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Abstract

The solution to the generalized conduction Eshelby problem of a confocal N-layer spheroid with low or highly con-
ducting interfaces between isotropic layers is provided thanks to a decomposition in series of harmonics. A generic
workflow is detailed for practical numerical implementation including a fine analysis to assess the influence of the
level of truncation of the infinite series. The case of perfect interfaces presents a particular interest insofar as it is
characterized by an equivalent conductivity tensor obtained from a recursive procedure. The notion of equivalent
conductivity is then investigated and applied to a uniform spheroid surrounded by an imperfect interface. Some ap-
proximated models are developed, either based on a surface description of the interface or on a thin interphase, casting
a new light on published models and proposing a unified framework for new ones. These approximated models are
finally analyzed by comparison to the exact solution.
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1. Introduction

Relating the specificities of the macroscopic behavior of materials to the responsible mechanisms and microstruc-
ture at the lower scales has become an important issue in the field of material research and engineering in the last
decades. Indeed a better understanding of the behavior of materials and their evolution with time (aging, damage,. . . )
often requires to investigate their lower scale characteristics which may in turn open a way for a control of the
macroscopic properties by optimization of the microstructure (in civil engineering, aeronautics. . . ). The homoge-
nization techniques allowing to build relationships between the microscopic geometrical and physical properties and
the macroscopic properties of materials (such as elasticity, strength, thermal or electrical conduction, ionic diffusion,
permeability. . . ) have shown to be prominent tools in this context [1].

After Eshelby’s pionnering work [2] allowing to build models of homogenization in which heterogeneities and
phase distributions are described as ellipsoids, the generalization of the fundamental problem of a particle embedded
in an infinite matrix to the case of complex heterogeneities has been given an important place in many research topics.
For instance the notion of composite sphere assemblage [3], the three-phase model [4] generalized in [5] to an arbitrary
number of layers have put in evidence the benefits brought by a generalization of the Eshelby problem to an elastic N-
layer sphere for which a solution had been provided earlier by Love [6]. More generally the idea of morphologically
representative pattern has allowed to enrich estimates or bounds of elastic moduli ([7], [8]) even if sometimes analyt-
ical solutions seem out of reach and numerical techniques have to be used ([9], [10], [11], [12]). The N-layer sphere
pattern has also been considered in the framework of thermal conduction [13]. Moreover in order to get closer to the
actual physics taking place around heterogeneities or pores (membrane effect around nanopores, localized electrical
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flux around conductors, diffusive flux around aggegates, thermal barriers. . . ) some models have taken into account
the presence of interfaces around spherical particles ([14], [15], [16]). Other works have investigated the opportunity
to consider spheroidal or even any ellipsoidal shapes in a multilayer particle through approximated models based on
Green techniques ([17] and [18] for elasticity and [19] for thermal conduction). The case of a uniform spheroidal or
even ellipsoidal particle surrounded by an imperfect interface (low or highly conducting interface in conduction or
stiff or compliant interface in elasticity ) or by an interphase has also particularly been focusing the attention for some
time. Indeed exact solutions based on decompositions in harmonics have been found in conduction ([20], [21], [22])
or in elasticity ([23], [24], [25], [26]). However these solutions require rather tedious mathematical developments,
inciting then several authors to propose simpler approximated models which may in addition have the advantage to
apply to anisotropic constituents whereas the analytical solutions are often constrained to isotropic ones. As regards
conduction, some approximated models rely on a surface description of the interface and its properties ([27], [28],
[29], [30], [31]) whereas some others consider the interface as the limit case of a thin interphase ([32], [33], [34],
[35]). It is worth noting that the same kind of considerations about the description of interface and the construction of
simplified models can be found in the framework of elasticity ([36], [37], [38]).

The present contribution aims at casting a new light on the notion of equivalent conductivity in the case of a com-
posite spheroidal particle possibly presenting several layers and imperfect interfaces between layers. The issue of the
determination of such a property is a preliminary step eventually followed by the implementation of homogenization
schemes which are not addressed in this work. To begin with, it seems interesting to unfold an analytical solution
which can be obtained in the case of a confocal multilayer spheroid with imperfect interfaces in such a way that a
practical implementation is facilitated and convergence problems arising from the formulation are properly investi-
gated. This analytical solution has both the advantages to appear as a reference solution for approximated models of
coated spheroids and to provide instructive results in terms of equivalent conduction in presence of perfect interfaces.
Thanks to its relative simplicity the case of a uniform spheroidal particle surrounded by an imperfect interface is an
interesting example for which the concept of equivalent conductivity still deserves new clarifications beyond already
published results.

The paper falls into three parts. The first one (section 2) corresponds to the explicit resolution of the generalized
conduction Eshelby problem of a confocal multilayer spheroid with imperfect interfaces between layers. A particular
attention is paid to the calculation details and justifications which are necessary for a numerical implementation. The
second part (section 3) consists in a specific focus on the confocal multilayer spheroid with perfect interfaces which
presents some interesting particularities allowing to introduce the concept of equivalent inclusion. The latter is the
topic of the third part (section 4) developing some general considerations and discussion about its validity and leading
to its application to the case of a uniform spheroid surrounded by an imperfect interface. The latter problem has already
been tackled in the literature and the present framework allows to recover efficiently some existing approximated
models revisited under the point of view of the equivalent conductivity. A new formulation of approximated models
is finally proposed and a comparison between models is carried out.

2. General resolution of the confocal N-layer spheroid problem in thermal conduction

This section is devoted to the determination of the generalized Eshelby solution of a confocal N-layer spheroid
particle with imperfect interfaces in the framework of second-order elliptic problems. In the sequel, the terminology
of thermal conductivity is used but all the results can be transposed to diffusion, electrical conductivity, dielectric
permittivity, permeability. . . Initially based on some already known results concerning the use of series of spherical
and spheroidal harmonics ([39], [40], [41]) in problems involving spheroidal particles with interfaces ([20], [21], [22],
[42]), this section aims at extending them to a multilayer particle. The approach is inspired by previous works dealing
with the elastic spherical case ([5], [16]) or the conductive spherical case [13] with a particular focus on practical
implementation made more complex by the presence of infinite series of harmonics and numerical issues that may
arise along the calculation of the latter.
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2.1. Description of the problem and general form of the solution
The generalized Eshelby problem at stake here relies on a confocal N-layer spheroid particle, each layer Ω`

(1 ≤ ` ≤ N) corresponding to a uniform conductive material, embedded in an infinite matrix ΩN+1. The geometry is
represented in figure 1 where the prolate (resp. oblate) case is obtained by symmetry of revolution around the vertical
(resp. horizontal) axis.

Figure 1: Confocal N-layer spheroid embedded in an infinite matrix

In the following developments the expressions are given in the prolate spheroidal coordinates (ϕ, p, q) from which
their oblate counterparts can be retrieved from a simple parameter replacement (see AppendixA for notations and
details concerning spheroidal coordinates). The conductivity within Ω` (1 ≤ ` ≤ N + 1) is assumed isotropic k` = k`1
and the interface between Ω` and Ω`+1 denoted by I` (mathematically defined by a levelset of equation q = q` with
q`+1 > q` > 1) follows one of the three types of characteristic adopting the terminology employed in [42]: perfect
interface (P), low conducting interface (LC) also called Kapitza model of interface thermal resistance α` [43] or highly
conducting interface (HC) of surface conductivity β`. The whole system Ω = R3 = ∪N+1

`=1 Ω` is subjected to a remote
boundary condition of uniform temperature gradient H. The set of equations of the steady state thermal problem is
then given by 

div u = 0 in Ω

u = −k` h ; h = grad T in Ω`

[[T ]] = 0 and [[u ]] · eq = 0 on I` of P type

[[T ]] = −α` u · eq and [[u ]] · eq = 0 on I` of LC type

[[T ]] = 0 and [[u ]] · eq = β` ∆ST on I` of HC type

T ∼
‖x‖→∞

H · x

(1a)
(1b)

(1c)

(1d)

(1e)

(1f)

where T and u denote the temperature and heat flux fields, [[X ]] = X`+1 − X` the discontinuity of an arbitrary field X
across I` and ∆S the surface Laplacian (A.11).

By linearity of the equations involved in the system (1a)-(1f), the temperature gradient and velocity fields are
related to the remote temperature gradient H by means of concentration tensor fields A(x) and B(x) such that

h = grad T = A · H ; u = −B · H (2)
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The knowledge of A(x) and B(x) relies then on the complete resolution of the system (1a)-(1f) as performed here-
after. Moreover it is worth mentioning here that the averages of these tensors over any spheroid E` bounded by I`
(E` = ∪`λ=1Ωλ), denoted by < A >E` and < B >E` , are of crucial importance in upscaling techniques and in particular
the averages over EN which are directly involved in many homogenization schemes relying on auxiliary (generalized)
Eshelby problems (e.g. Mori-Tanaka, self-consistent,. . . ) providing estimates of composites incorporating a family
of confocal N-layer spheroids. That is why the identification of these tensors is considered in the next sections.

Due to the isotropy of the conductivity in each layer, the combination of (1a) together with (1b) implies that
the restriction of the temperature field to the domain Ω`, which is denoted by T`, is harmonic and can therefore be
decomposed as an infinite sum of spheroidal harmonics ([39], [41]):

T` = c
+∞∑
m=0

+∞∑
n=m

Pm
n (p)

{[
am
`,n Pm

n (q) + bm
`,n Qm

n (q)
]

cos (mϕ)

+

[
cm
`,n Pm

n (q) + dm
`,n Qm

n (q)
]

sin (mϕ)
} (3)

where Pm
n and Qm

n denote the associated Legendre functions of degree n and order m of respectively the first and
second kinds (see AppendixB) and am

`,n, bm
`,n, cm

`,n and dm
`,n the coefficients applying in Ω`. These coefficients have

to be determined in consistency with the system (1a)-(1f). The terms Pm
n (p)Pm

n (q) cos (mϕ) and Pm
n (p)Pm

n (q) sin (mϕ)
have finite limits in the vicinity of q = 1 and are called the regular harmonics whereas Pm

n (p)Qm
n (q) cos (mϕ) and

Pm
n (p)Qm

n (q) sin (mϕ) have infinite limits when q tends towards 1 and are called the irregular harmonics. Noticeably
the interface relationships (1c)-(1e) not only involve the expressions of T in successive layers but also the normal flux
at the interface written in the `th layer as

u` · eq = −
k`
χq

∂T`
∂q

= −
k`

√
q2 − 1√

q2 − p2

+∞∑
m=0

+∞∑
n=m

Pm
n (p)

{[
am
`,n Pm′

n (q) + bm
`,n Qm′

n (q)
]

cos (mϕ)

+

[
cm
`,n Pm′

n (q) + dm
`,n Qm′

n (q)
]

sin (mϕ)
} (4)

(4) is meant to be applied at q = q`−1 or q` depending on whether it corresponds to the external flux at I`−1 or internal
flux at I`.

For further interest and thanks to the Stokes theorem, the decomposition (3) is well adapted to calculate the average
of grad T over E` of volume |E` | = 4

3πc3q`(q2
` − 1). Indeed observing that p = P1(p) and

√
1 − p2 = −P1

1(p) since
|p| ≤ 1 and exploiting the expressions of eq in (A.6) and dS q in (A.7), it comes that

< h >E` = 1
|E` |

∫
∂E`

Tλ|q=q`
eq dS q

= 3
4 π q`
√

q2
`
−1

∫ 1
p=−1

∫ 2π
ϕ=0

Tλ|q=q`
c

(
− P1

1(p) q` uϕ + P1(p)
√

q2
`
− 1 e3

)
dϕ dp

(5)

where λ = ` + 1 if the interface is included in the average and λ = ` if it is not. In other words, in the case of LC
interface involving temperature discontinuities, Tλ in (5) is taken equal to T` at q = q` if the interface is not considered
in the averaging process or equal to T`+1 at q = q` if the interface contributes to the average. In any other case (P or
HC), the choice of T as T` or T`+1 at q = q` is indifferent but can be motivated by the interest to express the result
with respect to the coefficients of one or the other layer. Finally (5) can be simplified by introducing T (3), uϕ (A.2)

and invoking the orthogonality condition (B.1f) as well as the definitions P1(q) = q and P1
1(q) =

√
q2 − 1 for q > 1:

< h >E`= −
(
a1
λ,1 + b1

λ,1 Tt(q`)
)

e1 −
(
c1
λ,1 + d1

λ,1 Tt(q`)
)

e2 +
(
a0
λ,1 + b0

λ,1 Ta(q`)
)

e3 (6)
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with

Tt(q) =
Q1

1(q)√
q2 − 1

= arccoth q −
q

q2 − 1
; Ta(q) =

Q1(q)
q

= arccoth q −
1
q

(7)

Besides, thanks to (1a) and using dS q in (A.7) and x in (A.3), the average of u over E` can also be obtained by a
surface integral involving (4)

< u >E` = 1
|E` |

∫
∂E`

x (uλ · eq)|q=q` dS q

=
−3 kλ
4 π q`

∫ 1
p=−1

∫ 2π
ϕ=0

∂(Tλ/c)
∂q |q=q`

(
− P1

1(p)
√

q2
`
− 1 uϕ + P1(p) q` e3

)
dϕ dp

(8)

where still λ = ` + 1 if the interface is included in the average and λ = ` if it is not. Here the choice of λ for the
internal or external layer has an influence on the average only in the HC case involving normal flux discontinuities.
Otherwise, in the P and LC cases, this choice is only a matter of convenience related to the use of either one or the
other set of coefficients. In a similar way as the temperature gradient, (8) can considerably be simplified into a reduced
set of terms thanks to the orthogonality of Legendre functions (B.1f). Indeed inserting (3) in (8) yields

−
< u >E`

kλ
= −

(
a1
λ,1 + b1

λ,1Ut(q`)
)

e1 −
(
c1
λ,1 + d1

λ,1Ut(q`)
)

e2 +
(
a0
λ,1 + b0

λ,1Ua(q`)
)

e3 (9)

with

Ut(q) =

√
q2 − 1

q
Q1′

1 (q) = arccoth q +
2 − q2

q (q2 − 1)
; Ua(q) = Q′1(q) = arccoth q −

q
q2 − 1

(10)

It finally appears in (6) and (9) that the axial parts (along e3) of the averages involve only the first coefficients of
order m = 0 and the transverse parts involve only the first coefficients of order m = 1. Moreover it is of particular in-
terest to notice that the remote boundary condition (1f), in which the position vector is rewritten in terms of spheroidal
harmonics (A.3), is obviously also consistent with the order m = 0 in the axial direction and m = 1 in the transverse
one:

T ∼
‖x‖→∞

H · x = −H1 c P1
1(p) P1

1(q) cosϕ − H2 c P1
1(p) P1

1(q) sinϕ + H3 c P1(p) P1(q) (11)

This remote expression of the temperature field and the symmetries of the problem incite to decompose the prob-
lem into a first one corresponding to an axial load (H along e3) and a second one corresponding to a transverse load
(H orthogonal to e3). By symmetry of revolution of the geometry, the solution of the second problem for an arbitrary
H orthogonal to e3 can be deduced by rotation of the solution obtained for H colinear to e1.

The resolution detailed in the next section is inspired by the one developed for a N-layer sphere by [5] and [16] in
the elastic case and by [13] in the conduction case. However the present problem differs from the latter references by
the fact that the non spherical geometry of the inhomogeneity forces to keep infinite sums of harmonics in presence
of imperfect interfaces.

2.2. Resolution of the axial problem
In this section, H is chosen colinear to e3 i.e. H = H3 e3 and H1 = H2 = 0 in (11). Considering the form of the

remote boundary condition and the relationships between the expressions of adjacent layers (1c), (1d) or (1e) involving
(3) and (4), it follows that only the terms of order m = 0 are kept in the decomposition in each layer. Furthermore the
antisymmetry of the problem with respect to the equatorial plane (p = 0) implies that the solution should be odd with
respect to p so that only the terms of odd degree of the decomposition are non zero:

T` = c
+∞∑

i=1,3,5...

Pi(p)
(
a0
`,i Pi(q) + b0

`,i Qi(q)
)

u` · eq = −
k`

√
q2 − 1√

q2 − p2

+∞∑
i=1,3,5...

Pi(p)
(
a0
`,i P′i(q) + b0

`,i Q′i(q)
)

(12a)

(12b)
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The solution is fully determined by the knowledge of the sequences
(
a0
`,2n−1

)
n∈N∗

and
(
b0
`,2n−1

)
n∈N∗

for each layer `
(1 ≤ ` ≤ N + 1). These sequences must comply with the remote boundary condition, additional conditions prevailing
in the core layer (` = 1) and interface conditions. The remote boundary condition (11) with H = H3 e3 implies here

a0
N+1,1 = H3 and a0

N+1,i = 0, ∀i (odd) ≥ 3 (13)

The terms involving the Legendre polynomials of the second kind Qi(q) become singular in the vicinity of the
center of the spheroid, i.e. for the limit q → 1. Consequently the following conditions must be satisfied in the core
layer (` = 1)

b0
1,i = 0, ∀i (odd) ≥ 0 (14)

The determination of the two sets of sequences is finally achieved by invoking the interface conditions (1c), (1d) or
(1e) on I` (1 ≤ ` ≤ N) in order to relate the sequences of consecutives layers. The interface conditions are expressed
as equalities between the infinite series (12a) and (12b) of layers ` and ` + 1 depending on p (fields are independent
of ϕ in the axial problem) at a given q = q`. The case of an interface of P type is rather simple since the continuity of
temperature and heat flux through the interface does not mix the two decompositions (12a) and (12b) and thus both
conditions involve the same basis of functions of ϕ and p. It follows that the coefficient of each basis function of p
can be identified from the temperature continuity

a0
`+1,i Pi(q`) + b0

`+1,i Qi(q`) = a0
`,i Pi(q`) + b0

`,i Qi(q`) ∀i (odd) ≥ 0 (15)

and the heat flux continuity

k`+1

(
a0
`+1,i P′i(q`) + b0

`+1,i Q′i(q`)
)

= k`
(
a0
`,i P′i(q`) + b0

`,i Q′i(q`)
)
∀i (odd) ≥ 0 (16)

Conversely the other types of interface LC or HC introduce a mix between temperature and heat flux in one
among the two relationships so that the contributions of each basis function of p cannot be uncoupled anymore due
to the presence of p in the term before the sum in (12b). As presented in [42], the solution consists in writing the
interface condition as a sum in which the terms stemming from the presence of the imperfect interface are written
with the coefficients of the internal layer ` and then taking the scalar product (as an integral over p) with the ith

(i odd) Legendre polynomial. Such a scalar product takes advantage of the orthogonality condition (B.1f) to isolate
the coefficients of the (` + 1)th layer. As regards the interface of LC type (1d), the continuity of the heat flux (16) still
holds whereas (15) is replaced by

a0
`+1,i Pi(q`) + b0

`+1,i Qi(q`) = a0
`,i Pi(q`) + b0

`,i Qi(q`)

+
2i + 1

2
k` α`

c

√
q2
`
− 1

+∞∑
j=1,3,5...

Ii j(q`)
(
a0
`, j P′j(q`) + b0

`, j Q′j(q`)
)
∀i (odd) ≥ 0

(17)

where Ii j is given in (B.7). Note that the practical calculation as provided in AppendixB raises the issue of the numer-
ical accuracy and even convergence of the algorithm. This point is particularly addressed in AppendixC.

The same kind of reasoning can be applied to the HC type interface (1e) at which the temperature field is con-
tinuous, which corresponds to (15), and the heat flux discontinuity linearly depends on the surface Laplacian of the
temperature. Exploiting (A.11) and the decompositions (12a) and (12b), the second equation of (1e) provides the
relationships replacing (16)

k`+1

(
a0
`+1,i P′i(q`) + b0

`+1,i Q′i(q`)
)

= k`
(
a0
`,i P′i(q`) + b0

`,i Q′i(q`)
)

+
2i + 1

2
β`
c

1√
q2
`
− 1

+∞∑
j=1,3,5...

Ji j(q`)
(
a0
`, j P j(q`) + b0

`, j Q j(q`)
)
∀i (odd) ≥ 0

(18)
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where Ji j is given in (B.9).

The relationships (17) and (18) involve infinite sums, which are not suitable for a practical numerical implementa-
tion. It is then necessary to consider a truncation of the series. The notion of truncation of infinite series of spheroidal
harmonics has already been invoked in previous studies ([44], [24]) in which the determination of the optimal thresh-
old was guided by a given tolerance in the variation of coefficients between two successive values of the number of
remaining terms. Nevertheless another problem which is evoked above arises here: the calculation of the coupling
coefficients Ii j and Ji j may suffer from a lack of accuracy or even a lack of convergence due to numerical precision as
treated in AppendixC. Let N denote the number of significant terms which are kept in the series (12a) and (12b). As
only odd degrees are concerned, this means that the highest degree is 2N − 1 and the precision is chosen consistently
with AppendixC: in other words the precision is taken as the maximum value between 0.8 × (2N − 1) and the double
precision (16 digits). Let also A0

`
and B0

`
denote the vectors containing the correspondingN coefficients of layer ` and

X0
`

their concatenation

A0
` =



a0
`,1

a0
`,3
...

a0
`,2N−1


; B0

` =



b0
`,1

b0
`,3
...

b0
`,2N−1


; X0

` =


A0
`

B0
`

 =


a0
`,1
...

b0
`,2N−1


(19)

The (N + 1) vectors X0
`

contain each 2N components. The resolution of the problem consists then in the iden-
tification of these 2N(N + 1) variables by means of as many equations. The conditions (13) and (14) can first be
written

A0
N+1 =



H3

0
...

0


; B0

1 =



0

0
...

0


(20)

and the N interface conditions provide 2N more equations. For a perfect interface the linear system gathering the sets
of equations (15) and (16) write as

J(k`+1, q`)X0
`+1 = J(k`, q`)X0

` (I` of P type) (21)

with the 2N × 2N block matrix

J(k, q) =


JP(q) JQ(q)

kJP′ (q) kJQ′ (q)

 (22)

in which JP(q), JQ(q), JP′ (q) and JQ′ (q) are N ×N diagonal square matrices generically defined as

JR(q) =



R1(q) 0 . . . 0

0 R3(q)
. . .

...

...
. . .

. . . 0

0 . . . 0 R2N−1(q)


with R ≡ P,Q, P′,Q′ (23)
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As regards the LC interface, the replacement of (15) by (17) induces a change in the right hand side of (21) and
more particularly in the upper part of the matrix. Indeed (21) becomes

J(k`+1, q`)X0
`+1 =

(
J(k`, q`) + δJLC(k`, α`, q`)

)
X0
` (I` of LC type) (24)

with the 2N × 2N block matrix

δJLC(k, α, q) =


δJLC

P (k, α, q) δJLC
Q (k, α, q)

[0] [0]

 (25)

in which δJLC
P (k, α, q) and δJLC

Q (k, α, q) are full N ×N matrices of generic terms

[δJLC
R

(k, α, q)]rs =
4r − 1

2
k α
c

√
q2 − 1 I2r−1,2s−1(q)R′2s−1(q) (1 ≤ r, s ≤ N), R ≡ P,Q (26)

Simarly for the HC interface, (18) implies that (21) becomes

J(k`+1, q`)X0
`+1 =

(
J(k`, q`) + δJHC(β`, q`)

)
X0
` (I` of HC type) (27)

with the 2N × 2N block matrix

δJHC(β, q) =


[0] [0]

δJHC
P (β, q) δJHC

Q (β, q)

 (28)

in which δJHC
P (β, q) and δJHC

Q (β, q) are full N ×N matrices of generic terms

[δJHC
R

(β, q)]rs =
4r − 1

2
β

c
1√

q2 − 1
J2r−1,2s−1(q)R2s−1(q) (1 ≤ r, s ≤ N), R ≡ P,Q (29)

Whatever the type of interface P, LC or HC, the system of equations (21), (24) or (27) always linearly relates the
coefficients of layer ` + 1 (X0

`+1) to those of layer ` (X0
`
). Indeed multiplying any of these equations by the inverse

matrix J(k`+1, q`)−1 finally yields a system of the form

X0
`+1 = R`X0

` where


R` = J(k`+1, q`)−1J(k`, q`) (P type)

R` = J(k`+1, q`)−1
(
J(k`, q`) + δJLC(k`, α`, q`)

)
(LC type)

R` = J(k`+1, q`)−1
(
J(k`, q`) + δJHC(β`, q`)

)
(HC type)

(30)

and eventually

X0
`+1 = S `X0

1 (1 ≤ ` ≤ N) with S ` =
∏̀
λ=1

Rλ (31)

The coefficients of any layer can then be evaluated from those of the core layer. However the boundary condi-
tions (20) give information on only B0

1, i.e. the lower half of X0
1 , whereas A0

1 has first to be determined from A0
N+1.

Indeed, decomposing the 2N × 2N matrix S ` in four N ×N block matrices

S ` =


S 11
` S 12

`

S 21
` S 22

`

 (32)
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allows to exploit that B0
1 = [0] so that A0

N+1 = S 11
N A0

1 and finally achieves the determination of all the coefficients

X0
`+1 =


A0
`+1

B0
`+1

 = S `


(S 11

N )−1A0
N+1

[0]

 or


A0
`+1 = S 11

` (S 11
N )−1A0

N+1

B0
`+1 = S 21

` (S 11
N )−1A0

N+1

(33)

where A0
N+1 is given by (20). In particular, the ratio b0

N+1,1/a
0
N+1,1, which plays an important role in the implementation

of homogenization schemes as shown hereafter, is now readily obtained

b0
N+1,1

a0
N+1,1

=

N∑
r=1

[S 21
N ]1,r[(S 11

N )−1]r,1 (34)

Indeed these schemes require to calculate the averages of the temperature gradient and the heat flux vector over the
whole N-layer spheroid including the external interface. These averages write thanks to (6), (9) and (20)

< h >EN =

1 +
b0

N+1,1

a0
N+1,1

Ta(qN)

 H3 e3 (35)

and

< u >EN = −kN+1

1 +
b0

N+1,1

a0
N+1,1

Ua(qN)

 H3 e3 (36)

2.3. Resolution of the transverse problem

The resolution of the transverse problem follows the same line as that of the axial one. The macroscopic loading
is now of the form (11) with H = H1 e1 and H2 = H3 = 0. It comes then that only the terms of order m = 1 and
proportional to cosϕ should be kept here in (3) and (4). Moreover the symmetry with respect to the equatorial plane
(p = 0) implies that the solution should be even with respect to p. Since the parity of P1

i is that of i + 1, only the terms
such that i is odd shall be kept in the decomposition

T` = c
+∞∑

i=1,3,5...

P1
i (p)

(
a1
`,i P1

i (q) + b1
`,i Q1

i (q)
)

cosϕ

u` · eq = −
k`

√
q2 − 1√

q2 − p2

+∞∑
i=1,3,5...

P1
i (p)

(
a1
`,i P1′

i (q) + b1
`,i Q1′

i (q)
)

cosϕ

(37a)

(37b)

Now the sequences to identify are
(
a1
`,2n−1

)
n∈N∗

and
(
b1
`,2n−1

)
n∈N∗

for each layer ` (1 ≤ ` ≤ N + 1). The remote
condition write consistently with (11)

a1
N+1,1 = −H1 and a1

N+1,i = 0, ∀i (odd) ≥ 3 (38)

and the singularity in the core implies

b1
1,i = 0, ∀i (odd) ≥ 0 (39)

The continuity equations characterizing a perfect interface are similar to the axial case: (15) and (16) become here

a1
`+1,i P1

i (q`) + b1
`+1,i Q1

i (q`) = a1
`,i P1

i (q`) + b1
`,i Q1

i (q`) ∀i (odd) ≥ 0 (40)

and
k`+1

(
a1
`+1,i P1′

i (q`) + b1
`+1,i Q1′

i (q`)
)

= k`
(
a1
`,i P1′

i (q`) + b1
`,i Q1′

i (q`)
)
∀i (odd) ≥ 0 (41)
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For a LC interface satisfying (1d), (41) remains valid whereas (40) is changed into the counterpart of (17)

a1
`+1,i P1

i (q`) + b1
`+1,i Q1

i (q`) = a1
`,i P1

i (q`) + b1
`,i Q1

i (q`)

+
2i + 1

2 i (i + 1)
k` α`

c

√
q2
`
− 1

+∞∑
j=1,3,5...

Ji j(q`)
(
a1
`, j P1′

j (q`) + b1
`, j Q1′

j (q`)
)
∀i (odd) ≥ 0

(42)

where Ji j is given in (B.9).

And for a HC interface satisfying (1e), (40) remains valid whereas (41) is changed into the counterpart of (18).
After some algebraic calculations making use of (A.11) on (37a) as well as the orthogonality condition (B.1f) to
isolate the coefficients of the (` + 1)th layer and integration by parts to identify some coupling integrals presented in
AppendixB, the heat flux interface equation writes

k`+1

(
a1
`+1,i P1′

i (q`) + b1
`+1,i Q1′

i (q`)
)

= k`
(
a1
`,i P1′

i (q`) + b1
`,i Q1′

i (q`)
)

+
2i + 1

2 i (i + 1)
β`
c

1√
q2
`
− 1

+∞∑
j=1,3,5...

Ki j(q`) +
Li j(q`)

q2
`
− 1

 (
a1
`, j P j(q`) + b1

`, j Q j(q`)
)
∀i (odd) ≥ 0

(43)

where Ki j and Li j are calculated in (B.14) and (B.15).

Still following the reasoning of the axial case, the truncation at non zero N terms is considered so that the vec-
tors A1

` , B1
` and their concatenation X1

` are introduced similarly as in (19) by replacing the exponent 0 by 1. The
conditions (38) and (39) become

A1
N+1 =



−H1

0
...

0


; B1

1 =



0

0
...

0


(44)

The transition systems from one layer to its successor still write as (21), (24) or (27) in which the vectors X0
`

and
X0
`+1 are replaced by X1

` and X1
`+1, the polynomials in (23) by their corresponding Legendre functions (of the first

or second kind) of order m = 1 (Pn, Qn, P′n and Q′n respectively by P1
n, Q1

n, P1′
n and Q1′

n ) and finally (26) and (29)
respectively by

[δJLC
R

(k, α, q)]rs =
4r − 1

4r(2r − 1)
k α
c

√
q2 − 1 J2r−1,2s−1(q)R1′

2s−1(q) (1 ≤ r, s ≤ N), R ≡ P,Q (45)

and

[δJHC
R

(β, q)]rs =
4r − 1

4r(2r − 1)
β

c
1√

q2 − 1

(
K2r−1,2s−1(q) +

L2r−1,2s−1(q)
q2 − 1

)
R1

2s−1(q) (1 ≤ r, s ≤ N), R ≡ P,Q (46)

Taking into account these changes in the different matrices, the end of the resolution is similar to the axial case,
from the construction of the transition matrices R` (30) and S ` (31) to the determination of the ratio (34) writing here
at the order 1

b1
N+1,1

a1
N+1,1

=

N∑
r=1

[S 21
N ]1,r[(S 11

N )−1]r,1 (47)

The averages of the temperature gradient and the heat flux vector over the N-layer spheroid including the external
interface can be calculated from the first component of (6) and (9). This component differs from the third one cor-
responding to the axial case not only because of different coefficients and functions but also because of a change of
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sign. Nevertheless the final expressions are similar to the axial ones (35) and (36) because this change of sign cancels
with the one between a0

N+1,1 (13) and a1
N+1,1 (38) so that

< h >EN = −

1 +
b1

N+1,1

a1
N+1,1

Tt(qN)

 a1
N+1,1 e1 =

1 +
b1

N+1,1

a1
N+1,1

Tt(qN)

 H1 e1 (48)

and

< u >EN = kN+1

1 +
b1

N+1,1

a1
N+1,1

Ut(qN)

 a1
N+1,1 e1 = −kN+1

1 +
b1

N+1,1

a1
N+1,1

Ut(qN)

 H1 e1 (49)

2.4. Choice of the truncation level

Although the averages (35), (36) (48) and (49) depend only on the first degree coefficients a0
N+1,1, b0

N+1,1 a1
N+1,1 and

b1
N+1,1 of the matrix, the values of the latter result in general from the complete resolution of both (axial and transver-

sal) systems and consequently vary with the choice of N . In previous works involving infinite series of harmonics
(e.g. [24], [35], [25]) the choice of N has been ruled by a given threshold on the relative difference between the
desired quantity calculated for N − 1 and that for N . In the present case, the quantities to calculate are b0

N+1,1/a
0
N+1,1

and b1
N+1,1/a

1
N+1,1 or actually only b0

N+1,1 and b1
N+1,1 since a0

N+1,1 = H3 and a1
N+1,1 = −H1 which can both be set to

unit values by linearity. It is worth keeping in mind that, as recalled hereabove and in consistency with AppendixC,
the precision of calculation (number of digits) should be chosen in order to ensure the numerical convergence of the
interaction integrals Ii j, Ji j, Ki j and Li j, i.e. max (0.8 × (2N − 1), 16).

In the case of a single-layer prolate spheroid (N = 1) characterized by a resistive core (k1 = 0) and an HC interface
of unit normalized surface conductivity (β1/(b1k2) = 1 where b1 denotes the small radius of the prolate spheroid), the
relative differences between the values of b0

N+1,1 on the one hand and b1
N+1,1 on the other hand for N − 1 and those

for N are drawn in Figure 2. It appears in this case that only 5 terms are necessary to stay below 10−3 and 10 terms
to stay below 10−4 whatever the aspect ratio. It is worth noticing that the number of 10 terms remains lower than
that triggering the need to resort to multiple precision numbers since 0.8 × (2N − 1) is lower than 16 digits but these
figures may not hold with other configurations (N > 1 and different conductivities. . . ). However, if necessary, a better
accuracy may still be obtained thanks to the analysis of convergence in AppendixC.

Figure 2: Relative difference between successive estimations of b0
N+1,1 and b1

N+1,1 in the case of a single-layer prolate spheroid (N = 1) with k1 = 0
(resistive core), HC interface β1/(b1k2) = 1 (b1: small radius) and various aspect ratios
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3. Particular case of a confocal N-layer spheroid with perfect interfaces only

It has been shown in the previous section that the complete solution of the conduction Eshelby problem of a
N-layer confocal spheroid is estimated by resolution of a system of equations corresponding to interface conditions
relating the temperature and normal flux expressions of a layer to those of the adjacent layer. In general these expres-
sions write as infinite sums because of the couplings between harmonics of the same order but different degrees arising
in the cases of imperfect interface conditions. Indeed the latter introduce a mix between temperature (3) and normal
flux (4) which are not decomposed in the same basis of orthogonal functions and which induce equations such as (17),
(18), (42) and (43) involving coupling integrals Ii j, Ji j and Ki j. However in the case of a N-layer sphere, it can be
shown that the decompositions of the temperature and the normal flux are consistent at a given radius (see for instance
equations (7) and (8) of [13]). This means that, even in the case of imperfect interfaces, only two harmonics (one
regular and one irregular) and two coefficients per layer are needed. Coming back to the confocal N-layer spheroidal
problem, the complete resolution developed in the previous section shows that here again only the first regular and
irregular harmonics are involved in the solution if all the interfaces are of perfect type, as presented hereafter.

3.1. Axial problem
As in section 2.2, this problem corresponds to a macroscopic temperature gradient of the form H = H3e3. The con-

tinuity conditions at the interfaces are expressed in (15) and (16). The latter together with the remote conditions (13)
and regularity at the origin (14) imply that the solution writes in each layer `

T` = c P1(p)
(
a0
` P1(q) + b0

` Q1(q)
)

=

(
a0
` + b0

` Ta(q)
)

e3 · x

u` · eq = −k`

√
q2 − 1√
q2 − p2

P1(p)
(
a0
` P′1(q) + b0

` Q′1(q)
)

= −k`
(
a0
` + b0

` Ua(q)
)

e3 · eq

(50a)

(50b)

with Ta andUa defined in (7) and (10) and x and eq written as in (A.3) and (A.6). The reference to the degree 1 has
been omitted in the coefficients, i.e. a0

`
and b0

`
instead of a0

`,1 and b0
`,1 since only this degree is involved in the solution

here while the superscript 0 corresponding to the order is kept to distinguish the axial and the transverse solutions. The
consistency with the averages already obtained in the general case in (6) and (9) is straightforward by Stokes theorem.
Interestingly here the solution in temperature over any spheroid of linear eccentricity c defined as an iso-q surface
has the same structure as the remote condition (1f). Indeed (50a) writes T` = λ(q)e3 · x with λ(q) = a0

`
+ b0

`
Ta(q).

It is then possible to consider the problem of conduction posed only on the spheroid E` with boundary condition of
the form T = λ(q`)e3 · x at finite distance over I`. By linearity, there exists a function ka,eq

`
depending only on the

material property and geometrical characteristics of the `-layer spheroid E` such that u · eq = −ka,eq
`

λ(q`)e3 · eq over
I`. Using Stokes theorem, this also means that < u >`= −ka,eq

`
< h >E` where ka,eq

`
can be interpreted as the equivalent

axial conductivity of the `-layer spheroid E` and also writes by consistency with (50a) and (50b)

ka,eq
`

= k`
a0
`

+ b0
`
Ua(q`)

a0
`

+ b0
`
Ta(q`)

(51)

By unicity of the solution it comes that the temperature and flux fields outside E` remain unchanged if the composite
spheroid E` is replaced by a homogeneous one of axial conductivity equal to ka,eq

`
.

Although theoretically clear from this reasoning based on linearity and on the form of the solution (50a), the fact
that ka,eq

`
does not depend on the layers which are outside E` may not be obvious in (51) since the coefficients a0

`
and

b0
`

are built from the complete problem involving the whole system. The equations to be solved stem from (21) with
N = 1 without any need to invoke any truncation here since the exact solution only requires N = 1. In the current
framework, (21) alternatively writes

a0
`+1 + b0

`+1 Ta(q`) = a0
` + b0

` Ta(q`)

k`+1

(
a0
`+1 + b0

`+1Ua(q`)
)

= k`
(
a0
` + b0

` Ua(q`)
) (52a)

(52b)
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Furthermore (20) recalls that the core layer depends on one single scalar coefficient a0
1 which can eventually

be related to the remote temperature gradient a0
N+1 = H3 by a0

1 = H3/S 11
N since S 11

N in (32) is scalar here. Finally
from (31) the coefficients of layer ` > 1 are deduced from the single one of the core layer by simple linear relationships
a0
`

= S 11
`−1a0

1 and b0
`

= S 21
`−1a0

1 where the scalars S 11
`−1 and S 21

`−1 only depend by construction on the material and
geometrical characteristics of the spheroid E` bounded by I`. It follows from (50a) and (50b) that

T` = a0
1

(
S 11
`−1 + S 21

`−1 Ta(q)
)

e3 · x

u` · eq = −a0
1 k`

(
S 11
`−1 + S 21

`−1Ua(q)
)

e3 · eq

(53a)

(53b)

It also results that the equivalent conductivity of the `-layer spheroid E` rewrites

ka,eq
`

= k`
S 11
`−1 + S 21

`−1Ua(q`)

S 11
`−1 + S 21

`−1 Ta(q`)
(54)

which confirms that ka,eq
`

depends only on the internal characteristics of E`.

Besides the general solution provided in the last section, it is now interesting to examine more in details how
to express practically the solution (50a) and (50b) and the values ka,eq

`
in the light of this notion of equivalent of

sub-spheroid, through a recursive procedure.

Case N = 1
This case corresponds to a uniform spheroid embedded in an infinite matrix, in other words to the classical Eshelby

problem. The unknowns a0
1 and b0

2 are determined by the system (52a)-(52b) in which ` = 1 and a0
2 = H3 and b0

1 = 0
a0

1 =

(
1 +

k1 − k2

k2

Ta(q1)
Ta(q1) −Ua(q1)

)−1

a0
2

b0
2 =

k2 − k1

k1 Ta(q1) − k2Ua(q1)
a0

2

(55a)

(55b)

As expected, the expression (55a) relating the uniform axial temperature gradient to the remote one exactly cor-
responds to the axial component of the Eshelby solution as recalled in AppendixD ([1], [45]). Indeed the axial
component of the Eshelby tensor can be retrieved from (55a) by exploiting (7) and (10) as well as (A.4)

S a(q) =
Ta(q)

Ta(q) −Ua(q)
=

(
q2 − 1

)
(q arccoth q − 1) with q =

ω
√
ω2 − 1

(56)

which boils down to the axial component of the prolate case (ω > 1) of (D.3). It is worth recalling here that this
results also holds for the oblate case (ω < 1) after applying the formal transformation q = ıτ introduced in AppendixA
and (A.5)

S a(ıτ) =
(
1 + τ2

)
(1 − τ arccot τ) with τ =

ω
√

1 − ω2
(57)

Case N = 2
As recalled hereabove in (51) and associated comments, the two-layer spheroid E2 can be replaced by a homoge-

neous spheroid of axial conductivity

ka,eq
2 = k`

a0
2 + b0

2Ua(q2)

a0
2 + b0

2 Ta(q2)
(58)

without disturbing the solution established in the matrix Ω3. Moreover the relationships (55a) and (55b) remain valid
since they only come from the continuity equations on I1 and b0

1 = 0. Introducing then b0
2 (55b) into (58), the latter

becomes after some algebra

ka,eq
2 = k2 +

Ta(q2) −Ua(q2)
Ta(q1) −Ua(q1)

(
1

k1 − k2
+

1
k2

Ta(q1) − Ta(q2)
Ta(q1) −Ua(q1)

)−1

(59)
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The definitions (7) and (10) can again be exploited to rewrite (59). It is worth noting first that

f1 =
Ta(q2) −Ua(q2)
Ta(q1) −Ua(q1)

=
q1

(
q2

1 − 1
)

q2

(
q2

2 − 1
) (60)

corresponds to the volume fraction occupied by the core E1 within E2. Then from (56), the relationships are obtained

S a(q1) =
Ta(q1)

Ta(q1) −Ua(q1)
; f1 S a(q2) =

Ta(q2)
Ta(q1) −Ua(q1)

(61)

so that (59) becomes

ka,eq
2 = k2 + f1

(
1

k1 − k2
+

S a(q1) − f1 S a(q2)
k2

)−1

(62)

where once again the replacement of q by ıτ allows to consider oblate instead of prolate spheroids.

Recursive procedure to the general case N
The solution to the N-layer spheroidal inhomogeneity can be obtained by analogy with the two-layer one using

a recursive homogenization strategy consisting in building step-by-step from ` = 1 to ` = N the equivalent homoge-
neous spheroid comprising the ` first layers starting from the core (see figure 3). Namely, for a given 1 ≤ ` ≤ N−1, the
` first internal layers are replaced by an equivalent spheroid and the composite two-layer spheroid made up with this
equivalent core surrounded by the (` + 1)th layer is finally considered. The strategy employed with the two-layer case
together with the reasoning showing that the field outside the internal spheroid is not perturbed by the replacement of
the latter by an equivalent homogeneous core leads to the following adaptation of (62)

ka,eq
`+1 = k`+1 + f`

 1
ka,eq
`
− k`+1

+
S a(q`) − f` S a(q`+1)

k`+1

−1

with f` =
|E` |

|E`+1|
=

q`
(
q2
` − 1

)
q`+1

(
q2
`+1 − 1

) (63)

Once the successive values of ka,eq
`

have been identified starting from ka,eq
1 = k1 to finish with ka,eq

N corresponding to

k1

kn+1

kn
k2

keq
2

kn+1

kn

keq
ℓ

kn+1

kn

keq
n

kn+1

⇔ ⇔ ⇔

Figure 3: Recursive procedure for the equivalent conductivity

the whole composite equivalent axial conductivity, it may be convenient to notice that a recursive procedure can also
be used, alternatively to the general strategy developed in section 2, to identify all the coefficients a0

`
and b0

`
giving

the complete solution fields. This recursive procedure starts from the outside to reach, layer by layer, the core of the
spheroid. The outside constants are determined by the remote condition on the one hand and the analogy with (55b)
on the other hand considering the equivalent spheroid instead of the N-layer composite

a0
N+1 = H3 ; b0

N+1 =
kN+1 − ka,eq

N

ka,eq
N Ta(qN) − kN+1Ua(qN)

H3 (64)
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Then assuming that the constants of layer `+1 are known, those of layer ` are obtained through a reasoning based first
on the introduction of the average axial temperature gradient in E` identified in (6) as a′` = a0

`
+ b0

`
Ta(q`). Exploiting

then the definition of ka,eq
`

in (51), the system (52a)-(52b) writes
a0
`+1 + b0

`+1 Ta(q`) = a′`

k`+1

(
a0
`+1 + b0

`+1Ua(q`)
)

= ka,eq
`

a′`

(65a)

(65b)

This system is formally analogous to that of the single spheroid case in which the constant corresponding to the
irregular harmonics vanishes, leading then to the solution (55a)

a′` =

1 +
ka,eq
`
− k`+1

k`+1

Ta(q`)
Ta(q`) −Ua(q`)

−1

a0
`+1 (66)

The end of the identification is finally achieved by solving the system made by a′` = a0
`

+ b0
`
Ta(q`) and (51)

a0
` =

ka,eq
`
Ta(q`) − k`Ua(q`)

k` (Ta(q`) −Ua(q`))
a′`

b0
` =

k` − ka,eq
`

k` (Ta(q`) −Ua(q`))
a′`

(67a)

(67b)

3.2. Transverse problem
This section is analogous to 3.1 with a remote temperature gradient here equal to H = H1e1, which means that the

solutions (50a) and (50b) now become
T` = c P1

1(p)
(
a1
` P1

1(q) + b1
` Q1

1(q)
)

cosϕ = −

(
a1
` + b1

` Tt(q)
)

e1 · x

u` · eq = −k`

√
q2 − 1√
q2 − p2

P1
1(p)

(
a1
` P1′

1 (q) + b1
` Q1′

1 (q)
)

cosϕ = k`
(
a1
` + b1

` Ut(q)
)

e1 · eq

(68a)

(68b)

with Tt and Ut defined in (7) and (10) and x and eq written as in (A.3) and (A.6). It makes no doubt that all the
reasoning and developments of the axial problem can be reproduced here only changing H3 by H1, the coefficients
a0
`

and b0
`

by −a1
` and −b1

` and the functions Ta and Ua by Tt and Ut. In particular, the transverse component of the
Eshelby tensor can be identified by analogy with (56)

S t(q) =
Tt(q)

Tt(q) −Ut(q)
=

q
2

(
q −

(
q2 − 1

)
arccoth q

)
with q =

ω
√
ω2 − 1

(69)

also consistent with the prolate case of (D.3) as well as the oblate case provided that the transformation q = ıτ is
applied

S t(ıτ) =
τ

2

((
1 + τ2

)
arccot τ − τ

)
with τ =

ω
√

1 − ω2
(70)

Besides the notion of equivalent conductivity depending only on the internal characteristics of the corresponding
ellipsoid still holds as defined by the transverse counterpart of (51)

kt,eq
`

= k`
a1
` + b1

` Ut(q`)

a1
`

+ b1
`
Tt(q`)

(71)

and satisfies a recursive definition analogous to (63)

kt,eq
`+1 = k`+1 + f`

 1
kt,eq
`
− k`+1

+
S t(q`) − f` S t(q`+1)

k`+1

−1

with kt,eq
1 = k1 (72)
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Finally the back recursive strategy leading to (64)-(67b) can also be adapted here to the transverse problem to
identify all the coefficients a1

` and b1
` , still changing H3 by H1, a0

`
and b0

`
by −a1

` and −b1
` , Ta and Ua by Tt and Ut

and ka,eq
`

by kt,eq
`

.

Gathering the component expressions (63) and (72), the equivalent conductivity of the successive spheroids E`
can be written under the following recursive tensor form

keq
`+1 = k`+1 + f`

((
keq
`
− k`+1

)−1
+

(
SE(ω`) − f` SE(ω`+1)

)
· k−1

`+1

)−1
with keq

1 = k1 (73)

where the generic Eshelby tensor SE is given as a function of the aspect ratio in (D.2)-(D.3).

3.3. Analogy with the Ponte-Castañeda-Willis bound

This section aims at putting in evidence that the recursive relationship (73) is actually intimately related to the
Ponte-Castañeda-Willis (PCW) bound [46] applied to a two-phase matrix composite. In the framework adopted in [46]
transposed from elasticity to conductivity, a matrix of conductivity km and aligned inhomogeneities of conductivity
kc and volume fraction f are considered. One of the interest of the PCW bound relies upon the uncoupling between
the individual shapes and mutual spatial distribution of phases. Here the particle shape as well as the unique spatial
distribution are assumed to be ellipsoidal and therefore associated to Eshelby tensors respectively denoted by Sc

m and
SDm (depending on the matrix km only if the latter is anisotropic as recalled in AppendixD). The PCW bound writes
from [46]

kPCW = km + f
(
(kc − km)−1 +

(
Sc

m − f SDm
)
· k−1

m

)−1
(74)

Note that the upper or lower status of the bound depends on the contrast between the two phases. This bound can
anyway be considered as an estimate. It is also worth recalling that, in this condition of unique spatial distribution, the
PCW bound coincides with the Maxwell scheme estimate provided that the shape related to the spatial distribution
plays the role of the shape of the effective particle as emphasized in [47]. In the case of spheroidal shapes, isotropy of
the matrix and spatial distribution respectively associated to the aspect ratios ωc and ωD, the Eshelby tensors in (74)
can be calculated by (D.2)-(D.3).

It is clear now that the recursive formula (73) coincides with the formal application of (74) in which the role of the
matrix is played by the surrounding material km = k`+1, the role of the particle is played by the effective core kc = keq

`

of volume fraction equal to the ratio between |E` | and |E`+1| i.e. f = f` and the shape of the particle corresponds to that
of the internal core of aspect ratio ωc = ω` whereas the shape of the distribution corresponds to that of the external
boundary ωD = ω`+1.

The correspondence between these two expressions deserves some comments. Indeed the interpretation of the
recursive formula in terms of PCW bound somehow casts a new light on the notion of security ellipsoids introduced
in [46]. This notion, which is schematized by aligned ellipsoids in Figure 2 of [46], is related to a mathematical
concept of spatial distribution in the latter reference whereas it explicitly corresponds to a geometrical definition in
the case of the two-layer spheroid leading to (73). On the one hand, the PCW bound of a two-phase composite as
presented hereabove is restricted to a single shape and orientation of the spatial distribution but there is no limitation
about the choice of this ellipsoidal shape: in particular it is independent of the particle one provided that the volume
fraction allows a configuration without overlapping of security ellipsoids. Furthermore, the PCW bound (74) is not
restricted to isotropic behavior. On the other hand, the solution to the two-layer spheroid is restricted to confocal
spheroids delimiting the surrounding zone which is assumed isotropic whereas the core can be transverse isotropic
with the same symmetry axis as the particle. Nevertheless, this solution is obtained in the framework of an auxiliary
Eshelby problem, which means that it can be further used in homogenization schemes involving arbitrary directions
of several sets of such particles including their security spheroids as drawn in figure 4.
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Figure 4: Isotropic distribution of orientation of spheroidal particles surrounded by security spheroids

4. Notion of equivalent particle in conduction

The notion of equivalent particle is now first examined in the framework of the confocal N-layer spheroid for
which a complete solution has been derived. Then, after general considerations about ellipsoidal equivalent particles,
a particular focus is paid on the case of a homogeneous spheroid with an imperfect interface reviewing some already
published results and providing some extensions in a simplified framework.

4.1. Case of the confocal N-layer spheroid

It has been shown in section 3 that a confocal N-layer spheroid with perfect interfaces has actually the same
overall interaction with its surrounding material as a homogeneous spheroid of conductivity defined by the recursive
algorithm (73). In particular, it has been highlighted in this case that the equivalent conduction only depends on the
internal content of the spheroid and not on the surrounding material. This result does not hold anymore in presence of
imperfect interfaces. In the latter case, it is however possible to define an equivalent conductivity by taking advantage
of (35), (36), (48) and (49)

keq = kN+1


1 +

b1
N+1,1

a1
N+1,1
Ut(qN)

1 +
b1

N+1,1

a1
N+1,1
Tt(qN)

(
1 − e3 ⊗ e3

)
+

1 +
b0

N+1,1

a0
N+1,1
Ua(qN)

1 +
b0

N+1,1

a0
N+1,1
Ta(qN)

e3 ⊗ e3

 (75)

depending on the ratios b0
N+1,1/a

0
N+1,1 and b1

N+1,1/a
1
N+1,1 which have been obtained from (34) and (47). In general, due

to the presence of imperfect interfaces inducing infinite series of harmonics in each layer and more particularly in the
core, this equivalent conductivity actually depends on the conductivity kN+1 of the surrounding material. Nevertheless
it may be noted that not only the composite and the equivalent particle have the same overall conductivity (by defi-
nition) but they also both have the same temperature gradient and heat flux vector averages over the particle which
are the required quantities in homogenization schemes relying on auxiliary Eshelby problems. Indeed these averages
within the composite and the equivalent particle have the same structure (35), (36), (48) and (49) also depending on
the ratios b0

N+1,1/a
0
N+1,1 and b1

N+1,1/a
1
N+1,1 involving coefficients in the infinite matrix. The equality (75) also means the

equality between the corresponding ratios of both problems (the ratio of the axial resp. transverse problem of the N-
layer spheroid is equal to the ratio of the axial resp. transverse problem of the equivalent spheroid) and consequently
the equality between the corresponding averages (35), (36), (48) and (49).

4.2. General definition and construction of concentration tensor averages

The considerations on an equivalent ellipsoid in the particular cases discussed in sections 3.1 and 4.1 are now
extended to the general case of an arbitrarily heterogeneous inclusion. An equivalent particle of a composite is
defined as a homogeneous particle occupying the same domain and having the same overall interaction effect with
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its vicinity. In the framework of an Eshelby problem defined by an infinite matrix of conductivity km (or resistivity
rm = k−1

m ) and an ellipsoidal composite E subjected to a remote temperature gradient H, it is possible to introduce
concentration tensors A(x) and B(x) satisfying (2) whatever the distribution of heterogeneities within E. It follows
that the average values of temperature gradient and heat flux vector within E are related by

< u >E= −keq
· < h >E with keq =< B >E · < A >−1

E or req = keq−1
=< A >E · < B >−1

E (76)

which can be considered as a definition of an equivalent thermal conductivity or resistivity (see figure 5). Such a

km

keq

km

⇔k(x)

Figure 5: Principle of replacement of a composite particle by an equivalent one

definition (76) may raise the issue of the symmetry keq or req but this important general question will not be addressed
in this work since the symmetries of the considered problems in the sequel imply that < A >E and < B >E are
diagonalized in the same frame, which ensures the symmetry of keq. Besides, unlike very particular cases as that
of a confocal N-layer spheroid with perfect interfaces, keq as expressed in (76) is generally not independent of the
property of the reference medium in which the particle is embedded. Such a dependence somehow weakens the
intrinsic character of the notion of equivalent particle since the equivalent property of the particle may be sensitive
to any change of the matrix behavior. This also raises the issue of the determination of an equivalent particle within
a representative volume element in the framework of Eshelby-based homogenization schemes. Indeed the reference
medium playing the role of the matrix in the auxiliary Eshelby problem in which the particle is embedded depends on
the choice of the scheme (the matrix itself for dilute, Mori-Tanaka or Maxwell schemes and the homogenized medium
for the self-consistent scheme), which may introduce different definitions of the equivalent particle. Nevertheless,
whether keq depends or not on km, it is proven in AppendixF by means of the integral solution, that the average
concentration tensors < A >E and < B >E which are needed in homogenization schemes are rigorously provided by
the Eshelby solution of the equivalent particle (F.4)

< A >E=
(
1 + SEm · k

−1
m ·

(
keq
− km

))−1
; < B >E= keq

·
(
1 + SEm · k

−1
m ·

(
keq
− km

))−1
(77)

Although intuitively expected, this result was not obvious since only the products < B >E · < A >−1
E

were initially
identical in the real and equivalent problems. Note that it holds for any anisotropic behavior of materials, distribution
of heterogeneities in the composite particle and external ellipsoidal shape of the latter.

4.3. Case of a homogeneous spheroid with an imperfect interface
This section focuses on a composite spheroid made up with a homogeneous core surrounded by an imperfect

interface of LC or HC type. It is obviously a particular case of the more general exact solution derived in section 2
with N = 1 ([20], [21], [42]). For finite values of the (LC or HC) interface property, the equivalent conductivity of
such a particle in the sense of (76) is actually not independent of the matrix property in an Eshelby problem. However
the exact solution requires a rather heavy calculation involving infinite series of harmonics instead of which some
approximations can be derived based on simplifying assumptions. The present section aims at reviewing some of
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them which are already published and proposing a generalized framework allowing to build new ones. For the sake of
simplicity, in the following, the matrix conductivity is denoted by km instead of k2, the core conductivity by kc instead
of k1 and the subscript is omitted in the properties of the interface (α or β instead of α1 or β1). For further convenience
the matrix and core resistivities rm = k−1

m and rc = k−1
c are also introduced. The particle domain is denoted by E.

In the literature, the problem of the spheroid (or even ellipsoid) with interface is usually tackled under two different
angles : either the interface is seen as in the exact solution as a surface with surface properties ([27], [28], [29], [30],
[31]) or it corresponds to the limit of an interphase of (heterogeneous) thickness tending towards 0 with adapted
conductivity according to the LC or HC type ([32], [33], [34], [35]).

4.3.1. Interface modelled as a surface
It has been shown that the temperature gradient as well as the heat flux vector remain uniform within a sphere or

circular cylinder surrounded by a HC or LC interface and submitted to a remote temperature gradient even in presence
of anisotropic materials (see [27] for HC and [28] for LC interface). Nevertheless this result does not hold in the
general ellipsoidal case. Indeed in a spheroid, as shown in section 2, these fields are heterogeneous in the core due
to the existence of regular terms of degree strictly greater than 1 which are involved when the interface is imperfect.
However approximations of the concentration tensor averages have been proposed in [29] for LC interface and in [31]
for HC interface based on the use of integral solutions incorporating relevant discontinuities in which heterogeneous
temperature gradient (HC case) or heat flux vector (LC case) are replaced by their averages within the particle. These
approximations can be easily retrieved thanks to the concept of the (approximated here) equivalent conductivity tensor
introduced in (77).

In the case of LC interface, the average of the temperature gradient within the particle (comprising the interface)
is decomposed in a regular term and a surface term involving the temperature discontinuity

< h >E= −rc· < u >E +
1
|E|

∫
∂E

[[T ]] eq dS = −rc· < u >E −
α

|E|

∫
∂E

eq ⊗ eq · u dS (78)

For a spherical (or circular particle in 2D), the heat flux vector can rigorously be replaced by its average over E in the
last integral of (78) thanks to the relationship between the position vector and the unit normal vector (x = req where r
is the radius) and to (1a). For an arbitrary ellipsoidal shape, this replacement is not allowed but is invoked in [29] as a
simplifying assumption yielding in the case of a spheroid (i.e. using spheroidal notations)

< h >E≈ −req
LC · < u >E with req

LC = keq
LC
−1

= rc + αR and R =
1
|E|

∫
∂E

eq ⊗ eq dS (79)

Noticeably, unlike the exact solution, this equivalent conductivity does not depend on the conductivity of the matrix
and is valid even in the case of anisotropic materials. In addition, inserting keq given by (79) in (77) exactly boils down
to the concentration averages presented in [29] and usable in homogenization schemes. For practical implementation
the second-order tensor R can easily be calculated thanks to (A.6) and (A.7) for a spheroid of axis parallel to e3

R = Rt

(
1 − e3 ⊗ e3

)
+ Ra e3 ⊗ e3 (80)

with

Rt =


3
4

q
(
(2−q2) arcsin 1

q +
√

q2−1
)

c
√

q2−1
(prolate)

3
4
τ
(
(τ2+2) arcsinh 1

τ−
√
τ2+1

)
c̄
√
τ2+1

(oblate)
; Ra =


3
2

q2
√

q2−1 arcsin 1
q−(q2−1)

c q (prolate)

3
2
τ2+1−τ2

√
τ2+1 arcsinh 1

τ

c̄ τ (oblate)
(81)

where q (resp. τ) is the parameter defining the boundary of the prolate (resp. oblate) spheroid (see AppendixA). The
expressions (81) may as well be converted as functions of the aspect ratio and small radius thanks to (A.4) (resp.
(A.5))

Rt =


3
4
ω

(
(ω2−2) arctan

√
ω2−1+

√
ω2−1

)
b (ω2−1)3/2 (prolate)

3
4
ω2

(
(2−ω2) arctanh

√
1−ω2−

√
1−ω2

)
b (1−ω2)3/2 (oblate)

; Ra =


3
2
ω2 arctan

√
ω2−1−

√
ω2−1

bω (ω2−1)3/2 (prolate)

3
2

√
1−ω2−ω2 arctanh

√
1−ω2

b (1−ω2)3/2 (oblate)
(82)
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Note from (79) that the trace tr R = 2 Rt + Ra is the specific surface σv of the spheroid defined in (A.10). In addition
the following limits may be valuable to assess the effect of extreme aspect ratios

Rt →
ω→∞

3 π
8 b

Rt →
ω→1

1
b

Rt ∼
ω→0

− 3
2 b ω

2 lnω

;


Ra ∼

ω→∞

3 π
4 b ω

−2

Ra →
ω→1

1
b

Ra →
ω→0

3
2 b

(83)

The case of HC interface boiling down to the solution unfolded in [31] starts from the average over E of the heat
flux vector. This average comprises a regular term corresponding to the interior of E as well as a concentrated surface
heat flux writing us = −β(1 − eq ⊗ eq) · h in the tangent plane of ∂E

< u >E= −kc· < h >E +
1
|E|

∫
∂E

us dS = −kc· < h >E −
β

|E|

∫
∂E

(1 − eq ⊗ eq) · h dS (84)

Here again it could be shown that a choice of sphere for E would allow to replace h in the last integral of (84) by its
average over E. This would not be true for an arbitrary ellipsoid but it is used as a simplifying assumption in [31],
which gives for a spheroid

< u >E≈ −keq
HC · < h >E with keq

HC = req
HC
−1

= kc + βL and L =
1
|E|

∫
∂E

1 − eq ⊗ eq dS = (tr R)1 − R (85)

where the tensor R is defined in (79) and expressed in (80)-(81). Here again this equivalent conductivity does not
depend on the matrix property on the contrary to the exact solution and remains valid in the framework of anisotropic
materials. Introducing (85) in (77) exactly boils down to the concentration averages presented in [31] and usable in
homogenization schemes. The extreme cases of the transverse and axial components of L (Lt = Rt + Ra and La = 2Rt)
are given by 

Lt →
ω→∞

3 π
8 b

Lt →
ω→1

2
b

Lt →
ω→0

3
2 b

;


La →

ω→∞

3 π
4 b

La →
ω→1

2
b

La ∼
ω→0

− 3
b ω

2 lnω

(86)

4.3.2. Interface modelled as a thin interphase
The replacement of an interface by an interphase I defined as a fictitious volume obtained by extruding the surface

of a core C along its normal is often applied in the literature to a sphere or a circular cylinder with a uniform interphase
thickness t [15]. The consistency between the 2D and 3D points of view relies on the fact that the conductivity of
the fictitious interphase is built as an isotropic tensor kI = kI1 where kI is a function of the surface property and the
uniform thickness t as recalled in [35] (and leading to size effect since a length is introduced)

kI =
t
α

(LC interface) ; kI =
β

t
(HC interface) (87)

On the one hand, the same strategy can hardly be applied to an arbitrary ellipsoidal shape of the core C. Indeed
the extrusion of an ellipsoid normal to its surface with a uniform thickness (or equivalently the Minkowski sum of
an ellipsoid and a ball) is in general not an ellipsoid anymore. Conversely the thickness between two concentric
coaxial ellipsoids is in general not uniform except between spheres or circular cylinders. On the other hand, while
giving up the hypothesis of uniform thickness it seems very tempting to consider that the interphase is a homogeneous
material (of isotropic conductivity discussed later) comprised between two concentric and coaxial ellipsoids and take
advantage of the general formula (74) defining the PCW bound which is rewritten here

keq = kI + fc
(
(kc − kI)−1 +

(
Sc
− fc SI

)
· k−1
I

)−1
with fc =

|C|

|C| + |I|
(88)
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where the volume ratio fc is therefore close to 1 and Sc (resp. SI) is the Eshelby tensor depending on the shape of the
internal (resp. external) ellipsoid in an isotropic matrix. In the case of spheroids, it has been shown in section (3.3)
that this expression exactly corresponds to that providing the equivalent conductivity of a confocal two-layer spheroid.
Nevertheless (88) can possibly be exploited in a more general situation of ellipsoidal shapes and anisotropic behaviors,
when only looking for an estimate of the equivalent conductivity.

It is worth noticing that the same formula can be retrieved from an alternative reasoning implemented in [36]
in elasticity and [35] in conductivity. This approach is based on a simplifying assumption of uniform temperature
gradient hc in the core and a thin thickness between the two ellipsoids. At any point x

⊥
of the core boundary of unit

outward normal n, the variable thickness denoted by w(x
⊥

) is defined as the length of the segment of interphase points
starting from x

⊥
and parallel to n (see figure 6). Furthermore the temperature gradient at any point x of this segment

is approximated by its value at the projection x
⊥

which can itself be deduced from hc thanks to (E.4)

∀x ∈ I, h(x) ≈ h(x
⊥

) = hc +ΠI(n) · (kc − kI) · hc with ΠI(n) =
n ⊗ n

n · kI · n
(89)

It is then possible to calculate the average of h over I as follows

< h >I=
1
|I|

∫
I

h(x) dΩx ≈
1
|I|

∫
∂C

h(x
⊥

)w(x
⊥

) dS x = hc +

(
1
|I|

∫
∂C

ΠI(n)w(x
⊥

) dS x

)
· (kc − kI) · hc (90)

The integral of the interfacial operator can then be obtained by a judicious application of (F.2b) and Fubini theorem∫
∂C

ΠI(n)w(x
⊥

) dS x ≈

∫
x∈I

(
Sc
· k−1
I
−

∫
x′∈C
ΓI(x − x′) dΩ′x

)
dΩx = |I|Sc

· k−1
I
−

∫
x′∈C

∫
x∈I
ΓI(x − x′) dΩx dΩ′x

(91)

The integration over I by x in this last expression can be decomposed as a difference between an integration over the
whole ellipsoid I ∪ C and an integration over C. In both cases, the other variable x′ remains interior with respect to
the domain covered by x so that (F.2a) applies twice to give∫

∂C

ΠI(n)w(x
⊥

) dS x ≈
(
|I|Sc

− |C| (SI − Sc)
)
· k−1
I

= |I|
Sc
− fc SI

1 − fc
· k−1
I

(92)

Introducing (92) in (90) yields

< h >I=
(
1 +

Sc
− fc SI

1 − fc
· k−1
I
· (kc − kI)

)
· hc (93)

and
< h >I∪C= fc hc + (1 − fc) < h >I=

(
1 +

(
Sc
− fc SI

)
· k−1
I
· (kc − kI)

)
· hc (94)

Finally the equivalent conductivity can be identified after the calculation of the average heat flux vector over the whole
particle I ∪ C

< u >I∪C= − fc kc · hc − (1 − fc) kI· < h >I= −kI· < h >I∪C − fc (kc − kI) · hc (95)

in which hc can be expressed with respect to < h >I∪C thanks to (94) so that (95) rewrites in a form putting in evidence
an equivalent conductivity identical to (88)

< u >I∪C= −
(
kI + fc

(
(kc − kI)−1 +

(
Sc
− fc SI

)
· k−1
I

)−1
)
· < h >I∪C (96)

Once in possession of an equivalent conductivity of the type (88), it is now time to discuss about, on the one hand,
the identification of a relevant conductivity for the interphase keeping in mind that the thickness of the interphase is
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Figure 6: Ellipsoid coated with a thin interphase

not uniform and, on the other hand, the choice of the shape of the ellipsoids defining Sc and SI. The shape of the core
is guided by that of the actual modelled particle but that of the external ellipsoid ruling the thickness distribution of the
interphase is undetermined and shall be adjusted according to modelling hypotheses. The only constraint is that the
thickness remains infinitesimal compared to the core dimensions. The idea here consists in introducing a parameter t,
having the dimension of a length, tending towards 0 (i.e. infinitesimal compared to the radii) and governing both the
interphase conductivity still in the form (87) (for either LC or HC cases even if t is not the thickness anymore) and the
shape of the external ellipsoid. Although the following reasoning could be followed for general ellipsoidal shapes, it
is restricted to spheroids for the sake of simplicity and to allow further comparisons with the exact solution provided
in section 2. If a and b respectively denote the large and small radii of the core, the radii of the external spheroid
(concentric and coaxial to the core) are defined by a + tδa and b + tδb so that tδa and tδb correspond to the thickness
of the interphase along the large and small radii. These two independent dimensionless parameters δa and δb actually
control how the external spheroid tends towards the core when t tends towards 0 and consequently the equivalent
conductivity (88). Indeed in this expression of keq the dependence of kI on t is known in (87) but fc and SI are also
functions of t through the values of the radii of the external spheroid (a + tδa and b + tδb). Before examining in details
the influence of δa and δb on the limit of keq when t tends towards 0, it is worth simplifying (88) by introducing the
following parameters

s = −
∂ fc
∂t

(t = 0) and Σ =
∂SI

∂t
(t = 0) (97)

Using these notations together with the expressions (87) of kI leads to the following limits of keq or req = keq−1 when
t tends towards 0 in the LC and HC cases

req
LC = keq

LC
−1

= rc + α
(
s Sc
− Σ

)
and keq

HC = req
HC
−1

= kc + β
(
s 1 − (s Sc

− Σ)
)

(98)

where the tensor Σ is practically calculated by observing from (D.2)-(D.3) that SI actually depends on t through the
aspect ratio (ω(t) = a+tδa

b+tδb
in the prolate case and ω(t) = b+tδb

a+tδa
in the oblate case)

Σ =
∂SI

∂ω

∂ω

∂t
(t = 0) (99)

As the derivative of SI with respect to ω is provided by (D.4)-(D.5), it follows that the estimates (98) are totally
determined by the geometrical parameters s = −

∂ fc
∂t and ∂ω

∂t at t = 0 which both write as functions of δa and δb (for the
sake of simplicy ω without argument denotes the aspect ratio at t = 0 i.e. the aspect ratio of the core spheroid)

fc(t) =


a b2

(a+tδa) (b+tδb)2 (prolate)

a2 b
(a+tδa)2 (b+tδb) (oblate)

⇒ s = −
∂ fc
∂t

(t = 0) =


1
b

(
δa
ω

+ 2 δb

)
(prolate)

1
b (2 δa ω + δb) (oblate)

(100)
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and

ω(t) =


a+tδa
b+tδb

(prolate)

b+tδb
a+tδa

(oblate)
⇒

∂ω

∂t
(t = 0) =


1
b (δa − δb ω) (prolate)

ω
b (δb − δa ω) (oblate)

(101)

As a consequence, the equivalent conductivities (98) are fully determined by any choice of the couple (δa, δb). Alter-
natively, as two independent values are required to achieve the determination of the model, it may also be interesting
for particular physical meanings to use s or ∂ω

∂t themselves or any relevant linear combination of δa and δb as control
parameters. Several options of control parameters are detailed herebelow.

• The choice of δa and/or δb amounts to a control of the thickness along the corresponding axis. For instance
δa = 1 gives t the status of interphase thickness along the major axis of the spheroid.

• Imposing ∂ω
∂t = 0 means that the spheroids delimiting the interphase are similar. It implies a linear combination

between δa and δb

∂ω

∂t
= 0 (similar spheroids) ⇒


δa = δb ω (prolate)

δb = δa ω (oblate)
(102)

• As an alternative option, the spheroids delimiting the interphase can be chosen as confocal, which means that
(a + tδa)2 − (b + tδb)2 does not depend on t for t close to 0, implying aδa = bδb

aδa = bδb (confocal spheroids) ⇒


δb = δa ω (prolate)

δa = δb ω (oblate)
(103)

• Another relevant option to control the model of equivalent conductivity relies on the parameter s itself. The
definition (97) clearly shows that s is physically consistent with a ratio between a surface and a volume. More
particularly, if t was actually the thickness of the interphase, s would be defined as the specific surface σv given
in (A.10). Even if t does not define a uniform thickness here, it is tempting to impose s = σv. Besides the
geometrical relevance of this choice, it is worth pointing out the consistency between the interface models (79)
and (85) on the one hand and the interphase ones (98) on the other hand provided that R (of traceσv) is identified
to s Sc

− Σ (of trace s).

Various models are implemented in the next paragraph, each of them being based on a choice of two independent
control parameters among those listed hereabove. In addition the result proven in AppendixF eventually allows to
exploit any equivalent conductivity provided by these models in Eshelby-based concentration relationships (77) just
as if the overall spheroid was homogeneous.

4.3.3. Comparisons of models
This paragraph aims at proposing a comparison between a selection of approximated models of equivalent conduc-

tivity based on the descriptions given in 4.3.1 and in 4.3.2 and the exact solution as unfolded in section 2 considering
various levels of conductivity of the reference medium. Indeed although the approximated models do not depend on
the latter, it is not the case of the exact solution. This dependence on the reference medium of the exact solution
may question the conditions of relevance of approximated models. On the one hand, in the LC case, figures 7 and 8
represent respectively the transverse and axial equivalent resistivities normalized by the resistive effect of the interface
α/b plotted against the aspect ratio of the spheroid. On the other hand, in the HC case, figures 9 and 10 represent
respectively the transverse and axial equivalent conductivities normalized by the conductive effect of the interface β/b
plotted against the aspect ratio of the spheroid. Before entering into the details of the approximated models, it is worth
remarking in figures 7-10 that the exact solutions (denoted series) actually depend on the reference medium in a way
that differs from a component to another and from a type of interface to another. But it may be noticed that all the
curves related to the exact solution of a given figure follow a rather similar trend and remain within the same order of
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Figure 7: Models of equivalent transverse resistivity of an infinitely conductive spheroid (rc = 0) with LC interface (series truncated at N = 5)

Figure 8: Models of equivalent axial resistivity of an infinitely conductive spheroid (rc = 0) with LC interface (series truncated at N = 5)

magnitude for a given aspect ratio.

Among all possible models, the following ones are considered as a matter of comparison with the exact solution
of section 2 and plotted in figures 7 to 10

• similar spheroids delimiting the interphase (102) and specific surface driving the thickness parameter (s = σv)
This model is not really satisfactory since its trends in figures 7 (oblate), 8 (prolate) and 10 (oblate) remain
far from the exact solution. Moreover the evolutions around the spherical case (ω = 1) almost never comply
with the exact solutions either. Other models based on similar spheroids and for instance one of the thicknesses
(condition on δa or δb) are not represented since they behave even worse than this one.

• confocal spheroids delimiting the interphase (103) and small radius control (δb = 1)
Combining (103) and δb = 1 in (100) and (101) provides

s =


1
b

(
2 + 1

ω2

)
1
b

(
1 + 2ω2

) and
∂ω

∂t
=


1
b

(
1
ω
− ω

)
(prolate)

ω
b

(
1 − ω2

)
(oblate)

(104)
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Figure 9: Models of equivalent transverse conductivity of an infinitely resistive spheroid (kc = 0) with HC interface (series truncated at N = 5)

Figure 10: Models of equivalent axial conductivity of an infinitely resistive spheroid (kc = 0) with HC interface (series truncated at N = 5)

The figures put well in evidence that this model is not accurate enough in comparison to the exact solutions
whatever the reference medium. Moreover replacing the small radius control δb = 1 by a large radius control
δa = 1 leads to inconsistent results since in this case δb (103) and s (100) as well as ∂ω

∂t (101) tend to infinite
values for extreme cases of needles and flat spheroids.

• confocal spheroids delimiting the interphase (103) and specific surface driving the thickness parameter (s = σv)
Taking advantage of the relationships (103) and (100), ∂ω

∂t can be calculated as a function of σv so that the
following control parameters are valid for oblate or prolate spheroids

s = σv and
∂ω

∂t
=
ω

(
1 − ω2

)
1 + 2ω2 σv (105)

This set of assumptions is consistent with the model of coated particle presented in [34] for a general ellipsoidal
shape and exploited in several homogenization schemes. The figures 7 to 10 show that this model could be
acceptable for cases of spheroids rather far from the spherical shape but the trends of the equivalent conductivity
do not really comply with the slopes of the exact solutions in the vicinity of ω = 1 in figure 7 prolate, figure 8
oblate, figures 9 oblate and prolate and figure 10 prolate. The latter figures correspond to cases where the
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equivalent resistivity (if LC interface) or conductivity (if HC interface) tends towards a non-zero limit whereas
the other figures are presented with a logarithmic scale on the y-axis in order to capture the order of convergence
towards 0.

• double radius control (δa = δb = 1)
Exploiting δa = δb = 1 in (100) and (101) gives the parameters to introduce in (98)

s =


1
b

(
2 + 1

ω

)
1
b (1 + 2ω)

and
∂ω

∂t
=


1
b (1 − ω) (prolate)

ω
b (1 − ω) (oblate)

(106)

This model means that t is the thickness at both major and minor axes but it is worth recalling that the interphase
thickness here remains not uniform so far, even if t is infinitesimal as mistakenly argued in [33]. By the way
if the thickness was uniform s given in (106) should coincide with σv (A.10), which is not the case when the
aspect ratio differs from 1.
Keeping an aspect ratio in a close vicinity of the spherical case, the figures 7 to 10 show that this model could be
acceptable as already put in evidence in [35] using 0.25 ≤ ω ≤ 2. However, when the aspect ratio is far from 1,
the discrepancy between this model and the exact solutions increases in cases where the equivalent resistivity
(LC interface) or conductivity (HC interface) tends towards a non-zero limit (figure 7 prolate, figure 8 oblate,
figures 9 oblate and prolate and figure 10 prolate). Interestingly it is to be noticed that in these cases the interval
of validity of the present model is roughly the complementary of the previous one (based on confocal spheroids
and a specific surface to control the thickness) which was observed to give more reliable estimates far from the
spherical shape.
As already emphasized in section 4.3.2, the assumption of double radius control contains two independent
parameters and thus definitely determines the values of s and ∂ω

∂t and eventually the equivalent conductiv-
ity (98). Nevertheless the equivalent conductivity formulated in [32] and [33] corresponds to a superposition
of δa = δb = 1 together with Σ = 0 (i.e. ∂ω

∂t = 0). This set of assumptions is geometrically inconsistent since
it comes from (101) that ∂ω

∂t , 0 when δa = δb = 1 and ω , 1; this is certainly the main reason why the model
of [32] has been criticized in [42]. The appropriate correction with the right value of ∂ω

∂t from (101) actually
provides a far more acceptable result.

• double radius control (δa = δb) and specific surface driving the thickness parameter (s = σv)
Using δa = δb in (100) with s = σv and (101) allows to eliminate δa and δb so that the following parameters to
introduce in (98) are obtained for both prolate and oblate spheroids

s = σv and
∂ω

∂t
=
ω (1 − ω)
1 + 2ω

σv (107)

In this model, the thicknesses at both small and large radii are imposed to be equal to one another but not
equal to t. For already mentioned reasons the thickness is however not uniform but its value at radii (i.e.
tδa = tδb) is somehow corrected by comparison to the previous model imposing δa = δb = 1 insofar as it forces
the consistency of the thickness with s = σv. The figures 7 to 10 clearly show that this model gives the best
estimate of equivalent conductivity among those based on a volume interphase although it can obviously not
capture the dependence on the reference medium.

• interface model
The interface model as denominated in the legends of figures 7 to 10 corresponds to the expressions obtained
in (79) for LC and in (85) for HC interface. This model remarkably fits well to the exact solution calculated for
rmb/α (LC) or kmb/β (HC) tending towards infinity. This result could have been anticipated since these limits
correspond to cases where the effect of the interface becomes negligible relatively to the reference medium, in-
creasing then the validity of the assumption of uniform solution within the spheroid as exploited in section 4.3.1.
For any finite value of the reference medium, in absence of an efficient strategy to simplify the exact solution
while keeping a dependence of the reference medium, it seems that this interface model provides at first sight
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the most reliable estimate.
This model also brings indications about the behavior of the equivalent spheroid for extreme aspect ratios thanks
to (83) and (86) at least in the case of weak interface effect for which the approximate models are assumed to
be close to the exact solutions. Nevertheless these limits should be considered with great care. Indeed the limit
of Rt when ω tends towards infinity with a given transverse radius b is 3π/(8b) and is thus different from the
direct application of the integral (79) over a circular cylinder which leads to 1/b. This means that the transverse
solution of an infinite circular cylinder is not obtained here as the limit of the prolate spheroid case which retains
even asymptotically its 3D status due to non negligible flow at the tip of the large axis. It is however interest-
ing to notice that the transverse behavior of the infinite circular cylinder is well captured by the two models
imposing δb = 1 in figures 7 and 9 for ω tending towards infinity, which highlights the expected important role
played by the transverse axis (small radius) in this case. A similar reasoning can be applied to the very flat
spheroid and the axial conductivity. In this case indeed Ra (83) tends towards 3/(2b) whereas the application of
the integral (79) on the space delimited by two infinite planes of interdistance 2b leads to 1/b. Here again the
conductivity of this last geometry is not obtained by taking the limit of the flat spheroid solution. However the
axial conductivity of the space between infinite planes and the major role played by the small radius b are again
well captured by the models imposing δb = 1 in figures 8 and 10 for ω tending towards 0.

5. Conclusion

The work presented in this paper has been guided by the research of an efficient strategy to enrich the sets of
heterogeneities usable in homogenization schemes for thermal conduction with composite spheroidal particles. The
analytical solution to the generalized Eshelby problem of a confocal multilayer spheroid with imperfect interfaces
between layers has first been provided in the form of different infinite series of spheroidal harmonics for both axial
and transverse macroscopic temperature gradients. The coefficients of the series have been identified thanks to a
thoroughly detailed procedure allowing a numerical implementation and the convergence of some terms has been
carefully justified. The second part of the paper has been dedicated to a specific focus on the case of confocal
multilayer spheroid with perfect interfaces. A reformulation of the exact solution expressed this time as finite series
of harmonics has been proposed based on the concept of equivalent conductivity satisfying a recursive layer-by-layer
algorithm. In particular it has been shown that such a multilayer particle with perfect interfaces between layers could
be rigorously replaced by the overall spheroid of uniform transversely isotropic conductivity independently from the
properties of the embedding material. However this result of existence of an intrinsic equivalent conduction does not a
priori subsist in presence of imperfect interfaces. For this reason and the actual interest for real materials, the issue of
the determination of an equivalent property which would be easier to calculate than the series of harmonics has been
considered in the third part for the simple case of a uniform spheroid surrounded by an imperfect interface. After some
general discussions about the notion of equivalent particle leading to the proof that a composite spheroidal particle
could actually be treated as a homogeneous one in terms of expressions of the average concentration tensors, some
approximated models have been constructed. These models rely on a replacement of the heterogeneous temperature
and heat flux fields within the spheroid by their averages, which is rigorously satisfied when the interface effect
vanishes due to Eshelby’s result but remains an approximation in presence of an interface. Describing first the interface
as a two-dimensional domain has led to already published expressions of concentration tensors. Another approach
has consisted in viewing the interface as a thin interphase and applying solutions of multilayer spheroids. Thanks
to a parametrization of the shape of this interphase by two scalars, a set of approximated models have been derived.
This approach has allowed to discuss about the validity of models published in the literature and to build new ones.
Considering oblate and prolate spheroids and LC and HC interfaces, a comparison has finally been carried out between
the exact solution and the approximated models in order to highlight the conditions of validity and relevance of the
latter. In particular, although independent from the matrix conductivity, it has been put in evidence that the models
based on a surface description of the interface probably remain the most accurate ones. It is worth adding that the
interest of all the approximated models relies not only on their simplicity but also on their ability to be extended to
more general situations such as anisotropy.
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AppendixA. Spheroidal coordinates

In the classical cartesian frame of the 3D space (e1, e2, e3), the position vector writes x = xiei by means of the
cartesian coordinates xi. The prolate spheroidal coordinates of revolution axis e3 are defined by the triplet (ϕ, p, q)
[39] such that 

x1 = c
√

1 − p2
√

q2 − 1 cosϕ

x2 = c
√

1 − p2
√

q2 − 1 sinϕ

x3 = c p q

(A.1)

with 0 ≤ ϕ ≤ 2π, −1 ≤ p ≤ 1, q ≥ 1 and c > 0. In other words, the position vector writes

x = c
(√

1 − p2
√

q2 − 1 uϕ + p q e3

)
with uϕ = cosϕ e1 + sinϕ e2 (A.2)

which can also be expressed in terms of spheroidal harmonics by means of Legendre functions of the first kind (B.1b)

x = c
(
−P1

1(p) P1
1(q) uϕ + P1(p) P1(q) e3

)
(A.3)

The iso-q surfaces define confocal spheroids of linear eccentricity c (semi focal distance), aspect ratio ω, semi major
axis a (i.e. axial radius ρa) along e3 and semi minor axis b (i.e. transverse radius ρt) in the plane (e1, e2) given by

ω =
q√

q2 − 1
> 1

(
q =

ω
√
ω2 − 1

)
, a = ρa = c q, b = ρt = c

√
q2 − 1 (A.4)

The formal replacement c = −ıc̄ with c̄ > 0 and q = ıτ with τ > 0 and the convention
√
−1 = ı in (A.1) allows to

define the oblate spheroidal coordinates (ϕ, p, τ) of revolution axis e3 corresponding to the linear eccentricity c̄. It is
worth mentioning that all the results of this paper remain valid by applying this variable replacement and inverting the
roles played by a and b in (A.4) in order to keep their respective definitions of semi major and semi minor axes while
ρa and ρt stll respectively denote the axial and transverse radii

ω =
τ

√
τ2 + 1

< 1
(
τ =

ω
√

1 − ω2

)
, b = ρa = c̄ τ a = ρt = c̄

√
τ2 + 1, (A.5)

The natural basis related to the spheroidal coordinates is defined by the vectors aλ = ∂x/∂λ where λ = ϕ, p or q and
the corresponding orthonormal basis eλ and Lamé coefficients χλ such that aλ = χλeλ are given by

χϕ = c
√

1 − p2
√

q2 − 1

χp = c
√

q2−p2

1−p2

χq = c
√

q2−p2

q2−1


eϕ = − sinϕ e1 + cosϕ e2

ep =
−p
√

q2−1 uϕ+q
√

1−p2 e3√
q2−p2

eq =
q
√

1−p2 uϕ+p
√

q2−1 e3√
q2−p2

(A.6)

which implies the following expressions of the infinitesimal volume element dΩ and surface element dS q on an iso-q
spheroid 

dΩ = χϕχpχq dϕ dp dq = c3(q2 − p2) dϕ dp dq

dS q = χϕχp dϕ dp = c2
√

q2 − p2
√

q2 − 1 dϕ dp
(A.7)
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The surface of a prolate (resp. oblate) spheroid is given by integration of dS q (A.7) over the rectangle (ϕ, p) ∈ [0, 2π] × [−1, 1]
for a given value of q (resp. τ)

S =


2 π c2

√
q2 − 1

( √
q2 − 1 + q2 arcsin 1

q

)
= 2 π b2

(
1 + ω2

√
ω2−1

arctan
√
ω2 − 1

)
(prolate)

2 π c̄2
√
τ2 + 1

(√
τ2 + 1 + τ2 arcsinh 1

τ

)
= 2 π a2

(
1 + ω2

√
1−ω2

arctanh
√

1 − ω2
)

(oblate)
(A.8)

and the volume is

V =


4
3 π c3 q

(
q2 − 1

)
= 4

3 π b3 ω (prolate)

4
3 π c̄3 τ

(
τ2 + 1

)
= 4

3 π a3 ω (oblate)
(A.9)

so that the specific surface writes

σv =
S
V

=


3

2 c q

(
1 +

q2
√

q2−1
arcsin 1

q

)
= 3

2 a

(
1 + ω2

√
ω2−1

arctan
√
ω2 − 1

)
(prolate)

3
2 c̄ τ

(
1 + τ2

√
τ2+1

arcsinh 1
τ

)
= 3

2 b

(
1 + ω2

√
1−ω2

arctanh
√

1 − ω2
)

(oblate)
(A.10)

In this coordinate system, the surface Laplacian over an iso-q spheroid writes

∆S f = 1
χϕχp

(
∂
∂ϕ

(
χp

χϕ

∂ f
∂ϕ

)
+ ∂

∂p

(
χϕ
χp

∂ f
∂p

) )
= 1

c2

(
1

(1−p2) (q2−1)
∂2 f
∂ϕ2 + 1√

q2−p2

∂
∂p

(
1−p2
√

q2−p2

∂ f
∂p

)) (A.11)

AppendixB. Calculation of integrals

In this appendix, Pn (also written P0
n) denotes the Legendre polynomial of degree n and Pm

n the associated Leg-
endre function of the first kind of degree n and order m. The following relationships are first recalled for practical
convenience [40] 

P0(x) = 1 ; P1(x) = x

Pm
n (x) =


(
−
√

1 − x2
)m dmPn(x)

dxm (|x| ≤ 1)(√
x2 − 1

)m dmPn(x)
dxm (x > 1)

Pm
n+1(x) =

(2 n + 1) x Pm
n (x) − (n + m) Pm

n−1(x)

n − m + 1
(n ≥ 1)

Pm′
n+1(x) =

(2 n + 1)
[
Pm

n (x) + x Pm′
n (x)

]
− (n + m) Pm′

n−1(x)

n − m + 1
(n ≥ 1)

(1 − x2) P′′n (x) = 2 x P′n(x) + n (n + 1) Pn(x)∫ 1

−1
Pm

n (x) Ps
r (x) dx =

2
2 n + 1

(n + m)!
(n − m)!

δnr δms (n ≥ m)

(B.1a)

(B.1b)

(B.1c)

(B.1d)

(B.1e)

(B.1f)

It may also be useful to recall some of the main formulas allowing to calculate the Legendre functions of the
second kind of degree n denoted by Qn or Q0

n as well as the associated Legendre functions of the second kind of
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degree n and order m denoted by Qm
n [40]

Q0(x) =

arctanh(x) (|x| ≤ 1)
arccoth(x) (x > 1)

Q1(x) = x Q0(x) − 1

Qn(x) = Pn(x) Q0(x) −
n∑

k=1

Pk−1(x) Pn−k(x)
k

(n ≥ 2)

Qm
n (x) =


(
−
√

1 − x2
)m dmQn(x)

dxm (|x| ≤ 1)(√
x2 − 1

)m dmQn(x)
dxm (x > 1)

Qm
n+1(x) =

(2 n + 1) x Qm
n (x) − (n + m) Qm

n−1(x)

n − m + 1
(n ≥ 2)

Qm′
n+1(x) =

(2 n + 1)
[
Qm

n (x) + x Qm′
n (x)

]
− (n + m) Qm′

n−1(x)

n − m + 1
(n ≥ 2)

(B.2a)

(B.2b)

(B.2c)

(B.2d)

(B.2e)

(B.2f)

Calculation of Wk(q)

Wk(q) =

∫ 1

−1

x2 k√
q2 − x2

dx = q2 k
∫ arcsin 1

q

− arcsin 1
q

sin2 k θ dθ (q > 1) (B.3)

Considering the power series 1
√

1−z2 =
∑∞

n=0
(1/2)n

n! z2n (of radius of convergence 1) where (λ)n =
Γ(λ+n)

Γ(λ) is the rising
Pochhammer symbol and Γ the Gamma function, (B.3) can be rewritten as

Wk(q) =
2
q

∞∑
n=0

(1/2)n

n! (2 n + 2 k + 1)
1

q2 n =
2

q (1 + 2 k) 2F1

(
1
2
,

1
2

+ k;
3
2

+ k;
1
q2

)
(B.4)

where 2F1 is the Gaussian hypergeometric function 2F1 (a, b; c; z) =
∑∞

n=0
(a)n (b)n
(c)n n! z2n which is implemented in many

numerical libraries including arbitrary precision such as the mpmath Python library [48]. Moreover, (B.4) also allows
to deduce the behavior of Wk(q) for high values of k for q > 1

Wk(q) ∼
k→∞

1

k
√

q2 − 1
(B.5)

The following useful integrals can as well be identified

Yk(q) =

∫ 1

−1
x2 k

√
q2 − x2 dx = q2 Wk(q) −Wk+1(q) (B.6)

Calculation of Ii j(q)
As Legendre polynomials of even (respectively odd) degree are sums of even (respectively odd) monomials, it

comes that

Ii j(q) =

∫ 1

−1

Pi(x) P j(x)√
q2 − x2

dx =


0 if (i + j) is odd∑(i+ j)/2

k=0 γ
i, j
2 k Wk(q) if (i + j) is even

(B.7)

where γi, j
l is the coefficient of xl in the polynomial Pi(x)P j(x). Adopting the notation γi, j for the vector of components

γ
i, j
l and the convention γi, j

l = 0 for l < 0 or l > i + j, these coefficients can be practically built thanks to a recursive
algorithm deduced from (B.1c) 

γ
i+1, j
l = 2 i+1

i+1 γ
i, j
l−1 −

i
i+1 γ

i−1, j
l (0 ≤ l ≤ i + j + 1)

γ
j,i
l = γ

i, j
l

γ0,0 = [0] ; γ1,0 = [0, 1] ; γ1,1 = [0, 0, 1]

(B.8)
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Note the practical calculation of integrals as Ii j has already been tackled in the literature (e.g. [20]) resorting to
another algorithm than the recursive one (B.8) and without focusing on the numerical accuracy of the summation (B.7)
especially if high orders are considered. This is precisely the purpose of AppendixC in which it is shown that this
issue actually needs to be investigated.

Calculation of Ji j(q)

Resorting to an integration by parts and (B.1b) allows to write

Ji j(q) =

∫ 1

−1
−Pi(x)

∂

∂x

P′j(x) (1 − x2)√
q2 − x2

 dx =

∫ 1

−1

P′i(x) P′j(x) (1 − x2)√
q2 − x2

dx

=

∫ 1

−1

P1
i (x) P1

j (x)√
q2 − x2

dx

=


0 if (i + j) is odd∑(i+ j)/2−1

k=0 δ
i, j
2 k

(
Wk(q) −Wk+1(q)

)
if (i + j) is even

(B.9)

where δi, j
l is the coefficient of xl in the polynomial P′i(x)P′j(x). In order to build a method to calculate δi, j

l , it is

convenient first to introduce ηi, j
l as the coefficient of xl in the polynomial P′i(x)P j(x). Unlike γi, j

l and δi, j
l , ηi, j

l is not
symmetric with respect to i and j but the following recursive algorithm can be established thanks to (B.1c) and (B.1d)

η
i+1, j
l = 2 i+1

i+1 γ
i, j
l + 2 i+1

i+1 η
i, j
l−1 −

i
i+1 η

i−1, j
l (0 ≤ l ≤ i + j)

η
i, j+1
l =

2 j+1
j+1 η

i, j
l−1 −

j
j+1 η

i, j−1
l (0 ≤ l ≤ i + j)

η0,0 = [0] ; η0,1 = [0] ; η1,0 = [1] ; η1,1 = [0, 1]

(B.10)

Finally the algorithm providing δi, j
l writes

δ
i+1, j
l = 2 i+1

i+1 η
j,i
l + 2 i+1

i+1 δ
i, j
l−1 −

i
i+1 δ

i−1, j
l (0 ≤ l ≤ i + j − 1)

δ
j,i
l = δ

i, j
l

δ0,0 = [0] ; δ1,0 = [0] ; δ1,1 = [1]

(B.11)

Calculation of Ki j(q)

Ki j(q) =

∫ 1

−1

P1′
i (x) P1′

j (x) (1 − x2)√
q2 − x2

dx (B.12)

The use of (B.1b) and (B.1e) allows to rewrite (B.12) under the form

Ki j(q) =

∫ 1

−1

P′i(x)P′j(x)x2 −
(

j( j + 1)P′i(x)P j(x) + i(i + 1)Pi(x)P′j(x)
)
x + i(i + 1) j( j + 1)Pi(x)P j(x)√

q2 − x2
dx (B.13)

which is zero if (i + j) is odd and can be transformed into the following summation if (i + j) is even

Ki j(q) = i(i + 1) j( j + 1)γi, j
0 W0(q) +

(i+ j)/2∑
k=1

(
δ

i, j
2k−2 − j( j + 1)ηi, j

2k−1 − i(i + 1)η j,i
2k−1 + i(i + 1) j( j + 1)γi, j

2k

)
Wk(q) (B.14)
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Calculation of Li j(q)

Using (B.1b), this integral writes

Li j(q) =

∫ 1

−1

P1
i (x) P1

j (x)
√

q2 − x2

1 − x2 dx =

∫ 1

−1
P′i(x) P′j(x)

√
q2 − x2 dx

=


0 if (i + j) is odd∑(i+ j)/2−1

k=0 δ
i, j
2k

(
q2 Wk(q) −Wk+1(q)

)
if (i + j) is even

(B.15)

AppendixC. On the numerical convergence of the summations (B.7), (B.9), (B.14) and, (B.15)

Exploiting (B.1f), observing that
√

q2 − 1 ≤
√

q2 − x2 ≤ q and using Cauchy-Schwartz inegality imply

2
2 i + 1

1
q
≤ Iii(q) ≤

2
2 i + 1

1√
q2 − 1

and |Ii j(q)| ≤
√

Iii(q)
√

I j j(q) (C.1)

which allows to bound the order of magnitude of the definite positive symmetric matrix of general term Ii j(q) (B.7).

Despite its simplicity of implementation, the algorithm based on the summation (B.7) together with (B.8) and (B.4)
hides the fact that some terms of the series in (B.7) are many orders of magnitude higher than Ii j(q) when i and j take
large values, which may lead to numerical problems. It is then necessary to estimate the order of magnitude of the
coefficients γi, j

l and eventually to resort to a specific numerical library such as mpmath to control the desired precision
if the latter exceeds the standard one (16 digits for double precision) in order to ensure the validity of the numerical
calculation of the summation. The reasoning starts by the Rodrigues formula and the binomial expansion

Pn(x) =
1

2n n!
dn

dxn

[(
x2 − 1)n

)]
=

n∑
k≥n/2

(−1)n−k (2 k)!
2n (n − k)! k! (2 k − n)!︸                       ︷︷                       ︸

θn
k

x2 k−n (C.2)

The order of magnitude of θn
k is then estimated for high values of k and n thanks to the Stirling formula 1

log |θn
k | ∼n→∞

k log k − (n − k) log (n − k) − (2 k − n) log (k − n/2) (C.3)

An optimization of (C.3) with respect to k finally provides the maximal order of magnitude of θn
k

max
k

log |θn
k | ∼n→∞

n
log 2+

√
2

2−
√

2

2 (log 2 + log 5)
reached for (2 k − n) ∼

n→∞

n
√

2
(C.4)

It follows then that the maximal order of magnitude of the terms in the summation (B.7) is approximated by

max
k

0≤i≤n
0≤ j≤n

log |γi, j
2 k | ∼n→∞

n
log 2+

√
2

2−
√

2

log 2 + log 5
≤ 0.8 n (C.5)

Besides on the one hand it is shown from (B.5) that log Wk(q) ∼
k→∞

− log k which is also equivalent to − log n if

(C.4) is considered. On the other hand it comes from (C.1) that log Inn(q) ∼
n→∞
− log n. As a consequence, the con-

struction of the terms Ii j(q) for 0 ≤ i, j ≤ n by means of the summation (B.7) requires to adopt a precision defined by
a number of digits at least equal to d0.8ne where d.e denotes the ceiling function. This estimation is well confirmed by

1n! ∼
n→∞

√
2πn(n/e)n
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numerical calculations presented in Figure C.11 which shows the divergence of Iii(q) as soon as the precision criterion
is violated. It is then recommended not to use the summation formula (B.7) for i or j higher than 20 in the framework
of double precision or to resort to a multiple precision library with a number of significant digits at least equal to
d0.8ne if n denotes the maximal degree of Legendre polynomials.

The number of significant digits which are necessary to evaluate the other summations (B.9), (B.14) and (B.15) is
obviously the same since the order of magnitude (C.4) is also valid for the coefficients of the derivative of Legendre
polynomials and consequently the precision (C.5) also applies to the coefficients ηi, j

l and δi, j
l .

Figure C.11: Influence of the precision level on the calculation of Iii(q) with q = 1.1 (ω = 2.4)

AppendixD. Eshelby problem in conduction

This section recalls the expression of the temperature gradient in a spheroidal inhomogeneity of conduction kE
embedded in an infinite matrix of conductivity km submitted to a remote temperature gradient H. From the Eshelby
result [2] applied to conductivity, the temperature gradient within the ellipsoidal inhomogeneity E is homogeneous
and writes [1]

∀x ∈ E, h(x) =
(
1 + SEm · k

−1
m · (kE − km)

)−1
· H (D.1)

where SEm is the Eshelby tensor depending only on the shape of the ellipsoid and the anisotropy of km. If km is
isotropic, SEm does not depend on the latter and can be simply denoted by SE. In the case of a spheroidal shape of axis
parallel to e3 and aspect ratio ω, SE writes [45]

SE(ω) = S Et (ω)
(
1 − e3 ⊗ e3

)
+ S Ea (ω) e3 ⊗ e3 (D.2)

with (note that S Ea = 1 − 2S Et )

S Et (ω) =



ω
(
ω
√
ω2−1−arccoshω

)
2 (ω2−1)3/2 (ω > 1)

ω
(
arccosω−ω

√
1−ω2

)
2 (1−ω2)3/2 (ω < 1)

1
3 (ω = 1)

; S Ea (ω) =


ω arccoshω−

√
ω2−1

(ω2−1)3/2 (ω > 1)
√

1−ω2−ω arccosω
(1−ω2)3/2 (ω < 1)

1
3 (ω = 1)

(D.3)
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In addition the derivative of the Eshelby tensor (D.2) with respect to the aspect ratio writes (note that ∂S Ea
∂ω

= −2 ∂S Et
∂ω

)

∂SE

∂ω
(ω) =

∂S Et
∂ω

(ω)
(
1 − e3 ⊗ e3

)
+
∂S Ea
∂ω

(ω) e3 ⊗ e3 =
∂S Et
∂ω

(ω)
(
1 − 3 e3 ⊗ e3

)
(D.4)

with

∂S Et
∂ω

(ω) =


(1+2ω2) arccoshω−3ω

√
ω2−1

2 (ω2−1)5/2 (ω > 1)

(1+2ω2) arccosω−3ω
√

1−ω2

2 (1−ω2)5/2 (ω < 1)

2
15 (ω = 1)

;
∂S Ea
∂ω

(ω) =


3ω
√
ω2−1−(1+2ω2) arccoshω

(ω2−1)5/2 (ω > 1)

3ω
√

1−ω2−(1+2ω2) arccosω
(1−ω2)5/2 (ω < 1)

−4
15 (ω = 1)

(D.5)

AppendixE. Hadamard jump condition and interfacial operator

The problem considered here is the jump condition of temperature gradient and heat flux vector at an interface
point between two zones in the framework of steady state thermal conduction (see figure E.12). On both sides of
this interface point the conductivity tensor is km and a polarization tensor p is defined only in the first zone. Any
discontinuity of a quantity X equal to X1 in the first zone and X2 in the second is denoted by [[X ]] = X2 − X1 and the
unit normal vector n is defined as directed towards the second zone (see figure E.12).

n

1

2

h1 = grad T1

u1 = −km · h1 − p

h2 = grad T2

u2 = −km · h2

Figure E.12: Hadamard jump condition

The so-called Hadamard jump condition ([49], [50]) results from the continuity of the temperature field over the
interface which entails the continuity of the tangential components of the temperature gradient so that there exists a
scalar µ such that

[[h ]] = [[grad T ]] = µ n (E.1)

The determination of µ is finally achieved by exploiting the continuity of the normal heat flux through the interface
([[u ]] · n = 0)

µ n · km · n = n · km · [[h ]] = n
(
p − [[u ]]

)
= n · p (E.2)

Replacing µ (E.2) in (E.1) defines the interfacial operator Πm(n) ([51], [36], [29])

h2 = h1 +Πm(n) · p with Πm(n) =
n ⊗ n

n · km · n
(E.3)
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In the case of material discontinuity (i.e. conductivity k1 in zone 1 and k2 in zone 2) without any polarization, u1 also
rewrites u1 = −k2 · h1 − p with p = (k1 − k2) · h1 so that (E.3) applies with km = k2 and the fictitious polarization p

h2 = h1 +Π2(n) · (k1 − k2) · h1 with Π2(n) =
n ⊗ n

n · k2 · n
(E.4)

AppendixF. Integral solution to the generalized Eshelby inclusion problem

This section recalls the solution to the Eshelby inclusion problem corresponding to an infinite domain occupied by
a homogeneous material of conductivity km embedding an ellipsoidal domain E of arbitrary (not necessarily uniform)
conduction law and subjected to a remote temperature gradient H. Introducing a fictitious polarization vector field
p = −(km · h + u) within E, the solution writes in the sense of distributions (i.e. the polarization may incorporate
surface Dirac distributions due to temperature discontinuities or concentrated heat flux)

h(x) = H −
∫

x′∈E
Γm(x − x′) · p(x′) dΩ′ = H +

∫
x′∈E
Γm(x − x′) ·

(
km · h(x′) + u(x′)

)
dΩ′ (F.1)

where Γm is the second-order Green tensor of the conduction problem related to km in an infinite medium. If Gm de-
notes the Green function of the problem defined by div(km · grad Gm) + δ0 = 0 and lim‖x‖→∞Gm(x) = 0, then it comes
that Γm = SEm · k

−1
m δ0 − PVE hessGm. The first term is a singular part involving a 3D Dirac distribution δ0 and the

Eshelby tensor SEm associated to E and the second term is a regular part involving a principal value operator excluding
an infinitesimal ellipsoid similar to E around 0 and the hessian (second-order tensor) of Gm [51]. Note that the shape
of the ellipsoid is arbitrary in this expression provided that it is the same in the Eshelby tensor and the principal value
definition.

From Eshelby [2], the second-order Green operator is known to obey to the following remarkable results [51]
∀x ∈

◦

E,

∫
x′∈E
Γm(x − x′) dΩ′ = SEm · k

−1
m

∀x ∈ ∂E+,

∫
x′∈E
Γm(x − x′) dΩ′ = SEm · k

−1
m −Πm(n)

(F.2a)

(F.2b)

where
◦

E denotes the interior of E and ∂E+ denotes the set of points which are located immediately on the external
part of the boundary of E. In the case of a uniform polarization vector within E, (F.1) together with (F.2a) ensure the
uniformity of the temperature gradient within E and the term Πm(n) in (F.2b), where n corresponds to the outward
unit normal vector at point x, is consistent with the effect of the interfacial operator recalled in (E.3). The temperature
gradient as well as the heat flux vector are therefore not expected to be uniform outside E even along ∂E+.

Considering the symmetrical roles played by x and x′ in the Green kernel i.e. Γm(x − x′) = Γm(x′ − x), (F.2a)
allows to simplify the average of h in (F.1) over the domain E including its interface (so that x′ always remains interior
with respect to the integration domain of x and (F.2a) can apply)

< h >E= H − SEm · k
−1
m · < p >E= H + SEm ·

(
< h >E +k−1

m · < u >E
)

(F.3)

All the average operations over E in (F.3) have to be considered in the sense of distributions ([52], [53]) i.e. the
temperature gradient and heat flux vector fields may contain Dirac terms even possibly located on the boundary ∂E of
the ellipsoid which have to be taken into account in the averages. It is worth emphasizing the fact that (F.3) has been
obtained whatever the actual law within E, thanks to a reasoning initially based on an arbitrary polarization defined
by p = −(km · h + u). For example, if E is composed of a homogeneous material of conductivity kE, the polarization
tensor is p = (kE − km) · h, which implies that the average < h >E from (F.3) is as expected equal to the uniform
value (D.1). In this case, the uniformity of the solution can directly be obtained from (F.1) and an argument of unicity
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(Eshelby problem of inhomogeneity).

A straightforward consequence of (F.3) is the consistency of the notion of equivalent conductivity with the classical
Eshelby result. Indeed, whatever the conduction law distribution within E, it is recalled that a tensor keq can be
identified by (76). Then the introduction of (76) in (F.3) leads to

< h >E=
(
1 + SEm · k

−1
m ·

(
keq
− km

))−1
· H (F.4)

which is none other than the counterpart of (D.1) and can be further used as an estimated concentration law in classical
homogenization schemes (dilute, Mori-Tanaka, self-consistent. . . ).
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