

NTF-RINT, a new method for the epidemiological surveillance of MDR Mycobacterium tuberculosis L2/Beijing strains

Bernice J. Klotoe, Natalia Kurepina, Elena Zholdibayeva, S. Panaiotov, Barry N. Kreiswirth, Richard Anthony, Christophe Sola, Guislaine Refrégier

▶ To cite this version:

Bernice J. Klotoe, Natalia Kurepina, Elena Zholdibayeva, S. Panaiotov, Barry N. Kreiswirth, et al.. NTF-RINT, a new method for the epidemiological surveillance of MDR Mycobacterium tuberculosis L2/Beijing strains. Tuberculosis, 2020, 120, pp.101894. 10.1016/j.tube.2019.101894. hal-02502306

HAL Id: hal-02502306

https://hal.science/hal-02502306

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 NTF-RINT, a new method for the epidemiological

2 surveillance of MDR L2/Beijing strains Mycobacterium

- 3 tuberculosis
- ⁴ Bernice Klotoe, ²Natalia Kurepina, ³Elena Zholdibayeva, ⁴S. Panaiotov, ²Barry N.
- 5 Kreiswirth, ⁵Richard Anthony, ¹Christophe Sola*, ¹Guislaine Refrégier*.
- 6 ¹Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
- 7 Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
- 8 ²Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey,
- 9 USA.
- ³National Center for Biotechnology, Astana, Kazakhstan.
- ⁴ National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria.
- ⁵RIVM Bilthoven The Netherlands.
- *co-corresponding authors
- 15 **Keywords:** atypical Beijing; typical Beijing; MDR-TB; molecular epidemiology
- 17 Abstract

14

16

- The most widely discussed antibiotic-resistant tuberculosis strains ("W" and "B0/W148",
- "CAO") belong to L2/Beijing Lineage and are characterized by IS6110 insertion sequences at
- 20 the NTF locus. We present a high-throughput, microbead-based method, called NTF/RINT
- 21 for detection of IS in NTF and Rifampicin and Isoniazid Typing. This method provides
- 22 tuberculosis diagnostic confirmation, screens for the so-called modern L2/Beijing sublineage
- and detects mutations involved in resistance to Rifampicin (RIF) and Isoniazid (INH).

1. Introduction

Mycobacterium tuberculosis L2/Beijing is responsible of around one fifth of tuberculosis cases around the world with the highest prevalence in Asia (50%) and Eastern Europe (27.9%). In contrast, it is rare in South America and in Africa except for African coastal areas and South Africa [1]. The L2/Beijing lineage harbors many IS6110 copies and most strains have a specific spoligotyping profile: absence of spacers 1-34 and presence of most of 35-43 spacers in the CRISPR region previously referred to as DR region [2]. The L2/Beijing is subdivided in two major groups based on the IS6110 copy numbers in a region usually referred to as NTF region (between Rv3128c and Rv3129 genes, position 3494463-3493908 in H37Rv AL123456.3, GI:444893469): "modern" (also referred to as "typical") and "ancient" (also referred to as "atypical") Beijing strains [3].

Some of the largest most successful tuberculosis clusters belong to the so-called modern Beijing sublineage characterized by 1) at least one IS6110 insertion sequence in the 3' part of NTF region taken in its original orientation (**Fig. 1**), and 2) two mutations in 3R genes (*mutT2* and *ogt* respectively at positions 58 and 12) [4]. The modern sublineage occurs worldwide probably as a result of massive population migration, different immunogenic properties linked to higher virulence [5, 6] and/or faster progression from latent infection to active tuberculosis [7]. One of the reason for this increased virulence could be linked to PPE38 deletion, a genotype preventing the secretion of several antigens that was found solely in modern Beijing strains [8]. One of the first multi-drug resistant (MDR) epidemics reported was caused by a modern Beijing strain termed "W", characterized by an IS6110 insertion in the 5' end of NTF locus in addition to the one on the 3' end characteristic of modern sublineage [9]. More recent L2/Beijing MDR outbreaks involve other modern isolates in Europe/Russia (B0/W148, VNTR 100-32), and central Asia (CAO, VNTR 94-32) [10-12].

In this study, we aimed at developing a new high throughput technique to 1) diagnose tuberculosis detecting IS6110 insertion, 2) classify different Beijing genotype strains by typing IS6110 insertion in the NTF locus, and 3) identify drug resistance markers. We previously developed the TB-SPRINT technique on Luminex technology that targets main resistance mutations associated with Rifampicin (RIF) and Isoniazid (INH) resistance simultaneously with spoligotyping (TB-SPRINT=TB-SPOL+TB-RINT, i.e. 43-Plex +16-Plex [13]. We propose here "NTF/RINT" a technique that combines RINT to the detection of IS6110 in the NTF region. With this new technique, users will be able to classify strains in

different L2/Beijing clusters according to genotype and resistance profiles. This may contribute to the improvement of the L2/Beijing epidemiological surveillance.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

56

57

2. Material and Methods

2.1. Material origin and characterization

This study relies on two sets of strains. Forty-seven (n=47) clinical strains from New York City (NYC), USA, were used to set up the method (sample set #1). Eighteen of them belonged to the first large historical "W" MDR outbreak reported in NYC; double-checked reference genotypes and partial phenotype characterizations were available for all these strains. They were extracted by Cetyl-Trimethyl-Ammonium Bromide (CTAB) method as described previously (van Soolingen, 1995). A second set (sample set #2) of 142 L2/Beijing clinical strains from Kazakhstan was used as a validation set. Spoligotype pattern and full genotype prediction as characterized by two methods (TB-SNPID, TB-SPRINT) were available [14]. DNA was extracted by standard thermolysis on loops of solid cultures.

Genotype information concerning the IS6110 insertions in the NTF locus for the set #1 was independently confirmed on agarose gel using slightly amended Plikaytis procedure: IS60 probe was changed to IS60B = 5' TGATGTGCTCCTTGAGTTCG 3' to amplify a 355 bp fragment [9]. For set #2, it was indirectly studied by specific mutation at amino acid 58 in *mutT2* included in TB-SNPID assay [15]. Genotype information concerning resistance loci was obtained by TB-SNPID and by TB-SPRINT [13]. BCG Paris strain and a sample from *Salmonella enterica* called "Sara8" were used as negative controls.

2.2. NTF/RINT principle, primers and, probes

For the IS6110 typing in NTF, regarding amplifications, we used previously published primers for detecting IS6110 sequence [16] and designed new primers to amplify fragments overlapping NTF insertion sites: NTF5'_Fw: GGCTGCCTACTACGCTCAAC; NTF5'_Rv1: TCGACAACCCACTTCCCATG; NTF3'_Fw_new: TCACCACTGCTGCGTAATTCG; NTF3'_Rv_new: CCTGACATGACCCCATCCTTTC. For detection, we used a published oligonucleotide sequence for IS6110 sequence [17] and designed sequences straddling NTF IS6110 and sequences detect targeted insertions: NTF5'-probe to the (GGCGGTTCAACATGGTGAC); NTF3'-probe (ATGAGGTCGTGAACCGCC). Probes were coupled to microbeads as recommended by the manufacturer (www.luminex.corp).

The RINT part of NTF/RINT targets the same SNPs as those described by Gomgnimbou et al. (2013): 1) the *rpoB* mutations 435GTC, 445GAC, 445TAC, 450TTG, 450TGG; 2) the *katG* mutations 315ACC and 315AAC; 3) the inhA promoter mutations -15T and -8A. Please note that *rpoB* mutations are numbered according to their position in *M. tuberculosis* H37Rv strain annotation GenBank **AL123456.3**, GI:444893469, in contrast with previous studies referring to *E. coli* positions [13].

All primers and probes were obtained from integrated DNA Technologies (IDT, Leuven, Belgium). The two spanning probes present in the TB-SPRINT assay development were not included here.

2.3. Amplification and detection on Luminex

The amplification reaction mixture contained $2\mu L$ of DNA and $23~\mu L$ of reaction mixture (0.2 mM dNTPs, $1\mu M$ mix of primers, 0.25U GoTaq Flexi, 1.5mM MgCl2, 1X GoTaq buffer) as recommended by the manufacturer (Promega Corp., Fitchburg, WI). Cycles consisted in 3 min at 96°C and 35 cycles of 30s at 96°C, 30s at 60°C, and 30s at 72°C. The rest of the procedure was performed as for TB-SPRINT [13] and hybridized microbeads samples were analyzed on a Luminex 200® device (Luminex, Austin, TX).

2.4. Data interpretation

Median Fluorescent Intensities (MFI) reported by the Luminex 200® device were analyzed as follows: for the presence/absence of IS6110 and its insertions in NTF region, the standard cut-off for presence (MFI=150) was used and adjusted when necessary based on control samples values. For SNP genotyping in *rpoB*, *katG* genes and inhA promoter, the genotypes were inferred as described in Klotoe et al (2018) using allele-call method and maximal MFI [18] except when the DNA concentration was very low as evidenced by low signals for all markers, or rare erroneous inference in some of the controls due to high background (inhA promoter -8A probe and *rpoB* 435GTC probe). In those cases, interpretation was manual.

3. Results

116

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

117 3.1. NTF/RINT test design

NTF/RINT test aims to identify likely epidemic MDR L2/Beijing strains through targeting IS6110 sequence, its insertion at two specific locations in the NTF locus and the mutations most frequently implicated in RIF and INH resistance (**Fig. 2**). Raw data are Median Fluorescent Intensities (MFI) obtained through a Luminex platform that after interpretation are converted to positive or negative values (black/white squares in **Fig. 2B**, **Supplementary Material 1**).

3.2. Sensitivity and specificity on a reference laboratory sample

Applied on the reference sample set, NTF/RINT produced bimodal MFI values allowing us to discriminate positive from negative signals. Genotypes were inferred accordingly. For the *katG* 315 position, no allele produced a positive signal for NYC outbreak strains in accordance with them carrying a double mutation (AGC>ACA; **Supplementary Material 1**; **Table 1**). Three other genotypes were declared Not Determined (ND) although reference method declared them "wt". A single allele of one strain was discordant with the reference method TB-RINT (locus *rpoB* 450 for strain 1595). Altogether, 347 over 376 loci were assigned a genotype and 346 were concordant with the reference (99.7%). The method detected the 18 outbreak strains, 18 modern L2/Beijing and 11 strains belonging to ancient Beijing clade or to other lineages, and a total of 24 MDR (**Table 1**).

3.3. Evaluation on clinical strains from Kazakhstan

- A set of 142 Beijing clinical strains from Kazakhstan independently characterized with TB-
- SPRINT and TB-SNPID methods were subjected to NTF/RINT. All but one (n=141) were
- detected as modern Beijing by NTF/RINT as compared to 142 as detected by the reference
- methods (*mutT2* mutation at position 58 detected by TB-SNPID). Sensitivity to detect modern
- L2/Beijing was thus 99.6% while specificity could not be evaluated due to the composition of
- the sample (absence of ancient L2/Beijing). No strains were detected that would carry solely
- an insertion at the 5' end of the NTF locus.
- Regarding the detection of resistance mutations, 130 strains (91.5%) and 980 loci out of 994
- data points (98.6%) retrieved genotypes in full accordance with the reference
- (Supplementary Material 1). A total of 101 isolates were correctly predicted as MDR-
- modern Beijing, corresponding to a specificity of 93.5% (**Table 2**). Thirty out of a total of 34

- strains predicted to be non-MDR were detected as such by NTF/RINT (sensitivity=88%).
- MDR prediction could not rely on chance (Cohen's Kappa =0.81).

4. Discussion and conclusion

We set up NTF/RINT method to follow-up resistant Beijing strains by identifying most common RIF and INH resistance mutations and by identifying IS6110 insertions in the NTF locus. Many IS6110 insertions have been described in Beijing strains but only the one inserted on the 3' end of NTF has been linked to a group of clinical relevance, namely "modern Beijing" sublineage. The NTF-RINT assay is directly useful to tuberculosis researchers interested in bridging current standards to the more classical test set up by Plikaytis. The resulting assay is both sensitive and specific for all the mutations targeted.

Altogether in this study, NTF/RINT identified 125 modern L2/Beijing MDR strains, among which 18 belonged to the "W"-strain branch (from the NYC outbreak), and four MDR ancient Beijing. We identified a total of sixteen clusters according to genotypes (10 of which are represented in **Fig. 2**), and seven clusters regarding classification and phenotype: 1) MDR W-strain modern Beijing (n = 18), 2) MDR modern Beijing other than W (n = 108), 3) INH^R modern Beijing (n = 18), 4) susceptible modern Beijing (n = 29), 5) susceptible ancient Beijing (n = 7), 6) MDR ancient Beijing (n = 4), 7) INH^R ancient Beijing (n=1).

Regarding Beijing classification detection and sublineage prevalence, the dominance of modern strains matches previous observations with a low prevalence of ancestral Beijing except in Asia and South-Africa [10, 12, 19]. We detected no ambiguous cases where strains would carry solely an insertion at the 5' end of the NTF locus. This was also true for the L2/Beijing subsets from Peru, Mozambique, Bulgaria, Pakistan (data not shown). Merker et al (2015) have reported L2/Beijing strains with this type of insertion but their analysis reported any type of insertion whereas NTF/RINT targets only sequences straddling over IS6110 at the exact position described by Plikaytis et al (1994). The large study by Shitikov et al. also observed no such case, and in contrast, identified a perfect link between the IS6110 insertion at the 3' end of NTF and the affiliation to the modern subbranch of Beijing [4]. Concerning "W"-strain subbranch, its typical signature was detected solely in samples from the USA. This matches its historical localisation and indicates no spreading of the epidemics.

Regarding resistance levels, we detected a very high prevalence of resistance among modern Beijing strains as described on the complete study on Kazakhstan [14]. These strains actually belong to the already well-known 94-32 epidemic cluster.

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

Limitations of this test in detecting MDR result from the detection of only the most common antibiotic resistance mutations. We screened RIF Resistance due to 445 and 450 *rpoB* mutations that have shown to represent 80-91% of all RIF Resistance and INH resistance due to *katG* 315ACC and 315AAC mutations responsible for 70% of INH resistance [13]. Noteworthy, mutations other than the targeted ones lead to low signals causing either indeterminations or erroneous assignation. As an example, the single case of discordance in the set #1 which concerned *rpoB* 450 locus correlated with the 452CCG mutation also conferring resistance. Altogether, NTF/RINT test may be useful for first-line screening for any first-line drugs resistance [15].

As compared to other genotyping methods predicting resistance and/or classification, NTF/RINT is relatively cost-effective (~4.5 euros of reagents for our laboratory in France in 2017-2019 including expenses for controls) due to the use of a restricted number of only 17 targets and the absence of need for the more costly xTAG® Luminex microbeads as used by TB-SNPID [15]. Another characteristic of this technique is its high throughput since in one working day, 90 samples can be processed. In contrast, testing smaller batches of samples with this high-throughput method does not reduce turn-around time and increases the cost per sample as the same number of controls is needed irrespective of the number of samples. This test thus rather suits batch testing for retrospective studies for exploration or quality-control. This test is best suited to settings where the circulating MDR-Beijing belong to several of the subgroups detected by the test (W-strains, modern Beijing, ancient Beijing). This is the case mainly in USA, South-Africa, Pacific region, former Soviet Union countries, and even more in China where ancient- Beijing varies between ~10% to more than 44% [18]. In that case, our method reaches a high discriminatory power for a very high throughput and low cost. It can also serve as a control for species identification and check for resistance mutation detection. The robustness of the test in trained hands makes it a priori suitable to further uses of cartridges DNA remnants as can be retrieved from Genexpert's to confirm and/or refine screening [20]. Studies measuring sensitivity and reproducibility in different settings to evaluate robustness of the whole protocol should be performed before large scale implementation. In addition to providing the detection of IS insertions in NTF, this test serves as a proof-of-concept for a new type of assay as compared to SNP or spacer detection

previously set-up on microbead-based technique, namely the detection of insertions or deletions. This concept may later serve detecting other types of insertions/deletions, such as deletion of PE-PPE genes involved in modern Beijing strains virulence [20]. The NTF-RINT test is also meant to be expanded to a 50-Plex IS6110 and SNPs-based method dedicated to L2 genotyping. This second step remains pending.

215

216

210

211

212

213

214

Acknowledgements

- François-Xavier Weill is acknowledged for giving Salmonella DNA sample Sara8 to serve as negative control for IS6110 detection. Sarah Sengstake is acknowledged for contribution to
- 219 the genotyping of set #2 by TB-SNPID method.

220

221

Conflict of interest

- Bernice Klotoe was partly founded by Beamedex®, a society that sells microbead-based kits.
- The society had however no part in the decision of what new tests could be set-up and this
- was entirely decided by public researchers Christophe Sola, Guislaine Refrégier, with the
- 225 consent of Natalia Kurepina and Barry N. Kreiswirth. Guislaine Refrégier acknowledges one
- 226 travel grant by Luminex® on another project regarding SNP detection. Luminex® is a
- 227 manufacturer of microbead-based instruments and microbeads.

228

Figure legends Figure 1- NTF structure showing IS6110 positions and orientations compared to H37Rv reference genome (AL123456.3, GI:444893469). Figure 2 - Evolutionary scenario of IS6110 in NTF the locus of Beijing Strain (A) and corresponding identified clusters according to allele presence/absence (B). Table legends Table 1- Concordance between NTF/RINT and controls on the reference samples set. Table 2- Prediction of modern MDR Beijing on a Kazakhstan sample by NTF/RINT versus TB-SPRINT/TB-SNPID

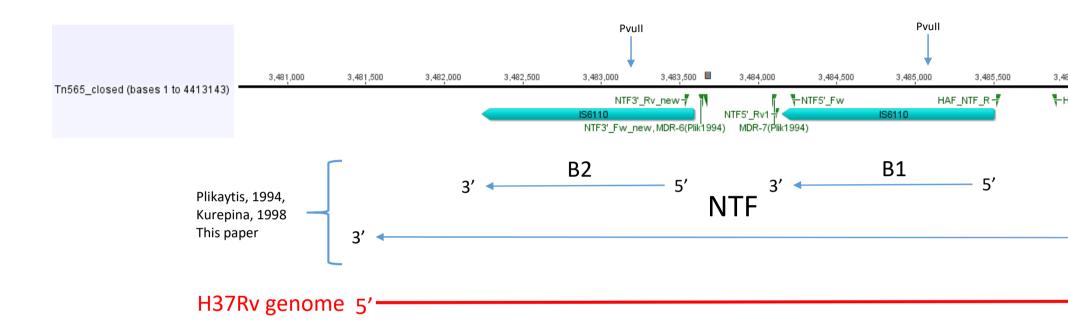
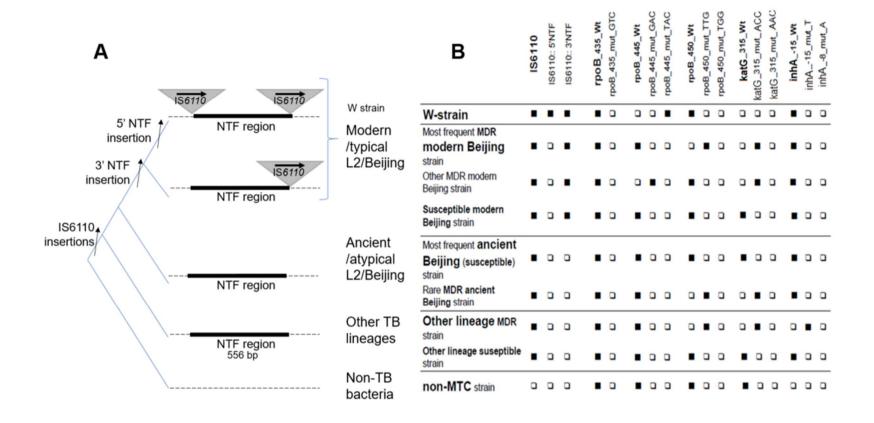



Figure 1: NTF structure showing IS6110 positions and orientations compared to H37Rv reference genome.

<u>Figure 2</u>: Evolutionary scenario of IS6110 in NTF the locus of Beijing Strain (A) and corresponding identified clusters according to allele presence/absence (B).

Table 1- Concordance between NTF/RINT and controls on the reference samples set.

N°	#	NY	NTF/RINT prof	iles		Control profiles		
Out			10 profile	R. loc. profile	GDST	IS6110 on gel	TB_RINT or seq	PhDST
1	2015	YES	2 IS6110··NTF	435?/445TAC/315?	MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
2	2706	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
3	3452	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
4	3267	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
5	6138	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
6	8121	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
7	16852	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
8	1582	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
9	2470	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
10	15183	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
11	3542	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
12	4953	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
13	19556	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
14	13223	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
15	19996	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
16	1858	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	MDR
17	19962	YES	2 IS <i>6110</i> ::NTF		MDR	2 IS <i>6110</i> ::NTF	445TAC/315C	ND
18	13250	YES	2 IS <i>6110</i> ::NTF		R ^R	2 IS <i>6110</i> ::NTF	445TAC/315C	ND
19	11455	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	SUSC
20	14031	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	SUSC
	14907	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	SUSC
21					SUSC		WT/WT	
22	15803	NO	1 IS <i>6110</i> ::NTF			1 IS <i>6110</i> ::NTF		SUSC
23	16377	NO NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	SUSC
24	7716		1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	ND
25	7718	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	ND
26	20935	NO	1 IS <i>6110</i> ::NTF		ND	1 IS <i>6110</i> ::NTF	WT/WT	ND
27	12783	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	ND
28	6595	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	ND
29	20251	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	ND
30	20217	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	ND OB
31	17316	NO	1 IS <i>6110</i> ::NTF		SUSC	1 IS <i>6110</i> ::NTF	WT/WT	SR
32	15550	NO	1 IS <i>6110</i> ::NTF		MDR	1 IS <i>6110</i> ::NTF	450TTG/-15T	ND
33	16870	NO		450TTG/315C	MDR	1 IS <i>6110</i> ::NTF	450TTG/315C	ND
34	3219	NO	1 IS <i>6110</i> ::NTF		I ^R	1 IS <i>6110</i> ::NTF	WT/315C	SIR
35	10598	NO		450TTG/315C	MDR	1 IS <i>6110</i> ::NTF	450TTG/315C	SIER
36	11877		1 IS <i>6110</i> ::NTF		ND/ I ^R	1 IS <i>6110</i> ::NTF	WT/315C	ND
37	12766	NO	IS6110	WT/WT	SUSC	IS6110	WT/WT	SUSC
38	12360	NO	IS6110	WT/WT	SUSC	IS6110	WT/WT	SUSC
39	20082	NO	IS <i>6110</i>	WT/WT	SUSC	IS6110	WT/WT	ND
40	22661	NO	IS <i>6110</i>	WT/WT	SUSC	IS <i>6110</i>	WT/WT	ND
41	33452	NO	IS <i>6110</i>	WT/WT	SUSC	IS <i>6110</i>	WT/WT	ND
42	18842	NO	IS <i>6110</i>	435?/WT	ND/WT	IS <i>6110</i>	WT/WT	ND
43	12551	NO	IS <i>6110</i>	WT/WT	SUSC	IS <i>6110</i>	WT/WT	ND
44	10545	NO	IS <i>6110</i>	450TTG/315C	MDR	IS <i>6110</i>	450TTG/315C	MDR
45	11265	NO	IS <i>6110</i>	450TTG/315C	MDR	IS <i>6110</i>	450TTG/315C	MDR
46	1595	NO	IS <i>6110</i>	450TGG/315C	MDR	IS <i>6110</i>	WT/315C	ND
47	4948	NO	IS <i>6110</i>	WT/315C	I R	IS <i>6110</i>	WT/315C	ND

Outb=outbreak; GDST=Genotypic Drug Susceptibility Testing (DST); PhDST=Phenotypic DST; ND=Not Determined. I=Isoniazid; R=Rifampicin; S=Streptomycin; E=Ethionamide; SUSC=Susceptible; R/R.=Resistance; loc=locus. Seq=sequencing. The single true discordance is underlined.

 $\begin{tabular}{ll} Table 2- Prediction of modern MDR Beijing on a Kazakhstan sample by NTF/RINT versus TB-SPRINT/TB-SNPID \end{tabular}$

	Reference (TB-SNPID, TB-SPRINT, Plikaytis)					
	MDR-modern Beijing	non-MDR modern Beijing	Total			
NTF/RINT						
MDR-anc. Beijing	1	0	1			
MDR-modern Beijing	101	4	105			
non-MDR modern Beijing	6	30	36			
Total	108	34	142			

References

- 1. Demay, C., Liens, B., Burguière, T., Hill, V., Couvin, D., Millet, J., Mokrousov, I., Sola, C., Zozio, T., and Rastogi, N. (2012). SITVITWEB A publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol *12*, 755-766.
- 2. van Soolingen, D., Qian, L., de Haas, P.E., Douglas, J.T., Traore, H., Portaels, F., Qing, H.Z., Enkhsaikan, D., Nymadawa, P., and van Embden, J.D. (1995). Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol *33*, 3234-3238.
- 3. Mokrousov, I., Ly, H.M., Otten, T., Lan, N.N., Vyshnevskyi, B., Hoffner, S., and Narvskaya, O. (2005). Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res *15*, 1357-1364.
- 4. Shitikov, E., Kolchenko, S., Mokrousov, I., Bespyatykh, J., Ischenko, D., Ilina, E., and Govorun, V. (2017). Evolutionary pathway analysis and unified classification of East Asian lineage of Mycobacterium tuberculosis. Sci Rep 7, 9227.
- 5. Parwati, I., van Crevel, R., and van Soolingen, D. (2010). Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis *10*, 103-111.
- 6. Ribeiro, S.C., Gomes, L.L., Amaral, E.P., Andrade, M.R., Almeida, F.M., Rezende, A.L., Lanes, V.R., Carvalho, E.C., Suffys, P.N., Mokrousov, I., et al. (2014). Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol *52*, 2615-2624.
- 7. de Jong, B.C., Hill, P.C., Aiken, A., Awine, T., Antonio, M., Adetifa, I.M., Jackson-Sillah, D.J., Fox, A., Deriemer, K., Gagneux, S., et al. (2008). Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198, 1037-1043.
- 8. Ates, L.S., Dippenaar, A., Ummels, R., Piersma, S.R., van der Woude, A.D., van der Kuij, K., Le Chevalier, F., Mata-Espinosa, D., Barrios-Payan, J., Marquina-Castillo, B., et al. (2018). Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol *3*, 181-188.
- 9. Plikaytis, B.B., Marden, J.L., Crawford, J.T., Woodley, C.L., Butler, W.R., and Shinnick, T.M. (1994). Multiplex PCR assay specific for the multidrug-resistant strain W of Mycobacterium tuberculosis. J Clin Microbiol *32*, 1542-1546.
- 10. Casali, N., Nikolayevskyy, V., Balabanova, Y., Harris, S.R., Ignatyeva, O., Kontsevaya, I., Corander, J., Bryant, J., Parkhill, J., Nejentsev, S., et al. (2014). Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet *46*, 279-286.
- 11. Merker, M., Blin, C., Mona, S., Duforet-Frebourg, N., Lecher, S., Willery, E., Blum, M.G., Rusch-Gerdes, S., Mokrousov, I., Aleksic, E., et al. (2015). Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet *47*, 242-249.
- 12. Mokrousov, I. (2008). Genetic geography of Mycobacterium tuberculosis Beijing genotype: a multifacet mirror of human history? Infect Genet Evol *8*, 777-785.
- 13. Gomgnimbou, M.K., Hernandez-Neuta, I., Panaiotov, S., Bachiyska, E., Palomino, J.C., Martin, A., Del Portillo, P., Refrégier, G., and Sola, C. (2013). "TB-SPRINT: TUBERCULOSIS-SPOLIGO-RIFAMPIN-ISONIAZID TYPING"; an All-in-One assay technique for surveillance and control of multi-drug resistant tuberculosis on Luminex® devices. J Clin Microbiol *51*, 3527-3534.
- 14. Klotoe, B.J., Kacimi, S., Costa-Conceicão, E., Gomes, H.M., Barcellos, R.B., Panaiotov, S., Haj Slimene, D., Sikhayeva, N., Sengstake, S., Schuitema, A.M., et al. (2019). Genomic

- characterization of MDR/XDR-TB in Kazakhstan by a combination of highthroughput methods predominantly shows the ongoing transmission of L2/Beijing 94–32 central Asian/Russian clusters. BMC Infectious Diseases 19, 553.
- 15. Bergval, I., Sengstake, S., Brankova, N., Levterova, V., Abadia, E., Tadumaze, N., Bablishvili, N., Akhalaia, M., Tuin, K., Schuitema, A., et al. (2012). Combined Species Identification, Genotyping, and Drug Resistance Detection of Mycobacterium tuberculosis Cultures by MLPA on a Bead-Based Array. PLoS One 7, e43240.
- 16. Eisenach, K.D., Crawford, J.T., and Bates, J.H. (1988). Repetitive Sequences as Probes for *Mycobacterium tuberculosis*. J. Clin. MIcrobiol. *26*, 2240-2245.
- 17. Broccolo, F., Scarpellini, P., Locatelli, G., Zingale, A., Brambilla, A.M., Cichero, P., Sechi, L.A., Lazzarin, A., Lusso, P., and Malnati, M.S. (2003). Rapid diagnosis of mycobacterial infections and quantitation of Mycobacterium tuberculosis load by two real-time calibrated PCR assays. J Clin Microbiol *41*, 4565-4572.
- 18. Klotoe, B.J., Molina-Moya, B., Gomes, H.M., Gomgnimbou, M.K., Oliveira Suzarte, L., Féres Saad, M.H., Sajid, A., Dominguez, J., Pimkina, E., Zholdybayeva, E., et al. (2018). TB-ULTRA, a novel 18-Plex microbead-based method for preidction of second-line drugs and ethambutol resistance in *Mycobacterium tuberculosis* complex J Microbiol Methods *152*, 10-18.
- 19. Wan, K., Liu, J., Hauck, Y., Zhang, Y., Liu, J., Zhao, X., Liu, Z., Lu, B., Dong, H., Jiang, Y., et al. (2011). Investigation on Mycobacterium tuberculosis diversity in China and the origin of the Beijing clade. PLoS One *6*, e29190.
- 20. Alame-Emane, A.K., Pierre-Audigier, C., Aboumegone-Biyogo, O.C., Nzoghe-Mveang, A., Cadet-Daniel, V., Sola, C., Djoba-Siawaya, J.F., Gicquel, B., and Takiff, H.E. (2017). Use of GeneXpert Remnants for Drug Resistance Profiling and Molecular Epidemiology of Tuberculosis in Libreville, Gabon. J Clin Microbiol *55*, 2105-2115.