then,
ai does not K-app envy aj , no matter what the value of K is or how
many agents think that ai should actually envy aj .

Let us start with an easy observation:

Observation 1. Given an allocation π of an add-MARA instance, if
ai K-app envies aj in π, then ai (K−1)-app envies aj in π.
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Moreover, if ai n-app envies aj , we will say that ai unanimously
envies aj . Finally, we can observe that ai 1-app envies aj if and only
if ai envies aj .

We can naturally derive from Definition 3 the counterpart of EF:

Definition 4 ((K-approval envy)-free allocation). An allocation π is
said to be (K-app envy)-free if and only if ai does not K-app envy
aj for all pairs of agents (ai, aj).

Definition 5 ((K-approval envy)-free instance). An add-MARA in-
stance I will be said to be (K-app envy)-free if and only if it accepts
a (K-app envy)-free allocation.

Example 2. Going back to Example 1, the squared allocation is (3-
app envy)-free so the instance is (3-app envy)-free.

A threshold of special interest is obviously bn/2c + 1, since it
requires a strict majority to approve the envy under inspection. A
Strict Majority approval envy-free (SM-app-EF) allocation is a (K-
app envy)-free allocation such that K ≤ dn/2e, translating the fact
that every time envy occurs, there is a strict majority of agents that
do not agree with that envy.

Going further, it is important to notice that (K-app envy)-freeness
is not guaranteed to exist. Indeed, for all number of agents n and
all number of objects m, there exist instances for which no (K-app
envy)-free allocation exists, no matter what K is. Suppose for in-
stance that all the agents rank the same object (say o1) first, and that
for all ai, u(i, 1) >

∑m
k=2 u(i, k). Then obviously, everyone agrees

that all the agents envy the one that will receive o1. Such instances
will be called unanimous envy instances:

Definition 6 (Unanimous envy instance). An add-MARA instance I
will be said to exhibit unanimous envy if I is not (K-app envy)-free
for any value of K.

Observe that for an allocation to be (K-app envy)-free, for all pairs
of agents ai, aj , either ai or at least n−K + 1 agents have to think
that ai does not envy aj . Notice that it is different from requiring that
at least K agents think that this allocation is envy-free. This explains
the parenthesis around (K-app envy): this notion means “free of K-
app envy”, which is different from “K-app-(envy-free)”.

A useful representation, for a given allocation, is the induced envy
graph: vertices are agents, and there is a directed edge from ai to aj
if and only if ai envies aj [18]. An allocation is envy-free if and only
if the envy graph has no arc. In our context, we can define a weighted
notion of the envy graph.

Definition 7 (Weighted envy graph). The weighted envy graph of
an allocation π is defined as the weighted graph (N , E) where nodes
are agents, such that there is an edge (ai, aj) ∈ E if ai envies aj ,
with the weightw(ai, aj) corresponding to the number of agents (in-
cluding ai) approving this pairwise envy in π.

Our notion of K-approval envy can be interpreted as a vote on
envy, that works as follows. For each pair of agents (ai, aj), if ai
declares to envy aj , we ask the rest of the agents to vote on whether
they think that ai indeed envies aj . Then, a voting procedure is used
to determine whether ai envies aj according to the society of agents.
Several voting procedures can be used. However, since there are only
two candidates (yes / no), the most reasonable voting rules are based
on quotas: ai envies aj if and only if there is a minimum quota of
agents that think so.3 This makes a connection with related work [26]
which uses voting to decide upon envy-freeness, but in the context of
fair division of resources jointly owned by groups of agents.
3 More precisely, these rules exactly characterize the set of anonymous and

monotonic voting rules [23].

4 SOME PROPERTIES OF K-APP ENVY
There are natural relations between the different notions of (K-app
envy)-freeness, for different values of K. The following observation
is a direct consequence of Observation 1.

Observation 2. Let π be an allocation, and K ≤ N be an integer.
If π is (K-app envy)-free, then π is also ((K+1)-app envy)-free.

However, the converse does not hold. More precisely, the follow-
ing proposition shows that the implication stated in Observation 2 is
strict.

Proposition 1. Let π be an allocation, and 3 ≤ K ≤ n be an
integer. If π is (K-app envy)-free, π is not necessarily ((K−1)-app
envy)-free.

Proof. Let h ∈ {2, . . . , n− 1} be an integer, and let us consider the
instance with n agents and n objects defined as follows:

• u(1, 1) = 1;
• u(i, 1) = u(i, i) = 1

2
for i ∈ {2, . . . , h− 1};

• u(i, i) = 1 for i ∈ {h, n− 1};
• u(n, 1) = 2

n+1
and u(n, j) = 1

n+1
for j > 1;

and u(i, j) = ε for other pairs with ε < 1
n+1

.
Consider the allocation π where each agent ai gets item oi. Obvi-

ously, the only envy in this allocation concerns an towards a1. More-
over, only a1, . . . , ah−1 agree on this envy. Therefore, an h-app en-
vies a1, but does not (h+1)-app envy her. Moreover, π is ((h+1)-app
envy)-free, but not (h-app envy)-free.

Example 3. In order to illustrate the previous proof, let us consider
the following instance with 4 agents, 4 objects (and h=3) and the
squared allocation π:

o1 o2 o3 o4

a1 1 ε ε ε

a2
1
2

1
2

ε ε

a3 ε ε 1 ε

a4
2
5

1
5

1
5

1
5

In this allocation, the only envy concerns a4 towards a1. Moreover,
only a1 and a2 agree with a4 on her envy. Hence, π is (4-app envy)-
free but is obviously not (3-app envy)-free as we can find 3 agents (a1,
a2 and a4) agreeing on the envy of a4 towards a1 (in other words a4
3-app envies a1).

Proposition 2. For any K ≥ 3, there exist instances which are (K-
app envy)-free but not ((K−1)-app envy)-free.

Proof. Consider the same instance as in Proposition 1. We have al-
ready shown that we have an allocation π that is ((h+3)-app envy)-
free which means that the instance is ((h+3)-app envy)-free. We
just have to show that there is no ((h+2)-app envy)-free allocation
in order to conclude. In that purpose, we first note that each agent
has to get one and exactly one object. Indeed, if it is not the case at
least one agent ai will have no object and will thus be envious of any
agent aj that has an object. Moreover, as all agents value the empty
bundle with utility 0 and every object is valued with a strictly posi-
tive utility, this envy will be unanimous. Hence, each agent has to get
one and exactly one object in order to minimize the (K-app envy)-
freeness. Now consider objects oj for j ∈ {h+2, n}. The agents aj
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that receive an object oj and that are envious will (h+2)-app envy
the agent that received o1. Indeed, agents ai for i ∈ {h+ 2, n− 1}
value objects oj with a utility higher than (or equal to) the one of
o1 (and thus do not approve the envy) while it is the opposite for
the other agents who are exactly h+2 hence the (h+2)-app envy.
So if we want to avoid that envy, we have to give the objects oj to
agents so that they do not experience envy at all but it is not possi-
ble as such agents are agents ap for p ∈ {h + 2, n − 1}. It means
that we have n − 1 − (h + 2) + 1 agents that have to receive one
of the n − (h + 2) + 1 objects which is obviously impossible. This
means that we cannot avoid (h+2)-app envy which implies that no
allocation can be ((h+3)-app envy)-free.

Proposition 2 proves that the hierarchy of K-app envy instances
is strict for K ≥ 3. Rather surprisingly, we will see that it is not the
case for K = 2.

In order to show this result, we will resort to a tool that has been
proved to be really useful and powerful in many contexts dealing
with envy [5, 3, 4]: the “bundle reallocation cycle technique”. This
technique, originating from the seminal work of Lipton et al. [18],
consists in performing a cyclic reallocation of bundles so that every
agent is strictly better in the new allocation. Thus, such a reallocation
corresponds to a cycle in the opposite direction of the edges in the —
weighted — envy graph introduced in Definition 7. It is known that
performing a reallocation cycle decreases the degree of envy [18].
Unfortunately, our first remark is that it does not necessarily decrease
the level of K-app envy. Worse than that, it can actually increase it:

Proposition 3. Let π be a (K-app envy)-free allocation, for 3 ≤
K ≤ n−1. After performing an improving bundle reallocation cycle
(even between two agents), the resulting allocation may be (K′-app
envy)-free (and not (K-app envy)-free) such that K′ > K.

Proof. Let h ∈ {0, . . . , n− 4} be an integer, and let us consider the
instance with n agents and n objects defined by the following utility
functions:

• a1: u(1, 1) = 1,u(1, 2) = 2,u(1, 3) = 7;
• a2: u(2, 1) = 2,u(2, 2) = 1;
• a3: u(3, 3) = 10;
• al for l∈{4, h+3}: u(l, 1) = u(l, 3) = 5, u(l, j) = 6 for j ≥ 4;
• am for m ∈ {h+4, n}: u(m, 2) = 4, u(m, 3) = 5, u(m, i) = 6

for i ≥ 4;

and u(i, j) = 0 for other pairs.
Consider the allocation π where each agent ai gets item oi. Ob-

viously, the only envy in this allocation concerns a1 towards a2 (ap-
proved by a1 and agents am) and a3 (approved by a1, a3 and agents
am), and the envy of a2 towards a1 (approved by a2 and agents al).
Hence the allocation is ((max{|am|+3, |al|+2})-app envy)-free. We
now consider the allocation π′ resulting from the improving bundle
reallocation cycle between a1 and a2. We note that the only envy in
π′ is the one of a1 towards a3. Moreover, this envy is approved by
herself, a3 and agents al and am. The allocation is thus ((|am|+|al|+
3)-app envy)-free and not ((max{|am|+3, |al|+2})-app envy)-free
as if |al|≥1 then |am|+|al|+ 3 > max{|am|+3, |al|+2}.

Now consider a slight generalization of Lipton’s cycles, weakly
improving cycles (WIC), that correspond to a reallocation of bundles
where all the agents in the cycle receive a bundle they like at least
as much as the one they held, with one agent at least being strictly
happier. Of course, our example of Proposition 3 still applies. On
the other hand, this notion suffices to guarantee the decrease of the

degree of envy (note that identifying the cycles themselves may not
be easy any longer, but this is irrelevant for our purpose). The proof,
omitted, follows directly from the arguments of Lipton [18].

Observation 3. Let π be an allocation, and π′ the allocation ob-
tained after performing a weakly improving cycle. It holds that
de(π′) < de(π).

We now show that (2-app envy)-freeness exhibits a special be-
haviour: in contrast with Proposition 3, improving cycles (in fact,
even weakly improving cycles) enjoy the property of preserving the
(2-app envy)-freeness level of an allocation. We provide this result
for swaps (cycles involving two agents only) as this is sufficient to
establish our main result.

Lemma 1. Let π be a (2-app envy)-free allocation that is not EF.
There always exists a WIC (that we can identify) between two agents
such that the resulting allocation is (K′-app envy)-free, withK′ ≤ 2.

Proof. Let ai be an envious agent (there is at least one). We identify
the agent that ai envies the most and call her aj (if there are several
agents that ai envies the most, we can pick randomly one of them).
Swapping the bundle of ai and aj is a WIC (as ai envies aj and aj
necessarily does not agree on this envy because otherwise it would
contradict (2-app envy)-freeness of π). We can prove that this swap
leads to a (K’-app envy)-free allocation with K’ ≤ 2. Let us call π′

the allocation after this swap. In π′, all the agents except ai and aj
have the same approval envy. Moreover, ai is now EF in π′ as she
has received her preferred bundle. So, if π′ is (K’-app envy)-free
with K′ > 2, it is because aj 2-app envies (at least) some agent ah
(that can obviously not be ai). Suppose for the sake of contradiction
that it is the case. For this to be the case, aj has to envy ah and
another agent al has to approve this envy: (1) uj(π′j) < uj(π

′
h), (2)

ul(π
′
j) < ul(π

′
h). However, as ai envies aj in π then (3) ui(πi) <

ui(πj) and as π is (2-app envy)-free and (3) holds, every agent al
(except ai of course) verifies (4) ul(πi) ≥ ul(πj).

Besides, π′ is obtained after swapping the bundles of ai and aj
in π so π′j = πi, π′i = πj and π′h = πh; and from (2) we get: (5)
ul(πi) < ul(πh). By transitivity with (5) and (4), we obtain: (6)
ul(πj) < ul(πh). However, we know that aj has the same utility
in π and π′ so uj(π′j) = uj(πj). The latter combined with (1) (and
the fact that π′h = πh) gives: (7) uj(πj) < uj(πh). Finally, note
that (6) and (7) translate the fact that aj 2-app envies ah in π which
contradicts the fact that π is (2-app envy)-free.

Putting together Lemma 1 and Observation 3 allows us to prove
that (2-app envy)-freeness is essentially a vacuous notion, in the
sense that any instance enjoying an allocation with this property will
have an EF allocation as well.

Proposition 4. If an add-MARA instance is (2-app envy)-free then it
is also envy-free.

Proof. Take π as being an arbitrary (2-app envy)-free allocation.
First note that if there is no envious agent in π then, by definition,
π is envy-free and the proposition holds. We perform a WIC leading
to π′ that is still (2-app envy)-free (see Lemma 1). If π′ is envy-free
then we are done. Otherwise, thanks to Observation 3 we know the
degree of envy has strictly decreased. We can repeat this process until
the current allocation is EF. The process is guaranteed to stop because
the degree of envy of the society is bounded below by zero and the
degree of envy of the society strictly decreases at each step until it
equals zero (which corresponds to an envy-free allocation).
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Another consequence is that, for two agents, instances fall either
in the envy-free or unanimous envy category:

Corollary 1. In the special case of 2 agents, if there is no envy-free
allocation in I then I is a unanimous envy instance.

Complexity. We conclude with a few considerations on the com-
putational complexity of the problems mentioned so far. First of all,
as envy-freeness is (1-app envy)-freeness, the problem of finding the
minimum K for which there exists a (K-app envy)-free allocation is
at least as hard as determining whether an envy-free allocation exists.

One may also wonder how hard the problem of determining
whether a given instance exhibits unanimous envy or not, i.e. whether
a (K-app envy)-free allocation exists for some value of K. For this
question, instances where agents all have the same preferences pro-
vide insights.

Proposition 5. For any add-MARA instance, if all the agents have
the same preferences then the notions of (1-app envy)-freeness and
(n-app envy)-freeness coincide.

Proof. We already know from Observation 2 that (1-app envy)-
freeness implies (n-app envy)-freeness for any add-MARA instance.
So we just have to prove that if all the agents have the same pref-
erences then (n-app envy)-freeness implies (1-app envy)-freeness. If
an allocation π is (n-app envy)-free then it means that for any pair
ai, aj of agents, ai does not envy aj or there is at least one agent ah
that disagrees on the envy of ai towards aj . Obviously, if for every
pair of agents ai, aj we have ai envy-free towards aj then the allo-
cation π is envy-free and the proof concludes. Besides, for every pair
of envious/envied agents there is at least one agent disagreeing on the
envy. But all the agents have the same preferences so it means that
every agent should agree with each other. Hence, no envied agent can
exist and we have (1-app envy)-freeness of allocation π.

From Proposition 5 we get that the problem of deciding the exis-
tence of unanimous envy is at least as hard as deciding the existence
of an EF allocation when agents have similar preferences which is
known to be NP-hard [18]. As membership in NP is direct, we thus
get as a corollary that:

Corollary 2. Deciding whether an allocation exhibits unanimous
envy is NP-Complete.

5 A MIP FORMULATION FOR K-APP ENVY
We have seen in the previous section that the problem of determining,
for a given instance I , the minimal value of K such that a (K-app
envy)-free allocation exists inherited from the high complexity of
determining whether an envy-free allocation exists.

To address this problem, we present in this section a Mixed Integer
linear Program that returns, for a given add-MARA instance I , a (K-
app envy)-free allocation with the minimal K and no solution when
I is a unanimous envy instance. In this MIP, we use n×m Boolean
variables zji (we use bold letters to denote variables) to encode an
allocation: zji = 1 if and only if ai gets item oj . We also introduce n3

Boolean variables ekih such that ekih = 1 if and only if according to
ak’s preferences ai envies agent aj . We also need to add n2 Boolean
variables xih used to linearize the constraints on ekih. Finally, we
use an integer variable K corresponding to the K-app envy we seek
to minimize.

In this section, we assume that all the utilities are integers. If they
are not (recall that they are still in Q+) we can transform the instance

at stake into a new one only involving integral utilities by multiplying
them by the least common multiple of their denominators.

We first need to write the constraints preventing an item from be-
ing allocated to several agents:

n∑
i=1

zji = 1 ∀j ∈ J1,mK (1)

By adding these constraints we also guarantee completeness of the
returned allocation (all the items have to be allocated to an agent).

Secondly, we have to write the constraints that link the variables
ekih with the allocation variables zji:

∀k, i, h ∈ J1, nK,
m∑
j=1

u(k, j)(zjh − zji) > 0 ⇐⇒ ekih = 1

As the utilities are integers, we can replace > 0 by ≥ 1. In or-
der to linearize the implication from left to right ( =⇒ ) we in-
troduce a number M that can be arbitrarily chosen such that M >
maxk

∑m
j=1 u(k, j):

Mekih ≥
m∑
j=1

u(k, j)(zjh − zji) ∀k, i, h ∈ J1, nK (2)

m∑
j=1

u(k, j)(zjh − zji) ≥ 1−M(1− ekih) ∀k, i, h ∈ J1, nK (3)

Note that we do not need to formalize the implication from right
to left because the optimization criterion will ‘force’ the ekih to be
as small as possible. Finally, we have to write the constraints that
convey the fact that the allocation we look for is (K-app envy)-free:

eiih = 0 ∨
n∑
k=1

ekih ≤ K− 1 ∀i, h ∈ J1, nK

Since eiih are Boolean variables, we can replace eiih = 0 by
eiih ≤ 0. Now, this logical constraint is linearized as follows:

eiih ≤ xih ∀i, h ∈ J1, nK (4)
n∑
k=1

ekih ≤ K− 1 + n(1− xih) ∀i, h ∈ J1, nK (5)

We can now put things together. Let I be an instance. Then, we
will denote byM(I) the MIP defined as:

minimize K

such that zji, ekih,xih ∈ {0, 1}∀k, i, h ∈ J1, nK, j ∈ J1,mK
K ∈ J1, NK
+ Constraints (1, 2, 3, 4, 5)

Proposition 6. Let I be an instance. Then, there is an optimal solu-
tion with K = L toM(I) if and only if I is an (L-app envy)-free
instance and not an ((L−1) envy)-free one. Moreover,M(I) does not
admit any solution if and only if I is an unanimous envy instance.

The proof of this proposition is not very involved and will thus
be omitted. The key here is to show that there is a solution to the
MIPM(I) such that K = L iff the corresponding allocation π such
that zji = 1 if and only if oj ∈ πi is (L-app envy)-free. The most
critical point is to show that Constraints 2 and 3 are indeed a valid
translation of the logical implication, and that Constraints 4 and 5
correctly encode the logical or. The rest follows easily.

As the problem is difficult in the general case, it is natural to seek
special cases that could be solved efficiently.
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6 HOUSE ALLOCATION
The House Allocation Problem (HAP for short) is a standard prob-
lem where there are exactly as many items as agents, and each agent
receives exactly one resource. This setting is relevant in many situ-
ations and has been extensively studied [27, 25, 1, to cite a few of
them]. In House Allocation Problems, computing an envy-free allo-
cation comes down to solving a matching problem, since an envy-
free allocation exists if and only if all the agents get (one of) their
top item(s). It is therefore natural to wonder whether an allocation
minimizing K-app envy could also be computed efficiently.

Our first observation hints in that direction. Indeed, characterizing
unanimous envy becomes easy in house allocation problems.

Proposition 7. Let I be an instance of HAP. I is an unanimous envy
instance if and only if there exists at least a pair of items (oi, oj)
such that all agents strictly prefer oi over oj .

Corollary 3. Checking whether an instance I of HAP is a unani-
mous envy instance or not can be done in O(n2).

From this characterization we can also derive a result on the like-
lihood that unanimous envy exists when the utilities are uniformly
ditributed (that is, for each agent ai and object oj , utilities are drawn
i.i.d. following the uniform distribution on some interval [x, y]).

Proposition 8. Under uniformly distributed preferences, the proba-
bility of unanimous envy is upper bounded by n(n− 1)/2n.

Proof. Wlog. suppose agent 1 has preferences o1 � o2 � · · · � on.
The probability of the event oi is strictly preferred to oj by one agent
is 1/2 if preferences are strict. As preferences are not strict, this prob-
ability becomes an upper bound (think for instance if the agent values
all the objects the same then the probability to have strict preference
between two objects is zero). Hence, the probability of the event oi is
strictly preferred to oj by all agents is upper bounded by 1/2n−1 as
the preferences between the agents are independent. Assuming, for
all pairs of items, these events to be independent (which is not the
case, hence an upper bound of the upper bound), we derive our result
by summing up over the n(n− 1)/2 possible pairs.

Note that this value quickly tends towards 0: unanimous envy is
thus already unlikely to occur for 10 agents.

We will now show here that finding an allocation that minimizes
(K-app envy)-freeness can be done in polynomial time. Before in-
troducing the idea, we need an additional notation. For any pair
(j, j′), let #≺(j, j

′) denote the number of agents strictly prefer-
ring oj′ to oj . For any agent ai and object oj , we will also define
maxEnvy[i][j] as follows:

maxEnvy[i][j] = max
oj′ s.t. u(i,j′)>u(i,j)

#≺(j, j
′)

In other words, maxEnvy[i][j] denotes the maximal value of
#≺(j, j

′) among the objects that are strictly preferred to oj by ai.
As we can imagine, this will exactly be the value of the K-app envy
experienced by ai if she gets item oj (note that if oj is among ai’s
top objects, this value will be 0).

The key to the algorithm is to see that for a given K, determining
whether a (K-app envy)-free allocation exists can be done in poly-
nomial time by solving a matching problem. Namely, for eachK, we
build the following bipartite graph:N ∪O is the set of nodes, and we
add an edge (ai, oj) ∈ N×O if and only ifmaxEnvy[i][j] is lower

than or equal to K. We can observe that any perfect matching in this
graph corresponds to a ((K+1)-app envy)-free allocation. The only
thing that remains to do is to run through all possible values of K,
which can be done by dichotomous search between 0 and n. This is
formalized in Algorithm 1.

Algorithm 1: Minimizing (K-app envy)-freeness in the HAP
input : I = 〈N ,O, w〉 a HAP instance

1 maxEnvy ← computeMaxEnvy();
2 res← None;
3 low← 0, high← n;
4 while low≤ high do
5 i← b(low + high)/2c;
6 G← buildBipartiteGraph(maxEnvy,i);
7 π ← perfectMatching(G);
8 if π is not None then
9 res← π, i+ 1;

10 high← i− 1;

11 else
12 low← i+ 1;

13 return res

Proposition 9. For any HAP instance, we can find (one of) its opti-
mal (K-app envy)-free allocations in O(n3 log(n)).

Proof. First, the computation of the matrix maxEnvy runs in
O(n3). Indeed, to compute maxEnvy[i][j] we first need to com-
pute #≺(j, j

′) which already runs in O(n3) as we have to ask
for each couple of objects (n2 in total) the point of view of
all the agents (n in total). From that, as maxEnvy[i][j] =
maxoj′ s.t. u(i,j′)>u(i,j) #≺(j, j

′), we can compute maxEnvy[i][j]
in O(n). As there are n2 different pairs (ai, oj) we have the final
O(n3) complexity of computing maxEnvy.

Due to the dichotomous search, the algorithm needs to solve
log(n) perfect matching problems, that can be solved in O(n3)[16].
The global complexity of Algorithm 1 is thus O(n3 log(n)).

7 EXPERIMENTAL RESULTS
We present here the results of the numerical tests we have conducted.
These experiments serve two purposes: (i) evaluate the behaviour of
the MIP we presented in Section 5 and of the polynomial algorithm
described in Section 6, and (ii) observe how our notion of K-app
envy depends on the number of agents, of items, and on the type
of preferences. All the tests presented in this section have been run
on an Intel(R) Core(TM) i7-2600K CPU with 16GB of RAM and
using the Gurobi solver to solve the Mixed Integer Program. We have
tested our methods on three types of instances: Spliddit instances
[15], instances under uniformly distributed preferences and instances
under an adaptation of Mallows distributions to cardinal utilities [13].

7.1 Spliddit instances
We have first experimented our MIP on real-world data from the fair
division website Spliddit [15]. There is a total of 3535 instances from
2 agents to 15 agents and up to 93 items. Note that 1849 of these in-
stances involve 3 agents and 6 objects. By running the MIP with a
timeout of 10 minutes (after this duration the best current solution,
if it exists, is returned) we were able to solve all the instances but
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6. Among these 6 instances, 3 of them were HAP instances that we
managed to solve optimally with Algorithm 1. This only leaves us
with 3 instances, for which the solver did return a solution but did
not prove that it is optimal (within a timeout of 10 minutes). Besides,
65% of the instances are EF while 23% of the instances exhibit unan-
imous envy. Moreover, 28% of the remaining instances with more
than 5 agents are SM-app EF.

7.2 Uniformly distributed preferences
General setting. We also ran tests on instances under uniformly

distributed preferences, with n varying from 3 to 10 and m such that
we produce settings where few EF allocations exist [12]. For each
problem size, we kept 60 instances that admit no EF allocation as
we wanted to measure the behaviour of our notion when no such
allocation exists (we know that if an EF allocation exists it will be
returned by our methods). As we are in the general setting we solved
the instances via the MIP with a timeout of 60 seconds.

The first three rows of Table 1 respectively represent the percent-
age of instances that have been solved to optimal (a solution has been
returned before the timeout), the percentage of unanimous envy in-
stances and the percentage of SM-app-EF instances. We then have
the mean value ofK/n. Finally, we store the mean computation time
(in seconds) of the instances (solved to optimal).

Table 1. Results of the experiments as a function of the number of agents.

n 2 3 4 5 6 7 8 9 10

% OPT 100 100 100 100 100 68.3 1.7 1.7 0
% UEI 100 21.7 5 0 0 0 0 0 0
% SMAEF 0 0 0 50 50 75 40 33.3 6.7
mean(K/n) NaN 1 0.85 0.72 0.61 0.57 0.59 0.63 0.66
time(s) ε 0.008 0.04 0.21 1.97 21.29 50.09 56.16 NaN

First note that considering 2 agents is a special case as shown in
Corollary 1. Indeed, as we have removed the EF instances, all the
remaining instances are unanimous envy ones. Moreover, we observe
that the percentage of SM-app-EF allocations is zero for 4 agents.
Indeed, an allocation is SM-app-EF for 4 agents if there exists a (K-
app envy)-free allocation such that K ≤ 2. As we have removed all
the EF instances, we know (from Proposition 4) that we cannot find
an SM-app-EF allocation. The same holds for 3 agents.

We can notice that the mean K/n seems to be stabilising around
0.6. Besides, without any surprise, the computation time rapidly in-
creases while the percentage of instances solved to optimal (under a
timeout of 60 seconds) starts decreasing for 7 agents. Finally, posi-
tive results can be pinpointed: the very low percentage of unanimous
envy instances, and the pretty high percentage of SM-app-EF ones.

House allocation. We have also tested our polynomial algorithm
on HAP instances under uniformly distributed preferences. We have
generated 20 instances for each number of agents from 5 to 100
agents (and objects) by steps of 5.

First note that we have only found 5 unanimous envy instances
and all of them involved 5 agents. This supports the probability of
unanimous envy instance showed in Proposition 8 and the fact that
it decreases very quickly towards 0. Moreover, like for the general
setting, we notice a convergence of the K/n values towards 0.6. The
algorithm runs, without any surprise (in light of Proposition 9) much
faster than our MIP. Indeed, the mean runtime for 100 objects and
agents is still around 2 seconds only whereas we already observed
that our MIP cannot solve easier problems within 10 minutes.

Figure 1. Optimal K/n in the HAP as a function of m,n

7.3 Correlated preferences

In strict ordinal settings, a classical way to capture correlated prefer-
ences is to use Mallows distributions [19] allowing us to measure the
impact of the similarity of the preferences between agents. In these
experiments, we used a generalization of the Mallows distribution
to cardinal preferences presented in [13] based on Von Mises–Fisher
distributions. Similarly to the dispersion parameter in Mallows distri-
butions, the similarity between the preferences of the agents is tuned
by the concentration parameter: when it is zero agents’ preferences
are uniformly distributed, whereas when it is infinite agents have the
same preferences.

We expected that the more similar the preferences between the
agents are, the higher the degree of K-app envy would be and the
more likely unanimous envy would occur. The results of our experi-
ments both in the general setting and in HAP support this: the num-
ber of EF instances is decreasing along with the concentration value,
and from a given threshold, all the instances exhibit unanimous envy.
However, the exact correlation between the level of (K-app) envy-
freeness and the concentration deserves further study, especially for
very low values of K. Intuitively, in some circumstances, correla-
tion of preferences may indeed help to find large majorities of agents
that contradict an agent envy, while this situation is unlikely under
uniformly distributed preferences.

8 CONCLUSION

In this paper, we have introduced a new relaxation of envy-freeness.
This relaxation uses a consensus notion, approval envy, as a proxy
for objective envy between pairs of agents. We have proposed algo-
rithms to compute an allocation minimizing the K-app envy, and we
have experimentally shown that this notion makes sense in practice
in situations where no envy-free allocation exists.

This work also opens to a more general study of consensus-based
notions of envy. For instance, instead of focusing on approval envy
between agents, one could also be interested in using consensus to
determine whether a given agent should be envious in general or not.
More generally, one could also look for allocations that are judged
envy-free by a given quota of agents. We leave the study of these
notions for future work.
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