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ABSTRACT

The goal of this paper is to propose a single fater treatment, based on the Dirichlet-Robin iatezfcondition to deal
with all steady CHT scenarios. These scenarios rdbms the so-called numerical Biot number that dstthe

stability process and the optimal coefficient tlisures, in theory, unconditional stability. Itseown that this
coefficient is closely related to fundamental tharrquantities. For very large thermal fluid-solistdractions, the
Dirichlet-Robin condition may result in profoundabtlity issues. A thorough examination of the diabbehavior has
highlighted a narrow and slow-varying stable zoveated around the optimal coefficient. This allavgsto determine
coupling coefficients valid in any case and thesogable value of these coefficients avoids sigaifity impairing the
accuracy of CHT solutions. A flat plate, partighisotected by a thermal barrier coating, is preskatea test case.

1. INTRODUCTION

Conjugate heat transfer (CHT) is a coupled appralaahallows to solve complex thermal problems wher
both structures and flows interact together [1]2HT is one of the fundamental features in a walege of
engineering fluid flow applications. The scope log tCHT analysis could be expanded in the future and
systematically employed if robust, reliable, anficefnt numerical procedures are implemented. bene
years, the behavior of CHT interface conditions hasnly been studied using a normal mode analysis
[3][4][5][6][7]. However, other methods exist to @mnt for the thermal fluid-solid coupling, such the
energy method [8], a matrix analysis [9], a stestdte approach [10], or a frequency-domain metiddgl [
Currently, the computational cost of a CHT modeh &8 prohibitive if a dynamic coupling process is
considered, such as in the context of LES-CHT @S|, and different solutions were suggested to
accelerate CHT computations [12][13][14][15]. Iretburrent paper, only steady solutions are sougtit a
thus the CHT strategy adopted is such that timsistance is not of concern.

Fluid and solid domains can interact in a varietyways from low fluid-structure interaction (FSI)
characterized by low Biot numbers to high FSI (hgjbt numbers). It is well known that for weak/moale
FSI, the Dirichlet-Robin interface condition is Wwelited. For higher interactions, another integfac
treatment must generally be considered. The gotlisfpaper is to provide a single interface caodithat
is stable and accurate for all interactions, egardless of the aero-thermal problem encountered.

Implementing a single interface condition to deéhwvall situations is extremely interesting. Indette
Dirichlet-Robin condition is widely used and itjiglicious to be able to extend its application. t®& other
hand, although it is natural to make use of a Neumwondition when the Biot number is high [10][18iis
condition must be implemented according to a c¢dtethat is difficult to estimate. Finally, in thesence
of a very heterogeneous surface, for example allimetall partially protected by a thermal barriepating
(TBC), one is then confronted with a particularlglidate situation involving a succession of dispara
thermal problems much easier to deal with if alsimgterface condition can be used.

This study is based on the formulation of the optigoefficient highlighted for the first time in {1

This concept has proved to be relevant and effedtivacademic test cases [18] [19] as well as mpdex
industrial applications [20]. This concept, based a prototyping study, has provided a foundation fo
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efficient methods of resolving high interactionrtinel coupled problems, as discussed below. The gfoal
this paper is to define coupling coefficients thaver introduce stability restrictions.

2. CONJUGATE INTERFACE NUMERICAL METHOD

2.1.CHT steady strategy

The simulation of multiphysics problems is gengraltcomplished by partitioned staggered schemes
[21]. In a multiphysics strategy based on a pariitid approach, each system should be treated by the
discretization techniques and algorithms that aua to perform well for the single subsystem. Assult,

a stable fluid-solid steady solution will be soudpgtcoupling a transient fluid solution with a stgasolid
state. In this paper, the steady-state Navier-St@leninar or RANS) equations are resolved in thal f
domain and advanced using a time-marching schentkad aplace heat equation is resolved in the solid
domain. These strategies, which perform well aglsisub-systems, are taken together and assentbked i
multiphysics approach. This coupling strategy isstadopted in this work with a special focus oristg

and accuracy issues. Note that this constituteasditibnal loosely-coupled algorithm; the individydnysics
models are solved independently from one anotimel tlze interface fluxes are balanced only at ststatg.
However, strong coupling approaches may also bsidered to encompass models in which updates are
performed together and thus conservation of energyaintained throughout the whole coupling process
[51[22][23].

2.2.Dirichlet-Robin interface conditions

Interface conditions are needed on either sidd@fluid-structure interface, where coupling coiudis
are applied. It is well known that Robin conditidmsve many attractive features and thus a Robire@i
condition, currently used in FSI problems [17][28][26], is applied on the solid side

|_QS+affsJ :[Qf +aeTy J 1)

The subscript$ ands denote the fluid and solid domain respectively #irelsuper-imposed hat symbo)) (
indicates the sought values.is the interfacial heat flux [W.f} and T [K] is the interface temperature. The

general Robin condition (1) introduces the couplipgrameteny, [W.m?.K™] the choice of which directly

influences the stability of the CHT process.t@e fluid side, a Dirichlet condition is impos(eﬁ =T,).

2.3. Stability analysis

The Godunov-Ryabenkii (G-R) stability analysis [23]very similar to the standard Fourier stability
method, although unlike the Fourier method, the &dthod takes into account the boundary conditidns.
normal mode solution is thus applied to the casmel by the discrete model problem [17][18], arfictia
elementary transformations, we obtain the followi@mporal amplification factor

g(zvaf)=ﬁ[Kf'Kf(af’Df)+af_Kf] ()

K, and K_are the fluid and solid conductances respectivély.K™, that isK ; =k, Wy (v=Y2ina
finite volume method and =1 in a finite element method) arid, =k,/A.. Ay, is the size of the fluid cell

adjacent to the wall/\ is the solid thickness arid is the thermal conductivity [W.ThK ™. Without going
into too much detail, let us mention that the pam/ in Eq. (2) accounts for the contributions from the
physical and geometric solid characteristics andtrots the external boundary conditio® €1, for a
temperature imposed at the external boundary)is the “spatial” amplification factor that deperls a;

and on the Fourier numbéd, , expressed by



_a;At
Ay}
Wherea, [m°.s] is the thermal diffusivity and\t [s] is the time step.
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2.4.Numerical Biot number

The stability (:onditiong(z,a'f )‘ <1 applied to (2) leads, after some basic calculusipugations [16]

min

[18], to a lower stability boundr
min _ Kf K

a" = ——-—= 4
"1+ f1+2D, 2 @

This coefficient can be conveniently representea shorthand notation

am :%[Bi = (5)

14

This notation introduces the numerical Biot numtiy,, defined by

- _ Ky

2
Bi, =— | ——=— (6)
YK L+,/1+2Df ]
Bi, is a local time-dependent parameter that drivesaHT process as long as the fluid may be congidere

as transient. Note that at steady s(ﬂge = O), the thermal conductance of the fluid domain shaltaken as

the heat transfer coefficienk ; = h.

2.5.Weak and strong thermal FSI

Special attention must thus be given to condit®rfrom which, one can define :

 Weak interaction Bi, <1. If this condition holds, the "transient" thermesistance of the fluid domain at

the shared interface is greater than the resistaffeeed by the whole solid domain. Note that this
"transient” resistance" is strongly influenced bg time step. Accordingly, temperature can be asduim
vary slightly throughout the material's volume. Ari€hlet condition on the fluid side is therefore
appropriate. There is no stability restriction.

 _Moderate interactiorBi, >1. This means that the solid thermal gradients atenegligible or that the

min

thermal fluid conductance is larger than that efsgblid. Stability is obtained far ;> a;

«_Strong interaction Bi, >>1. This indicates that either the solid thermal grats are predominant or that

the thermal fluid conductance is much larger theat of the solid (the fluid temperature remainsaatihe
same in the vicinity of the surface). This can lead highly non-spatially-uniform temperature digbithin

the solid body. As a result, on a practical legejirichlet condition imposed on the fluid does seem to
provide the most efficient solution. However, walksee hereafter that this condition can be agplieder

specific precautions. The stability condition idabed for a large value af ; .

2.6.Optimal coefficient

The modulus of the amplification factor defined (8 does not have a monotonic variation in terms of
a,, but goes through an absolute minimum, denom??i. At this point, the shape of the curve of the

amplification factor switches and turns back as lbarseen in Figure 1. Simply stated, the existarica



transition value fora ; is identified. This fundamental result was firgjtilighted in [17]. The amplification
factor is represented in Fig. 1 for wedBi, = 047), moderate(BiV = 3.03) and strong interaction

(Biv = 7.08). These three different FSI have been obtainedyebsi varying only the solid thermal
conductivity as indicated in Figure 1.
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Figure 1 - Amplification factorrfthree different numerical Biot numbers

The shape of the three curves exhibits a tramsitiben the curves switch and this transition oceitiis
unique and remarkable valuue‘f’pt whose exact expression (see [17], [18] for motail® is given by

aor =K L |- K @
" vhy, |1+ 1+2D, | 1+ [1+2D,
When the optimal value defined by (7) is employed, obtain, in theory, the best-case scenario with n
additional computational effort. Note th&8i, can also be seen as tjuntercept of the curves in Figure 1.

This number can also be estimated as a functi@nnairmalized Fourier numbdd [16][18] as indicated in
this figure, with

2
(1‘Df)—m (8)

Note that the expression of the optimal coefficigiven by Eq.(7) contains only "fluid parameterBhis is
directly linked with the Dirichlet condition impodeon the fluid side. Indeed, this defines a perfect

conducting condition ¢, =) and thus totally erases the influence of anyidsplarameter” in the

definition of @™,

2.7.0ptimal coefficient : A link to the penetrationptle and to the thermal effusivity

Realistic and accurate thermal conjugate heat fears®lutions require high-resolution CFD meshes.
Consequently the placement of the first fluid gr@nt should fall in the near-wall boundary-layegion, in

order to ensurg+ values close to unity. It is therefore essentiatamine, as a first step, the mature.f)’t‘ﬁ’ft



as Ay, — 0. To this regard, contrary to what may seem evidgain examining (7)a?ptdoes not tend to

infinity. From (7), we obtain the following limit

. opt _ Ke Byp kg
= lim a™ = =
By; -0 Wy J2aat  vf2a At

a ;nax

(9)

Interestingly enough in (9), the optimal coeffidiéninversely proportional tq/ZafAt , that can be seen as

an approximation of the thermal penetration deptmther words to the diffusion distance, thetteto
which the temperature has significantly changeds Bhows that for a low penetration, stability mhbst
enhanced by increasing the coupling coefficienaltow for a certain amount of relaxation. Conveysel
large penetration means that more heat is traremitbm the interface to the fluid and this largiéudion
naturally translates into a low coupling coeffidien

Another interesting form of (7) can also be obtdine
E
a™ = lim g% =—— (10)
by; -0 v+ 24t

where E; = /k; oC, [ W.s"m’K] is the thermal effusivity of the fluid. It is érate at which a medium can

absorb heat. This property determines the conéaapérature of two bodies that touch each othes. din
interesting fact to note how the optimal coefficieand the thermal effusivity are linked. Seen iis fight,
one can understand why this coefficient describesability of the fluid to exchange heat with tlodic at
any time in the coupling process. In addition,hibsld be noted that only the fluid effusivity isepent in
(10) and not the ratio of the fluid and solid effitees. As already stated in § 2.6, the Dirichteindition
employed in the current paper (perfect conductaligdinates any "solid parameter” in the stabilihakysis.

Finally, it is worth pointing out that the optimedefficient is a decreasing function of the e of the

fluid cell. As a result, directly using either (8) (10) in any CHT case, regardless of the cek €y, ,

presents an obvious possibility that avoids theegsity of estimating the length of the cell. Thlidrue as
long as the near-wall treatment is based on a lewnBlds modeling. In this case, we may consider tha

max opt max

ai™ is very close toa;", and thus,a;~ can be used directly as is. This will lead to ayvslight

overestimation (in generay ™ = 1.1a?™) of the value ofa?™ , which does not adversely affect stability.

2.8.Nature of the thermal FSI

At low or moderate interaction, there is no staépiksue when a Dirichlet-Robin is employed. Howeve
a good choice of the coupling coefficient is needédure 2 displays the temperature profile atlézeling
edge of a flat plate in a CHT computation (seeitdeta [16]). Two coupling coefficients have beesed :

a, = 061* a™anda, =a{™. The numerical Biot number Bi, = 26.
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It is clear from this figure thatr, = 061* a?™ generates oscillations during the initial couplsigps. The

oscillations tend to grow at the beginning. Althbube amplitude of these oscillations does not ed@,
they can become a critical issue if they do notrese rapidly. Finally, we can see that the osicilia die

out after approximately 40 fluid-solid coupling fmels, indicating that the coupling coefficient @tlow
and consequently producing under-relaxed soluti@rsthe contrary, the choice af, = a'?pt avoids all

oscillations, and a monotonic behavior can be afeskeven during the particularly difficult initigistants.
An oscillatory behavior can ultimately lead to avedigent process, and thus these oscillations maist b
avoided at all costs.

In the regiona,; < a‘f’p‘, the amplification factor is a decreasing functdra, , as shown in Figure 1. Itis a
time-dependent hyperbola that strongly relies om fourier numberD, . This dependence can lead to

serious stability problems. AB, decreases, the amplification factor increaseshérrt%gion[a?“‘“,a?ptl, the
CHT problem is theoretically stable but oscillasBomay occur as shown in Figure 2. It is therefore
absolutely necessary to further limit the rangenof to avoid adopting a coupling coefficient in thisne,
even if a; =a™ theoretically leads to a monotone and fast corerezg as predicted by the stability

analysis. However, the problem becomes even mgnéisant if thermal interactions are strong, &®wn
below.

2.9.Biot number and numerical Biot number

Let us recall that the conventional Biot numberdsea heat transfer coefficieht,

- h
Bi = (11)

S
This number is a key parameter that determinesttiglity of the fluid-solid equilibrium and the rditions
for relevant transmission procedures, see Vergtededl. [10][26]. It is not an easy task to set up a ciongpl
method on the basis of the conventional Biot nunifoffmid transients are involved in the couplingppess.
However, at convergence, stability bounds may Ipgesssed as a function of this number

The numerical Biot number is a dimensionless nuriitesduced by Eq.(6), and is defined at any timéhie

transient state of a CHT computation. It is theultesf a balance between the fluid and solid domaincan
also be expressed quite simply

(12)




It is a key parameter for stability since it measuthe strength of the fluid-solid thermal intei@tt and
accounts for the transient fluid flow at the ingexé. This number controls the stability processandes the
interface condition choice. Note that the expressiof (11) and (12) have the same denominator fif$te
number represents the steady fluid-solid equilibriwhile the second is defined during the transient
processes.

As for the optimal coefficient, an upper boundRif is given forady, =0

k
Bi™ =lim Bi, S 2hs (13)
ay -0 Ko v 2a; At

As Bi, is a decreasing function dfy, , Bi) <1 = Bi, <1. As a result, it is an easy matter from (13) to

determine any quantity that ensures unconditiotadility, i.e. a large diffusion of heat in the ifludomain
from the interface, which can be characterized yeak thermal FSI, as defined in Section 2.5. Haxev
this is an aside, as the goal of this work is forfirse very large FSI.

Finally, let us recall that it was shown recentl@] that for stability reasons, the following cotiath in the
fluid domain, must be verified to avoid a "spati@kponential growth ok; in Eq.(2):

Ky >2 (14)

This stability condition indicates that the fluidreductance in the near-wall region (diffusion) muosthigher
than half of the convective heat transfer coeffiti€Clearly, this condition holds in the vast méjoiof

situations in the fluid. However, this relationskipould not be overlooked when the heat transfefficeent

is expected to be very high (in the case of annigipg jet, for instance).

3. ASINGLEINTERFACE TREATMENT : A STABILITY CHALLENGE

3.1.Strong thermal interaction

It is the purpose of this article to propose a lgingterface treatment, based on the Dirichlet-Robi
condition. Why this condition in particular ? Firbecause it is the most widely used in CHT contjria.

Second, because the numerical Biot number canweréal thanks to the temporal tel{m,/l+ 2D ]_1,

presenting a powerful argument in favor of the @ilet condition. It is the reason why, only thisidition
will be used in the current paper.

As mentioned before, a Dirichlet condition imposadthe fluid side may be delicate and difficult for
stability in the case of very strong thermal intéiens (Bi, >> 1). Nevertheless, one can also argue that

the optimal coefficient provides, even in this gageconditionally stable CHT computations. However,
this result has been obtained from a 1D model anfbrtunately, at very strong thermal interactiahg,
optimal value becomes very close to the stabilitgit! This can easily be shown. Combining the

definition of o™ (Eq.(5)) anda?™ (Eq. (7)) , we obtain
a,opt _a,min
R -1 (15)
a; Bi,
Thus, asBi, increases, two undesirable consequences are ebsetive interva[a?“”,a?p‘] shrinks rapidly,
and the amplification factor approaches unity.



In summary, Bi, measures the strength of the thermal FSh{ercept in Figure 1) amBi,,_1 is the distance

betweena‘f’pt and the unstable zone (relative distance along-thes).

3.2.A stable slow-varying zone

It is now useful to intensively examine the inflaenof the coupling coefficient on convergence by
scanning a field forr; from O (no negative values are admitted for sitghieasons) toK ;. The curve in
Figure 3 shows the number of coupling iterationseseary to converge (to a specified tolerancep as
function of the coupling coefficient. Each pointtbe curves indicates a converged CHT computafibe.
convergence criterion is based on the infinity nasithe absolute interface temperatufd, . Three

tolerances have been adop(ed: 107 ;10‘5;10‘8). All the curves show a divergence up until or eatbhortly
after a'?“”, after which a strong decay can be seen. Intagdgtiin each case, a stable minimum level

around a‘f’p‘ is observed, characterized by a slight slope. Afites nearly flat zone, this slope increases

abruptly after3.*a'?pt, indicating a sudden decrease in the speed otdheergence. Accordingly, we

should make use of the potential of this narrowskarying zone[a?p‘,Ba"p‘J to guarantee stable and fast

f
coupled computations for all cases.
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Figure 3 - Coupling iterations to converge for Bedient tolerances.

Beyond the limit3.* a'?pt, the CHT process is slowed down uselessly. Thstexie of this flat stability

zone which varies little withr , as illustrated if Fig.3, provides a range of ealdor a; that resolves the
problem presented by a very large numerical Biohloer, brought to light by Eq.(15).

3.3. Stability conditions for very strong thermal irgetions

On the basis of the above, it is clear that thepting coefficient must be chosen such tagt< 3a?™,

since large values ofr; ensure stability but lead to needlessly long cakioms. Let us recall [18] that the



amplification factor fora; = a‘f’p‘, always located in the stable zone, is a timepedéeent hyperbola whose

equation is

9@ = o (16)

As can be seen from Figure 1, the slope of thet rigiif-curve is very steep at; =a?. The right-
derivative ofg(a;) is given by

. K
g (af):m (7)

When the intervalla?pt,af] is too small, the risk of instability remains higBystematic numerical
investigations have revealed that when the slopé&hefright-hand side becomes three times lower, the

'l becomes sufficiently large and any risk of indigbis avoided. Thus,a; must be

distance‘a'f -a;

determined such that the slope of the amplificatéator is at least three times lower than thahefoptimal
coefficient. This translates to the requirement

KS < 1 KS
(K.+a, ] "3k, +af oo
Whence
3, +af <k +a, ) (19

The issue at hand is with regard to very strongntlaé interactions, i.e.,Bi, >>1 which implies
a?pt/KS >>1. Thus, (19) becomes

a, >J3a® (20)
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Figure 4 - Zoomed view of the amplification factor.



Figure 4 shows a zoomed view of the amplificatiactér and the position af™ , @°®, and~/3 a®.

3.4.A significant example

Figure 5 has been obtained in the conjugate caserated for testing and demonstrating the effigrenc
of the optimal coefficients. This figure illustratéhe convergence history for various values ofcihgpling
coefficient by plotting the interface temperatugsiduals as a function of the coupling coefficient.
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Figure 5 - Convergenass coupling iterations for Dirichlet-Robin & Neumaiirichlet conditions.

The details of the CHT test case are provided @). [lL is quite interesting to mention that theuls of the
figure were obtained for a very high numerical BiotnberBi, =428, due to a very low solid conductivity

ks =102).

In [16], only the Dirichlet-Robin (with the optimaloefficient) and the Neumann-Robin conditions were
shown. As we can see, the first condition is dieatgwhile the second converges rapidly (104 cogplin
iterations are needed). However, we have now ioted the coefficients provided by the current study

namely condition (20) with an upper limit of, <3a%". For a, =+/3a%", a rapidly convergent behavior is

observed (99 coupling iterations) which suggestst this coefficient provides an efficient condition
However a small non-uniform behavior is detectedeian obvious "step-off" is noted in the initialipling

steps. The other two coefficients lead to oscilatiree solutions but at a slightly larger costqli@rations

and 127 iterations, respectively). Values greaituamtSa"fpt are acceptable, albeit at the cost of a poor

convergence rate.

Note that such a high numerical Biot number seldwmever occurs, as the solid conductivity usetioe
times smaller than that of typical ceramics ! Itth® reason why Figure 5 is entirely representative
extreme CHT cases.

3.5. Computational efficiency

The number of fluid iterations necessary to congargist be compared to that for an uncoupled steady
flow solution. For low or moderate fluid-structuirgeractions, it has been shown [16] that the nunafe

10



fluid iterations of the CHT process is shorter tkta@ one required for a CFD computation only. AtyMaigh
interactions, such as the one shown in Figureéntimber of fluid iterations increases by only 1&4th
respect to the CFD computation.

3.6. Stability, accuracy and validation

Emphasis has been put in this paper on stabilisyes, mainly for large thermal fluid-structure
interactions. This was a necessary step to complefiere dealing with accuracy issues such as hew th
numerical treatment at the interface affects theralV spatial convergence and accuracy. However, in
loosely coupled problems, the heat fluxes are atartred at the interface and only a steady stateught.
On the contrary, in strong thermal coupling, comaéon of energy must be maintained continuouslgteN
that, for this specific issue, the method of maotifeed solutions [28][29] has been used by Veerraget
al. to verify that the spatial discretisation usedhat fluid-solid interface does not affect the alespatial
convergence and that the coupling is implementecectly. Lastly, it should be observed that theme faw
analytical solutions. They are available only fomge cases with linear boundary conditions. For
incompressible flows, analytical solutions haveatly been used in CHT for instance in a paralbepdiuct
[30] [31], in circular ducts [31], with periodiclet fluid temperature [32] or in laminar pipe floy&3]. For
compressible flows, no exact solution is available.

4. A SINGLE INTERFACE TREATMENT : AN ACCURACY CHALLENGE
4.1.Background

In theory, the convergence of the conjugate prokbhaplies the continuity of temperature and heax fl
at the fluid-solid interface : introducing the ciowiity of temperaturel; =T, into the Robin condition (1)

leads toq; =(,. In practice, the situation can be quite differdifte problem is twofold :
(1) the interface conditions are satisfied to acHjgal tolerancee :

\Tf -T|<e (21)

(2) The "relaxation term" in (1), namely (Tf —TS), may be significant. This term, which is meanteind

towards zero at convergence, may, on the contraye significant influence on the solution. Indeiedan
be of equal or greater order of magnitudegas leading to an erroneously converged result.

At this stage, it is worth noting that a criteribased on the difference between the fluid and $aat fluxes
could have been considered, but this would haveadeglite similar conclusions. Indeed, from Eq.({d
obtain

d—09; =a(T; -T) (22)

and thus, when criterion (21) holds, the convergarcor on the heat fluxes is

d.-q|=a.c (23)

Therefore, this difference is all the more impottamen the coupling coefficient is large (strongrthal
interactions) or when the tolerance criterion isnegtrictive enough.

4.2.Non-Unigueness of the CHT solutions

On a discrete level, on the solid side, at tmé, it is not Eq.(22) that is solved but rather :

q2+1 — afn + a, (-an _-I-Sn+1) (24)

11



whereq, and 'ﬁ arethe spatially interpolated values from the fluritdgo the solid grid. This may be re-
written as :

Q=g +a, (1) -T ) +a, (T, -T) (25)

And thus, as we can see, convergence on the sdécx('@“”:Ts“), does not imply continuity of heat flux

( M= Gf”) due to the interpolated fluid temperature. Thasiwergence error is accentuated as thermal

S
interactions get stronger, since increasingly largepling coefficients become necessary. Consetyjent

single interface treatment based on a DirichletiR@wondition presents a real accuracy challengktiid
upholds the necessity of a coupling coefficient tremains close tar?™ in the case of high thermal FSI.

The test case, presented in Section 4, illustithisa family of solutions can be obtained at |attggrmal
fluid-solid interaction.

As a result, in the framework of the Dirichlet-Roliondition, the interpolation error can be sultiiip
reduced if only one thermal quantity - the heax flis interpolated at the shared interface. Is thay, there
is no need to transfer the fluid temperature to sbéd and the relaxation term is simply taken as

a, (T =T . This has a minor influence in the case of low atical Biot numbers where small or zero
coupling coefficients are acceptable, but it istvhen higher thermal interactions are considered.

4.3.TBC test case
4.3.1. Operating conditions

Figure 6 shows a 300 mm long and 9.8 mm thick reptkar flat plate with a thermal conductivity
ks =10 Wm™k™. The CHT analysis consists of the problem of cative heat transfer over, and conductive

heat transfer within, this plate. The upper facéhefplate is partially protected by a ceramic itrrbarrier
coating (a ceramic of 0.2m thickness from probe 2 to probe By = 01 Wm™k™). The external faces of
the solid plate k, =10 Wm'k™) are assumed to be adiabatic and a constant tatape{1000 K) is imposed
on the lower side of the solid. The solid cont&l@snesh-points uniformly distributed in tixairection.

1 2 3 4
O  — @

Figure 6 - Thermal barrier coating on a flat plate.

The fluid domain is a rectangular channel of theesdength as the solid plate with a symmetry bounda
condition on the upper side. Turbulent air flowsnfrthe inlet and interacts with the upper walltod solid
before exiting. A near wall well-refined meslty(=2.510° m - y'~1) is employed to correctly capture the
boundary layer. This allows us to best calculat ltleat transfer and as a result, no wall functiams
employed. The fluid Mach number is 0.1 and thel t@mperature is 1200 K. The CFL is set at 20. The
figure indicates the position of four probes.

4.3.2. Numerical tools
The fluid code, referred to as tleésA software package (ONERA-Airbus-Safran propertg)aimulti-

purpose tool for applied aerodynamics and multigits; which capitalizes on the innovative resuft€ 6D
research [34][35]. The solid software package,ech-set, is a comprehensive suite of integratedyais
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programs for general purpose structural analy€i [Bnhe exchange of data between the two afore meedi
solvers is carried out through the CWIPI library]3This library takes into account the grids, adlas the
processes in which the data are located.

4.3.3. Results

The converged interface temperature, within a $jeeciolerances =107, is representedsthe coupling
coefficient in Figure 7. Along the-axis, the indices 1, 2, etc ...represanta®, 2.*a%", etc. The value of
the thermal conductivity of the TBC and of the ddibdy is indicated in this figure.

It can be seen that the temperature levels at pribland 4, i.e. in the metallic body, are indepahdé the
coupling coefficient. On the contrary, at the twaubdaries between the metal and the TBC, the cisfti
dependency on the steady coupled solution is evialeth notable differences can be observed dedpite t
very low tolerance level required. This confirmsavlone would expect. It is more difficult to obtajood
convergence properties with a small solid thernsaldcictivity when a temperature is prescribed orflthd
side.

kch = 0.1, ks = 10.

1018 -

VAN ——Probe 1
1016t —o—Probe 2

Probe 3
—a—Probe 4

[

1014 -

1012 -

- 1010+

1008 -

1006 -

1004 -

1002 1 1 1 1 1
0

aopt

Figure 7 - Interface temperature at convergendedifferent locationys coupling coefficient.

At this point, it is essential to illustrate theneergence of the temperature for the different foehts. As
can be seen from Figure 7, temperature at Prolmel Peobe 2 are not affected by the value of theloag
coefficient. This does not hold true when the nuoatBiot number is large, as in the case of thabps by
the thermal coating. Consequently, the convergdmns®ry of the temperature is shown in the TBC at
probe 3.

13



Temperature convergence history at probe 3, kmc=0.1
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Figure 8 - Interface temperature at convergengedte 3, for different coupling coefficients.

The variation in the solutions at steady state oaibe considered to be negligible, as the diffegeinc
temperature can be as large as 8 K when considdradpwest and largest coefficients. As explaiired
Section 4.2, these non-unique solutions are dileetoelaxation term that becomes predominant virtng
FSI. It is then crucial to specify that if the neddéion term contains only "solid temperatures"saggested
before, all the interface temperatures presentdeigare 8, for 4 coupling coefficients, are supgrised,
which means that a unique solution is obtained.

Finally, it is highly significant to note that a d®ann-Dirichlet condition imposed at the TBC inde
(between probes 2 and 3) and a Dirichlet-Robin gtmmdimposed in the rest of the interface leadato
rapidly divergent process (not shown in this pap@tis is because switching from a Dirichlet-type
condition (a = »)to a Neumann conditiofw, = 0) is very brutal. It is thus far better to implemeattleast in

the case in point, a single interface conditiorisTully justifies the approach presented in thereunt study.

5. CONCLUSION

A single interface treatment to deal with all ste@HT scenarios has been presented in this papes. T
treatment is based on adaptive and local couplogdfficients, with no arbitrary relaxation parameteand
with no assumptions on the temporal advancemetiteofluid domain. This was achieved by leveragimg t
concept of optimal coupling coefficients and bysexting their functionalities to include high thefrg&I.

Accordingly, stability is maintained in any CHT emMe and in particular for a thermal coupling
characterized by very large Biot numbers. In additit has been shown how this approach is clasdfted
to the thermal effusivity as well as the thermahgteation depth, making this interface treatmehighly
physics-based approach. Finally, in order to asigaificantly impairing the accuracy of a CHT sabmt, a
reasonable range of values for the coupling cdeffichas been stressed. However, we must alsoibear
mind that the time step involved in the CHT analyisi a significant variable in the stability mod&his
procedure could thus be generalized by calculdtiegoptimal coefficient with a diffusion time scalkhe
most direct application under study consists iretmgeneous coupled surfaces, such as a metallic wal
partially protected by a thermal barrier coating.
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