
HAL Id: hal-02502411
https://hal.science/hal-02502411v1

Submitted on 9 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a new template for the specification of
requirements in semi-structured natural language

Raul Mazo, Carlos Andrés Jaramillo, Paola Vallejo, Jhon Harvey Medina

To cite this version:
Raul Mazo, Carlos Andrés Jaramillo, Paola Vallejo, Jhon Harvey Medina. Towards a new template for
the specification of requirements in semi-structured natural language. Journal of Software Engineering
Research and Development, 2020, 8, pp.3. �10.5753/jserd.2020.473�. �hal-02502411�

https://hal.science/hal-02502411v1
https://hal.archives-ouvertes.fr

Journal of Software Engineering Research and Development, 2020, 8:3, doi: 10.5753/jserd.2020.473

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Towards a new template for the specification of requirements in
semi-structured natural language
Raúl Mazo [Lab-STICC, ENSTA Bretagne, Brest, Francia. GiDITIC, Universidad EAFIT, Medellín, Colombia |
raul.mazo@ensta-bretagne.fr]
Carlos Andrés Jaramillo [Universidad EAFIT, Medellín, Colombia | cajaramilg@eafit.edu.co]
Paola Vallejo [GiDITIC, Universidad EAFIT, Medellín, Colombia | pvallej3@eafit.edu.co]
Jhon Harvey Medina [Universidad EAFIT, Medellín, Colombia | jhmedinaa@eafit.edu.co]

Abstract

Requirements engineering is a systematic and disciplined approach for the specification and management of
software requirements; one of its objectives is to transform the requirements of the stakeholders into formal spec-
ifications in order to analyze and implement a system. These requirements are usually expressed and articulated in
natural language, this due to the universality and facility that natural language presents for communicating them.
To facilitate the transformation processes and to improve the quality of the resulting requirements, several authors
have proposed templates for writing requirements in structured natural language. However, these templates do not
allow writing certain functional requirements, non-functional requirements and constraints, and they do not adapt
correctly to certain types of systems such as self-adaptive, product line-based and embedded systems. This paper
(i) presents evidence of the weaknesses of the template recommended by the IREB® (International Requirements
Engineering Institute), and (ii) lays the foundations, through certain improvements to the template proposed by the
IREB®, for facilitating the work of the requirements engineers and therefore improving the quality of the products
specified with the new template. This new template was built and evaluated through two active research cycles. In
each cycle we identified the problems specifying the requirements of the corresponding industrial case with the
corresponding base-line template, propose some improvements to address these problems and analyze the results
of using the new template to specify the requirements of each case. Thus, the resulting template was able to cor-
rectly write all requirements of both industrial cases. Despite the promising results of this new template, it is still
preliminary work regarding its coverage and the quality level of the requirements that can be written with it.

Keywords: Requirement, requirements engineering, natural language, template, application requirement, do-
main requirement, self-adaptive requirement

1 Introduction
The requirements are perhaps the most important basis in the
construction of software products because, through them, the
stakeholders of the system that is going to be implemented
can achieve a common understanding of it. According to
Wiegers and Beatty (Wiegers and Beatty 2013), the two most
important objectives in specifying a requirement are that (i)
when several people read the requirement they reach the
same interpretation; and (ii) the interpretation of each reader
coincides with what the author of the requirement was trying
to communicate.

In this sense, Pohl (Pohl 2010) states that NL (Natural
Language) is the most common way to communicate and
document the requirements of a system since NL is univer-
sal and available to any individual in any field; in addition,
it does not require any kind of special training in the inter-
pretation of notations or symbols as occurs when using an
engineering language such as UML (Unified Modeling Lan-
guage). However, these advantages are overshadowed by
the disadvantages of natural language (Rupp 2007). Accord-
ing to Mavin et al. (Mavin et al. 2009) some of the problems
susceptible to appear in the requirements specification in NL
are: (i) ambiguity: a word or phrase has two or more differ-
ent meanings; (ii) vagueness: lack of precision, structure or
detail; (iii) complexity: composite requirements that contain
complex sub-clauses or several interrelated statements; (iv)
omission: missing requirements, particularly the require-

ments to handle unwanted behavior; (v) duplication: repeti-
tion of requirements defining the same need; (vi) verbosity:
use of an unnecessary number of words; (vii) implementa-
tion: statements of how the system should be built, rather
than what the system should do; and (viii) untestability: re-
quirements that cannot be proven (true or false) when the
system is implemented.

To reduce these problems in the specifications of the re-
quirements of a system, several authors have defined what
is known as template, mold, pattern or boilerplate (Rupp
2007). A template defines the structure that the requirements
written in NL should have; that structure is flexible so that
the resulting requirements have the advantage of being in
NL and the advantage of having a well-defined structure.
This NL bounded by the possibilities and restrictions of the
template is known as semi-structured natural language.

The notations in semi-structured language make it possi-
ble to build requirements by following a template and as-
signing a similar structure to each requirement. This ap-
proach helps to avoid errors in the early stages of the devel-
opment process by specifying high-quality requirements ef-
ficient in time and cost (Sophist 2014).

The template proposed by Rupp (Rupp 2007) also known
as MASTeR (Mustergultige Anforderungen - die SOPHIST
Templates fur Requirements) (Sophist 2014) has been ac-
cepted as a standard for the syntactic specification of system
requirements. This template has been recognized as a valu-
able aid tool so that the requirements are more precise and

Presenting the new requirements specification template Mazo et al. 2020

have a standard syntactic structure that facilitates their un-
derstanding (Rupp 2007). However, anyone who has used
the Rupp template in real projects has realized that some re-
quirements cannot be expressed with that structure without
some degree of ambiguity or inconsistency. That is the rea-
son this article focuses on investigating the following re-
search question: What are the gaps that requirements en-
gineers find when writing requirements in natural lan-
guage and how to fill those gaps? To find an answer to this
research question, we have designed an experiment inspired
by the action science (or action research) research method
(O'Brien 2001). Two cycles of this method were conducted
to analyze the requirements of two independent industrial
projects. The first cycle of this action research method was
reported in (Mazo and Jaramillo 2019) and the resulting
template was used as input for the second cycle, which was
oriented to requirements specifications for self-adaptive
systems and represents an improved version of the Mazo
and Jaramillo template, using the RELAX language (Whit-
tle et al. 2009) as a reference in this cycle. Thus, with this
research we aim to analyze the Rupp template in order to (i)
evaluate their ability to represent industrial product require-
ments in a semi-structured way, and (ii) propose possible
improvements to the template; from the point of view of two
academics and two experienced requirements engineers in
the context of two technology-based companies.

This paper is an extension of our previous work appeared
at CiBSE’19 (Mazo and Jaramillo 2019). In this paper, we
significantly extended and improved the conference paper.
First, we significantly extended the empirical study by eval-
uating our approach with one more real industrial project.
Second, we introduce the implementation of the resulting
template in the VariaMos tool (Mazo et al. 2015). Finally,
we enriched the related work in this version.

The work resulting from this research is an adaptable and
extensible template for specifying requirements of different
domains (application systems, software product lines,
cyber-physical systems, self-adapting systems). In the fu-
ture, the template will be adapted and improved to address
more domains.

This article is structured as follows: Section 2 explains the
Rupp template; Section 3 describes the research method
used for the experiment; Section 4 presents, by means of
some examples, the most evident problems identified when
using with the Rupp template; Section 5 presents the pro-
posed improved template; Section 6 presents the prelimi-
nary evaluation of the new template; Section 7 presents the
threats of validity of our study. Section 8 presents other ini-
tiatives specification templates for individual requirements,
and some related works; and Section 9 finally describes the
conclusions and future work related to this research.

2 Syntactic structure of the Rupp tem-
plate

As shown in Figure 1, the Rupp template consists of six
spaces (denoted with A, B, C, D, E and F letters) to compose

the syntax of a requirement. This section briefly describes
each space of the template.

Figure 1. Rupp template.

(A) Conditions: The first space is a condition or a set of
conditions, usually optional, at the beginning of the re-
quirement. A condition can be logical: composed by the
conjunction “If”; or temporary: composed by the con-
junction “as soon as” or “after that”.

(B) The System: The second space is the name of the sys-
tem, the subsystem or component of the system that is
specified for the requirement.

(C) Degree of obligation: The third space establishes the
degree of obligation that the requirement can acquire.
The template establishes four levels of obligation na-
ture.

● The mandatory requirements, using the verb “shall”
● The recommended requirements, using the verb

“should”
● The future requirements, using the modal verb

“will”
● The desirable requirements, using the verb “may”

(D) Functional activity: The fourth space characterizes the
functional activity that the system can assume, which
includes the process verb object of the requirement.
There are three types of activities:

● Autonomous requirement of the system: Indicates a
functionality that the system performs inde-
pendently without the need for interaction with us-
ers.

● User interaction: Indicates a functionality that the
system provides to users.

● Interface requirement: Indicates a functionality that
the system performs to react to events with other
systems.

(E) Object: The fifth space is the object for which the be-
havior specified in the requirement is performed.

(F) Object details: The sixth and last space corresponds to
the additional details (optional) about the object, the ad-
jectives that qualify it or the characteristics that the ob-
ject can possess.

Some examples proposed by Rupp (2007) for the specifi-
cation of requirements with this template are the follow-
ing:

• The system should check whether the guest is reg-
istered.

• After the guest has selected the function “Place
order”, the system shall display the menu to the
guest.

Presenting the new requirements specification template Mazo et al. 2020

• The system shall provide the guest with the ability
to place his order.

• If the chef has rejected the guest's order, the sys-
tem should ask the guest whether the guest would
like to choose another dish.

The Requirements Engineering Magazine1 presents some
industrial cases in which the Rupp template was used.

3 Research method
The investigation reported in this paper was carried out
through the research method called action research (O'Brien
2001). Action research is defined as “the intervention in a
social situation in order to improve this situation and learn
from it” (Wieringa and Morali 2012) (Susman and Evered
1978). The action research method aims to improve the prac-
tice by solving real problems and is conducted in order to
investigate current phenomena in their natural context
(Koshy et al. 2010). We have chosen this method because it
allows us to answer the research question and achieve the ob-
jective of this research from an empirical experiment in an
industrial context. In addition, (i) this research method can
be executed at low cost since researchers play an active role
in it; and (ii) the rigor of the action research method allows
to reduce the threats to the validity of the experiment.

Susman (Susman 1983) developed a detailed model of the
action research method with the five stages that must be car-
ried out in each cycle of the process: diagnosing, action
planning, taking action, evaluation and specifying learning.
In the diagnosing stage, researchers identify the problem
and collect the data required to carry out a detailed diagno-
sis. The aim of the action planning stage is to define the
different possible solutions that address the problem defined
in the first step. During the taking action stage a solution
should be chosen and implemented. In the evaluating stage

researchers should analyze the data corresponding to the re-
sults of the chosen action plan. Finally, during the specify-
ing learning stage, researchers should interpret the results
of the action plan execution and learn according to the suc-
cess or failure of the solution. Therefore, the problem is re-
evaluated and a new cycle begins until the problem is solved
and the stakeholders are satisfied with the obtained result.

To answer the research question, we carried out two cy-
cles of the action research method as presented in Figure 2.

In this experiment, each cycle corresponds to the analysis
of a form of specification of the requirements for two indus-
trial projects. The experiment was carried out as follows. In
the first cycle we analyzed the requirements specification of
the PeopleQA system of the SQA S.A. Company. PeopleQA
is a system for human resource management, which facili-
tates the self-management of employees in different corpo-
rate activities such as permissions, vacation, performance
measurement, and internal relations. Through the PeopleQA
system we proposed the first version of the new template to
specify requirements in semi-structured NL. In this cycle
three possible solutions were analyzed: prose style require-
ments specification (as the stakeholders expressed them),
specification using the Rupp template and requirements
specification using an improved version of the Rupp tem-
plate that we call the Mazo & Jaramillo template.

In the second cycle we analyzed the requirements specifi-
cation of the Yuke-GreenHouse System of the Koral Com-
pany, Yuke-GreenHouse is a self-adaptive system for con-
trolling irrigation, temperature and environment in green-
houses and coffee crops in Colombia. In the second cycle
three possible solutions were analyzed: prose style require-
ments specification, specification using the Mazo & Jara-
millo template, and requirements specification using the
new improved template presented in this paper.

Figure 2. Research process

1 RE Magazine (https://re-magazine.ireb.org/)

Presenting the new requirements specification template Mazo et al. 2020

In each cycle the following stages were executed:
1. Diagnosing: Some problems were identified when us-

ing prose style and the Rupp template to write the re-
quirements of the first case, and when using prose style
and the Mazo & Jaramillo template to write the require-
ments of the second industrial case. This stage was con-
ducted through several mini-cycles of requirements
specification in order to identify the problems associ-
ated with this activity and to collect the information
needed to create the new template proposed in each cy-
cle and to achieve a systematic response to the research
question.

2. Action Planning: Templates of requirements proposed
by other authors were considered. In each cycle, it was
evaluated that the improved template (resulting from
each cycle) was consistent with other than the Rupp
template, we considered other templates such as EARS
(Mavin et al. 2009), Adv-EARS (Majumdar et al.
2011a) (Majumdar et al. 2011b) and ISO/IEC/IEEE
29148-2011 (ISO/IEC/IEEE 2011). To ensure that the
improved template produced in the second cycle re-
mained consistent with the considered templates, we
planned and executed the following strategy: At the be-
ginning of each cycle of requirements writing, the tem-
plates found in the literature (not all of them were
found from the first cycle) were used as inspiration ar-
tifacts to incorporate their relevant elements in the new
template produced at each cycle. Thanks to this strat-
egy it was possible to improve our baseline templates
(i.e., the Rupp template in the first cycle and the Mazo
& Jaramillo template in the second cycle) in the situa-
tions where this template was not adequate.

3. Taking Action: In this stage we first considered the re-
quirements that could not be fully specified using the
reference templates of each cycle. For these require-
ments, we evaluated to what extent they could be syn-
tactically specified using the templates found during
stage 2. We performed this evaluation in order to find
requirements specification reproducible patterns.
Every time that a reproducible pattern was identified in
at least three requirements with similar conditions, this
pattern was added to the new template proposed in each
cycle in order to enrich them.

4. Evaluating: At the end of each cycle, it was evaluated
whether the proposed template allowed to specify at
least 98% of the industrial case requirements corre-
sponding to the current cycle. The main criteria to eval-
uate the representation of requirements is that they do
not present problems of ambiguity, vagueness, com-
plexity, omission, duplication, verbosity, non-imple-
mentation and untestability. Mavin et al. (Mavin et al.
2009) and (Rupp 2007) give us a more detailed descrip-
tion of these criteria, which are considered a de facto
standard in requirements engineering.

5. Specifying Learning: At the end of each cycle, the au-
thors made an interpretation of the results obtained.
Then, based on these results they determined the

1 Requirements specification 1st cycle - (http://shorturl.at/cpDEO)

strengths and limitations of the improved template pro-
duced in each cycle.

The various phases and the succession of cycles are col-
laborative since the research process and objective have
been carried out in collaboration between the authors. This
is another characteristic that led us to choose action research
as a research method for this work. The research process
consists of two cycles, one for each industrial case we had
at our disposal. Although two cases are not enough to pro-
pose a generic set of extensions for the Rupp template, the
second case provides supplementary evidence that allowed
us to re-evaluate and improve the template we reported in
the previous version of the article. The use of new real cases
with the aim of evaluating an engineering artifact in its early
stages is welcome and usual in empirical research processes
such as the one reported in this article. We therefore hope
that this new template will be evaluated in many more cycles
with new and varied industrial cases that help to collectively
build the RE template that the industry requires.

4 Problems identified in the baseline
templates

4.1 First cycle
The prose style requirements specification corresponding to
the PeopleQA system of the SQA S.A. Company was re-
written with five requirements specification templates as pre-
sented in Figure 2. The use of each template corresponds to a
micro-cycle into the first cycle of the action research process.
At the end of these micro-cycles we produced the first ver-
sion of the Mazo & Jaramillo template that was then evalu-
ated and improved in the subsequent two stages of the first
cycle.

The problems and gaps detected when working with the
templates considered in these micro-cycles are described be-
low. These problems and gaps were saved in a document,
available online1, which contains each of the requirements
of the industrial case and each of the problems encountered
during the investigation. In particular, the first sheet presents
the requirements in prose style; the second sheet presents the
requirements using the Rupp template; the third sheet sum-
marizes the problems identified when using the Rupp tem-
plate; and the fourth and last sheet presents the requirements
specified with the constructs borrowed from other templates
found in the literature. For each of these types of problems,
we have defined a descriptive name, a brief description and
an example to better understand the problem.

Missing reasons
Sometimes it is necessary to express the reason for a require-
ment. For example, in agile development frameworks, one
of the most important aspects in the specification of require-
ments by means of user stories is to specify the “why” or the
“for what” of the requirement (Cohn 2004) (Beck 1999).

Presenting the new requirements specification template Mazo et al. 2020

This gives a better context to who implements the function-
ality or behavior that describes the requirement and will al-
low him to better understand the level of importance or pri-
ority of the requirement. For example, the requirements: The
VMS (Vital Monitoring System) must have the ability to in-
teract with other devices of nearby people to know their vital
activity. And If any sensor exceeds the defined tolerable lim-
its, the home automation system must light a siren to warn
the homeowner. have a “for what” of vital importance be-
cause both requirements belong to critical systems. If a re-
quirements specification template allows defining the reason
for the requirements, developers can easily understand it, be-
cause it is explicitly stated how important is to implement
those requirements with high-quality levels.

Omission of quantities and ranges
Sometimes the requirements refer not only to a specific ob-
ject but to several objects or to a range of objectives of the
same nature. Some of the analyzed templates (e.g., the Rupp
template) do not explicitly allow the possibility of specifying
ranges or quantities of objects in the requirements. As pre-
sented in the following example, the omission of an amount
would have led to ambiguities or inaccuracies: The point of
sale subsystem must provide the POS administrator with the
ability to link between one and maximum 10 warehouses at
a point of sale.

Omission of biconditionals
Some requirements require certain behaviors performed only
if certain conditions are met; otherwise, the behavior cannot
be performed. We call this biconditional to express that be-
havior A is performed “if and only if” behavior B is fulfilled
and vice versa. For example, in the requirement: The point
of sale subsystem must show the boxes if and only if they are
in active state, the “show the boxes” behavior will be per-
formed only for objects that are in a certain state and not for
all objects within the domain. Here there is an explicit con-
dition that the requirement must effect through the process
verb “show”, by means of the conditional “if and only if”.
Consider another example of a requirement: After the vac-
uum has been turned on, the Ivaccum system should start the
cleaning cycle if and only if the vacuum's battery charge is
90% or more. In this case, the behavior of the object depends
on a condition on the charge of the battery.

As can be seen, these types of conditions are common
when specifying requirements in industrial cases; however,
some of the analyzed templates (e.g., the Rupp template) do
not explicitly provide a way to express this kind of specifi-
cations.

Gap in conditionals
Requirements behaviors are conditioned by different factors,
which imply different interpretations depending on these
conditions. For example, a requirement that specifies While
the temperature control is on, the system must balance the
ambient temperature can have a different interpretation to
the requirement that specifies If the temperature control is
on, the system must balance the ambient temperature and

also both can be differentiated from a requirement that spec-
ifies As soon as the temperature control is turned on, the sys-
tem must balance the ambient temperature. In all three cases,
although a similar condition is used, the interpretation is dif-
ferent. In the Rupp template, only two types of conditionals
are used, which are: the logical conditionals and the tempo-
rary conditionals (Rupp 2007). However, we found other
types of conditions in the rest of templates, for example, for
behaviors that are triggered by events and for behaviors that
take place while the system is in a certain state.

Lack of verifiability of non-functional require-
ments
Some of the templates analyzed in the first cycle were cre-
ated with the objective of specifying functional require-
ments. Thus, explicit structure for the adequate writing of
measurable and finite factors to define the satisfaction (level)
of non-functional requirements and restrictions was a recur-
rent weakness of the templates analyzed during the first cy-
cle. For example, these two quality requirements: The system
should be available 7x24x364 for users and The perfor-
mance of the system must be optimal, trying to respond to
users in less than two seconds have a measurable and finite
factor to determine that the requirement will or not satisfy
the need of the interested parties.

Lack of reference to external systems or devices
In case the type of system activity is an interface require-
ment, the syntactic structure of some of the analyzed tem-
plates does not explicitly refer to external systems or de-
vices. For example, the requirements The point of sale sub-
system must be able to read bar codes on item labels and The
system should be able to obtain the information of a client
follow the syntactic structure proposed by the Rupp tem-
plate; however, none of these requirements mention the
name of the system or device with which information is ex-
changed, nor it is established if the information goes to or
from the device or system.

Lack of concepts to write domain requirements
In some cases, the requirements do not refer to a product but
to several products of the same family (Mazo 2018a). Prod-
uct lines are based on the concept of variability management
to specify, design and intensively develop the products of the
same family in a prescribed manner. Although some of the
analyzed templates can be used to specify requirements with
different priority levels, they cannot be used to specify their
variability. For example, in the requirements: The product
line of virtual stores must calculate the VAT value of each
purchase and The product line of virtual stores could calcu-
late the VAT value of each purchase two levels of priority
are specified, but the variability of the requirements is not
considered. Indeed, it is not said if it is for all products of the
product line (mandatory for all the products) or only for
some of them (optional).

Presenting the new requirements specification template Mazo et al. 2020

4.2 Second cycle
The requirements specification of the Yuke-GreenHouse
case written in prose style was rewritten with two templates.
The first template used in this second cycle is the one pro-
duced in the first cycle and the second one corresponds to the
RELAX language (Whittle et al. 2009). Each rewriting of the
requirements of Yuke-GreenHouse case with those two arti-
facts corresponds to a micro-cycle into the second cycle of
the action research process as presented in Figure 2. At the
end of these two micro-cycles we produced the Evaluated
new template that was then evaluated and improved in the
subsequent two stages of the second cycle.

The problems and gaps detected when working with the
artifacts considered in these micro-cycles are described be-
low and available online1. For each of these types of prob-
lems we have defined a descriptive name, a brief description
and an example to better understand the problem.

Lack of concepts to write requirements for self-
adaptive systems
Self-adaptive systems have the ability to autonomously
modify their behavior at runtime in response to environmen-
tal and changing system conditions. Self-adaptation is par-
ticularly necessary for applications that must be executed
continuously, even in adverse conditions and with changing
requirements (Whittle et al. 2009). In general, self-adaptive
systems include automotive systems, telecommunication
systems, environmental monitoring and smart home sys-
tems. The main problem faced by requirements engineers is
that the typical behaviors of this type of system can vary due
to environmental uncertainty conditions, caused by multiple
reasons such as weather, sensor failures, unexpected condi-
tions, variability of data, among others.

Inability to manage uncertainty
Uncertainty is one of the characteristics of self-adaptive

systems, therefore this type of requirements must ensure that
the system meets the needs of the stakeholders while at the
same time adapting to the conditions of the environment.

1 Requirements specification 2nd cycle - (http://shorturl.at/cpDEO)

Thus, the satisfaction of these requirements should be de-
fined with satisfaction at some level on a continuous scale
defined by a fuzzy function (Jureta et al. 2015). The Mazo &
Jaramillo template does not consider the uncertainty for self-
adaptive requirements. For example, a requirement that
specifies: If the ambient temperature rises above 25 degrees,
then the self-adaptive system Oktupus must raise the temper-
ature level up to 30° establishes an invariant restriction
(Whittle et al. 2009) that make it difficult to adapt the system
to certain environment variables.

Lack of specificity in temporality
Self-Adaptive systems use timing functions and frequen-

cies to adapt themselves to the environment. Handling these
aspects is also a weakness of the Mazo & Jaramillo template.
Let’s consider the following requirement: The Oktupus self-
adaptive system must measure the temperature of the room
every hour. In this case, it would be desirable to be able to
relax the requirement to better adapt the measurement period
to also consider the changing conditions. This would imply
that the system would be able to measure the temperature not
only every hour but also every time there is a major change
in the system.

5 Proposing a new requirements speci-
fication template

Considering each of the problems encountered during the ex-
ecution of the action research method and exemplified in
Section 4, then we have improved the Rupp template (Rupp
2007) and subsequently the Mazo & Jaramillo template
(Mazo and Jaramillo 2019). The Mazo & Jaramillo template
(c.f. Figure 3) was created as a result of the first action re-
search cycle and is composed of eight spaces. Each space
was structured thinking a simple and robust syntactic speci-
fication to cover the most types of requirements in several
types of systems. The rectangles in yellow represent condi-
tionals; gray rectangles are used to represent the family of
systems, the system or a part of it; the orange rectangles rep-
resent the degree of obligation; the green rectangles are the

Figure 3. Mazo & Jaramillo template.

Presenting the new requirements specification template Mazo et al. 2020

activities characterizing the system; the blue rectangles rep-
resent the objects (nouns), with their respective quantities
and complements; and the purple rectangle describes the
measurable criterion of verification of the requirement. The
latter is optional, for that reason is represented through a dot-
ted line. The improvement made to the Mazo & Jaramillo
template is inspired by concepts from other related works
found in the literature, e.g. the EARS template (Mavin et al.
2009), which establishes a set of syntactic rules for the spec-
ification of requirements through the use of conditional
clauses that trigger functional behaviors and described in the
RELAX requirements language (Whittle et al. 2009), which
incorporates various types of operators to address the uncer-
tainty in the behavior of a self-adaptive system. Thus, the
new requirements specification template proposed in this pa-
per is presented in Figure 4 and it is the result of the second
action research cycle that follows the first research cycle re-
ported in the CIbSE conference (Mazo and Jaramillo, 2019).

Templates for user requirements specifications, such as
Connextra for writing user stories (Davies 2001), were not
considered in this article because our template is oriented to
the specification of system and software requirements, while
user stories are oriented to the stakeholders (Wiegers and
Beatty 2013). Templates oriented to user requirements spec-
ification are beyond the scope of this article.

In the remainder of this section we describe each of the
components of the resulting template at the end of the two
action research cycles.

5.1 Conditions under which a behavior occurs
Some requirements do not describe continuous behaviors,
but behaviors that are performed or provided only under cer-
tain conditions; for example, logical or temporary, as is
shown below.

a. Requirements with logical conditions. They are used
for describing behaviors that are triggered only when a
logical condition is met (Rupp 2007) or when an unex-
pected event occurs (Mavin et al. 2009). The form is:

IF <Condition or event> THEN (ALL|SOME
SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD
For example: If the number of products in a warehouse
reach the defined minimum limit then, the inventory
subsystem should generate a product replacement alert
for that warehouse.

b. Requirements guided by the state. They are used for
describing a behavior that must be performed in the
system while the system is in a specific state. This con-
dition was proposed by (Mavin, et al. 2009). The form
of this specification is:

WHILE|DURING <Activation state>
(ALL|SOME SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD
For example: While the payment of an invoice from a
customer has not been confirmed, the subsystem must

send a daily text message to the cell phone number reg-
istered by the customer.

c. Requirements with optional elements. They are used
for describing a behavior that must be performed only
if a particular characteristic is included (Mavin, et al.
2009). The form of this is specification is:

IN CASE <Included feature> IS INCLUDED
(ALL|SOME SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD
This condition is especially useful in domain require-
ments when you want to incorporate certain require-
ments depending on the characteristics provided by the
product line.

For example: In case the text entry action is included,
all systems of the test automation framework product
line shall provide the tester with the ability to enter a
specific text, in a form field.

d. Requirements with temporary conditions. They are
used for describing a behavior that must occur after an-
other behavior occurs. They occur sequentially, it
means, behavior A is done after B. This condition was
proposed by (Rupp 2007). The form is:

AFTER|BEFORE|AS SOON AS <Behavior>
(ALL|SOME SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD
AFTER means that the system must have completed a
running behavior before initiating another behavior.
BEFORE means that the system must initiate a behav-
ior before another behavior takes place. AS SOON AS
means that the system does not necessarily have to have
finished a running behavior before initiating another
behavior.
For example: After reading the products for a particu-
lar location, the Inventory subsystem should provide
the warehouse owner with the ability to close the prod-
uct count for that location.

e. Requirements with complex conditions: For require-
ments with more complex conditional clauses, it can be
necessary to add with keywords as When, While,
Where. The keywords can be integrated into more com-
plex expressions to specify richer behaviors of the sys-
tem (Mavin et al. 2009). As expressed in the following
example:

When a cash settlement operation is performed on a
cash register, while the box is temporarily closed, the
point of sale subsystem should show the amount of cash
that is in the box.
Conditional clauses can also be structured using the
Boolean operators AND, OR and combined with NOT
(Rupp 2014). For example:

If a location contains products and the option to delete
a location has been selected, then the Inventory Sub-
system should display an alert message indicating that
the selected location cannot be deleted.

Presenting the new requirements specification template Mazo et al. 2020

Figure 4. New template for the specification of requirements in semi-structured natural language.

Presenting the new requirements specification template Mazo et al. 2020

The requirements guided by the state and the require-
ments with optional characteristics were taken from EARS
(Mavin et al. 2009), and the requirements with logical and
temporal conditions were taken from the Rupp template
(Rupp 2007).

5.2 Family of systems, systems or parts of a sys-
tem
This space in the template is reserved for the name of the
product line, system, subsystem or system component. In the
case of a product line requirement, it must be specified
whether the requirement is valid for all or only for some sys-
tems.

We completed the second space of the Rupp template (cf.
B space in Figure 1) with the possibility of specifying prod-
uct line requirements since this template was not correctly
adapted to be able to write them in semi-structured NL. The
structure of the second space of the new template is as fol-
lows:

ALL|SOME SYSTEMS OF THE <Product line
name>

In some cases, we must consider certain behaviors that
some systems of the product line must incorporate if certain
conditions or restrictions are met, when this happens, we will
use the expression:

THOSE SYSTEMS OF THE <Product line name>
<Restriction>

Some examples of product line requirements, using the
improved template are:

In case the action of comparing text is included, those
systems of the automation framework product line that only
include the option to enter text shall provide the tester with
the ability to configure a text for comparison with another
element.

If the automation framework is web-based, all systems of
the Test Automation product line shall provide the tester with
the ability to select the type of browser where the test will be
run (be it Chrome, Firefox or Safari).
5.3 The degree of priority
In the Rupp template, this space (cf. C space in Figure 1) is
traditionally reserved to specify the degree of obligatory na-
ture of the requirement; however, we changed the “obliga-
tory” concept to the “priority” concept in order to not con-
fuse it with the “mandatory” concept of product lines. To de-
fine the priority of the requirements we have used the MoS-
CoW technique (Clegg and Barker 1994), in which three de-
grees of priority are established: essential, recommended and
desirable.

a. Essential requirements. These requirements must be
implemented to achieve the success of the product
or the product line. The word SHALL is used.

b. Recommended requirements. These requirements
are important, but not necessary to achieve the suc-
cess of the product or the product line. The word
SHOULD is used.

c. Desirable requirements: These requirements are de-
sirable, but not necessary. They could improve the
user experience and customer satisfaction. The
word COULD is used.

Some examples of requirements with differentiation of
the degree of priority, using the improved template are:

All systems of the Test Automation product line shall in-
corporate a click action.

If a motion sensor is activated, then Oktupus system
should send an instant image to the home owner's email.

5.4 The activity
The fourth space, the same as the Rupp template (D in Figure
1), specifies the characterization of the activity that is con-
ducted by the system or by the systems of the corresponding
line. There are three types of activities that can be performed:

a. Autonomous activity. In this kind of activities there
is no user involved, which means that the (sub) sys-
tem or systems initiate and execute the behavior au-
tonomously. The form of this type of activity is:

ALL|SOME SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD <Process verb>

b. User interaction. In this activity, the (sub) system or
systems provide a user with the ability to use certain
behavior that is initiated or stimulated by a user (ac-
tor) that interacts with the system(s). The form of
this part is:

ALL|SOME SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD PROVIDE <Who?> WITH
THE ABILITY TO <Process verb>

Where Who is the actor or user that should have the
ability to use the functionality. The user must be cor-
rectly characterized and not incur the undue use of
nouns without a reference index (Rupp 2007); it
means, indicating “the user” would be an error that
would lead to an ambiguity in the specification.

c. Interface requirement. In this activity, the system
performs a behavior dependent on another entity
(which can be another system or a physical device).
This space was improved in the new template by ex-
plicitly adding the name of the external entity with
which the system interacts and the direction of the
relationship. The form of this type of activity is:

ALL|SOME SYSTEMS OF THE <Product line
name>)|(THE <System or part name>)
SHALL|SHOULD|COULD BE ABLE TO <Process
verb>

In addition, this structure is completed with the entity
with which the system interacts:

● If the behavior is executed by the external system that
transmits data to the receiving system interface, then
the specification will be complemented by adding:
FROM <System or external device name>

● If the behavior is performed by the system and inter-
acts or affects another system or external device then
the specification will be complemented by adding:

Presenting the new requirements specification template Mazo et al. 2020

TOWARDS <System or external device
name>

An example in this case for an interface requirement
is:

The point of sale subsystem shall have the ability
to read a valid credit card from a branch's data-
phone

5.5 The object or objects
This space is reserved for the object or objects that make up
the system. In the new template, we have incorporated the
concept of range, since the objects can be affected in differ-
ent ranges. The ranges in the new template are specified as
follows:

a. Single object: ONE <Object>

b. A specific object: THE <Object>

c. Each object of a set: EACH <Object>

d. Multiple objects: <X> <objects>, where X is the
number of objects

e. Range of objects: BETWEEN <A> AND <Ob-
jects>, where A is the lower range and B is the up-
per range

f. All objects in a set: ALL THE <Objects>

Two examples of requirements with ranges of objects,
using the improved template are presented as follow:

The inventory subsystem should provide the inventory
manager with the ability to associate between 1 and 3 bar
code reading guns to a cash register.

As soon as the daily activity cycle ends, the Oktupus sys-
tem must restart all the sensors connected in the home.
5.6 The complementary details
In the sixth space of the template, complementary details of
the object are specified. They can be one or several adjec-
tives, as well as a more enriched description of the object,
without the risk of altering the proper meaning of the speci-
fication of the requirement, and focusing only on describing
the details related to the object in question. This template
space was retained from the Rupp template and was not
modified by the authors.

5.7 Conditionality in the object
Sometimes, the behavior of the requirement is conditioned
by the state of an object. In the new template we have re-
served the seventh space to specify a behavior that the sys-
tem must carry out if and only if the object meets a certain
condition. In this case, the requirement is completed by add-
ing the following expression:
IF AND ONLY IF <condition>.
It is important to clarify that this condition is optional. It is
only given explicitly if the precise object of the requirement
requires specifying the condition, therefore, it is not manda-
tory in the specification of the requirement.

Here are two examples of requirements with condition-
ality in the object, using the improved template:

If any sensor exceeds the defined tolerable limits, the Ok-
tupus system should turn on a siren, if and only if the siren
is activated.

The inventory subsystem could provide the warehouse
manager with the ability to eliminate a purchase order, if
and only if the purchase order has not been dispatched.

5.8 Verification criterion (adjustment) of the
requirement
In some types of requirements, especially non-functional re-
quirements, it is necessary to establish the degree to which
the requirement must be met. Robertson and Robertson
(Robertson and Robertson 2013) suggested including adjust-
ment criteria; it means including “a quantification of the re-
quirement that demonstrates the standard that the product
must reach” as part of the specification of each requirement,
functional and non-functional. The adjustment criteria de-
scribe a measurable way to assess whether each requirement
has been successfully met.

For this purpose, in the new template, we have added, in
the last space, the option of establishing a measurable or ob-
servable criterion to determine the degree of verifiability of
the requirement. This was done to make sure that the require-
ment can be verified either by a person or a machine. This
criterion is defined at the discretion of the author of the re-
quirement and is optional, although it is recommended to al-
ways use it in the quality requirements.

Here are two examples of non-functional requirements
using the improved template:

If a fault causes the system to stop, the Oktupus system
must restart all the sensors in less than 20 seconds.

The system must provide an ATM with the ability to reg-
ister a sale in a cash register without presenting more than
2 different screens.

5.9 Relax requirements statements for self-
adaptive systems
To deal with problems of environmental uncertainty (see
Section 4.8) of self-adaptive systems, especially in the re-
quirements specification phase, (Whittle et al. 2009) propose
a language called RELAX. RELAX incorporated several
types of operators to address the uncertainty in the properties
of the system. Usually, requirements prescribe the behavior
using imperatives such as “Must” or “Should”. These imper-
atives define the functional behavior that a system should al-
ways provide. However, for self-adaptive systems, environ-
mental uncertainty may mean that it is not always possible
to achieve all the “Must” statements. Therefore, it may be
necessary to make concessions among “Must” statements in
order to make some non-critical behaviors more flexible in
favor of more critical ones (Whittle, et al. 2009). RELAX
proposes to establish a simple process to explicitly identify
when a requirement should remain unchanged and manda-
tory and when a requirement can temporarily relax under
certain conditions. Although RELAX is not a specification
template, in this article we have employed several operators

Presenting the new requirements specification template Mazo et al. 2020

proposed by RELAX to make it easier to specify require-
ments in self-adaptive systems.

Figure 4 presents the proposed structure of the improved
template for the specification of self-adaptive requirements.
Although this template is based on RELAX, we also incor-
porated some ideas, which were inspired by the works pre-
sented in (Baresi, et al. 2010). In particular we incorporated
(i) fuzzy conditions that can be taken by self-adaptive
systems to measure different environment variables (Souza,
et al. 2011); (ii) Awareness Requirements (or AwReqs) to
specify requirements about the success or failure of other re-
quirements that can refer to goals, tasks, quality constraints
and domain assumptions and (iii) constraints that must be
met using certain questions in a conditional manner (Ibrahim
et al. 2014). These concepts completed the Mazo & Jaramillo
template allowing to specify requirements of self-adaptive
systems.

Due to the autonomous nature of the requirements for
this type of system, we have implemented an equivalent tem-
plate for requirements in self-adaptive systems. This space
of the template can be identified in red color and must be
written in the requirements, at the end of their textual speci-
fication. For this version of the improved template we have
omitted the types of activity (see Section 5.2) interaction
with users (user interaction requirements) and interaction
with other systems or devices (interface requirements), we
also omit the conditionals of objects and verification crite-
rion, which are explicit in each of the operators to “relax”
requirements.

In the remainder of this sub-section we explain each part
of the red space of the improved template.

a. (AS MANY|AS FEW) AS POSSIBLE: A require-
ment must maximize or minimize a certain occur-
rence of something or a certain amount of objects,
as many or as few as possible, thus leading to adap-
tation.

b. BEFORE|AFTER|DURING: A requirement must be
met before, during or after a particular event, usu-
ally these three operators go after the operators AS
MANY AS POSSIBLE, AS FEW AS POSSI-
BLE, AS SOON AS POSSIBLE or AS LATE AS
POSSIBLE.

c. (AS EARLY|AS LATE) AS POSSIBLE: A re-
quirement specifies something that must be fulfilled
as early as possible or must be delayed as late as
possible.

d. UNTIL: A requirement must be maintained until a
future position (event).

e. WITHIN: A requirement must be maintained for a
particular time interval, expressed in units of time.

f. AT LEAST: A requirement must meet a minimum
frequency or time, until infinity.

g. EVENTUALLY: The behavior of the requirement
must occur eventually, e.g. it is not completely safe

1 Measurement of physical activity according to the World Health Or-

ganization (https://www.who.int/dietphysicalactivity/physical_activ-
ity_intensity/en/)

or fixed that the behavior occurs, but the system
must be prepared.

h. AS CLOSE AS POSSIBLE TO: A requirement
specifies something that happens repeatedly, but the
frequency can be flexible (above or below the spec-
ified frequency, but as close as possible to this
value) or a requirement specifies an amount (quan-
tity), but the exact amount can be flexible (above or
below the specified amount, but as close as possible
to this value).

Below we present some examples of a VMS (self-adap-
tive Vital Monitoring System) case using an intelligent
bracelet and we use the improved template to specify these
requirements.

• The VMS system must record as many steps as
possible during a user's walking activity.

• The VMS system will consume as few units of en-
ergy as possible during the normal operation of
the intelligent bracelet.

• The VMS system must send an alert to the user
who must stop when the physical activity levels
(MET1) are as close as possible to 2.

• If a user's vital signs levels are below the user-
defined values, then the VMS system must send an
alert to the registered emergency phone within 2
seconds.

• The VMS system should check the user's average
calories consumed levels eventually.

6 Preliminary evaluation of the pro-
posed template

As mentioned in Section 3, two action research cycles
were performed for this research. For the preliminary eval-
uation of the template proposed in this article, two groups
were established in each action research cycle. Each group
was made up of two roles: a business analyst with similar
experience (that is, the same number of years in the com-
pany and participation in comparable projects in the subject,
duration and size) in requirements engineering; and a tech-
nical requirements reviewer.

In the first action research cycle, the analyst of each group
had to specify the requirements of the PeopleQA system of
the SQA S.A. Company within the Rupp template (for the
first group) and within the Mazo & Jaramillo template (for
the second group) and the second role inspected the work of
each group.

The requirements specification document of the Peo-
pleQA system corresponds to 46 requirements in prose
style. Then, the first group of business analysts rewrote the
requirements using the Rupp template and with the accom-
paniment of the authors of this paper to support them in re-
solving doubts. Through this method, requirements were

Presenting the new requirements specification template Mazo et al. 2020

identified and specified. Once the specification was con-
cluded, the technical reviewer of the first group identified
48 requirements with specification problems that do not ad-
here to the standard proposed by Rupp, meaning that 34.8%
of the requirements had problems of adherence with the
Rupp template. These problems were categorized according
to seven types of criteria as shown in Table 1 (for a more
detailed explanation of each of these types of problems and
some examples that may be presented in a requirements
specification based on the Rupp template see Section 4). The
second group of business analysts focused on specifying the
prose style requirements of the PeopleQA system within a
new template that was built and incrementally improved
through four mico-cycles (each one corresponding to the
rest of templates used in the first action research cycle as
presented in Figure 2). The results of specifying the require-
ments of the PeopleQA system within the resulting template
were interesting. Thus, it was possible to successfully spec-
ify 98% of the requirements using the template proposed in
this article. Only three requirements could not be fully spec-
ified using the improved template, but it is noteworthy that
135 achieved a specification that adheres to the improved
template, without any observation by the technical reviewer.

The main factor by which some requirements continue
with some problems when using the improved template is
because it was detected in the first cycle that some require-
ments when they have a restrictive behavior, that is, when
the requirement specifies what the system should not do, in-
stead of what you should do, the template does not adhere
properly. According to (Wiegers and Beatty 2013) these
types of requirements are known as negative requirements
and will be part of a later investigation on how to specify
this type of requirement.

Table 1. Problems identified in the requirements in the first cycle.

Identified problem in first cycle

of require-
ments using
the Rupp
template

of require-
ments using the
proposed tem-
plate

Inappropriate conditionality 6 0
Lack of reference to external systems
or devices

4 0

Omission of biconditionals 7 0
Omission of quantities and ranges 18 0
Lack of verifiability of non-func-
tional requirements

3 0

Missing Reasons 3 0
Others 7 3

In a second cycle, for the requirements specification of the

Yuke-GreenHouse system of the Koral Company, a self-
adaptive system of an intelligent nursery called Yuke-
GreenHouse, 12 requirements in prose style were obtained.
There prose style requirements were represented as 46 re-
quirements within the Mazo & Jaramillo template. It is im-

1 VariaMos – (www.variamos.com/variamosweb)

portant to consider that of these 46 requirements only 22 ful-
filled the conditions to be considered self-adaptation re-
quirements. Evidently, these 22 self-adaptation require-
ments had adherence problems with the Rupp template be-
cause Mazo & Jaramillo template is an extension of that
template. These problems are shown in Table 2.

Table 2. Problems identified in the requirements in the second cycle.

Identified problem in second cycle

of require-
ments using
the Rupp
template

of require-
ments using the
proposed tem-
plate

Inappropriate conditionality 2 0
Lack of concepts to write require-
ments for self-adaptive systems 11 0

Omission of biconditionals 1 0
Omission of quantities and ranges 1 0
Lack of specificity in temporality 1 0
Inability to manage uncertainty 9 0

The Mazo & Jaramillo template was improved in the sec-

ond action research cycle which leads to write three addi-
tional requirements, thus completing 25 requirements. 13 of
those 25 requirements were invariant; thus, according to
(Whittle, et al. 2009) those are requirements that are strict in
compliance and cannot be flexibilized. 12 of these 25 re-
quirements had behaviors that reflected factors of uncer-
tainty and can be “RELAX-ed”; therefore RELAX operators
were applied for this type of requirement.

The improved template has been implemented to be used
in the VariaMos tool (Mazo 2018b) in order to facilitate the
writing of domain requirements, application requirements
and self-adaptation requirements (for example, self-adapta-
ble cyber-physical systems). VariaMos is available online1
and through RequireX option it is possible to access the
forms that implement the template proposed in this paper.

Figure 5 illustrates an excerpt of the form for specifying
domain requirements. Figure 6 illustrates an excerpt of the
form to specify self-adaptative requirements. Figure 7 illus-
trates the administrative panel. This interface provides the
ability to execute vital actions such as Create a new require-
ment, edit and delete, In addition, the ability to generate two
types of reports, a general report by category and another for
each requirement in pdf format. Figure 8 illustrates an exam-
ple of a generated requirements document.

Presenting the new requirements specification template Mazo et al. 2020

Figure 5. Domain requirements form.

Figure 6. Self-adaptive requirements form.

Figure 7. Administration panel.

7 Threats to validity

This section aims to demonstrate that the result of the exper-
iment is valid for those in charge of writing the requirements,
business analysts and requirements experts. We consider
three types of threats to the validity (Cook y Campbell 1979)
of the experiment: (i) the validity of the conclusion, (ii) the
internal validity and (iii) the external validity.

7.1. Validity of the conclusion
With respect to the statistical power of statistical tests,

the research-action method used in this experiment is explor-
atory and qualitative, not quantitative, and there is no statis-
tical hypothesis test; therefore, the threat of low statistical
power does not apply. According to the threat of reliability
of the implementation of the treatment, in the experiment
that served us to obtain an improved template of specifica-
tion of requirements we applied the treatments to each of the
industrial cases in a homogeneous way starting with the
Rupp template, using other templates and concepts found in
the scientific literature, and our analysis to improve it itera-
tively. However, we are not sure that the results were the
same if we had started from another template. We decided to
start the experimentation with the Rupp template since it is
the de facto standard and we wanted all its constructs to be
present in the resulting template.

7.2. Internal validity

From the point of view of history, the two cycles of the ex-
periment were carried out over a period of six months; in this
period there were no relevant environmental, social or per-
sonal factors that affected, in one way or another, the results
of the experiment. From the point of view of maturity, the
authors established a specific scope for each system and sta-
bilized the requirements specification document for each
case to prevent it from changing between each cycle.

Figure 8. Generated requirements document example.

Presenting the new requirements specification template Mazo et al. 2020

7.3. External validity

The interaction between selection and treatment can be a
threat to the validity of the experiment and to avoid a biased
result by a single case. We use two industrial cases, and two
people to execute the treatments. This experiment involved
experienced people in requirements elicitation and specifica-
tion. Participants were also concerned by the specification of
system requirements (programmers, testers, end-users, pro-
ject managers).

8 Related work
Apart from the Rupp template there are other templates pro-
posals for the specification of requirements in semi-struc-
tured NL. Thus, EARS (Easy Approach to Requirements
Syntax) (Mavin, et al. 2009) is one of the templates that con-
siders several conditional patterns from which several re-
quirements are typified. For example, ubiquitous require-
ments (they do not have a precondition that triggers behav-
iors, but they are always active), event-driven requirements
(describe a behavior that occurs in the system when an event
is triggered) and guided by states (describe a behavior that
is active while the system is in a defined state). The EARS
template focuses on conditional patterns under which the re-
quirements are presented; additionally, EARS focuses on
the aeronautical industry. Unlike this, our proposal is in-
tended to be independent of the application domain (see
Section 4) and aims to support the writing of functional and
non-functional requirements and restrictions.

Alexander & Stevens (Alexander and Stevens 2002) pro-
pose a template for writing functional requirements from the
user's perspective; since it is more natural to formulate the
requirements in terms of the action of a user, not from the
perspective of the system (Wiegers and Beatty 2013). The
structure of the template is as follows:
The <User Type or Actor Name> has the

ability to <Process Verb> <for some ob-
ject> <Measure or rating criterion, re-
sponse time or quality declaration>

 Unlike the work proposed by Alexander and Stevens, our
approach is oriented to the specification of the requirements
from the perspective of the behavior of the systems and not
of the needs of the interested parties.

Adv-EARS (Advanced EARS) (Adv-EARS 2011) pro-
poses a syntax in semi-structured language to specify func-
tional requirements, in such a way that automated support is
given for the derivation of use cases and actors in use case
models. Unlike Adv-EARS, our template focuses on func-
tional and non-functional requirements, while Adv-EARS
focuses solely on functional requirements. This syntax is an
advanced version of EARS (Mavin et al. 2009), so some el-
ements of Adv-EARS could be incorporated in our work in
the future.

The CESAR research project, funded by the European
Union's AREMIS program, reviewed the work on the use of
templates (ARTEMIS 2010) with a view to extend and ap-
ply the approach to several critical domains for security,

with discussions on how to formalize the approach using on-
tologies.

In (Souza et al. 2011), the Awareness Requirements con-
cept is introduced. This concept is related to other require-
ments and their success or failure evaluation at runtime. In
this work, the importance of monitoring requirements at
runtime to provide feedback loops is emphasized. This
work, like the work proposed by (Whittle, et al. 2009), in
which the RELAX language is proposed to write self-adap-
tation requirements, served as a frame of reference for this
article.

Some other articles complement our work; for example,
(Tjong, et al. 2006) and (Denger, et al. 2003) present two
proposals to reduce the ambiguity of the requirements by
means of patterns and linguistic rules; although part of our
work is also to reduce the ambiguity of NL requirements,
our work focuses on improving the requirements specifica-
tion templates based on a standard template. (Arora, et al.
2013) and (Arora, et al. 2015) provide additional insight by
supporting the automatic compliance of the requirements
using NL processing techniques for the verification of re-
quirements, something that our work does not raise and that
will be part of later work on the automatic verification of the
requirements. In addition, (Arora, et al. 2013) also presents
a flexible template to specify requirements that can be
adapted to different styles of writing requirements and other
proposals such as (Souag, et al. 2018) go even further by
allowing the automatic generation of non-functional re-
quirements (security in particular) in semi-structured NL
thanks to the use of two ontologies: a security ontology
(Souag, et al. 2015) and a domain-specific ontology. In con-
trast, our proposal is agnostic to the type of non-functional
requirements; however, it should be inspired in the future by
the related work to facilitate the writing of requirements.

9 Conclusion and future works
The Rupp template has been established by the IREB as

the de facto standard for the specification of individual re-
quirements, however, when representing certain require-
ments at an industrial level this template is limited. For this
reason we decided to study the research question related to
(i) the gaps in the template used as a standard for writing re-
quirements and (ii) how to fill those gaps. This study is based
on the experimental research method called action research.
This method allowed us to use consistently the authors' own
experience in the field of requirements engineering, and the
information available at the industrial level and in the litera-
ture (other templates and related works). As a result of this
experiment, we identified the gaps in the Rupp template and,
based on those gaps, we propose a more robust template that,
unlike others, allows representing the quasi-totality of the re-
quirements and constraints of two industrial cases.

Through this research we could observe that the reference
template must be improved and that it is possible to improve
it. We also found that the new template can be used in indus-
trial cases; however, our research is still not conclusive con-
sidering that we only experiment with two industrial cases,
however with the empirical evidence obtained so far we have

Presenting the new requirements specification template Mazo et al. 2020

seen improvements in time and costs and in the high-quality
standards in most of the resulting requirements.

Some aspects that remain pending and require even more
work are for example: restart the experiment starting from a
different template than Rupp and compare the resulting tem-
plate with that reported in this article; and implement a soft-
ware tool for the automatic verification of requirements
based on the improved template resulting from this research
work. It is also necessary to study the improved template in
other cases and in other types of projects such as distributed,
pervasive, cyber-physical, intelligent and data-intensive sys-
tems. Additionally, natural language patterns, standardized
process verbs, and models that complement the improved
template could be studied and used to complement this work.

In addition to the above, we aim at strengthening the em-
pirical evidence regarding the advantages of the improved
template, performing at least two other experiments in com-
panies of different activity sectors in order to have more con-
clusive observations on the ease of use, completeness and the
accuracy of the proposed template in other contexts. Another
future work consists of complementing the template pro-
posed in this article with the treatment of negative and ubiq-
uitous requirements, among others.

Further rationale about the complexity introduced with the
extensions are needed and will be addressed as part of the
future work. In particular, we will study the following ques-
tions: how the extensions affect the usability and the compre-
hension of the templates obtained? And are the benefits ob-
tained with the extensions defined significant in relation to
the complexity introduced?

References
Alexander, Ian, and Stevens Richard. Writing Better Re-

quirements. Addison-Wesley, 2002.
Arora, Chetan, Mehrdad Sabetzadeh, Lionel Briand, and

Frank Zimmer. "Automated checking of conformance to
requirements templates using natural language pro-
cessing." IEEE Transactions on Software Engineering (Vol
41 No 10), 2015: 944-968.

Arora, Chetan, Mehrdad Sabetzadeh, Lionel Briand, Frank
Zimmer, and Raul Gnaga. "Automatic Checking of Con-
formance to Requirement Boilerplates via Text Chunking:
An Industrial Case Study." ACM / IEEE International
Symposium on Empirical Software Engineering and Meas-
urement, 2013: 35-44.

ARTEMIS. "Project CESAR." CESAR Partners. RSL Refer-
ence Manual. CESAR Consortium 1.1 Edition. 2010.

Baresi, Luciano, Liliana Pasquale, and Paola Spoletini.
"Fuzzy Goals for Requirement-Driven Adaptation." 18th
IEEE Int. Conf. Requirements Engineering (RE'10), 2010:
125-134.

Beck, Kent. "Embracing change with extreme program-
ming." IEEE Computer. 32, 1999: 70–77.

Clegg, Dai, and Richard Barker. Case Method Fast-Track: A
Rad Approach. Addison-Wesley, 1994.

Cohn, Mike. User Stories Applied for Agile Software Devel-
opment. Adisson Wesley, 2004.

Cook, Thomas D, and D T Campbell. Quasi-
experimentation: Design & Analysis Issues for Field
Setting. Houghton Mifflin, 1979.

Davies, Rachel. Format for expressing user stories. 2001.
Denger, Christian, Daniel M. Berry, and Erik Kamsties.

"Higher quality requirements specifications through natu-
ral language patterns." Proceedings of the IEEE Interna-
tional Conference on Software-Science Technology & En-
gineering: IEEE Computer Society, 2003: 80-90.

Ibrahim, Noraini, M.N. Wan Kadir, and Safaai Deris. "Doc-
umenting requirements specifications using natural lan-
guage requirements boilerplates." 8th Malaysian Software
Engineering Conference (MySEC), 20144: 19-24.

ISO/IEC/IEEE. "29148 Systems and software engineering
(Life cycle processes — Requirements engineering)."
2011.

Jureta, Ivan J., Alexander Borgida, Neil A. Ernst, and John
Mylopoulos. "The Requirements Problem for Adaptive
Systems." ACM Trans. Management Inf. Syst. 5, 2015:
17:1-17:33.

Koshy, Elizabeth, Valsa Koshy, and Heather Waterman. Ac-
tion research in healthcare. Sage, 2010.

Majumdar, Dipankar, Sabnam Sengupta, Ananya Kanjilal,
and Swapan Bhattacharya. "Adv-EARS: A Formal Re-
quirements Syntax for Derivation of Use Case Models."
First International Conference on Advances in Computing
and Information Technology, 2011: 40-48.

Majumdar, Dipankar, Sabnam Sengupta, Ananya Kanjilal,
and Swapan Bhattacharya. "Automated Requirements
Modeling with Adv-EARS." nternational Journal of Infor-
mation Technology Convergence and Services, 2011: 57-
67.

Mavin, A., P. Wilkinson, A. Harwood, and M. Novak. "Easy
Approach to Requirements Syntax (EARS)." International
Requirements Engineering Conference RE, 2009: 317-322.

Mazo, Raúl. Guía para la adopción industrial de líneas de
productos de software. Medellín: Editorial Eafit, 2018.

Mazo Raúl. Software Product Lines, from Reuse to Self
Adaptive Systems. Université Paris 1 Panthéon - Sorbonne,
France, Habilitation à diriger des recherches (HDR), Octobre
2018.
Mazo, Raúl, and Carlos Jaramillo. "Hacia una nueva plantilla

para la especificación de requisitos en lenguaje natural
semi-estructurado." In the Proceedings of the Require-
ments Engineering Track (RET) of CIbSE. La Habana,
Cuba, 2019.

Mazo, Raúl, Juan Muñoz-Fernández, Luisa Rincón, Camille
Salinesi, and Gabriel Tamura. "VariaMos: an extensible
tool for engineering (dynamic) product lines." XIX Inter-
national Software Product Line Conference (SPLC), 2015:
374-379.

O'Brien, Rory. An Overview of the Methodological Ap-
proach of Action Research. In R. Richardson (Ed.), Theory
and Practice of Action Research. Joao Pessoa: Univer-
sidade Federal da Paraíba, 2001.

Presenting the new requirements specification template Mazo et al. 2020

Pohl, Klaus. Requirements Engineering - Fundamentals,
Principles, and Techniques. Springer, 2010.

Robertson, Suzanne, and James Robertson. Mastering the
Requirements Process: Getting Requirements Right, 3rd
ed. Addison-Wesley, 2013.

Rupp, C. Requirements Engineering and Management.
Hanser, 2007.

Sophist GmbH Requirements Templates - The Blueprint of
your Requirement. SOPHIST GmbH. 2014.
https://www.sophist.de.

Souag, Amina, Camille Salinesi, Raúl Mazo, and Isabelle
Comyn-Wattiau. "A security ontology for security require-
ments elicitation." International Symposium on Engineer-
ing Secure Software and Systems (ESSoS), 2015: 157-177.

Souag, Amina, Raúl Mazo, Camille Salinesi, and Isabelle
Comyn-Wattiau. "Using the AMAN-DA method to gener-
ate security requirements: a case study in the maritime do-
main." Requirements Engineering (Vol 23, Issue 4), 2018:
557–580.

Souza, V.E. Silva, Alexei Lapouchnian, William N. Robin-
son, and John Mylopoulos. "Awareness Requirements for
Adaptive Systems." 6th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS'11), 2011: 60-69.

Susman, Gerald I. Action Research: A Sociotechnical Sys-
tems Perspective. Sage, 1983.

Susman, Gerald I., and Roger D. Evered. "An Assessment of
the Scientific Merits of Action Research." Administrative
Science Quaterly (Vol. 23), 1978: 582-603.

Tjong, Sri Fatimah, Nasreddine Hallam, and Michael Hart-
ley. "Improving the Quality of Natural Language Require-
ments Specifications through Natural Language Require-
ments Patterns." International Conference on Computer
and Information Technology (CIT'06), 2006: 199-205.

Vassev, Emil. "Requirements Engineering for Self-Adaptive
Systems with ARE and KnowLang." EAI Endorsed Trans-
actions on Self-Adaptive Systems, 2015.

Whittle, Jon, Pete Sawyer, Nelly Bencomo, Betty H.C.
Cheng, and Jean-Michel Brunel. "RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Sys-
tems." 17th IEEE International Requirements Engineering
Conference (RE'09), 2009: 79-88.

Wiegers, Karl, and Joy Beatty. Software Requirements Third
Edition. Microsoft Press, 2013.

Wieringa, Roel, and Ayse Morali. "Technical action research
as a validation method in information systems design sci-
ence." Design Science Research in Information Systems.
Advances in Theory and Practice. DESRIST 2012. Lecture
Notes in Computer Science. Springer, 2012. 220-238.

