
HAL Id: hal-02502385
https://hal.science/hal-02502385v1

Submitted on 20 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Semi-analytical discontinuous Galerkin finite element
method for the calculation of dispersion properties of

guided waves in plates
Salah-Eddine Hebaz, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

To cite this version:
Salah-Eddine Hebaz, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad. Semi-analytical discon-
tinuous Galerkin finite element method for the calculation of dispersion properties of guided waves in
plates. Journal of the Acoustical Society of America, 2018, 143 (1), pp.460-469. �10.1121/1.5021588�.
�hal-02502385�

https://hal.science/hal-02502385v1
https://hal.archives-ouvertes.fr


JASA/2017

Semi-analytical discontinuous Galerkin finite element method for1

the calculation of dispersion properties of guided waves in plates2

Salah-Eddine HEBAZ, Farouk BENMEDDOUR,∗3

Emmanuel MOULIN, and Jamal ASSAAD4

Univ. Valenciennes, CNRS, Univ. Lille,5

YNCREA, Centrale Lille, UMR 8520 - IEMN,6

DOAE, F-59313 Valenciennes, France.7

(Dated: November 29, 2017)8

Abstract9

The development of reliable guided waves inspection systems is conditioned by an accurate10

knowledge of their dispersive properties. The semi-analytical finite element method have been11

proved very practical for modeling wave propagation in arbitrary cross-section waveguides. How-12

ever, when it comes to computations on complex geometries to a given accuracy, it still has a major13

drawback: the high consumption of resources. Recently, Discontinuous Galerkin Finite Element14

Methods (DG-FEM) has been found advantageous over the standard finite element method when15

applied as well in the frequency domain. In this work, a high-order method for the computation of16

Lamb modes characteristics in plates is proposed. The problem is discretised using a class of DG-17

FEM namely the interior penalty methods family. The analytical validation is performed through18

the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally19

graded material plates are analysed and a numerical example is presented. It was found that the20

obtained results are in good agreement with those found in the literature.21
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I. INTRODUCTION23

It is amply admitted that ultrasonic guided waves provide an efficient and rapid means of24

non-destructive evaluation (NDE) and structural health monitoring (SHM) of a wide range25

of solid structures. Their increased sensitivity makes it possible to detect early damage over26

long distances in such a short time. Nevertheless, they have certain complex characteristics27

(multimodal, dispersion and attenuation) that makes it difficult to analysis, modeling and28

interpretation. Therefore, a previous knowledge of the wave propagation characteristics is29

very crucial. On the one hand, they help predict the possible wave propagation features30

and provide a better understanding of the physical phenomenon. On the other hand, they31

are of paramount interest to the design and the development of reliable inspection systems.32

However, these properties are not always accessible analytically, which need the use of33

numerical methods [1].34

Indeed, miscellaneous researches have been carried out to study and modelise the guided35

waves propagation in different types of structures. Various numerical techniques have been36

developed to replace the analytic approaches limited to simple case geometries [2], [3]. Clas-37

sical Finite Elements (FE) based methods have been extensively used [4]. Among others, the38

Semi-Analytical FE (SAFE) techniques has been demonstrated very practical for extracting39

dispersion curves and vibration modes of arbitrary cross-section waveguides. It uses the FE40

discretisation only for the cross-section, hence complex shapes can be handled. The propa-41

gation along the guide are described as a harmonic function. Thus, the calculation time is42

considerably reduced and remain constant regardless of the guide’s length (for more details43

see [5–9]). Over and above, it has been applied to several types of structures like plates,44

rods, pipelines and railways; for isotropic, composite, anisotropic and dumped media45

[10]. The semi-analytical approach has been also modified to deal with bended/curved46

and periodic plates [11, 12]. Otherwise, its combination with other approaches yields efficient47

techniques to investigate wave-damage interaction [4, 13]. However, despite the economical48

scheme of the SAFE technique, computing dispersion curves of some real industrial struc-49

tures (e.g. railways and pipelines) at relatively high frequencies remain fastidious. The low50

convergence rate of the conventional FE discretisation impacts the results accuracy and the51

computational cost [10, 14]. The mesh refinement results in an intensified resource con-52

sumption and/or at a certain point a great error causing an inaccurate numerical solution.53
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Accordingly, computations in high frequency ranges is a major challenge to date.54

In fact, the most SAFE formulations in the literature are developed using hp low-order55

FEs usually limited to second order approximations. Although there has been great advances56

in the use of high-order formulations to achieve high convergence rates, specifically for the57

guided wave propagation problems [15, 16]. Unfortunately, to the best authors’ knowledge,58

the SAFE methods have surprisingly not benefit from their advantages.59

Over the last decade, an ingenious mix of the FE Method (FEM) and the Finite Volume60

Method (FVM) called the Discontinuous Galerkin FE method (DG-FEM) [17, 18] has been61

of great interest to many researchers in the field of the wave propagation simulation in the62

time domain [15, 19–22]. Since it uses the same space of basis functions as the FEM and a63

local formulation close to the FVM, it enjoys the benefits of both: high-order approximations64

enabling a coarser mesh to be used while maintaining a high degree of accuracy, naturally65

parallelisable scheme, etc.66

Recently, it has been found in [23] that the DG-FEM is advantageous over the standard67

FE method when applied to eigenvalue problems; particularly in the oriented wave number68

calculations like dispersion curves. Accordingly, in this work, a high-order Semi-Analytical69

Discontinuous Galerkin Finite Element (SADG-FE) method is developed for the one di-70

mensional case. The verification and validation are performed via Lamb modes problem71

in homogeneous isotropic plates, a case for which theoretical aspects are available and well72

documented in the literature. Otherwise, by dint of its discontinuous nature, the proposed73

approach can be used with no change for plate-like structures with continuous varying pa-74

rameters.75

The linear elastic waves equation is formulated in terms of the displacement. Apply-76

ing the semi-analytic approach, the problem is simplified to a one dimensional ordinary77

differential system in the through-thickness direction. The second-order operator is then78

discretised using a class of DG methods namely the Interior Penalty Discontinuous Galerkin79

methods (IPDG), while the first order operator is approximated by the Standard Discon-80

tinuous Galerkin (SDG) method. Taking into account the free boundary conditions, the81

resulting algebraic system becomes a quadratic eigenvalue problem. By solving the latter,82

Lamb waves characteristics are obtained and compared to the analytic solutions of the83

Rayleigh-Lamb frequency equations. Afterwards, a Functionally Graded Material (FGM)84

example is analysed and compared with results found in the literature [24].85
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86

This study is organised as follows: in section (II), the semi-analytical approach and87

a general description of the Lamb modes problem are presented. Then, the variational88

formulation of the semi-analytical discontinuous Galerkin method is given. Therewith, in89

section (III), the implementation details for homogeneous and FGM cases are discussed.90

Next, the results of the numerical experiments are shown and discussed in section (IV).91

Finally, a conclusion in section (V) to summarise the main points of the study and its92

interest to future work.93

II. SADG-FE FORMULATION FOR GUIDED WAVES IN PLATES94

In this section, the discretisation of the Lamb modes problem by means of discontinuous95

Galerkin methods is presented. The traction-free boundary conditions are implemented and96

the eigenvalue problem is constructed.97

A. General description of the problem98

Consider an elastic isotropic waveguide with a cross-section S in the (x1, x2) plane having99

an invariance along the propagation axis x3. The elastic waves are governed by the Navier’s100

displacement equation of motion resulting from the fundamental principle of dynamics [25–101

27]:102

(λ+ µ)
∂2uj
∂xj∂xi

+ µ
∂2ui
∂x2

j

+ ρfi = ρ
∂2ui
∂t2

, i, j = 1, 2, 3 (1)

where ui are the components of the displacement field u = [u1, u2, u3]T , the superscript103

T designates transpose. λ and µ are the Lamé coefficients. fi are the body forces, ρ is104

the density of the material and t is the time. The Einstein summation convention over re-105

peated indexes is adopted. We emphasize that the parameters are allowed to vary smoothly106

throughout the thickness.107

108

Looking for solutions in time harmonic domain u(x, t) = û(x)e−iωt and under the hypoth-109

esis of invariance of the material properties and the geometry of the guide in the direction110
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of propagation x3, the displacements field can be expressed as:111

û(x) = U(x1, x2)e+ikx3 , (2)

where k is the wave number and ω is the angular frequency. Consequently, this harmonic112

function e+ikx3 leads to the separation of the propagation analysis in the cross-section from113

the rest of the domain.114

115

Let be an isotropic homogeneous plate of constant thickness 2d, of infinite lateral dimen-116

sions and free from any external constraints as shown in Figure (1).117

Figure 1. Geometry of the 2-D waveguide in the direction of propagation x3: isotropic homogeneous

plate of thickness 2d and infinite lateral dimensions.

Unlike a three dimensional (3-D) waveguide for which the resonance occurs in the section118

and spread in the extrusion direction, the resonance in plates (2-D waveguide) takes place in119

the thickness. Consequently, the propagation can take place in any direction perpendicular120

to it since they both have the same invariance. Therefore, by choosing a principal direction121

of propagation, the study of the phenomenon occurs naturally in its plane with the direc-122

tion that limits the geometry of the guide, plane (x1, x3). This leads us to seek solutions123

independent of the variable x2. Hence, the sought solutions are of the form124

û(x) = U(x1)e+ikx3 , (3)

and they are associated with the free surface condition125

σ(û).e1 = 0 in x1 = ±d. (4)

Thus, by eliminating the variable x2 from the system, one obtains the simplified equations126

for a plate, placed only on a line of the thickness. Substituting (3) in (1), after simplification127
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and rearrangement, the problem of Lamb modes in the matrix form becomes:128 

[M0]
∂2U13

∂x2
1

+ ik[M1]
∂U13

∂x1

− (k2[M2]− ω2[M3])U13 = 0,

[M0]
∂U13

∂x1

(±d) + ik[M4]U13(±d) = 0,

(5)

with:129

[M0] =

(λ+ 2µ) 0

0 µ

 , [M1] =

 0 (λ+ µ)

(λ+ µ) 0

 ,
[M2] =

µ 0

0 (λ+ 2µ)

 , [M3] =

ρ 0

0 ρ

 ,
[M4] =

0 λ

µ 0

 , U13 =
[
U1 U3

]T
.

To analyse the behaviour of the 2-D waveguide, the wave numbers k and the corresponding130

mode shapes U13 must be found as a function of a given frequency ω or inversely. The pair131

(ω, k) for which there exist non-trivial solutions describe the called dispersion curves of the132

vibration modes. The analytic solutions expressions of the dispersion relations D(ω, k) can133

be found in several works ( see e.g. the classical text books [3, 28, 29]).134

Without loss of generality, we will focus on Lamb modes. The dispersion relation for135

Horizontal Transverse (HT) modes is similar to that of the slender rod (1-D waveguide)136

already analysed in [23]. Furthermore, we refer to the ”exact” Lamb mode solutions kex as137

the analytic values obtained using a root tracking method to search the zeros of Rayleigh-138

Lamb equations for a given frequency range and up to a tolerance of 10−16. The latter will139

serve as a verification tool to validate the proposed method.140

B. Discontinuous variational formulation141

The system (5) is defined on the domain I = [−d,+d], a line of the thickness of the plate142

depicted in Figure (1). For the sake of simplicity, we denote by x the variable x1 for rest143
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of the section. As shown in Figure (2), the thickness is partitioned into a finite number144

of n one-dimensional non-overlapping elements Ej = [xj, xj+1], where {j = 0, .., n − 1} is145

the index of elements. The mesh is allowed to be non uniform. We define the size of each146

element by: hj = xj+1 − xj and hmax(j) = max(hj−1, hj).147

148

The key idea of the DG-FEM is that the weighting functions are chosen in a way that149

the field variable and its derivatives are considered discontinuous across the boundaries of150

the element while the continuity of the computational domain is maintained.151

Figure 2. Discretisation of the plate thickness.

Therefore, we denote by Dp the space of the discontinuous piecewise test-functions v(x)

on the mesh Ih =
⋃
j Ej such as:

Dp(Ih) = {v : v |Ej
∈ Pp(Ej) ∀j = 1, .., n− 1},

where Pp(Ej) is the space of interpolation polynomials of order p in the element Ej. It is

important to note that for v |Ej
defined only inside, we write:

v(xj) = v(x+
j ) = lim

ε→0
ε>0

v(xj + ε),

v(xj+1) = v(x−j+1) = lim
ε→0
ε>0

v(xj+1 − ε).

Accordingly, we define the jump J•K and average {{•}} across the interface between two152

adjacent elements:153

J·K = (· |L)− (· |R),

{{·}} = qL(· |L) + qR(· |R),
(6)

where qL and qR are respectively the coefficients of the average of the element on the left154

and the right of the considered interface. This definition of the average here is general.155
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However, in this work we will use the special case where qL = qR = 1
2
.156

157

By means of the weighted residuals method, multiplying the first part of (5) by a discon-158

tinuous test function v(x) and integrating the result over the cell Ej, the elementary strong159

integral form is obtained:160

∫ xj+1

xj

(
[M0]

∂2U13

∂x2
+ ik[M1]

∂U13

∂x

+ (ω2[M3]− k2[M2])U13

)
v dx = 0.

(7)

In order to simplify the derivation of the DG formulation of the problem (5), we will161

consider each operator (first and second order derivative) and its discretisation apart. Af-162

terward, we retrieve the general SADG-FE scheme such that: find U13 ∈ Dp(Ih)163

∀v ∈ Dp(Ih), a(U13, v) = L(v),

where a(., .) is called the bilinear form and its corresponding right hand, the linear form L(.).164

165

To begin with, consider the integral of the first-order operator of (7). For clarity reasons166

let be167

f(U13) = [M1]U13.

To obtain the weak integral form, we integrate by parts. We obtain :168

−
∫ xj+1

xj

∂f(U13)

∂x
v dx

=

∫ xj+1

xj

f(U13)
∂v

∂x
dx−

[
f̄v
]xj+1

xj
.

(8)

The discontinuous formulation allows the approximated field to be discontinuous across169

boundaries. Therefore, the solutions at the interfaces are duplicated. A treatment of the170

inter-element discontinuity is necessary in order to connect the elements and complete the171

discretisation. The right-hand part f̄ of the jump of (8) is then calculated based on the two172
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available values173

f̄ = g(fL, fR), (9)

where fL and fR are respectively the values of f(U) at the left and the right of the element174

interface; g is a linear combination called the numerical flux.175

Indeed, various flux formulas allowing to obtain different DG methods for different appli-176

cations have been developed in the literature [17, 18]. Nevertheless, in this work we consider177

a more general formula [30]:178

f̄(U13) |∂Ej
= {{f(U13)}}+ θJU13K, (10)

where θ is a scalar parameter.179

So, by making the sum of (8) for all the elements and substituting f̄ by the flux formula180

(10), the following SDG formulation is obtained:181

a1(U13, v) =
n−1∑
j=0

∫ xj+1

xj

f(U13)
∂v

∂x
dx

−
n−1∑
j=1

{{f(xj)}}Jv(xj)K− θ
n−1∑
j=1

JU13(xj)KJv(xj)K.

(11)

Now, consider the second-order derivative term in (7). In the same way, using Green’s182

theorem yields the weak integral form such that:183

−
∫ xj+1

xj

∂

∂x

(
[M0]

∂U13

∂x

)
v dx

=

∫ xj+1

xj

[M0]
∂U13

∂x

∂v

∂x
dx−

[
[M0]

∂Ū13

∂x
v

]xj+1

xj

.

(12)

In fact, the logic of the previous flux formulation used for the 1st order operator is not184

entirely applicable in the present case of (12). There exist different DG methods designed185

for elliptic equations. On the one hand, the mixed formulations consist of rewriting the 2nd186

order term as a first-order system. On the other hand, a direct straightforward discretisation187

techniques based on stabilisation methods called the primal formulations. In this work we188

shall use one of the latter DG methods, namely the Interior Penalty (IP) methods.189

190
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By summing up (12) for all the elements, stabilisation terms are then added to the191

formulation. The first and the second terms correspond to the numerical flux resulting from192

the integration. The other terms are a penalisation functions which enable to impose a weak193

continuity of the numerical solution and its derivatives. Hence, the general expression of the194

interior penalty discontinuous Galerkin approximation of the Laplacian operator becomes:195

a0(U13, v) =
n−1∑
j=0

∫ xj+1

xj

[M0]
∂U13

∂x

∂v

∂x
dx

−
n−1∑
j=1

{{
[M0]

∂U13(xj)

∂x

}}
Jv(xj)K

+ε
n−1∑
j=1

{{
[M0]

∂v(xj)

∂x

}}
JU13(xj)K

+
n−1∑
j=1

α

hmax(j)
JU13(xj)KJv(xj)K

+
n−1∑
j=1

γ

hmax(j)
J
∂U13(xj)

∂x
KJ
∂v(xj)

∂x
K,

(13)

where ε, α and γ are real numbers to be adjusted, called penalty factors. There are three196

cases of ε in the literature {−1; 0; +1}. In each case, a variant of IP methods can be197

identified: the Symmetric (SIPDG), Incomplete (IIPDG) and Non-symmetric (NIPDG)198

derivations. Details of the development and implementation are omitted here, however a199

more rigorous mathematical analysis and a detailed bibliography are provided in [18, 31].200

201

Note that these forms are not yet complete, the field of border elements, i.e. boundary202

conditions (BC), are not taken into account yet. The problem is associated with the stress203

free surface condition in (5): [M0]
∂U13

∂x1

(±d) + ik[M4]U13(±d) = 0. This is a linear relation204

between the values of the function and its derivative on the boundaries, a weighted combi-205

nation of a Dirichlet and a Neumann BCs. It is called Robin boundary conditions.206

207

In the framework of the DG methods, the implementation of BCs remains a delicate task.208

Unlike the classical FE method, the approximated field is considered discontinuous across209

the borders and thus we don’t have a direct access to it. Several processing techniques have210

been developed for each type of boundary conditions. Dirichlet BC are usually imposed211
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weakly through the numerical flux and thus contribute to both left hand and right hand212

sides. As for Neumann type, their insertion lies in the fact that they directly satisfy the213

integral on the borders. Hence, it can be moved to the right hand side and makes no214

contribution to the bilinear form.215

216

In fact, considering the boundary nodes (x0, xn), one can easily see that the Dirichlet217

BC part is naturally obtained by integration by parts in (8) and the Neumann BC in (12),218

respectively. By summing the two jumps, we obtain:219 [(
[M0]

∂U13

∂x1

+ ik[M1]U13

)
v

]xn
x0

. (14)

However, it still does not totally satisfy the latter condition. Thereby, let be a matrix220

[M5] such that: [M1] = [M4] + [M5]. By substituting in (14), we obtain two expressions.221

The integral matching the BC is moved directly to the right hand222

L(v) =

∫
∂I

(
[M0]

∂U13

∂x1

+ ik[M4]U13

)
v dx, (15)

while the other one makes a contribution to the bilinear form:223

a1(U13, v) =
n−1∑
j=0

∫ xj+1

xj

f(U13)
∂v

∂x
dx

−
n−1∑
j=1

{{f(xj)}}Jv(xj)K

− θ
n−1∑
j=1

JU13(xj)KJv(xj)K

+
∑
j=0,n

{{[M5]U13(xj)}}Jv(xj)K,

(16)

where224

[M5] = [M1]− [M4] =

0 µ

λ 0

 . (17)

Finally, getting all together, the discontinuous scheme is complete. The problem is be-225
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comes: look for U13 ∈ Dp(Ih) such that226

∀v ∈ Dp(Ih), a(U13, v) = 0, (18)

where the global bilinear form a(U13, v) is given by227

a(U13, v) = a0(U13, v) + ik a1(U13, v)

+ k2 a2(U13, v)− ω2a3(U13, v),
(19)

with228

ai=2,3(U13, v) = [Mi=2,3]
n−1∑
j=0

∫ xj+1

xj

U13v dx.

Obviously, this is an eigenvalue problem or in k or in ω and U is the associated eigenvector.229

Non-trivial eigen-solutions can be found either by fixing the frequency to a positive real230

number (ω ∈ R+) and the problem is solved for the wave number k in the complex plane.231

Either a real or complex wave number k is given and the resolution is made for ω. In general,232

the first case is the most used because it allows to study the all types of modes: propagative233

(k ∈ R), non-propagative and inhomogeneous (k ∈ C).234

III. IMPLEMENTATION235

This section presents a numerical implementation of the SADG-FE method. First, the236

homogeneous isotropic plate is studied. Afterwards, functionally graded material plates are237

analysed. Then, a convenient technique to linearise the quadratic eigenvalue problem is238

described.239

A. Homogeneous isotropic plate240

The discretisation of the bilinear form by nodal approximation makes it possible to con-241

struct the algebraic system. In each cell Ej, the solution is expressed by :242

U
(j)
i=1,3(x) =

p∑
l=0

Pl(x)U
(j)
li=1,3

= PŨ
(j)

i=1,3, (20)
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belonging to the same space Pp(Ej) as v = PT ; {Pl(x), l = 0, 1, ..., p} are the interpolation243

polynomials of order p. Ũ
(j)

i=1,3 is the vector of the nodal displacements of the element j244

corresponding to the field component Ui=1,3.245

246

Substituting U13 by its approximation (20) in (19) and calculating for all elements, we247

obtain a quadratic eigenvalue problem (QEP) :248

[(
[A0]− ω2[A3]

)
+ ik [A1] + k2 [A2]

]
{Ũ13} = 0. (21)

where {Ũ13} = [Ũ1Ũ3]T is the global vector of the generalised nodal displacements.249

[Ai=0,1,2,3] are the global stiffness and mass matrices obtained as:250

[A0] =
n−1∑
j=0

(∫
Ej

∂PT

∂x
[M0]

∂P

∂x
dx+ Γ0

j

)
,

[A1] =
n−1∑
j=0

(∫
Ej

∂PT

∂x
[M1]P dx+ Γ1

j

)
+ [M5][B],

[A2] =
n−1∑
j=0

∫
Ej

PT [M2]P dx,

[A3] =
n−1∑
j=0

∫
Ej

PT [M3]P dx.

with Γ0,1
j are the elementary flux matrices. [B] is the contribution matrix of boundary ele-251

ments having zero values except for the boundary nodal displacements. Note that [Ai=0,1,2,3]252

are block partitioned complex square matrices of size {(2m×2m), m = n × (p + 1)}. The253

system of 2m quadratic equations admits 2 × 2m non-trivial solutions (ki, {Ũ13}i); i =254

1, 2, ..., 4m).255

256

Otherwise, when we are dealing with constant parameters all-over the domain, a simplified257

implementation is possible. Only one component is calculated and the global system matrices258

are deduced such as:259
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[A0] = [M0]⊗ [Kg2],

[A1] = [M1]⊗ [Kg1] + [M5]⊗ [B],

[A2] = [M2]⊗ [Mg],

[A3] = [M3]⊗ [Mg].

where ⊗ denotes the Kronecker product, the matrices [Kg1] and [Kg2] are the stiffness-flux260

matrices obtained from the discretisation of the first and second order operators, respectively261

and [Mg] is the mass matrix.262

B. Functionally graded material plates263

The developed method in this paper can be used to study FGM materials with no signif-264

icant change. This can be carried out by only assigning the desired values of the coefficients265

in the [Mi=0,1,2,3,4] matrices.266

267

Here, we limit the analysis to the simple FGMs, where two different basic materials change268

from one to the other. The elastic coefficients are expressed as a function of the thickness [32].269

Accordingly, following the formulation in [36], a term involving the derivative function of the270

coefficients is added to the differential system (5). After simplification and rearrangement,271

the formulation is modified such as :272

[A∗1] = [A1] + [A
′

1],

with273

[A
′

1] =
n−1∑
j=0

∫
Ej

PT [M
′

1]P dx,

where274
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[M
′

1] =

 0 µ
′

λ
′

0

 .
Note that the added term vanishes automatically whenever the coefficients are constants,275

on the whole plate level or on the elementary level. The second approach can be used276

for discontinuously varying parameters plates by considering the variation like a step-wise277

gradation in each 1D-element.278

279

Remark: We highlight that to avoid numerical instabilities and improve performances,280

the model parameters must be non-dimensionalised. Dimensionless variables are introduced281

and the characteristic quantities (ρ, µ) are normalised with respect to the maximum values282

of their respective functions. The parameter λ is normalised to µ [33]:283



x̄ =
x

d
, Ī = [−1,+1],

ρ̄ =
ρ

max ρ
, µ̄ =

µ

max µ
, λ̄ =

λ

max µ
.

Ω =
ωd

max cT
.

For basic FGMs, the quantities are generally normalised relative to the parameters of the284

first material.285

C. Quadratic system reduction286

Direct solving of the QEP is a cumbersome and a complicated task. In practice, it is287

transformed into a generalised linear eigenvalue (GEP) problem with the same eigenvalues288

using the linearisation methods proposed in [34].289

290

To reduce to a linear system, an additional variable Q̃13 = k Ũ13 is introduced in (21).291

Accordingly, the following system is obtained:292  Q̃13 − k Ũ13 = 0,

[A0ω3]Ũ13 + i[A1]Q̃13 + [A2] k Q̃13 = 0,
(22)
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with293

[A0ω3] = [A0]− ω2[A3].

Factoring by Ṽ = [Ũ13 Q̃13]T and multiplying the second line by −1, the system (21) can294

be rewritten in the generalised linear form:295

([A]− k[B]) {Ṽ} = 0, (23)

with296

[A] =

 0 [I2m]

−[A0ω3] −i[A1]

 ,
[B] =

[I2m] 0

0 [A2]

 .
(24)

[Is] is the identity matrix of order s.297

298

In fact, the linearisation procedure is not unique. There are several forms in the litera-299

ture. It is important to choose the one that respects the symmetry and/or other structural300

properties of the quadratic system. This brings us to one of the main assets of the SADG-FE.301

the system (23) is more interesting due to the block diagonal nature of the mass matrix [B].302

On the one hand, it makes it possible to obtain a hermitian matrix and definite positive. An303

important property when using GEP solvers and for which the algorithms are more robust304

and converge faster. On the other hand, it preserves the block-diagonal form of the matrix305

[A2]. The latter is a very interesting feature since the inverse of [B], and thus of [A2], is the306

block diagonal matrix built of the inverse of the blocks:307

[B−1] =

[I2m] 0

0 [A−1
2 ]

 , (25)

with:308
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[A−1
2 ] =


[α−1

0 ] 0 · · · 0

0 [α−1
1 ] · · · 0

...
...

. . .
...

0 0 · · · [α−1
n−1]

 .

These elementary inverse matrices [α−1
i ] can be computed independently and then multi-309

plied directly to construct the global dynamic stiffness matrix [Dg] = [B−1A]. Consequently,310

the assembly of the mass matrix [Mg] is unnecessary. A computation-time expensive oper-311

ation is spared. Furthermore, the GEP is again reduced to SEP form. Appropriately, the312

problem (23) becomes:313

([Dg]− k [I4m]) {U} = 0. (26)

This transformation, for problems with large numbers of Degrees Of Freedom (DOFs) leads314

to a significant gain in computation time.315

IV. NUMERICAL RESULTS316

In order to validate the SADG-FE method, numerical examples are presented in this317

section. First, the Lamb waves characteristics are computed for a homogeneous plate. The318

solutions are then compared with the exact ones. Next, a functionally graded material319

example is analysed and compared with results in the literature. Afterwards, the potential320

advantages of the method are discussed.321

A. Homogeneous plates322

1. Generalities323

Let a homogeneous isotropic aluminium plate whose properties are given in Table (I). In324

this table, cL, cT and ν are longitudinal celerity, transversal celerity and Poisson coefficient,325

respectively. The thickness of the plate is meshed into n = 60 linear Lagrange elements326

(p = 1) of the same size hj = h. The global bilinear form is used with the penalty factors327

ε = −1, α = 30/h, γ = 0 and θ = 0 to insure stability. The averaged flux SDG method and328
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the SIPG method are used. The same configuration holds for the rest of this work. The329

SEP (26) is solved for a frequency range f = (0.00 : 0.01 : 1) in MHz. Thus, the minimum330

recommended requirements for a finite element discretisation are met. The meshing criterion331

for real solutions min(Λ)
h

> 10 where Λ = cT/f is the wavelength, is largely satisfied.332

2d (m) cL (m/s) cT (m/s) ν
8e-3 6440.8 3125.4 0.346

Table I. Properties of an aluminium plate.

For a given real frequency range ω, the modal deformations and the corresponding wave333

numbers describing the dispersion relation k(ω) are obtained. The solutions k can be either334

real, imaginary or complex numbers. A first post-processing consists in classifying these335

solutions into propagative modes (k real), non-propagative modes (k imaginary) and inho-336

mogeneous modes (k complex). For the sake of convenience and clarity, only the rightgoing337

modes (k positive) are presented and the quantities are dimensionless. In what follows, all338

the presented results are preformed in MATLAB. Also, the interval of the imaginary part is339

limited to {Im(kd) ∈ [−5,+5],∀f} (see [4]).340

2. Dispersion properties341

Figure 3. Dispersion curves D(kd,Ω) of propagative Lamb modes for an isotropic plate: numerical

results obtained by the SAFE-DG (black dots) against symmetrical (S) and anti-symmetrical (A)

modes of the the analytic solutions plotted in solid blue and red lines, respectively (color online).
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The Figure (3) shows the numerical dispersion curves of the SADG-FE (black dots)342

obtained from the resolution of (26). The figure depicts the dimensionless frequency as343

a function of the product of the wave number and half-thickness <(kd). The results are344

compared to the exact solutions for the first eight propagative Lamb modes. The analytic345

curves corresponding to the symmetric modes are plotted with a solid blue lines, while the346

anti-symmetric modes are represented by solid red lines. A very good agreement is observed.347

Figure 4. Comparison of numerical results (black dots) against analytical solutions of Lamb mode

shapes at the frequency of 1MHz, U1(x1) and U3(x1) are in blue and red lines, respectively [2]

(color online).

To complete the validation of the discontinuous solution, the mode shapes of Lamb modes348

are compared with analytical ones. The Figure (4) illustrates the discontinuous modal349

deformations: the profiles of the components U1(x1) and U3(x1) for symmetric and anti-350

symmetric modes at the frequency of 1MHz. Each element is plotted independently in a351

discontinuous manner (black dots). The analytic solutions are plotted in a blue line for the352

component U1 and red line for component U3. The amplitudes are normalised with respect353

to the maximum. Likewise, a very good match is obtained.354

The SADG-FE is now compared to the SAFE method. The Figure (5) shows the com-355

plete patterns of inhomogeneous (magenta square and green diamond markers) and non-356
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Figure 5. Projection in the complex plane of dispersion curves D(kd,Ω) of Lamb modes for an

isotropic plate: inhomogeneous (magenta square and green diamond markers) and non-propagative

(red triangle marker) Lamb modes of the SADG-FE compared to SAFE results (black dots), (color

online).

propagative (red triangle marker) Lamb modes (for more details see [35]). Results of the357

SAFE method are plotted in black dots using the same discretisation. Utterly, the numerical358

dispersion curves show an excellent agreement. An excelent agreement is also found for the359

propagative modes. However, results are not shown here for conciseness.360

B. Functionally graded materials361

In the following, a ceramic-to-chrome material is considered. This FGM was already362

studied and results are available in the literature [24, 36, 37]. The two isotropic material363

properties are reported in Table (II).364

Material λ (GPa) µ (GPa) ρ (kg/m3)

chrome 74.2 102.5 7190

ceramic 138 118.11 3900

Table II. Ceramic and chrome properties used for the FGM plate.

The surface (x = −d) of the plate is 100% chrome (Cr), while at the other side (x = +d)365
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Figure 6. Dispersion curves of the phase velocity Cp of Lamb modes for a FGM isotropic free plate:

the SADG-FE numerical results depicted using red dots against the results in [24] plotted in black

solid lines. (color online).

the plate is ceramic (Cer). The coefficients through the thickness are expressed as follows:366

CFGM(x) =
(
CCer − CCr

)(x+ d

2d

)Pp

+ CCr, (27)

where C represents one of the material characteristics (ρ, µ or λ), Pp is a positive integer.367

368

The Figure (6) depicts the obtained dispersion curves of the phase velocity Cp as a369

function of the dimensionless wave number k2d (red dots). The thickness (2d = 12e−3 m)370

is partitioned using 90 linear Lagrange elements. The calculations are carried out up to a371

frequency f = 3 MHz. The quantities are normalised using the chrome parameters. The372

distribution is taken to be a linear function then Pp = 1. In this figure, results are compared373

to those found in [24] plotted in solid thick lines. The obtained results are in very good374

concordance.375

C. Potential of the SADG-FE method376

Many high-order FE formulations for wave propagation simulation are well developed in377

the literature. Recent comparisons and studies of these methods with respect to their suit-378

ability are performed in [16, 22, 38]. Generally, the results have demonstrated their efficiency379
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when dealing with guided waves and an improved accuracy compared to hp low-order FEM.380

Particularly, the DG-FEM is more advantageous [22, 38]. Firstly, it allows for lower polyno-381

mial degree and sampling ratios to be used to get high accuracy. Secondly, it is found more382

convenient for modeling heterogeneous media. Consequently, the SADG-FE method benefits383

from the flexibility in treating complex properties, geometries and obtaining an exponential384

convergence for locally smooth solutions in high frequencies. Thus, handling naturally both385

interface continuity and free boundary conditions allows very accurate resolutions of guided386

waves characteristics.387

Indeed, the numerical examples presented in this paper are performed only on isotropic388

materials and using linear Lagrange elements (p = 1) with at least ten points to cover389

the wave length. The obtained results are in excellent agreement with those found in the390

literature. This constitutes a clear validation of the method, which is the first essential391

step to further developments dealing with the wave-damage interaction problems [4, 24]. In392

addition, the proposed approach can be used for any polynomial order and for generally393

anisotropic multi-layered media as well as axi-symmetric cylinders, since they all deal with394

the same differential system (5).395

The use of higher order polynomials will provide several advantages over the standard396

method. Indeed, contrary to the continuous Galerkin FEM, precision can be improved by397

merely increasing the order of polynomials without mesh refinement. The stiffness matrix398

assembly operations will thus be more efficient and henceforth less time consuming to achieve399

the same a very good precision.400

Moreover, the local mass matrix enables to form directly a standard eigenvalue problem401

(see section III), instead of a generalised one. This form can be solved more efficiently since402

there exists many powerful and well suited algorithms, especially for the symmetric case403

(SIPDG).404

Therefore, the developed method has the potential to save a significant computational405

time both in the assembling and numerical resolution. A precise quantification of these gains406

necessitates a complete study and is currently in progress.407

22



V. CONCLUSIONS408

In this paper, a high-order Semi-Analytical Discontinuous Galerkin Finite Element409

(SADG-FE) method for the computation of Lamb modes characteristics in plates is pre-410

sented. The homogeneous isotropic case with free boundary conditions is modeled. There-411

with, the extension of the method to functionally graded material plates is shown to be412

straightforward. Afterwards, numerical results showed that the proposed method provides413

an excellent agreement with those obtained in the literature. In the aftermath, it was found414

that the proposed method provides two main features. 1) The algebraic system that can415

easily and directly transformed into a standard eigenvalue problem, with a partitioned form416

of elementary blocks well suited for parallelisation, 2) The use of high order elements (p ≥ 3)417

can lead to a double gain strategy: the dispersion properties can be computed with fewer418

elements and thus reducing computational time and achieving high order accuracy.419

These properties can gave rise to a high performance tool. Following the conclusions420

above, the two dimensional wave-guide case is to be developed in a future work.421
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