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ADJOINT APPROXIMATION OF NONLINEAR HYPERBOLIC
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Claude Marmignon, Pratik Rai and Florent Renac∗

DAAA, ONERA, Université Paris Saclay, F-92322 Châtillon, France

Abstract. We consider the approximation of adjoint-based derivatives for

discontinuous solutions of the Cauchy problem associated to one-dimensional

nonlinear non-conservative hyperbolic systems. We first derive the adjoint
equations in strong form with a discontinuous primal solution together with the

associated jump relations across the discontinuity. The adjoint solution may

be discontinuous at the discontinuity in contrast to the case of conservative
systems. Then, we consider first-order finite volume (FV) approximations to

the primal problem and show that, using the Volpert path family of schemes,

the discrete adjoint solution is consistent with the strong form adjoint solution.
Numerical experiments are shown for a nonlinear 2×2 system with a genuinely

nonlinear (GNL) field and a linearly degenerate (LD) field associated to the

non-conservative product.

1. Introduction. The discussion in this paper focuses on the adjoint analysis of
the Cauchy problem for nonlinear hyperbolic systems in non-conservative form:

∂tu+A(u)∂xu = 0 in Ω := R× (0, T ), (1a)

u(·, 0) = u0(·) in R, (1b)

where u(x, t) is the vector of unknowns with values in the set of states Ωa ⊂ Rm

and A : Ωa � u �→ A(u) ∈ Rm×m is a smooth matrix-valued function with entries
aij(u), 1 ≤ i, j ≤ m. We assume that (1a) is strictly hyperbolic over Ωa. In the
general case where A is not the Jacobian of a flux function, the works in [11, 4]
generalize the notion of weak solutions from conservation laws to (1) and allow
to define the non-conservative product A(u)∂xu at a point of discontinuity of the
solution for functions of bounded variations. The definition is based on a family of
consistent and Lipschitz paths φ : [0, 1]×Ωa ×Ωa → Ωa. Across a discontinuity of
speed σ, the non-conservative product is thus defined as the unique Borel measure
defined by the so-called generalized Rankine-Hugoniot (RH) relations on Σ:

σ[[u]] = Aφ(u
−,u+) :=

� 1

0

A
�
φ(s,u−,u+)

�
∂sφ(s,u

−,u+)ds, (2)

where [[u]] = u+ − u−, and u± are the limits of u at Σ (see section 2).

2000 Mathematics Subject Classification. Primary: 65M12, 65M60.
Key words and phrases. Non-conservative hyperbolic systems, adjoint equations, finite volume

method.
∗ Corresponding author: florent.renac@onera.fr.

385



F. COQUEL, C. MARMIGNON, P. RAI, AND F. RENAC

In this work, we consider the adjoint equations of (1). Methods based on adjoint
equations are widely used for shape optimization, control, receptivity-sensitivity-
stability analyses, data assimilation, error analysis, etc. These methods are often
used for the linear analysis of nonlinear conservation laws where the adjoint is
defined as the dual to the linearized equations around a given primal solution, u.
In the case of hyperbolic equations, this raises the question of the validity of this
linearization around discontinuities in u because the adjoint equations are linear
with discontinuous coefficients for which the Cauchy problem is not well posed
in general. The analysis must include the linearization of the jump relations at
the discontinuity [6] which leads to a so-called interior boundary condition for the
adjoint variables [10]. Existence, uniqueness and stability of backward solutions to
scalar equations have been established in [1] with Lipschitz initial condition and
OSLC coefficients [9]. The interior condition at the shock has been shown to be
satisfied by such backward solutions [10]. In the case of systems of conservation laws,
well-posedness of the adjoint problem with GNL and LD fields has been shown in
[2], while the interior boundary condition is satisfied at the discrete level providing
that the primal and adjoint solutions are vanishing viscosity limits of regularized
problems [8].

In § 2, we first derive the adjoint equations associated to the primal equations
in strong form and then derive the adjoint equations associated to a first-order FV
approximation in § 3. We prove consistency of the discrete adjoint equations for the
Volpert path family of schemes for which the consistency condition can be expressed
in closed form. An example of a 2× 2 system with GNL and LD fields is provided
in § 4 and numerical experiments are given in § 5.

2. Adjoint formulation of linearized perturbations. We are interested in
Fréchet differentiable tracking-type output functionals of the form

J(u) =

�

R
j
�
u(x, T )

�
dx, (3)

where j : Ωa → R is a smooth function. We assume that the solution admits
one isolated discontinuity along the curve Σ :=

�
(xs(t), t) : 0 < t < T

�
in Ω

(see figure 1) and consider infinitesimal perturbations imposed on the solution,
u(x, t)+ψ(x, t), and on the location of the discontinuity, xs(t)+ζs(t) with ζs(0) = 0,
(see figure 1), which may follow from perturbations of the initial condition (1b).
Setting j�(u) =

�
∂ui

j(u)
�
1≤i≤m

, linear perturbations on J(u) read [10]

J �(u;ψ, ζs) =

�

R\xs(T )

j�
�
u(x, T )

�
·ψ(x, T )dx− ζs(T )[[j

�
u
�
xs(T ), T

��
]].

The speed of the discontinuity in (2), σ = x�
s(t), may be expressed in terms of

components of the normal to Σ, n = (nx, nt)
� =

�
1 + x�

s(t)
2
�−1/2�

1,−x�
s(t)

��
:

σ = − nt

nx
. Linearized perturbations in the speed of the discontinuity read

ζ �s(t)
x�
s(t)

=
δnt

nt
− δnx

nx
, (4)

so we get nxds = nx

�
dxs(t)2 + dt2 = dt with s(t) the curvilinear coordinate. The

traces at Σ in the direction n are u± = lim�↓0 u(xs(t)± �nx, t± �nt), and the jump
relations (2) now read

nt[[u]] + nxAφ(u
−,u+) = 0 on Σ. (5)
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Figure 1. Discontinuity curve Σ in the space-time domain Ω:
(left) definitions of traces and normal to Σ, (right) perturbation
of Σ.

The adjoint formulation of linearized perturbations is obtained by introducing
the following Lagrangian functional

L(u; z, zs, z0) = J(u)−
�

Ω\Σ
z ·

�
∂tu+A(u)∂xu

�
dxdt

−
�

Σ

zs ·
�
nt[[u]] + nxAφ(u

−,u+)
�
ds−

�

R
z0 ·

�
u(·, 0)− u0

�
dx,(6)

where the adjoint variables z(x, t) : Ω\Σ → Rm, zs(x, t) : Σ → Rm, and z0(x) :
R → Rm are Lagrange multipliers associated to constraints (1a), (5), and (1b).
Linearizing formally L in the perturbation direction around a state u, we obtain

L�(u;ψ, ζs, z, z
s, z0) = J �(u;ψ, ζs) (7a)

−
�

Ω\Σ
z ·

�
∂tψ +

�
A�(u)ψ

�
∂xu+A(u)∂xψ

�
dxdt (7b)

+

�

Σ

nxζs[[z ·
�
∂tu+A(u)∂xu

�
]]ds (7c)

−
�

Σ

zs ·
�
nt[[ψ]] + nx

�
∂u−Aφ(u

−,u+)ψ−

+∂u+Aφ(u
−,u+)ψ+

��
ds (7d)

−
�

Σ

ζs z
s ·

�
nt[[∂xu]] + nx∂xAφ(u

−,u+)
�
ds (7e)

−
�

Σ

zs ·
�
δnt[[u]] + δnxAφ(u

−,u+)
�
ds (7f)

−
�

R
z0 ·ψ(·, 0)dx, (7g)

and the adjoint variables are defined as stationary points of L in (6):

z, zs, z0 : L�(u;ψ, ζs, z, z
s, z0) = 0 ∀ψ, ζs. (8)

Theorem 2.1 (Adjoint problem). Let u be the solution of the nonlinear Cauchy
problem (1) satisfying the generalized RH relations (5) at an isolated discontinuity
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Σ ⊂ Ω. Then, the adjoint solutions to (8) satisfy the following problem

∂tz+A(u)�∂xz+
��

A�(u)� −B(u)
�
∂xu

�
z = 0 in Ω\Σ, (9a)

z(·, T ) = j�
�
u(·, T )

�
in R, (9b)

together with the jump relations across Σ:
�
ntI+ nxA(u±)�

�
z± =

�
ntI± nx∂u±Aφ(u

−,u+)
�
zs, (10)

z0(·) = z(·, 0) in R, and the equation for zs:

[[u]] · dtzs +
�
∂xAφ(u

−,u+)− [[A(u)∂xu]]
�
· zs = 0 on Σ, (11a)

�
[[u]] · zs(T )− [[j(u)]]

�
xs(T )

= 0. (11b)

The tensor operators in (9a) are defined by

A�(u)�ijk = ∂uk
aji(u), B(u)ijk = ∂uiajk(u), 1 ≤ i, j, k ≤ m, (12)

and B satisfies ψ�(B(u)∂xu)z = z�(A�(u)ψ)∂xu, for all ψ in Rm and u in Ωa.

Proof. First, (7c) vanishes due to (1a). Integration by parts in (7b) gives

(7b) =

�

Ω\Σ
ψ ·

�
∂tz+ ∂x

�
A(u)�z

��
− z

�
A�(u)ψ

�
∂xudxdt

+

�

Σ

[[ψ(nt + nxA(u)�)z]]ds+
�

R
ψ(x, 0) · z(x, 0)−ψ(x, T ) · z(x, T )dx.

Then, using (5) and (4), we get δnt[[u]] + δnxAφ(u
−,u+) = −nxζ

�
s(t)[[u]]. Using

again (1a), the term in (7e) may be be recast into

nt[[∂xu]] + nx∂xAφ(u
−,u+) = [[nt∂xu− nx(∂tu+A(u)∂xu)]] + nx∂xAφ(u

−,u+)

= −nxdt[[u]] + nx

�
∂xAφ − [[A(u)∂xu]]

�
,

where dt ≡ ∂t + x�
s(t)∂x and using integration by parts we get

(7e)+(7f) =

�

Σ

zs ·
�
dt
�
ζs[[u]]

�
− ζs

�
∂xAφ − [[A(u)∂xu]]

��
nxds

= −
� T

0

ζs

�
[[u]] · dtzs+

�
∂xAφ−[[A(u)∂xu]]

�
·zs

�
dt+ζs(T )z

s(T )·[[u]]xs(T ),

where we have used dt = nxds and ζs(0) = 0. We thus obtain

L�(u;ψ, ζs, z, z
s, z0) =

�

R\xs(T )

j�
�
u(x, T )

�
·ψ(x, T )dx− ζs(T )[[j

�
u
�
xs(T ), T

��
]]

+

�

Ω\Σ
ψ ·

�
∂tz+ ∂x

�
A(u)�z

��
− z

�
A�(u)ψ

�
∂xudxdt

+

�

Σ

[[ψ(nt + nxA(u)�)z]]ds−
�

R

�
ψ(x, t) · z(x, t)

�T
t=0

dx

−
�

Σ

zs ·
�
nt[[ψ]] + nx

�
∂u−Aφψ

− + ∂u+Aφψ
+
��

ds

−
� T

0

ζs

�
[[u]] · dtzs +

�
∂xAφ − [[A(u)∂xu]]

�
· zs

�
dt

+ ζs(T )z
s(T ) · [[u]]xs(T ) −

�

R
z0 ·ψ(·, 0)dx.

Then, collecting terms against ψ and ζs, we obtain the desired results.
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2.1. The case of conservative systems. We now consider the particular case
where (1a) reduces to a conservation law, i.e., A(u) = f �(u). Assuming that the flux
f is a C2 function, its Hessian is symmetric. Hence ∂uk

aij = ∂uj
aik, 1 ≤ i, j, k ≤ m,

which is equivalent to A�(u)� = B(u) from (12), so (9a) reduces to the classical
adjoint equation of first-order conservation laws:

∂tz+A(u)�∂xz = 0 in Ω\Σ.
Then, for all paths in (2), we have Aφ(u

−,u+) = [[f(u)]], so we obtain

∂u±Aφ(u
−,u+) = ±A(u±), ∂xAφ(u

−,u+) = [[A(u)∂xu]],

and the jump relations (10) now read
�
ntI+ nxA(u±)�

�
(z± − zs) = 0 on Σ.

For a non-characteristic discontinuity, the matrices ntI+ nxA(u±) are nonsingular
and we obtain the so-called interior boundary condition on Σ [10]: z± = zs.

3. Space-time discretization.

3.1. Finite volume method. The nonlinear problem (1) is discretized with a
first-order FV method and explicit time stepping. The degrees-of-freedom are

uh(x, t
(n)) = Un

i , ∀x ∈ κi = (xi− 1
2
, xi+ 1

2
), i ∈ Z, 0 ≤ n ≤ N,

with xi+ 1
2
= iΔx, t(n) = nΔt, Δx > 0 and Δt = T

N > 0 the space and time steps.

The numerical scheme reads (see [7] and references therein)

Un+1
i −Un

i + Δt
Δx

�
D−

i+ 1
2

+D+
i− 1

2

�
= 0, i ∈ Z, 0 ≤ n < N, (13)

with smooth fluctuation fluxesD±
i+ 1

2

= D±(Un
i ,U

n
i+1) satisfying consistency: D

±(u,

u) = 0 for all u in Ωa. The initial condition is projected onto the space grid:

U0
i = �u0�i :=

1

Δx

�

κi

u0(x)dx, i ∈ Z. (14)

3.2. Discrete adjoint solution. We now consider the adjoint solution to the dis-
crete nonlinear problem and look again for a piecewise constant discrete solution:

zh(x, t
(n)) = Zn

i , ∀x ∈ κi, i ∈ Z, 0 ≤ n ≤ N.

We introduce the discrete Lagrangian functional containing an approximation of
the output functional (3) and the multipliers to the constraints (13) and (14):

Lh(uh; zh) =
�

i∈Z
Δx j(UN

i )−
�

i∈Z

N−1�

n=1

Δx Zn
i ·

�
Un+1

i −Un
i + Δt

Δx (D
−
i+ 1

2

+D+
i− 1

2

)
�

−
�

i∈Z
Δx Z0

i · (U0
i − �u0�i). (15)

Linearizing (15) around uh and looking for stationary solutions give the discrete
adjoint equations which again constitute a backward problem in time:

Zn−1
i − Zn

i + Δt
Δx

�
∂u−D−�

i+ 1
2

Zn
i + ∂u+D−�

i− 1
2

Zn
i−1

+∂u−D+�
i+ 1

2

Zn
i+1 + ∂u+D+�

i− 1
2

Zn
i

�
= 0, 0 < n ≤ N, (16a)

ZN
i = j�(UN

i ). (16b)
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3.3. The Volpert path family of schemes. Let us consider fluctuation fluxes
based on linear paths [11] of the form D±(u−,u+) = A±(u−,u+)[[u]], where the
consistency relation now reads

A+(u,u) +A−(u,u) = A(u), ∀u ∈ Ωa. (17)

Theorem 3.1 (Adjoint consistency). The discrete adjoint scheme (16) with the
Volpert path family of fluxes is a consistent approximation of the adjoint problem
(9) at points (xi, t

(n)) with xi =
1
2 (xi− 1

2
+ xi+ 1

2
).

Proof. We use an usual finite difference analysis. Let u and z be smooth solutions
to the primal and adjoint equations. Use Taylor expansions in time to show that
1
Δt

�
Zn−1

i −Zn
i

�
= −∂tz(xi, t

(n))+O(Δt). Setting a±ij(u
−,u+) = A±(u−,u+)ij and

differentiating (17), we get for 1 ≤ i, j, k ≤ m:

∂u−
k
a+ij(u,u)+∂u+

k
a+ij(u,u)+∂u−

k
a−ij(u,u)+∂u+

k
a−ij(u,u) = ∂uk

aij(u), u ∈ Ωa. (18)

Now, we decompose the space terms in (16) into R1 +R2 with

R1(xi, t
(n)) = − 1

Δx

�
A−�

i+ 1
2

Zn
i −A−�

i− 1
2

Zn
i−1 +A+�

i+ 1
2

Zn
i+1 −A+�

i− 1
2

Zn
i

�
,

R2(xi, t
(n)) =

1

Δx

��
∂u−A−

i+ 1
2

[[u]]i+ 1
2

��
Zn

i +
�
∂u+A−

i− 1
2

[[u]]i− 1
2

��
Zn

i−1

+
�
∂u−A+

i+ 1
2

[[u]]i+ 1
2

��
Zn

i+1 +
�
∂u+A+

i− 1
2

[[u]]i− 1
2

��
Zn

i

�
.

We thus obtain from (17) and (18)

R1(xi, t
(n))k = − 1

Δx

�

l

�
a−lk(U

n
i ,U

n
i+1)Z

l,n
i − a−lk(U

n
i−1,U

n
i )Z

l,n
i−1

+ a+lk(U
n
i ,U

n
i+1)Z

l,n
i+1 − a+lk(U

n
i−1,U

n
i )Z

l,n
i

�

= −
�

l,m

�
(∂u+

m
a−lk + ∂u−

m
a−lk + ∂u+

m
a+lk + ∂u−

m
a+lk)∂xum

�n
i
Zl,n
i

−
�

l

(a−lk + a+lk)∂xZ
l,n
i +O(Δx)

= −
�
A(u)�∂xz+

�
A�(u)�∂xu

�
z
�
k
(xi, t

(n)) +O(Δx),

and similarly R2(xi, t
(n))k =

�
(B(u)∂xu)z

�
k
(xi, t

(n)) +O(Δx) from (18).

4. Non-conservative product associated to a LD field. Let us introduce the
following nonlinear hyperbolic system [7] typical of two-phase flow models where
the characteristic LD field plays the role of an interface velocity [3]:

∂tu+ g(u)∂xu = 0, ∂tv + ∂xf(u) = 0, (19)

with g(u) = u + v and f(u) = v2−u2

2 . The eigenvalues are g(u) associated to the
LD field and v associated to a GNL field so the system is strictly hyperbolic over
Ωa = {(u, v)� ∈ R2 : u > 0}. The generalized RH relations (5) read

nt[[u]]xs(t) + nxGφ(u
−,u+) = 0, [[ntv + nxf(u)]]xs(t) = 0 on Σ,

where Gφ(u
−,u+) :=

� 1

0
g
�
φ(θ;u−,u+)

�
∂θφu(θ;u

−,u+)dθ, so for a linear path

Gφ(u
−,u+) = u+ v[[u]], where a = a−+a+

2 denotes the average operator. Let us
stress that the LD field g(·) is continuous across a contact discontinuity, so the
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generalized RH relations are independent of the choice of path which motivates the
choice of a linear path.

The adjoint equations for z = (y, z)� read

∂ty − u∂xz + (u+ v)∂xy + (∂xu)y = 0, ∂tz + v∂xz − (∂xu)y = 0 in Ω\Σ, (20)

together with the jump relations on Σ
�
nt + nx(u

± + v±)
�
y± −

�
nt + nx(u

± + v)
�
ys − nxu

±(z± − zs) = 0, (21a)

−nx

2 [[u]]ys ±
�
nt + nxv

±)(z± − zs) = 0, (21b)

and the equation for zs:

[[u]]xs(t) · dtzs +
�
[[u]]∂x(u+ v)− [[u+ v]]∂xu

�
xs(t)

ys(t) = 0 in (0, T ). (22)

The above relations at Σ may be simplified in the following two cases:

• isolated non-characteristic shock ([[u]] = 0 and nt + vnx = 0):

y± = 2u
2u±[[v]]y

s, z± = zs, zs(·) ≡ [[j(u)]]xs(T )

[[v]]xs(T )
;

• isolated characteristic contact ([[u+ v]] = 0 and nt + (u± + v±)nx = 0):

z± = zs ± [[v]]ys

2u± , zs = uz
u , zs(·)− ys(·) ≡ [[j(u)]]xs(T )

[[v]]xs(T )
.

5. Numerical experiments. We consider Riemann problems for (19) with initial
conditions u0(x) = uL if x < 0, and u0(x) = uR if x > 0:

test problem left state uL right state uR T

RP1 shock
�
3
2 , 3

�� �
3
2 , 1

��
0.1

RP2 shock
�
1
2 , 3

�� �
1
2 , 1

��
0.1

RP3 contact
�
1, 3

�� �
2, 2

��
0.05

The output functional reads J(u) = 1
2

�
R u(x, T )2dx which imposes z(·, T ) =

u(·, T ) as final condition. We compute approximate solutions with a numerical flux
described in [7] that falls into the family of Volpert schemes. Figure 2 compares the
numerical solution in dashed lines with the exact solution in continuous lines and
displays the characteristics of both primal and adjoint problems in Ω. The exact
solutions are obtained from the method of generalized characteristics [5, 1, 10], the
adjoint equations (20) and jump relations (21). Results are obtained on a very fine
mesh to check the consistency of the discrete adjoint method. In particular, it may
be checked that the adjoint solutions satisfy the RH relations derived in § 4.

REFERENCES

[1] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coeffi-

cients, Nonlinear Anal., 32 (1998), 891–933.

[2] A. Bressan and A. Marson, A maximum principle for optimally controlled systems of conser-
vation laws, Rend. Sem. Mat. Univ. Padova, 94 (1995), 79–94.
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