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Cybersecurity is becoming vital as industries are gradually moving from automating physical processes to a higher level automation using cyber physical systems (CPS) and internet of things (IoT). In this context, security is becoming a continuous process that runs in parallel to other processes during the complete life cycle of a system. Traditional threat analysis methods use design models alongside threat models as an input for security analysis, hence missing the life-cycle-based dynamicity required by the security concern. In this paper, we argue for an attacker-aware systems modeling language that exposes the systems attack surfaces. For this purpose, we have designed Pimca, a domain specific modeling language geared towards capturing the attacker point of view of the system. This study introduces the formalism along with the Pimca workbench, a framework designed to ease the development and manipulation of the Pimca models. Finally, we present two relevant use cases, serving as a preliminary validation of our approach.

INTRODUCTION

As industry is moving towards automation through software and communication technologies, cyber security is coming into focus, more than ever before. The systems modeling industry addresses this need through initiatives like threat modeling [START_REF] Farrell | Using Threat Analysis Techniques to Guide Formal Verification: A Case Study of Cooperative Awareness Messages[END_REF]. Threat modeling techniques, like attack trees, are used alongside system models to perform security analysis. The outcomes of such analysis are then serialized as different artifacts. Despite the advances in the domain of cyber security, not all security analysis techniques are fully automated and a considerable amount of human involvement is required in analyzing the security status of an architecture [START_REF] Siponen | Information security management standards: Problems and solutions[END_REF]. For example, in security audits like Systems Security Engineering Capability Maturity Model (SSE-CMM), the security guidelines are manually validated by reviewers. In such situations, a domain specific language (DSL) that highlights the attack surface, i.e. the sum of different points where an attacker can interact on the system [START_REF] Manadhata | An attack surface metric[END_REF], improves the communication between stakeholders, the comprehension, and the rationalization of the system architecture.

In this article, we present Pimca framework along-side its DSL for highlighting the security concerns of a system. Pimca can be seen as a securityfocused systems modeling language, which captures the coarse-grain architecture of large-scale systems (like CPS, enterprise systems and system of systems) to exhibit the security concerns (e.g. attack surfaces, attack scenarios, etc.) while abstracting away the internal architectural details. The Pimca DSL was originally developed by the Directorate General of Armaments (DGA), French ministry armed forces. In this context, it was used to facilitate preemptive attack surface analysis, attack impact analysis, attack routing analysis. Apart from the DSL, this study introduces an open-source security modeling framework1 , based on Pimca, that offers (i) A graphical modeling language (ii) A methodology, and (iii) The associated tools focused on the following objectives:

1. System Modeling with the Intent of Highlighting the Attack Surface. A language that incorporates the basic system analysis and the understanding of system functions to model the system from the perspective of cyber threat analysis (CTA).

2. Security Concerns Modeling using a Graphical Language, Geared towards Automation. This helps support both manual and automated analysis. Furthermore, a human-readable model facilitates communication between multiple stakeholders.

3. Analysis Independent Modeling. Analysis techniques are often tightly coupled with certain DSLs, resulting in a plethora of languages. With the separation of concerns, we look forward to enabling different security analysis based on the same modeling language.

Section 2 details the Pimca modeling language. Section 3 introduces the tooling and implementation of the proposed framework. Section 4 illustrates the capabilities of the framework on two use-cases from the CPS and enterprise network domains. The related works are over-viewed in Section 5 before concluding the paper in Section 6.

PIMCA DSL

This section introduces Pimca, a systems DSL conceived for highlighting the attack surface during CTA. To facilitate the comprehension, let us consider a simple use-case of a technician who wants to print a document on a printer. The topology of the system comprises of a workstation and a printer, both connected to a local area network (LAN), as shown in Fig. 1. To print the document, the technician operates his workstation and sends data through the LAN. Data is then transmitted to the printer, which performs the printing task. This example highlights several aspects of systems architecture. For example, the interaction of the cyber component ("network") with a physical agent ("technician") and the use concrete relations ("operates" and "connects") and conceptual relations ("prints").

The Pimca model captures the structure of the system-under-study. An excerpt2 of the metamodel is presented in Fig. 2. A system is viewed as a composi-tion of macro structures in the context of cyber physical systems, industrial control systems or systems of systems. These systems are composed of interacting and interdependent elements [START_REF] Lee | A cyberphysical systems architecture for industry 4.0-based manufacturing systems[END_REF], abstracted as a knowledgeComponent. A knowledge-Component is uniquely identifiable and has a defined address which can be either physical, virtual or generic. A knowledgeComponent is an abstract metaclass with three concrete subclasses: machinery, resource and relation. A Machinery defines the active elements of the system. Instances of machinery have the ability to interact with other elements of the system via relations; i.e., they can trigger actions and react to them. This concept is used to capture the active elements during CTA. When considering attack possibilities, one should consider actions and effects triggered by the active elements as potential attack steps.

A machinery has a dimensionType i.e., physical, virtual or compound. A dimension defines the space in which the machineries interact i.e., a machinery with physical dimension has a tangible reality and can only interact directly with other "physical machineries". Similarly, a machinery with virtual dimension has an intangible reality and can only interact directly with other "virtual machineries". A machinery with compound dimension bridges the gap between the physical and virtual dimensions. This distinction is useful for CTA because an adversary starts an interaction with the system either from a virtual or a physical node. To progress further in a different dimension, an adversary is compelled to pass through a "compound machinery".

The machinery is further specialized to represent performers, interfaces, checkpoints and networks.

• Performer represents a human element. This concept is mandatory for CTA because the human elements have a unique behavior compared to automated elements. They expose a particular weakness of the system e.g. social engineering. Inherently, the performers have physical existence, so they are modeled as physical machineries. In our running example, the operator working in the system is a performer. The performer is further specialized to attacker. An attacker represents a human adversary or a group of human adversaries.

• Interface represents a concept bridge between two dimensions, physical and virtual. This concept is vital in CTA because it characterizes the attack surface as highlighted by [START_REF] Theisen | Attack surface definitions: A systematic literature review[END_REF] and [START_REF] Manadhata | An attack surface metric[END_REF]. Interfaces are the only concepts in the Pimca language that can be of compound dimension i.e., they can access both physical and virtual spaces simultaneously. However Pimca model also allows for interfaces to be defined between two dimensions of the same type. To show directionality, the interfaces are specialized into entryPoint and exitPoint. From a virtual system perspective, a keyboard is an entry-Point (a physical to virtual bridge) while a screen is an exitPoint (a virtual to physical bridge). The workstation can be modeled as an interface between the physical space of the technician and the virtual space of the LAN network.

• Checkpoint represents an element checking for a specific resource before granting passage. In CTA, this concept highlights machineries that will hinder the attacker's progression. Checkpoints are either physical or virtual machineries. For example, an ID checkpoint at the entrance of an industrial site is a physical checkpoint. A network firewall is a virtual checkpoint.

• Network represents exchange channels. In CTA, this concept highlights machineries that allow reaching linked knowledgeComponents. Accessing a particular network is a pivotal step for attackers, because it offers access to other machineries by nature. In a physical network, the entities interact at the physical level and may only be reached by physical means. In a virtual network, the entities interact at the virtual level and may only be reached by virtual means. The nature of the exchange is defined by the networkType which is either energy, matter or data. For example, an electric grid is a physical energy network, while a LAN is a virtual data network.

A Resource defines passive elements of the system.

As opposed to machineries, resources do not act on their own. They are only recipient/targets of the actions performed by the machineries. For example, resources may range from the water running in a pumping system to the electricity supplied to pumps of said system. This concept is the counterpart of machineries as it represents valuable assets in the system. While resources can be defined as is, we also define two specialized resources i.e., passport and instruction. These resources are defined as follows:

• Passport represents a resource directly linked to a specific checkpoint. The use of a passport is mandatory to get through the checkpoint. This concept is required for CTA since it captures the keys (for example IDs, SSH keys, etc.) required to pass through checkpoints.

• Instruction represents the resources like commands, inputs or orders used by a machinery to restrict its behavior. This concept symbolizes the fact that the behavior of a machinery may constitute a target in itself for the attacker. If instructions are represented in the system, then they can be tampered with. For example, the LAN security policy is an instance of instructions. An automaton description that models the behavior of a machinery is also an instance of instructions.

A Relation models the complex interactions between the knowledgeComponents. A relation has a single source and a single target of any type including other relations. The relation may be employing intermediary machineries on which it depends. In the example, the "print" relation depends on the network and the workstation. Another relation can be con-veying a resource. In the example, the document to be printed is linked with the "print" relation using a conveying attribute. Another attribute of a relation, passingThrough links it to other relations on which it depends. In the running example, the "print" relation is not possible without the following relations: "operates", "connected to" and "connects". Thus, a relation refers to any numbers of machineries via the employing attribute, to any numbers of resources via the conveying attribute and to any numbers of relations via the passingThrough attribute. A relation is an abstract type and has multiple concrete types: exchange, control, use, produce and check, which are defined as follows:

• Exchange is a bidirectional relation between two machineries. In the example the workstation machinery exchanges data with the LAN network. • Control, similarly to Exchange, relates two machineries, with the source influencing (dominating) the behavior of the target. This relation emphasizes the criticality of the source machinery i.e., successfully corrupting the source, results in gaining control over the target actions. In the example the operator (performer) controls his workstation (machinery). • Use relation states that the source machinery needs a knowledgeComponent to perform its actions. This relation highlights the reliance of the source on the target to properly function i.e., successfully depriving the source of the target results in disrupting behavior. For example, a computer (machinery) needs (uses) electricity (resource). • In Produce relation, opposed to use, the source produces the target knowledgeComponent. This highlights the reliance of the target on the source to exist, successfully corrupting the source results in corrupting or disrupting the production of the target. For example, a power plant (machinery) is producing the electricity (resource). Shutting down the power plant stops the electricity. • Check relation, defined between a machinery and a knowledgeComponent, represents a "sensorial" relation representing that the source machinery has partial knowledge of the target state. Tampering with the target might be detected by the source. For example, a sensor checks the level of water tanks. If the water level raises, the sensor measures it. This relation is specialized as:

-Maintain is a check relation between a performer and a KnowledgeComponent, such that the human source is responsible to keep the target node in proper condition. In this case, a performer may also perform operations on the tar-get node. It can be seen as a conditional writing access from the source to the target in addition to the reading access. This relation is crucial in CTA because it highlights the resilience of the target node as long as the source is operational. In our example, an operator can maintain the printer (machinery). If the printer malfunctions, the technician acts to repair it. -Match is the specialization of the check relation, between a checkpoint and a passport, capturing that a specific passport is required to pass through a checkpoint. This relation is a key feature because checkpoints are the roadblocks an adversary encounters when attacking the system, disabled only by the right passports.

With these concepts and relations we are able to model the macro structures of a system. Moreover, the versatile nature of the interface (machinery) enables capturing the attack surface of the cyber system, thus satisfying our first objective.

PIMCA FRAMEWORK

This section overviews the Pimca workbench design and the proposed modeling methodology.

Workbench Overview: A Pimca model is intended for conducting various security analysis like attack surface analysis, impact analysis, attack coverage analysis, etc. and also the development of threat modeling views like attack modeling and vulnerability modeling. The heterogeneity of both the targeted systems and the analysis types pushes for a model federation based approach [START_REF] Golra | Addressing modularity for heterogeneous multi-model systems using model federation[END_REF]. Model federation allows binding the models of different paradigms through semantically rich references. Openflexo3 is an open-source model federation framework. To link different paradigms, Open-Flexo proposes reusable COTS technology adapters that bridge the paradigm gaps (EMF, JDBC, Pdf, etc.).

The Pimca workbench, illustrated in Fig. 3, uses the diagramming adapter and the FML core language of Openflexo, which provides a satisfactory solution for our second requirement (the creation of a graphical language editor for Pimca). The graphical workbench is composed of multiple panels as follows:

The project structure explorer (1) contains the Pimca XML model and the diagrams exportable in several graphical formats. Each model can be viewed through the modeling editor (3). The Pimca model explorer (2) lists all the instances of machinery, resource and The model explorer can also be used to instantiate, to delete, to show, and/or hide the language concepts. The modeling editor shows the graphical representations associated to each Pimca model. We can explore the different levels of granularity of the model for a composite node, we can zoom in to view the subnodes and the relationships between them. New models are designed and edited in this panel. The concept palette (4) exposes the available modeling concepts and relations, enabling their instantiation via dragand-drop operations. The model inspector (5) allows inspecting and editing the graphical properties of individual elements and of the model as a whole.

Modeling Methodology: A Pimca model evolves iteratively along with the designer comprehension of the targeted system. If a system design document is present (say a SysML specification) the process is streamlined. In this case, the initial step of the process consists of identifying and instantiating the active (machineries) elements and their functional connections (exchanges). The following step consists of identifying the passive objects (resources) along with their relations to the active elements (use/produce). Then the other relations are instantiated according to the conceptual understanding of the systems function. In case, the system is unknown, the system discovery phase can be interleaved with the Pimca modeling phase. As such, as the level of comprehension increases the Pimca model can be iteratively refined. In this situation, the Pimca model can be seen as a blackboard capturing the systems architecture from a cyber-security perspective. In this situation, the model federation environment exposed by our workbench could be leveraged for manipulating the heterogeneous information sources.

Currently, the architecture model can be a SySML model or any other EMF model. The architecture model, the Pimca model and the diagram are all federated in the Pimca workbench and the environment ensures that they remain synchronized. With this modeling style, on one hand, we facilitate both manual and automated analysis (objective 2) and on the other hand, we make the framework extensible for real-life use. For example, if needed, one can connect a vulnerability database to our proposed framework, using a database technology adapter.

PRELIMINARY EVALUATION

We evaluate the effectiveness of our approach on two use cases: (i) a CPS water pumping station inspired by [START_REF] Rocchetto | CPDY: Extending the Dolev-Yao attacker with physical-layer interactions[END_REF] and (ii) a company enterprise network.

UC1 -Water Pumping Station

System Description: The water pumping station system features a water tank, various actuators, sensors and a Programmable Logical Controller (PLC). Water flows in the system from the environment, through a motorized valve controlled by PLC. The water flows out of the system from the tank through a pumping mechanism also controlled by PLC. There is a manual valve between the tank and the pump. The water level is monitored by the PLC through a sensor. The PLC follows the commands entered through a keyboard. The commands describe that (i) the motorized valve must be activated and the pump must be shut down when the water reaches a low threshold, and (ii) the motorized valve must be closed and the pump must be activated when the water reaches a high threshold. PLC is connected to the plant network which also contains a supervisory control and data acquisition (SCADA). The Pimca model representing the model entities and their relations is shown in Fig. 4. Attack Surface: Suppose the attacker's goal is to target the water running in the system. The Pimca model shows three relations that can be used to target the water: (i) uses relation that points to water, (ii) produces relation between inflow valve and water tank that conveys water, and (iii) uses relation between the pump and the water tank that conveys water. Furthermore, we can infer that the inflow valve, the tank, the manual valve and the pump are possible intermediary targets, because the three target relations depend on them. Informally, tracing back the relations pointing towards a node highlights the possibilities of reaching the node i.e. the "direct attack surface" of the node.

We can extend this reasoning further. The inflow valve that produces the water is controlled by PLC. The tank is checked by PLC employing the sensor. The manual valve is controlled by the operator. The pump is controlled by PLC. Again, the Pimca model shows the four relations to target the highlighted nodes: the operator controlling the manual valve, PLC controlling the inflow valve, PLC using the sensor on the tank to check it and PLC controlling the pump. These relations rely on three specific nodes: PLC, the sensor and the operator. We can repeat the process again. The sensor is controlled by PLC, which we already identified as a potential attack surface node. The operator has no relation pointing towards it. SCADA produces a command for PLC employing the network. Now, we can see the potential targets for the nodes we have already highlighted.

To sum up, we can deduce the attack surface of the system depending on the capabilities of the attacker. For example, if the attacker has social engineering capabilities and has access to the network, the attack surface extends to the operator node and the control relation between the operator and the manual valve. From their network access, the command also becomes part of the attack surface on the system. Discussion: In this use case, we designed the Pimca model to represent the system architecture using the methodology presented in Section 3 and carried out a manual CTA on it. This reasoning exposes the different ways to target the water in the system by deductive reasoning and tracing back the relations pointing towards the nodes. We exploit the use, produce and control relations through the physical and virtual dimensions. To conclude, our systems modeling approach allows attack surface deduction on this use case.

UC2-Corporate Network

System Description: The corporate network system is composed of a web server and an internal network protected by a firewall. The web server provides a service that is directly accessible from the internet and it has access to the company's internal network. The firewall prevents external connections from reaching the internal network. In this use case, a computer and an active directory are connected in the internal network. The computer (PC1) is used by the administrator of the active directory. The active directory service handles the user accounts on a computer using Windows OS. This kind of service is a critical target for an attacker because it is vital to the system's security. The Pimca model showing the model entities and their relations is shown in Fig. 5. Please note that we chose not to represent employing & passing through attributes because they are deductible in this particular analysis.

In our scenario, the attacker has control over the web server and the web server uses the web server key (WS-key). Because the attacker controls the web server, we can infer that (s)he can also use the WS-key employing the web server. This use relation is passing through the control relation with the web server and the use relation with WS-key. Attack surface: Let us consider that the attacker's goal is to target the active directory in the internal network and that the attacker has a fixed IP. We can see that the firewall prevents access from the internet to the company's network without a matching key. So if the attacker is connected to the internet, the attack surface on the system is restricted to the user and the web server. If however the attacker can use the matching passport with the firewall, the attack surface expands. In this case, the internal network can be reached and consequently, PC1 and the active directory become part of the attack surface.

To sum up, we can restrict the attack surface of the system depending on the reach of the attacker. The reach can be deduced with checkpoint nodes that prevent the attacker from going further. For example, unless the attacker has the matching passport, the attack surface remains restricted to the internet. Discussion: This use case shows our methodology in a context of an enterprise system. We carried out a CTA, complementary to the previous use case, in which we reduce the attack surface depending on the attacker's location and ability to get through a checkpoint. To conclude, our systems modeling approach allows attack surface refinement on this use case.

RELATED WORKS

Security analysis approaches vary from automated and formal approaches like Dolev-Yao [START_REF] Dolev | On the security of public key protocols[END_REF] to manual and informal approaches like SSE-CMM security audits. The Dolev-Yao attacker model is a widely-used formal model for security analysis on cryptographic protocol, and has been ex-tended to cyber physical systems [START_REF] Schaller | Modeling and verifying physical properties of security protocols for wireless networks[END_REF][START_REF] Steinmetzer | Lockpicking physical layer key exchange: Weak adversary models invite the thief[END_REF][START_REF] Rocchetto | CPDY: Extending the Dolev-Yao attacker with physical-layer interactions[END_REF]. Even though such formal approaches enable automatic security analysis, it requires a throughout understanding of the system behavior to create a realistic attacker model. An other example is Dagger [START_REF] Peterson | Dagger: Modeling and visualization for mission impact situation awareness[END_REF], a mission-driven semi-automated security modeling approach. We argue that a separation of concerns between the specification and analysis offers the flexibility needed for analysis independent CTA. Pimca is specifically designed for systems modeling for security analysis.

Once the system is modeled, security analysis techniques can use this model [START_REF] Drouot | Model federation based on role modeling[END_REF]. This allows security analysts to tailor their analysis to specific security needs such as attack surface evaluation or attack scenarios exploration.

STRIDE is a proactive security analysis paradigm [START_REF] Kohnfelder | The threats to our products[END_REF] used in the context of software systems. Efforts have been made to extend STRIDE to non-software systems. In particular, Khan et al. introduce a STRIDE-based methodology adapted to cyber physical systems [START_REF] Khan | STRIDE-based threat modeling for cyberphysical systems[END_REF]. However, [START_REF] Farrell | Using Threat Analysis Techniques to Guide Formal Verification: A Case Study of Cooperative Awareness Messages[END_REF] share the limitations of STRIDE for cyber physical systems (CPS) noting the difficulties to use its concepts for non-software nodes. In comparison to STRIDE, our framework is not restricted to information systems and can be used to model the physical systems as well, i.e., CPS and system of systems. In addition, contrary to STRIDE, the Pimca framework highlights the attack surface of the modeled system.

Moving Target Defense (MTD) is a security solution that exploits the inherent asymmetry between proactive attackers and the reactive defense [START_REF] Jajodia | Moving target defense: creating asymmetric uncertainty for cyber threats[END_REF] through dynamical changes of the system configuration [START_REF] Zhuang | Towards a theory of moving target defense[END_REF][START_REF] Xu | Comparing different moving target defense techniques[END_REF]. We argue that MTD fails to capture network-unrelated vulnerabilities of the system such as the human factor and operational-level vulnerabilities. Furthermore, MTD is has clear limitation for attack surface modeling on complex and dynamic architectures. On the contrary, our approach aims to capture and characterize specific relations between system elements. With the specification of relations, resources and machineries, Pimca framework can be used to model the system operational functions, while at the same time highlighting the attack surface.

CONCLUSION

We present a systems modeling framework, Pimca, with a domain-specific modeling language, methodol-ogy and associated tools in the context of cyber threat analysis. The proposed modeling language satisfies the intention of highlighting the attack surfaces in a system model. The framework includes a methodology for the development of Pimca models. The associated tools in the framework allow developing Pimca models and integrating then with other security analysis artifacts for the development of a security solution. The approach was evaluated using two use cases, which emphasized the system modeling along with the attack surface deduction and refinement enabled by the Pimca DSL and workbench. In future, we plan to extend the Pimca DSL with behavioral primitives which will enable dynamic attack scenario enactment based on vulnerability databases and realistic system configurations.
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The complete metamodel is now open-source and accessible online at https://github.com/fgolra/Pimca
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