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Adaptive Interface Treatment for Aerothermal Coupling using a Discontinuous Galerkin Method

This paper presents the application of a discontinuous Galerkin method to conjugate heat transfer problems using a Dirichlet-Robin interface treatment. The use of optimal coefficients derived from a Godunov-Ryabenkii stability analysis is adapted to the discontinuous Galerkin discretization. The stability and convergence of different coupling coefficients are explored for fluid-structure interactions of varying strength. The effects of increasing the order of the polynomial approximation are examined. It was found that for weak fluid-structure interactions, the optimal coefficients provide stable and quickly converged results. However, for moderate and strong interactions, relaxation coefficients that are larger than optimal must be used to stabilize the process. Because the coupling coefficient was adapted to the polynomial order of approximation, increasing the order of the polynomial was not found to destabilize conjugate heat transfer processes using adaptive coefficients.Finally, at the end of the paper, a validation vs empirical correlations is presented.

Introduction

Conjugate Heat Transfer (CHT) is the process in which coupled thermal interactions between a solid and a fluid are both analyzed. Originally conceived in the early 1960s by Perelman [START_REF] Perelman | On conjugated problems of heat transfer[END_REF], advances in computing technology have rendered CHT analysis viable as a solution to many realworld problems. Many industrial systems involving the convection of gases over solid bodies, such as turbines and combustion chambers, are seeing increasing temperatures and larger solid temperature gradients, necessitating precise simulations of aerothermal coupling phenomena.

One method to solve CHT problems is the so-called monolithic approach, in which the fluid and the solid are solved simultaneously by a single multiphysics code that resolves the fluid and solid governing equations simultaneously. This process requires the use of specialized codes, and is thus not flexible. Another approach is to partition the system into separate fluid and solid domains, allowing the equations in each domain to be resolved by specialized solvers, with information passed between the domains at the interface [START_REF] Park | Partitioned analysis of coupled systems[END_REF]. This approach is significantly more versatile, and existing commercial codes can be applied to the appropriate domain.

However, the use of a staggered procedure to advance the separate domains in time can have a negative impact on the stability of the coupling process. The choice of interface treatment has a critical effect on the stability and convergence of CHT problems. It was demonstrated by Giles [3] that applying a Dirichlet condition to the fluid and a Neumann condition to the solid can lead to a stable staggered process. Verstraete [START_REF] Verstraete | A conjugate heat transfer method applied to turbomachinery[END_REF] compared Dirichlet-Neumann and Neumann-Dirichlet coupling procedures with several test cases, as well as with a Dirichlet-Robin approach with a predetermined coupling coefficient. A 2013 study by Errera and Chemin [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] has shown that the Dirichlet-Neumann approach can lead to instabilities for solids with sufficiently high thermal resistance. In this study, it was shown that the use of a Dirichlet-Robin condition with an "optimal" weighting coefficient derived from a Godunov-Ryabenkii (G-R) stability analysis [START_REF] Godunov | The Theory of Difference Schemes[END_REF], [START_REF] Gustafsson | The Godunov-Ryabenkii condition: the beginning of a new stability theory[END_REF] leads to both highly stable and rapid computations in a 1-D model. The use of coupling coefficients that are optimal and adaptive instead of predetermined has been shown to greatly reduce computation time [START_REF] Errera | Temporal multiscale strategies for conjugate heat transfer problems[END_REF]. Further investigation by Errera and Duchaine [START_REF] Errera | Comparative study of coupling coefficients in dirichlet-robin procedure for fluid-structure aerothermal simulations[END_REF] has validated the use of optimal coefficients for the case of flow over a heated cylinder, and the work of Moretti et al. [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF] introduced the "numerical" Biot number as a key parameter that determines the strength of the thermal fluidstructure interaction and hence the stability behavior of CHT computations.

The development of the Dirichlet-Robin CHT procedure using optimal coefficients described in the previous paragraph was accomplished using finite volume (FD) solvers in the fluid domain. While the FD method is a common choice used in many CFD codes, it is a less practical choice at high order of precision, particularly in the case of unstructured grids. Increasing the order of precision in finite volume methods involves employing wider stencils, which is difficult for unstructured grids. Although some high-order finite volume schemes for unstructured grids have been developed, these approaches are both complex and computationally expensive. The pursuit of increasingly precise solutions has made the use of discontinuous Galerkin (DG) methods attractive. Discontinuous Galerkin (DG) methods are high-order finite element discretizations which were introduced in the early 1970s for the numerical simulation of the first-order hyperbolic neutron transport equation [START_REF] Reed | Triangular mesh methods for the neutron transport equation[END_REF], [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF]. In recent years, these methods have become very popular for the solution of nonlinear convection dominated flow problems [START_REF] Van Leer | A discontinuous Galerkin method for diffusion based on recovery[END_REF], [START_REF] Lou | A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids[END_REF], [START_REF] Liu | A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on three-dimensional hybrid grids[END_REF], [START_REF] Cockburn | The Runge-Kutta discontinuous Galerkin method for conservation laws v: multidimensional systems[END_REF], [START_REF] Coburn | TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws ii: general framework[END_REF], [START_REF] Cockburn | Runge-Kutta discontinuous Galerkin methods for convectiondominated problems[END_REF], [START_REF] Kroll | Adigma -a european project on the development of adaptive higher-order variational methods for aerospace simulations[END_REF]. The success of these methods lies in their high-order of accuracy and flexibility thanks to their high degree of locality. The order of the scheme is augmented by increasing the order of the polynomial approximation, and higher order DG schemes can thus be more easily applied to unstructured grids [START_REF] Abgrall | Development of residual distribution schemes for the discontinuous Galerkin schemes[END_REF], [START_REF] Dedner | Comparison of Finite Volume and Discontinuous Galerkin Methods of Higher Order for Systems of Conservation Laws in Multiple Space Dimensions[END_REF].

The use of DG methods for CHT processes has been a recent development. Cai and Thornber demonstrated improved accuracy on a CHT problem using the incompressible Navier-Stokes equations with the Boussinesq approximation [START_REF] Cai | An interior penalty discontinuous galerkin method for simulating conjugate heat transfer in a closed cavity[END_REF]. Hao et al. used a Dirichlet-Neumann coupling procedure to show improvements in precision using DG solvers when compared to CHT processes using a second-order FD fluid solver [START_REF] Zeng Rong Hao | An investigation of conjugate heat transfer simulations based on discontinuous galerkin methods on unstructured grids[END_REF], [START_REF] Zeng Rong Hao | The application of discontinuous galerkin methods in conjugate heat transfer simulations of gas turbines[END_REF]. Liu et al. demonstrated the use of DG CHT procedures on unstructured grids to explore the effects of cooling in a compressor vane [START_REF] Liu | An investigation of the conjugate heat transfer in an intercooled compressor vane based on a discontinuous Galerkin method[END_REF]. Thus far, no CHT simulations using a Discontinuous Galerkin approximation have been done using a Dirichlet-Robin treatment with optimal coupling coefficients.

The goal of this paper is to present, for the first time, the adaptive Dirichlet-Robin approach using Discontinuous Galerkin methods. The paper is organized as follows. The coupling model, interface treatment, and optimal coefficient are first presented in Section 2. The Discontinuous Galerkin approach used is then briefly summarized in Section 3, followed by a brief outline of the coupling approach adapted to the DG method. The approach with various coupling coefficients are then applied to a simple CHT test case in Section Weak to strong aerothermal interactions are analyzed and at the the end, a validation vs empirical correlations is presented. Lastly, conclusions, as well as perspectives for future work, are detailed in Section 5.

Nomenclature

Bi (∆) Biot number

Bi ν

Numerical Biot number 

c p Specific Heat Capacity, Constant Pressure [J • kg -1 • K -1 ] c v Specific Heat Capacity, Constant Vol- ume [J • kg -1 • K -1 ] D Fourier Number D Normalized Fourier Number f Matrix of Flux Terms g Temporal Amplification Factor n Normal Vector P r Prandtl Number q Heat Flux [W • m -2 ] r Local Lifting Operator R Global Lifting Operator S Sutherland Constant t Time [s] T Temperature [K] u Vector of Conserved Quantities U Degrees of Freedom v h Test Function z Temporal Amplification Factor α Coupling Coefficient [W • m -2 • K -1 ] γ Ratio of Specific Heats Γ Boundary of Domain η BR2 User-Defined Viscous Flux Parameter κ Spatial Amplification Factor λ Thermal Conductivity [W •m -1 •K -1 ] µ Dynamic Viscosity [kg • m -1 • s -1 ] Λ Characteristic Length [m] ρ Density [kg • m -3 ] φ Basis

Coupling Algorithm

The partitioned coupling strategy employed is the Dirichlet-Robin conventional serial staggered (CSS) algorithm, and is composed of four steps:

1. The wall temperature in the fluid domain is set as an isothermal Dirichlet wall condition. This temperature is given by the surface solid temperature of the previous coupling iteration:

T n+1 f = T n s .
2. The fluid domain is advanced in time from t n to t n+1 . The choice of the coupling coefficient α f is of great importance to the stability and convergence of the coupling problem. It is worth nothing that in the Dirichlet-Robin algorithm described above and illustrated in Fig. 1, the application of the Robin condition to the solid uses the solid wall temperature from the previous iteration (T n+1 f = T n s , and hence

T n+1 s = T n s + q n+1 s -q n+1 f α f
). It can be immediately seen that as lim α f →∞ , the Robin condition becomes a Dirichlet condition and the solid temperature will change very slowly, resulting in no or excessively slow coupling. When lim α f →0 , the Robin condition becomes a Neumann condition, resulting in a faster rate of convergence This can indeed be the appropriate choice in some cases, but Dirichlet-Neumann procedures are more prone to instability as will be demonstrated in this study. It is also important to note that when the procedure is converged, T f = T s and q f = -q s at the wall, and given that the procedure is stable, α f has no influence on the value of the converged solution.

Optimal Coefficient

To determine the effects of α f on the evolution of the temperature, a Godunov-Ryabenkii stability analysis is performed, (for complete details, see [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF]) under the assumption that the transfer of heat and heat flux quantities at the coupling interface follows a 1-D model, with the interface between the fluid (j ≥ 0) and solid (j ≤ 0) at index j = 0. In the 1-D model, temperature is assumed to evolve according to the following discretized equations:

T n+1 0+ = T n 0-, j = 0+ (1a) ρc p ∆t (T n+1 j -T n j ) = λ f ∆x 2 f (T n+1 j+1 -2T n+1 j + T n+1 j-1 ), j ≥ 0 (1b) T n+1 0-= T n+1 0+ + q n+1 0--q n+1 0+ α f , j = 0- (1c) 
T n+1 j+1 -2T n+1 j + T n+1 j-1 = 0, j ≤ 0 (1d)
With the wall heat flux q represented by first order approximations:

q 0-= - λ s ∆x s (T 0--T -1 ) and q 0+ = - k f 0.5∆x f (T 0+ -T 1 )
The temperatures evolve according to normal mode form:

T n j = z n-1 κ j f , j > 0 z n κ j s , j ≤ 0 (2) 
Here z ∈ C is the amplification factor in time, and κ ∈ C is the amplification factor in space, with n as the time index and j as the space index. For the solution to remain bounded in space, the amplification factors must remain bounded as j → +∞ and j → -∞. Therefore,

|κ f | < 1 and |κ s | > 1.
Likewise, to remain stable in time, the system cannot have any solutions where |z| ≥ 1. After elementary transformations, the temporal factor amplification factor z = g(z) can be expressed expressed as:

z = g(z) = λ f ∆x f 2 + z -1 D f z -(2 + z -1 D f z ) 2 -4 -( λ f 0.5∆x f -α f ) /( λ s Λ s + α f ) (3) 
with D f the mesh Fourier number:

D f = λ f ∆t ρc p ∆x 2 f (4)
With a range [0, +∞[. In order to bring the range to [0, 1[, we introduce the normalized Fourier number:

D f = D f 1 + D f + 1 + 2D f (5) 
Which characterizes the transient heat conduction.

As shown by equation (3), the temporal amplification factor is a complex implicit function. There must be no solutions z = g(z) such that |z| ≥ 1. In [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF], it was found that the maximum value max|g| is located at either the points z = 1 or z = -1. Thus if |g(z = -1)| < 1 and |g(z = 1)| < 1, the solution is stable in the sense of Godunov and Ryabenkii. When testing the value of max|g| for various values of α f , it was found that at small values of α f , max|g| was attained at z = -1, and with large values of α f , max|g| was attained at z = 1. When α f is such that |g(z = 1)| = |g(z = -1)|, max|g| attains an absolute minimum and is always stable as shown in Fig. 2. Figure 2: max|g| curves for different normalized Fourier numbers [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] This value of α f is referred to as the optimal coefficient and is defined as:

α opt f = k f 0.5∆x f 1 2D f + 1 + 1 (6)

The Numerical Biot Number

The minimum value of the coupling coefficient α min f required to stabilize the procedure is defined by max|g(z)| = 1, and after some basic manipulations:

α f > α min f = λ s 2Λ s λ f /(0.5∆x f ) λ s /Λ s 2 1 + 1 + 2D f -1 (7) 
It is now useful to introduce the concepts of the "mesh" Biot number and the numerical Biot Number. The conventional Biot number, in the case of the flow over a flat plate of thickness Λ s , is defined as:

Bi = hΛ s λ s (8) 
However, the heat transfer coefficient h is not known during the fluid transient states, and as a result the Biot number cannot be determined until the coupling is completed. It is thus useful to introduce a new dimensionless parameter to characterize the strength of the fluid-structure interaction. The thermal conductance of the first fluid cell at the interface, λ f 0.5∆x f , as well as the thermal conductance of the solid, λs Λs , can be obtained during transient calculations, and the ratio of the two produces the "mesh" Biot number:

Bi (∆) = λ f /(0.5∆x f ) λ s /Λ s (9) 
α min f can thus be rewritten as:

α min f = λ s 2Λ s Bi (∆) 2 1 + 1 + 2D f -1 = λ s 2Λ s [Bi ν -1] (10) 
Here Bi ν the numerical Biot number is introduced:

Bi ν = Bi (∆) 2 1 + 1 + 2D f = Bi (∆) (1 -D f ) (11) 
This parameter, introduced in [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF], provides key insight into the nature of the fluid-structure interaction, and is available at each transient step of the computation. It is the value of the temporal amplification factor max|g(z, α f = 0)|, representing the y-intercept of the curve max|g(z)| vs α f . Therefore a value of Bi ν < 1 is stable for α f = 0, rendering a Dirichlet-Neumann procedure possible, whereas a value of Bi ν > 1 requires the procedure to use some value α f > α min f to stabilize the coupling. This can be also be observed by examining the formulation of α min f in equation ( 10): Bi ν > 1 leads to a positive value of α min f indicating that some relaxation in the transfer of heat flux is required.

Discontinuous Galerkin Discretization

Fluid Domain

In the fluid domain, the 2-D fully compressible Reynolds-Averaged Navier-Stokes (RANS) equations, coupled with the one-equation "standard" turbulence model of Spalart-Allmaras [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], are solved using the modal Discontinuous Galerkin solver AGHORA developed at ONERA [START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF]. The equations are as follows:

∂ t u + ∇ • f c (u) -∇ • f v (u, ∇u) = s(u, ∇u) (12) 
Where u is the vector of conserved quantities, s denotes source terms, f c is the tensor of convective flux terms, and f v is the tensor of viscous flux terms. Let Ω h be a partition of the domain defined by a set of elements κ, Γ i the set of internal faces, and Γ b the set of boundary faces. A numerical solution u h is sought in the function space of piecewise polynomials:

u h (x, t) = Np l=1 φ l κ (x)U l κ (t), ∀x ∈ κ, κ ∈ Ω h (13) 
Where U l κ (t) represents the degrees of freedom and φ 1...Np κ are the modal basis polynomial functions in each element κ. In the nodal representation of the numerical solution, the unknowns are the values of the solution at interpolation points, while in the modal representation, the unknowns are the expansion coefficients in a given basis of the underlying function space [START_REF] Dedner | [END_REF]. We use an orthonormal and hierarchical modal basis for flexibility reasons [START_REF] Lesaint | On a finite element method for solving the neutron transport equation[END_REF], [START_REF] Van Leer | A discontinuous Galerkin method for diffusion based on recovery[END_REF], [START_REF] Lou | A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids[END_REF], [START_REF] Liu | A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on three-dimensional hybrid grids[END_REF], [START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF], [START_REF] Renac | Fast time implicit-explicit discontinuous galerkin method for the compressible navier-stokes equations[END_REF]. In this study, Gauss-Legendre polynomials are used. The order of precision of the solution can thus be obtained by increasing the order of the polynomial in equation [START_REF] Van Leer | A discontinuous Galerkin method for diffusion based on recovery[END_REF]. In semi-discrete form the Navier-Stokes equations become

Ω h v h ∂ t u h dΩ + L c (u h , v h ) + L v (u h , v h ) + L s (u h , v h ) = 0, ∀v h ∈ V h (14) 
With the convective flux terms

L c (u h , v h ) = Γi [[v h ]]h c (u + h , u - h , n)dΓ + Γ b v + h f c (u b (u + h , n)) • ndΓ - Ω h f c (u h ) • ∇v h dΩ where [[v h ]] = v + h -v - h
is the jump operator across an internal cell boundary Γ i applied to v h , and the viscous flux terms

L v (u h , v h ) = - Γi [[v h ]]{f v (u h , ∇ h u h + η BR2 r σ h )} • ndΓ - Γ b v + h f v (u b (u + h , n), ∇u b (u + h , n) + η BR2 r σ h ) • ndΓ + Ω h f v (u h , ∇ h u h + R h ) • ∇v h dΩ
L c and L v are the collected convective and viscous flux terms, respectively. The inviscid flux terms are discretized using the Local Lax Friedrichs (LLF) flux and the diffusive flux terms are discretized using the BR2 method [START_REF] Bassi | A one-equation turbulence model for aerodynamic flows[END_REF], a compact method of discretizing the diffusive terms developed by Bassi and Rebay as an improvement to the BR1 method [START_REF] Bassi | A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[END_REF], which is non-compact. R h is the global lifting operator, which is the sum of the local lifting operators r σ h on each internal boundary σ of the element: R h|

Ω + κ (x, t) = σ∈∂Ω + κ r σ h (x, t). The local lifting operator r σ h is defined on an interface Γ i between two elements Ω + κ and Ω - κ as Ω + κ ∪Ω - κ r σ h v h dΩ h = -σ {v h }[[u h ]]n T dΓ, where {v h } = (v + h + v - h )/2
is the average operator across an internal cell boundary Γ i applied to v h . It is useful to note that as the local lifting operator is determined by integrating the jump of the solution across the interface, both the local and global lifting operators are represented by a polynomial with the same space as the solution. The Dirichlet boundary conditions are enforced weakly through numerical fluxes, which has been shown to increase accuracy [START_REF] Collis | Discontinuous Galerkin methods for turbulence simulation[END_REF]. Finally, the turbulent source terms are discretized in a similar way:

L s (u h , v h ) = - Ω h v h s(u h , ∇ h u h + R h )dΩ
As this paper addresses steady state problems, and thus the equations are discretized in time using an implicit Jacobian-free backward Euler scheme with a block ILU(0) preconditioner.

Solid Domain

The governing equation in the solid domain is the heat equation:

∂T ∂t = ∇ • ( λ s ρc p ∇T ) (15) 
The equations are discretized using the DG method described in the previous subsection. ν = λs ρcp is used as the diffusivity coefficient. The diffusive heat flux is likewise discretized using the BR2 method. After taking the variational form, integrating by parts, and defining the numerical fluxes, the compact scheme is thus:

Ω h ∂T h ∂t v h dΩ + Ω h ν(∇T h + R h ) • ∇v h dΩ - Γi ν({∇T h } + {r σ h }) • [[v h ]]dΓ - Γ D ν(∇T + h + r σ+ h ) • n + v + h dΓ - Γ N q N v + h dΓ = 0 (16) 
with Γ D representing Dirichlet cell boundaries and Γ N representing Neumann cell boundaries. The solution is advanced in time using a third order Runge-Kutta explicit method, with the time step defined by a user defined Fourier number F o s = λst cpρ(∆xs) 2 , where ∆x s is the length of the smallest cell dimension in the solid domain.

The Robin heat boundary condition is defined as

Tw = T ref + qw -q ref α f ( 17 
)
where Tw and qw are the values of the temperature and heat flux at the Gauss point on solid wall, and T ref and q ref are the temperature and heat flux given by the fluid. The heat flux in the solid domain qw is approximated as:

qw = -λ s ∇ Tw • n + ≈ -λ s Tw -T 1 ∆n
where ∆n is the distance from the wall to the Gauss point where T 1 is defined. The Robin condition can thus be applied in the solid as a wall temperature:

Tw ≈ λs ∆n T 1 + α f T ref -q ref α f + λs ∆n ( 18 
)
To impose a Robin boundary condition on the solid, which in this case is a combination of an imposed temperature (Dirichlet) and an imposed heat flux (Neumann), the formulation begins as in [START_REF] Cockburn | The Runge-Kutta discontinuous Galerkin method for conservation laws v: multidimensional systems[END_REF]. Tw and qw are the imposed temperature and heat flux at the wall, and are thus each implicitly defined with respect to each other -the wall temperature Tw must be such that the wall heat flux is equal to qw , and vice versa. Thus, these values are not known a priori by the solid solver. Instead, the solver uses T ref and q ref along with the weight coefficient α f , such that they validate equation [START_REF] Cockburn | The Runge-Kutta discontinuous Galerkin method for conservation laws v: multidimensional systems[END_REF]. The Robin condition was imposed as an implicitly defined temperature into the code, but a means of eliminating the unknown (but dependent on Tw ) value qw term on the right-hand side of ( 16) is necessary, as well as a means to validate the condition for the cases where α f → ∞ and α f → 0 (Dirichlet and Neumann behavior, respectively). In order to retain the dependence of qw on Tw , a first order finite difference approximation at the wall was made to formulate qw on the solid side to thus produce an explicit expression for Tw . Although this is a first order approximation, it is important to note that the near-wall temperature distribution, especially in the solid domain, is linear, and within the rest of the solid domain the fluxes are taken with the continuously-defined DG form of the spatial derivative. The derivation of a discrete boundary condition preserving the accuracy of the numerical scheme is still an open problem and would be an interesting subject of further studies. The local lifting operator at Robin boundaries thus takes into account the jump (T + h -Tw ), and the scheme with Robin terms is thus:

Ω h ∂T h ∂t v h dΩ + Ω h ν(∇T h + R h ) • ∇v h dΩ - Γi ν({∇T h } + {r σ h }) • [[v h ]]dΓ - Γ D ν(∇T + h + r σ+ h ) • n + v + h dΓ - Γ N q N v + h dΓ - Γ R ν(∇T + h + r σ+ h ) • n + v + h dΓ = 0 (19) 

Adapting the Optimal Coefficient for the DG Method

In the derivation of α opt f performed in [START_REF] Errera | Optimal solutions of numerical interface conditions in fluidstructure thermal analysis[END_REF] and shown in equation ( 6), a first order approximation was used to estimate the value of the wall heat flux:

q 0+ = -λ f ∇T • n ≈ - λ f 0.5∆x f (T 0+ -T 1 ).
Here T 1 is the temperature evaluated at the center of the cell (the study was performed with a cell-centered solver) adjacent to the wall, and 0.5∆x f represents the distance from the wall to the center of the cell. To remain consistent with the stability analysis and optimal coefficient, the form of this first order approximation of the heat flux is largely retained for the calculation of the coupling coefficient α opt f . However, to take advantage of the increased precision afforded by the DG method, the temperature is evaluated at the Gauss point nearest to the wall, rather than the center of the cell. The result is that the heat flux used in the derivation of α opt f is thus approximated as

q 0+ = -λ f ∇T • n ≈ - λ f χ∆x f (T 0+ -T 1 )
. χ∆x f is thus the new distance from the wall to the nearest quadrature point of cell, T 1 is evaluated at the quadrature point, and χ changing depending on the order of the polynomial approximation. Fig. 3 shows the location of the Gauss-Legendre quadrature points in a 2-D rectangular element at different polynomial orders of approximations. In this case, χ = 0.211325 for P = 1 and χ = 0.112701 for P = 2.The temporal amplification factor, optimal coefficient, and numerical Biot number are dependent on the polynomial order and are thus re-written as:

z = g(z) = k f 2χ∆x f 2 + z -1 D f z -(2 + z -1 D f z ) 2 -4 -( k f χ∆x f -α f ) /( λ s Λ s + α f ) (20) 
α opt f = k f χ∆x f 1 2D f + 1 + 1 ( 21 
)
Bi ν = λ f /(χ∆x f ) λ s /Λ s (1 -D f ) (22) 
A consequence of this formulation is that augmenting the order of the polynomial approximation (thereby decreasing χ), increases g(z), α opt f , and Bi ν , indicating that the coupling process becomes less stable and requires a greater relaxation of heat flux transmission to stabilize. Finally, let us recall that the theory leading to the optimal coefficient is based on a finite-difference model problem. It is thus reasonable to expect that this coefficient is not perfectly adapted to DG applications. However, it is also logical to consider that this coefficient is an excellent basis for guiding any CHT discrete problem irrespective of the numerical approach used.

Test Cases

The procedure above is applied to a simple test case wherein fluid flows over a 2D flat plate illustrated in Fig. 4. The fluid domain is a 0.5 m long and 1.0 m high rectangle. The flat plate at y = 0 is split into two sections: a 0.15 m long adiabatic buffer zone meant to stabilize the coupling process, and a 0.35 m long thermal coupling zone. There are 60 mesh elements in the x-direction and 50 mesh elements in the y-direction, with stronger refinement where x → 0 and y → 0. The smallest element in the coupling zone, located near x = 0 and y = 0, has dimensions of ∆x f = 0.0001800m and ∆y f = 0.0004167m. A symmetry condition is applied at the top of the domain, and an out-pressure condition is set at the right side of the domain at 101325.0 Pa. The inflow is represented by an injection condition with a stagnation pressure 102350.0 Pa and a stagnation temperature 1203.43 K. This condition represents an inflow of fluid at 1200 K flowing at 83 m/s over the flat plate. The characteristics of the fluid are detailed below in Table 1. They roughly correspond to the physical properties of air, but with the viscosity multiplied by 10 in order to increase λ f and hence the Biot number. The solid domain is a flat plate of thickness 0.003 For the first fluid and solid coupling iteration, an equilibrium temperature is calculated based on the equilibrium of fluxes:

q f = -q s (23) - k f χ∆x f (T w -T f ) = λ s Λ s (T w -T s ) (24) 
T w = λ f χ∆x f T f + λs Λs T s λ f χ∆x f + λs Λs ( 25 
)
This is to ensure that the initial difference in temperature is not overly violent, which can have serious effects on the stability of the procedure. Here T f and T s are the initial temperatures in the fluid and solid domains. Note that the initial temperature of the interface is dependent on χ, and therefore the order of the polynomial approximation. The coupling period is taken as constant during the fluid-solid computation. A reasonable number of coupling periods was adopted. On the one hand, it is necessary to avoid too many updatings of the interface conditions during the coupling process. On the other hand, the fluid and solid solutions need not go away too far from each other during a coupling period. A first CFD calculation has been performed and the coupling time-step (i.e. the coupling period) was taken to be ∆t c = ∆t f 20 , where ∆t f is the amount of time necessary for the fluid simulation to converge. The convergence criterion used in this paper to determine ∆t f , or the time required for a fluid-only simulation to be considered converged, is based on the infinity norm of the fluid density with a tolerance equal to 10 -5 . The influence of the choice of the coupling time-step is automatically taken into account in the numerical process via the Fourier number D f and the optimal coupling coefficient whose expression is given by [START_REF] Dedner | Comparison of Finite Volume and Discontinuous Galerkin Methods of Higher Order for Systems of Conservation Laws in Multiple Space Dimensions[END_REF]. It can be seen that for small coupling time-steps, stability must be enhanced with a large coupling coefficient α f . On the contrary, at large coupling time-steps, i.e., at large Fourier numbers, the resulting fast heat propagation in the fluid domain leads to smaller coupling coefficients. In theory, the convergence of the fluid-solid problem is independent of the time-step and independent of the coupling coefficient. Indeed, the continuity of temperature at the interface T 0+ = T 0-(1a) implies continuity of the heat fluxes q 0+ = q 0-, (1c). In practice, the converged solution depends on the error tolerance, and special care must be taken to reduce the spatial interpolated errors from one grid to another as explained in [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF]. In the current paper, there are no spatial interpolation errors since the fluid and solid meshes are coincident. At each coupling time step, the heat equation in the solid domain is resolved to steady state, with a residual tolerance of 10 -5, before the fluid simulation resumes with an updated boundary condition at the surface. The coupling is then run until the temperature profile across the interface does not change between coupling time steps. The criterion for the steady temperature profile of the coupling process is:

∆T w = max|T i j -T n-1 j | < 0.1K (26) 
Where n is the coupling iteration and j is the spatial index along the fluid-solid interface.

The "numerical" Biot number, as described in Section 4, is used to determine the strength of the thermal interaction. When Bi ν =

k f /(χ∆x f ) λs/Λs 2 1+ √ 1+2D f
< 1, the thermal resistance of the solid is weak, indicating that the temperature field in the solid is relatively homogeneous. When Bi v > 1, the thermal resistance of the solid is considered moderate and the temperature gradients within the solid become significant. When Bi v >> 1, the thermal interaction is considered strong, and max|g| for α f = α opt f becomes very close to unity, which can possibly render the calculations unstable, even with α opt f which is theoretically unconditionally stable. For the purpose of remaining consistent with the meshes and boundary conditions, the strength of the thermal interaction is controlled by either varying the solid conductivity λ s , or by varying the order of the polynomial approximation P . Increasing P alters the cell proportion where the nearest Gauss point is located χ, and thus alters the calculation of the amplification factor and Biot number as shown in equations ( 20) and [START_REF] Cai | An interior penalty discontinuous galerkin method for simulating conjugate heat transfer in a closed cavity[END_REF]. This has an interesting consequence in which a configuration that would have a weak fluidstructure interaction with polynomial approximation P = 1 may have a moderate interaction with P = 2. Increasing the order of the polynomial thus has a similar effect to increasing the refinement of the mesh. Weak fluid structure interactions will thus be further divided into moderately weak (Bi ν < 1 for P = 1 and Bi ν ≥ 1 for P = 2) and very weak (Bi ν < 1 for P = 1 and P = 2)." Four test cases will be used each for a polynomial approximation of order 1 and 2, with different values of α f explored to test for stability and convergence: The amplification factors (and therefore the theoretical stability limits) as described in Section 2 are plotted relative to α f in Fig. 5. For this calculation, the fluid thermal conductivity is approximated as λ f = 0.64 W m•K , although in practice the thermal conductivity of the fluid near the wall varies according to the temperature of the fluid. Very weak fluid-solid interactions, represented by λ s = 20.0, have amplification factors always below unity in this case. As a result, a procedure with α f = 0 (equivalent to a Dirichlet-Neumann procedure) can be considered stable. Weak fluid interactions, represented by λ s = 10.0, have amplification factors always below unity in the case of P = 1, but have amplification factors slightly above unity for sufficiently small values of α f in the case of P = 2. Moderate and strong fluid-structure interactions, represented by λ s = 1.0 and λ s = 0.1, have amplification factors above unity for small values of α f (indicating instability), as well as amplification factors very close to unity when α f = α opt f . λ s = 20.0 and λ s = 10.0 represent materials with high thermal conductivity such as steel, whereas λ s = 1.0 and λ s = 0.1 represent insulating materials such as ceramic.

P = 1 P = 2 λ s Bi (∆) Bi ν Bi (∆) Bi ν 20.

Weak Thermal Fluid-Structure Interactions

The solid thermal conductivity λ s = 20.0 produces a Bi ν that is below unity (Bi ν = 0.2703 for P = 1 and Bi ν = 0.54069 for P = 2 and the case can thus be considered unconditionally stable and any value of α f should lead to a stable coupling process. It is therefore classified as "very weak". Although α f should not affect the converged solution provided a stable computation, it is useful to examine the evolution of the temperature with respect to the coupling iterations. In Fig. 6, the lower and upper limit values for α f are examined, as well as the optimal coefficient. The small difference in temperatures at convergence is explained by the relatively large difference in temperature as the convergence criterion: ∆T s < 0.1. As can be seen when α f = 0, the solid surface temperature "overshoots" initially, but the oscillations are dampened in time and the temperature converges. By contrast, with α f = λ f w∆y f , the temperature takes significantly longer to evolve, as should be expected: larger values of α f mean that the solid surface temperature at the next coupling iteration is closer to the solid surface temperature at the previous iteration. When α f = α opt f , there is almost no overshoot, but the rate at which the temperatures actually approach their converged values is similar to that of the α f = 0 case. The same case with P = 2 exhibits similar behavior. After confirming the general behavior and effect α f has on the temperature evolution, it is now useful to more closely examine the effects it has on the rate of convergence. Four cases are examined: Max Temperature Change (K) The convergence in Fig. 7 behaves as expected and conforms to the plots in Fig. 5: when α f is large, the temperature evolution is slower, so the process takes longer to reach a state in which the temperature is stable. The process when α f = 0 converges only slightly faster than with the optimal coefficient. The Dirichlet-Neumann choice would therefore be applicable here. Interestingly, α f = 3α opt f converges nearly as quickly as α f = α opt f . The solid thermal conductivity λ s = 10.0 produces a Bi ν that is below unity for P = 1 but just above unity for P = 2 and is classified here as "weak", with the change in temperature over time plotted in Fig. 8. Max Temperature Change (K) Despite a numerical Biot number greater than unity, the α f = 0, P = 2 case did not diverge. Although not pursued in this study, augmenting the numerical Biot number to the point where a procedure is no longer unconditionally stable, and finding what factors effect this calculation, can be an interesting procedure. This could then inform the upper limit of the strength of fluidstructure interactions for the applicability of a Dirichlet-Neumann procedure. Fig. 9 shows that in the P = 2, λ s = 10.0 case, the overshoot of the temperature is quite strong in this case, even to the point where the temperature in some parts nearly goes below 1000K. However, the oscillations are damped and the temperature converges towards a steady value. The rest of the behavior of this test case is qualitatively similar to that of the very weak fluid-structure interaction.

α f = 0, α f = α opt f , α f = 3α opt f , and α f = K f .
P2, α f = 0 P2, α f = α f opt P2, α f = 3 α f opt P2, α f = K f Convergence Level (b) P = 2
P2, α f = 0 P2, α f = α f opt P2, α f = 3 α f opt α f = K f Convergence Level (b) P = 2

Moderate Fluid-Structure Interactions

With a moderate structure interaction (Bi ν ≥ 1), the necessity of a well chosen coupling coefficient becoms of greater importance, as the procedure is, according to the model, no longer unconditionally stable. Here, the Dirichlet-Neumann case is unstable and diverges immediately, as shown in Fig. 10, conforming to the prediction of the model α min f > 0 for Bi ν > 1. What is more interesting, however, is the behavior of the case for α f = α opt f : the solution shows good behavior for several iterations for both P = 1 and P = 2 approximations, and then diverges. Although the use of α opt f is supposed to render a Dirichlet-Robin coupling scheme unconditionally stable, there are remaining causes of instability. One possible cause is the high Bi ν bringing the amplification factor g(α f = α opt f ) very close to unity, as here α opt f is very close to α min f . This can be shown easily. Indeed, combining the definition of α opt f (6) and α min f [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF], leads to:

α opt f -α min f α opt f = 1 Bi ν (27) 
This result was first shown in [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF]. It can be seen, therefore, that [START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF] is the relative distance between α opt f and the unstable zone (see Fig. 5) and that this distance is inversely proportional to the numerical Biot number. Let us recall (see Section 2.3) that this number represents the strength of the thermal fluid-structure interaction (see the y-intercept in Fig. 5). The evolution in temperature at specific points on the flat plate are examined in Fig. 11: the oscillations grow out of control for α f = 0, whereas in the α f = α opt f case, the temperature evolution initially shows good behavior before oscillating. A possible source of this instability is from the approximation of heat fluxes. As x → 0.35m, the slope of the heat flux is meant to decline along the length of the interface. However, this can lead to a form of instability if the change in temperature across coupling iterations is not sufficiently damped: the heat flux across a particular edge is meant to be conservative, if the heat flux on the left Gauss point is overestimated, the heat flux on the right point is underestimated. When this perturbation is transferred over to the solid, the result is that the left Gauss point is slightly hotter and the right Gauss point is slightly colder. In the following fluid iteration, the left heat flux will therefore be too low, and the right heat flux will therefore be too high. In the following solid iteration, the left Gauss point will be too cold, and the right one too hot. This pattern was found by directly examining the data at the Gauss points in the unstable coupling iterations. Note in Fig. 12a and Fig. 12b the point slightly to the right of x = 0.2. This point is a peak in the 9th coupling iteration and a trough in the 10th. The amplitude in these oscillations grow unless α f , which slows down the rate of temperature evolution, is sufficiently strong enough to damp the instabilities. This same phenomenon is observed for this test case with the P = 2 approximation.

Strong Fluid-Structure Interactions

In the case of a strong fluid-structure interaction, where Bi ν >> 1, the amplification factor max|g| for α f = α opt f approaches unity so closely that it is likely the procedure will be unstable even with the optimal coefficient. It is important to note that in this particular case, λ s = 0.1 is approximately 10 times smaller than the thermal conductivity of most ceramics, putting it on the upper end of fluid-structure interactions. The Dirichlet-Robin choice has been shown to be less suitable than the Neumann-Dirichlet choice for strong fluid-structure interactions [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF]. However, it is still worthwhile to determine whether a convergent solution can be found using the Dirichlet-Robin procedure, particularly because there may be cases where the Dirichlet-Robin choice remains valid for strong interactions, such as on a nonhomogeneous surface. The convergence is shown in Fig. 13. procedure is expected for strong fluidstructure interactions [START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF], instability is also seen with a fairly strong coupling coefficient α f = 3α opt f . The initial results appear promising according to the initial iterations of Fig. 13, but the solution begins to oscillate out of control. Closer examination of this instability reveals a pattern identical to the one observed in the λ s = 1.0 case with α opt f : underestimation of the heat flux followed by overestimation of the corresponding temperature, followed by overestimation of the heat flux and underestimation of the corresponding temperature. As a result, α f must be augmented to sufficiently damp this process, and it was found that with α f = 6α opt f , the process was stable and convergent, although slow. It is interesting to note that in a recent paper [START_REF] Errera | Adaptive difffusive time-step in conjugate heat transfer interface conditions for thermal-barrier-coated applications[END_REF], a narrow slow-varying zone α opt f , 3α opt f was identified and the value was enough to guarantee stable and fast CHT computations (on the basis of a finite-volume CFD code) for strong fluid-structure interactions. For DG coupled applications, when the order of the polynomial approximation increases, it was shown in Section 3.3 that a greater amount of relaxation of the heat flux is required. The test cases indicate that the relaxation factor remains within reasonable bounds.

Validation vs. Empirical Correlations

Many correlations for determining the convective heat transfer coefficient h are based on experimental data performed under completely identified conditions. Empirical correlations based on the Nusselt number for forced convection past over a flat plate are available in literature ( [34], for example) and are used in the present study. These correlations are valid for steady fluid flow. In a coupled simulation, the solid domain must be considered. The thermal resistance of the coupled fluid-solid problem, ( 1 h ) coupled , can be expressed in terms of the heat transfer coefficient h added to the thermal resistance of the solid domain (serial resistances) in the following way :

1 h coupled = 1 h + Γ s λ s (28) 
We now seek to assess the coupled numerical results using the well-known correlations over a flat plate corrected by the thermal resistance of the solid according to [START_REF] Dedner | [END_REF]. For the calculation of heat transfer coefficient for the numerical results, the local wall heat flux is simply divided by T ∞ -T ext , where T ext = 1000K is the temperature at the bottom of the coupled surface (see Fig. 4). In the case where the coupling is weak, there is very good correlation between the numerical results and the empirical correlation, as seen in Fig. 15a. Since the P = 1 and P = 2 results are so similar and only visibly differ close to the beginning of the coupling zone, it is useful to examine this area in particular, where the strongest coupling is located. Examining, Fig. 15b, it can be observed that very close to the beginning of the coupling zone, the results for the higher order solution are closer to the empirical correlation than those for the lower order solution. Although the difference is small, the trend is good and the P = 2 curve is even coincident with the correlation extremely close to the delicate leading edge zone. When the fluid-structure interaction becomes stronger, the numerical results and the empirical correlation follow the same trends, but show weaker agreement, as can be seen in Fig. 16. This is due to the large thermal resistance of the solid plate. Indeed, in this case, large gradients occur in the solid and these gradients are mainly concentrated at the interface. Equation (28) takes into account the entire thickness of the plate and in this way overly reduces the value of the coupled heat transfer coefficient. Although the P = 2 results are slightly closer to the empirical correlations near the leading edge of the coupling zone, it can be seen that the P = 1 results are slightly closer further downstream. It is important to note that in the strongly coupled case, the overwhelming majority of the thermal exchanges occur near the leading edge, where the temperature gradients are much stronger. The use of the optimal coefficient to stabilize test cases where a Dirichlet-Neumann interface treatment is not appropriate is shown here to be insufficiently strong. It is important to note that a solid conductivity of λ s = 1.0 (W/(m•K)) is very low, and a numerical Biot number of 5.407 represents a fairly strong fluid-structure interaction. Interestingly, there are no cases where augmenting the order of the polynomial approximation has an effect on the stability of the process:

Summary of Results

Iterations to Converge

In the cases where some multiple of α opt f is used, this is to be expected: increasing the polynomial approximation decreases parameter χ and therefore increases the value of α opt f , as shown in equation ( 21).

Conclusion

The use of a Dirichlet-Robin interface treatment with adaptive relaxation coefficients was presented as a viable approach to handling CHT problems discretized using DG methods. The LLF and BR2 methods were used for handling the convective and diffusive fluxes, respectively. The formulations of the numerical Biot number and coupling coefficients were changed to fit Gauss-Legendre basis polynomials used in this DG method. This procedure was applied to a geometrically simple CHT problem on a structured grid, with the strength of the fluid-structure interaction altered by changing the solid thermal resistance.

It was found that the coupling procedures using first and second order basis polynomials were less stable than predicted, as so-called optimal coefficients were not entirely suitable to stabilize moderate/strong thermal strength fluid-structure interactions. There are two main reasons for that. First, these coefficients were developed in the framework of a finite-difference method. Further investigation is thus needed to accommodate them perfectly to the DG approach on the basis of the theoretical model problem presented in this paper. Second, in order to use the single Dirichlet interface condition in all interactions, it is necessary to leverage the concept of optimal coefficients by expanding their functionalities to high thermal interaction. This has been done very recently [START_REF] Errera | Adaptive difffusive time-step in conjugate heat transfer interface conditions for thermal-barrier-coated applications[END_REF], [START_REF] Salem | Adaptive difffusive time-step in conjugate heat transfer interface conditions for thermal-barrier-coated applications[END_REF], and the corresponding results could be exploited in future works.

A study comparing the results with a coarser mesh could also prove useful, along with an investigation of the stability limits of higher order solutions relative to their theoretical limits based on the amplification factors.

A number of implementations can be made to improve the applicability of this coupling procedure. The method used for evaluating the coupling coefficients is only valid when using Gausslegendre quadrature with rectangular shaped meshes. A different formulation that could take into account the distance from the wall at quadrature points in the direction normal to the wall for different mesh types and quadrature rules would allow this method to be applied to more complex geometry. As one of the strengths of the DG method is its suitability for unstructured meshes, this would form one of the most useful improvements to the existing coupling procedure. Aerothermal coupling using a DG method and adaptive coefficients could then be extended to tackle complex industrial thermally coupled fluid-structure problems.
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 34 The fluid wall temperature (Dirichlet) and wall heat flux (Neumann) are transferred to the solid as a Robin condition T n+1 s The solid domain is advanced in time until complete convergence.
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 1 Figure 1: Conventional Serial Staggered Algorithm (CSS)
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 3 Figure 3: Volume and edge Gauss points for Gauss-Legendre quadrature

  0.90 1.4 717.6 110.4 273.0 0.0001711 Table 1: Physical properties of the fluid m and length 0.35 m. To avoid interpolation issues, the mesh of the solid domain is coincident with the mesh of the fluid domain at the interface. The bottom of the solid is held at a constant temperature 1000 K, and the left and right sides are adiabatic.
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 4 Figure 4: Test Case Domains[START_REF] Moretti | Stability, convergence and optimization of interface treatments in weak and strong thermal fluid-structure interaction[END_REF] 
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 5 Figure 5: Amplification Factors for P = 1 and P = 2 and various values of λ s
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 6 Figure 6: Evolution in time of the temperature at the interface at the leading edge, approximate middle, and trailing edge with P = 1, λ s = 20.0 for the lower (a) and upper (b) limit values of α f , along with the optimal (c) value α opt f
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 7 Figure 7: Convergence comparison for the very weak case λ s = 20.0
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 8 Figure 8: Convergence comparison for the weak case λ s = 10.0
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 9 Figure 9: Temperature evolution for P = 2, α f = 0, λ s = 10.0
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 10 Figure 10: Convergence comparison for the moderate case
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 11 Figure 11: Evolution in time of the temperature at the interface at the leading edge, approximate middle, and trailing edge with P = 1, λ s = 1.0
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 12 Figure 12: Instability in the heat flux transfer
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 13 Figure 13: Convergence comparison for the strong case While the immediate divergence of the α f = α opt f
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 1414 Figure 14: q w at convergence, weak case λ s = 20.0
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 15 Figure 15: Coupled heat transfer coefficient compared to empirical correlation, weak case λ s = 20.0
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 16 Figure 16: Coupled heat transfer coefficient compared to empirical correlation, strong case λ s = 0.1

Table 3 :

 3 Bi ν α f = 0 α f = α opt f α f = 3α opt f α f = 6α opt f α f = K f P = 1, λ s =20.0 Stability and convergence of different test cases

Table 2 :

 2 The test cases and their associated numerical Biot numbers

	0 1.090 0.2703 2.044 0.5069
	10.0 2.181 0.5407 4.089	1.014
	1.0	21.81	5.407	40.89	10.14
	0.1	218.1	54.07	408.9	101.4
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