

THERMODYNAMIC ANALYSIS OF HIGH-PRESSURE SONOREACTOR IMPACT OF CHOSEN TECHNICS IN EFFICIENCY AND HEAT RELEASE PROBLEM

Bertrand GUATARBES, Laurent MARLIN, Guillaume BAREIGTS, Frederic PLANTIER

Laboratory of Thermodynamics and Energetics of Complex Fluids LFCR UMR 5150

ANGLET 18/05/2016

Bubbles creation:

- Temperature increase: Boiling
- Pressure decrease: Cavitation

Cavitation, destructive effect but useful in nature and in industry:

*Gogate, P. R. (2008). "Cavitational reactors for process intensification of chemical processing applications: A critical review." Chemical Engineering and Processing 47: 515-527

Problematic:

Study of acoustic cavitation at laboratory scale for high pressure till **150 Bar**

Development of high-pressure sonoreactor

* Mohammadian, E., Junin, R., Rahmani, O., Ahmad Kamal Idris (2013). "Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding." <u>Ultrasonics</u> 53: 607-614.

STUDY AT AMBIANT PRESSURE

Utilization of piezoelectric transducer

 $f_R = 40 \ kHz$ $P = 50 \ W$ $m = 286 \ g$

PZT Material Aluminum horn

Ultrasonic bath

Technicle easier to enforce at ambiant pressure* than at high-pressure

 H_2O+CO_2 degassed in a crystallizer

main training plane of cavitation bubbles

Sonotrode

* Parag R. Gogate, Vinayak S. Sutkar, Aniruddha B. Pandit, (2011) "Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems", <u>Chemical Engineering Journal</u> **166**: 1066-1082

STUDY AT HIGH-PRESSURE

Design of high-pressure sonoreactor:

* Developed in collaboration with Dynaflow Inc (http://www.dynaflow-inc.com/Products/ABS/Acoustic-Bubble-Spectrometer.htm)

BINARY MIXTURE H₂O + CO₂

CO2 dissolved in pure water

BOILING OR CAVITATION BUBBLES ?

Switch on power W from 0 to 50W

Increase of pression
Degassing CO2

- 🕅 🕶 🧔 🌠 -

VARIATION OF PRESSURE WITH TIME

Impact of acoustic power for degassing

7

DEGASSING INTENSITY FACTOR K

K = *Identification criterium of bubbles*

8

Identification of bubble category

P=f(W)

dPac/Ps for W=50W

Inside transducer much better technicle for efficiency !

HEAT RELEASE PROBLEM

Thermic study of ultrasonic transducer

11

PHENOMENOLOGICAL STUDY

Use of imaging to better understand

 H_2O+CO_2 Psat(CO₂)=30Bar T=25°C

Predominantly bubbles generated by cavitation under horn and in liquid

EVOLUTION OF BUBBLES IN SONOREACTOR

A complex phenomenon !!!

Sonocrystallization of gas clathrate, also a complex process*...

Process used for a long time but little understood

- Fundamental action: nucleation help (but counterproductive in growth phase)
- Bibliography: several ways to analyze

1st vision of phenomenon

Local Supersaturation

Labile region

dP > 0

Pressure

2nd vision of phenomenon •

Interface area increase between gas and liquid**

(a) 0W (b) 150W Surface photograph of the distilled water.

Temperature hydrate formation as a function of subcooling relative to the equilibrium line (AB) and the spinodal line (CD; supersaturation limit).

> Clathrate Hydrates of natural gases 3rd edition E. Dendy Sloan Carolyn A. Koh

— 讷 😳 💋 🎽

* Zhang, Z., Sun, D.-W., Zhu, Z. and Cheng, L. (2015) "Enhancement of Crystallization Processes by Power Ultrasound: Current State-of-the-Art and Research Advances." <u>Comprehensive Reviews in Food Science and Food Safety</u>, **14**: 303–316

** Sung-Seek Park, N.-J. K. (2013). "Study on methane hydrate formation using ultrasonic waves." Journal of Industrial and Engineering Chemistry 19: 1668-1672

Sonocrystallization of gas clathrate, also a complex process*...

Process used for a long time but little understood

Fundamental action: nucleation help (but counterproductive in growth phase)

Bibliography: several ways to analyze

1st vision of phenomenon

Effect of cavitation

dP < 0 cavitation

hydrate formation as a function of subcooling relative to

Local Supersaturation

Temperatu

the equilibrium line (AB) and the spinodal line (CD; supersaturation limit). Clathrate Hydrates of natural gases 3rd edition E. Dendy Sloan Carolyn A. Koh 2nd vision of phenomenon

Interface area increase between gas and liquid**

(a) 0W (b Surface photograph of the distilled water.

dP

^c Zhang, Z., Sun, D.-W., Zhu, Z. and Cheng, L. (2015) "Enhancement of Crystallization Processes by Power Ultrasound: Current State-of-the-Art and Research Advances." <u>Comprehensive Reviews in Food Science and Food Safety</u>, **14**: 303–316

** Sung-Seek Park, N.-J. K. (2013). "Study on methane hydrate formation using ultrasonic waves." Journal of Industrial and Engineering Chemistry 19: 1668-1672

(b) 150W

EVOLUTION OF BUBBLES IN SONOREACTOR

From simple emulsion to cavitation...

In order:

- Emulsion H₂0/Cyclopentane 640fr/s (=Slow motionX25)
- Comparison with/without ultrawave
- Emulsion H₂0/Cyclopentane 24fr/s
- Cavitation Cyclopentane 640fr/s
- Cavitation H₂0/CO₂ Ps=30Bar

Always presence of bubbles ?

SONOCRYSTALLIZATION

Sonocrystallization of gas clathrate, also a complex process*...

Process used for a long time but little understood

- Fundamental action: nucleation help (but counterproductive in growth phase)
- Bibliography: several ways to analyze

1st vision of phenomenon

Local Supersaturation

Labile region

dP > 0

2nd vision of phenomenon

Interface area increase between gas and liquid**

(a) 0W Surface photograph of the distilled water

Local fall of pression: cavitation

dP<0

Primary reason ?

Temperatur hydrate formation as a function of subcooling relative to the equilibrium line (AB) and the spinodal line (CD; supersaturation limit).

Effect of cavitation

dP < 0cavitation

Clathrate Hydrates of natural gases 3rd edition

E. Dendy Sloan Carolyn A. Koh

For sonocrystallization, heat release to avoid !!!

^c Zhang, Z., Sun, D.-W., Zhu, Z. and Cheng, L. (2015) "Enhancement of Crystallization Processes by Power Ultrasound: Current State-of-the-Art and Research Advances." Comprehensive Reviews in Food Science and Food Safety, 14: 303–316

** Sung-Seek Park, N.-J. K. (2013). "Study on methane hydrate formation using ultrasonic waves." Journal of Industrial and Engineering Chemistry 19: 1668-1672

Strong difference of efficiency with inside and outside ultrasonic transducer

- With inside ultrasonic transducer: heat release problem
- In sonoreactors, different complex phenomenons
- Sonocrystallization, complex process with primary reason: cavitation ?
 - For sonocrystallization, outside ultrasonic transducer better choice

Sonocrystallization of CO₂ clathrate hydrate or organic

Gas Clathrate = Host molecule that traps guest molecule (if host molecule H_2O = hydrate)

Development of new high-pressure sonoreactor without release heat problem

With ultrasound, can we promote synthesis ?

Thanks

FAST IMAGING TO STUDY

Video at various speed acquisition (24 à 1200 frame/s)

In order: Mixture H₂O/CO₂ Ps=30Bar - Slow motion (X4) (Stationary bubbles, streaming, coalescence) - Normal speed - Central bubble 1200im/s neon light (cycle 0,01s) - Central bubble 1200im/s zoom (homogeneous nucleation, coalescence)

H₂O+CO₂, Pini=Ps(CO₂)=30Bar

