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a b s t r a c t

This work describes the study of behavior of the d-substituted and d-non-substituted exo-cyclic double
bond of c-alkylidenebutenolides with dialkylcuprates. The addition reaction was found to be regioselec-
tive to afford the 1,6-conjugate adduct up to 87% yield.

! 2019 Elsevier Ltd. All rights reserved.

1,4- and 1,6-conjugate addition reactions of carbon nucle-
ophiles to electron-deficient alkenes represents a powerful tool
for the formation of carbon–carbon bonds and more interestingly
for the creation of tertiary or quaternary carbon stereocenters
[1]. Due to the poor propagation of the electronic effect through
the p-conjugated system (lower reactivity of the d-position as
compared to the b-position), the regioselectivity of the 1,6-conju-
gate addition reactions is a real challenge to overcome. In addition,
c-alkylidenebutenolides 1 are an important class of naturally
occurring c-lactones endowing with diverse biological properties
including herbicidal, antimicrobial, antitumor, antidiabetic and
much more [2]. Possessing an a,b,c,d unsaturated moiety, as well
as a cyclic enol acetate, those c-lactones are interesting building
blocks useful in various synthetic applications [3] and more specif-
ically for the study of the regioselectivity of the 1,6-conjugate addi-
tion reactions of organocuprate reagents. To the best of our
knowledge, only one example was reported by J. Font and coll.
[4]. Unfortunately, the regioselective addition of dimethyl- and
dibutylcuprates onto protoanemonine, the simplest c-alkyli-
denebutenolide 1 (R1 = R2 = R3 = H), proceeded with moderate
yields, 27 and 17% respectively. Herein, we wish to report our
study on the behavior of the d-substituted and d-non-substituted
exo-cyclic double bond of c-alkylidenebutenolides 1 with dialkyl-
cuprates. (Scheme 1).

Our initial plan was to use c-alkylidenebutenolide 1a (R1 = H,
R2 = Me, R3 = Bu) as a model substrate. 1a, as well as the requisite

c-lactones 1, were prepared according to our reported procedure
[5]. The reaction was initially performed with 1.5 equivalent of
Me2CuLi!LiI at 0 "C followed by a saturated aqueous NH4Cl hydrol-
ysis (Table 1, entry 1). In these conditions, we were delighted to
observe that the reaction proceeded in a complete regioselective
way. The 1,6-conjugate adduct 2a was obtained in good yield
(87%) after the selective a-protonation of the corresponding
lithium enolate intermediate.

Quenching the reaction with a buffer solution (NH4Cl/NH4OH)
at 0 "C or at "78 "C (Table 1, entries 2–3) didn’t improve the iso-
lated yield of 2a.

In addition, no better results (Table 1, entries 4–5) were
observed when the reaction was carried out neither with
organocopper reagent MeCu!LiI nor with higher-order cyanocup-
rate reagent Me2CuLi!LiCN.

Under the optimal reaction conditions, the scope of 1,6-conju-
gate addition was then assessed through the variation of the
dialkylcuprate reagents (Me2CuLi!LiI, Et2CuMg!MgI and Bu2-
CuLi!LiI) and the nature of the substituents R1 (Me, H), R2 (Me, H)
and R3 (Bu, H, Ph, CH2OTBS and CH2OMe) onto the c-alkyli-
denebutenolide 1 (Table 2). The methodology was found to be

https://doi.org/10.1016/j.tetlet.2019.151472
0040-4039/! 2019 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors.
E-mail addresses: jl.parrain@univ-amu.fr (J.-L. Parrain), laurent.commeiras@u-

niv-amu.fr (L. Commeiras).
Scheme 1. Regioselective 1,6-conjugate addition of organocuprate reagents to c-
alkylidenebutenolides 1.
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general with an excellent control of the regioselectivity of the con-
jugate addition affording the desired 1,6-adducts. When R2 = Me
and R3 = Bu or CH2OTBS (Table 2, entries 1–6), the deconjugated
c-lactones 2a were isolated in acceptable to good yields whatever
the nature of the dialkylcuprates. The moderate yield (Table 2,
entry 6) of the isolated 2b-Et could be explained by its degradation
during the purification step.

Indeed, unidentified compounds, which were non-present in
the crude of the reaction, were isolated after the purification step.
Interestingly, when R3 = CH2OTBS is replaced by R3 = CH2OMe
(entry 7), the regioselective 1,6-conjugate addition still occurred

but with the formation of the conjugated c-lactone 3c-Me (60%),
as a 2/1 mixture of two diastereomers, after the selective c-proto-
nation of the corresponding lithium enolate intermediate.

The regioselectivity was then assessed by using non-b-substi-
tuted c-alkylidenebutenolides 1d-1f (Table 2, entries 8–10). When
1d and 1e were subjected to 1,5 eq. of Me2CuLi!LiI, we were
delighted to observe a total regioselective 1,6-conjugate addition
in satisfactory yields. This selectivity was also observed starting
from the all conjugated c-alkylidenebutenolide 1f bearing a phenyl
group (R2 = H, R3 = Ph) at the c-position and promoting the
1,4-addition. Pleasantly, only the 1,6-adduct 2f-Me was formed

Table 1
Optimization of reaction conditions.

Entry MenCuM!LiX hydrolysis 2a/3a/4a Yield 2a

1 Me2CuLi!LiI NH4Cl, 0 !C 1/0/0 87%
2 Me2CuLi!LiI NH4Cl/NH4OH (9/1) 0 !C 1/0/0 66%
3 Me2CuLi!LiI NH4Cl/NH4OH (9/1) "78 !C 1/0/0 86%
4 MeCu!LiI NH4Cl, 0 !C No reaction
5 Me2CuLi!LiCN NH4Cl, 0 !C 1/0/0 52%

Table 2
Scope and Limit of the regioselective 1,6-conjugate addition of organocuprate reagents to c-alkylidenebutenolides 1.

Entry 1 R4
2CuM!MX 2/3/4a Major Product Yield

1 1a Me2CuLi!LiI 1/0/0 2a-Me 87%

2 1a Bu2CuLi!LiI 1/0/0 2a-Bu 81%

3 1a Et2CuMg!MgI 1/0/0 2a-Et 66%

4 1b Me2CuLi!LiI 1/0/0 2b-Me 62%

5 1b Bu2CuLi!LiI 1/0/0 2b-Bu 47%

6 1b Et2CuMg!MgI 1/0/0 2b-Et 39%

7 1c Me2CuLi!LiI 0/1/0 3c-Me 60% d.r. = 2:1

8 1d (Z/E:9/1) Me2CuLi!LiI 1/0/0 2d-Me 78%

9 1e (Z/E:86/14) Me2CuLi!LiI 1/0/0 2e-Me 46%

10 1f Me2CuLi!LiI 1/0/0 2f-Me 54%

11 1g Me2CuLi!LiI 0/1/0 3g-Me 52%

12 1g Bu2CuLi!LiI 0/1/0 3g-Bu 41%

13 1a Me2CuLi!LiIb 7/93/0 3a-Me 56% d.r. = 7:3

a Ratio calculated from crude 1H NMR.
b 2 equiv. of TMSCl were used as additive.
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(entry 10) without observing the presence of the other regioisomer
arising from the 1,4-conjugate addition. In addition, starting from
non-d-substituted c-alkylidenebutenolide 1h (Table 2, entries
11–12), the regioselective 1,6-conjugate addition of Me2CuLi!LiI
and Bu2CuLi!LiI occurred to give after purification, the conjugated
c-lactones 3g-Me and 3g-Bu in 52 and 41% yield respectively.

Finally, the 1,6-conjugate addition of Me2CuLi!LiI to c-alkyli-
denebutenolide 1a was then performed by using 2 eq. of
chlorotrimethylsilane as additive [6]. Unfortunately, these condi-
tions did not increase the yield of the reaction but, interestingly,
allow us to mainly obtain, in moderate yield, the conjugated c-lac-
tone 3a-Me, as a 7:3 mixture of 2 diastereomers, instead the
deconjugated c-lactones 2 (Table 2, entries 13). With these condi-
tions in hand, we have a tunable 1,6-conjugate addition towards
either deconjugated c-lactones 2 or conjugated c-lactones 3 start-
ing from b-substituted c-alkylidenebutenolides.

In conclusion, the conjugate addition of dialkylcuprate onto d-
substituted c-alkylidenebutenolides is described. This addition
was found to be highly regioselective to afford the corresponding
1,6-conjugate adduct.
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