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1 Introduction

The Pell equation is fascinating mathematicians by its seeming simplicity and many deep connec-
tions to various theoretical problems. Therefore almost all introductory number theory courses
include chapters on Pell equation; we recommend [1].

While the positive Pell equation
a2 −Db2 = 1 (1)

always has infinitely many non-trivial solutions (a, b) for every non-square natural number D,
this is not the case for the negative Pell equation

x2 −Dy2 = −1. (2)

Theory states the following crucial moments concerning positive and negative Pell equations.
(1) Equation (1) has a least positive solution, where variables a > 0 and b > 0 have their least

positive integer values; it is often named as fundamental solution (a0, b0). The same can be told
about equation (2) – when it is solvable; here we denote its fundamental solution as (x0, y0).

(2) All (infinitely many) solutions (a, b) of (1) for one fixed D value are obtained from its
fundamental solution (a0, b0) as rational and irrational parts of the expression

a+ b
√
D = (a0 + b0

√
D)k,

where k = 1, 2, etc.
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(3) All (infinitely many) solutions (x, y) of (2) are obtained analogously from its fundamental
solution (x0, y0), but only odd powers of k are permitted.

(4) Provided equation (2) is solvable for given particular D and its fundamental solution is
(x0, y0), the fundamental solution (a0, b0) of equation (1) for the same D can be obtained as

a0 + b0
√
D = (x0 + y0

√
D)2. (3)

The intriguing point is that there are many non-square D values, for which equation (2) is
insolvable. One well-known limitation is D ≡ 1, 2 (mod 4) with no 4n + 3 factors (see [1],
page 201), but this is not sufficient. Sequence A 031398 from oeis.org includes square-free D

values with no 4n + 3 factors, for which negative Pell equation is insolvable. There are known
several methods of determining the solvability of (2) and we can mention [2], [3] and [4], but
they include careful analysis of continued fraction expansions of

√
D. On 2010 an excellent

elementary criterion was published by R.A. Mollin and A. Srinivasan [5], but the way to this
number theory gem also deals with not so simple treatment of continued fractions [6].

2 Proposed approach

In the following we present a short and elementary approach to solvability criterion for negative
Pell equation (2). Given (a0, b0) is obtained as fundamental solution of equation (1) and taking
into account (3), we can seek for unknowns (x0, y0) by standard algebraic procedure. From (3):

a0 + b0
√
D = (x0 + y0

√
D)2 = x2

0 +Dy20 + 2x0y0
√
D.

We equalize rational and irrational parts:

a0 = x2
0 +Dy20

b0 = 2x0y0
.

Then

y0 =
b0
2x0

and y20 =
b20
4x2

0

.

Inserting this in the first equation of the system, we get

4a0x
2
0 = 4x4

0 +Db20 or 4x4
0 − 4a0x

2
0 +Db20 = 0, or (2x2

0)
2 − 2a0(2x

2
0) +Db20 = 0.

Thus

2x2
0 =

2a0 ±
√
4a20 − 4Db20
2

= a0 ±
√

a20 −Db20 = a0 ± 1.

As we are seeking for fundamental solution, we take minimal positive value, so

x0 =

√
a0 − 1

2
and y0 =

b0
2x0

must be natural numbers.
Are these conditions sufficient?

x2
0 −Dy20 =

a0 − 1

2
−D

b20
4x2

0

=
a0 − 1

2
−D

b20
2(a0 − 1)

=

=
a20 − 2a0 + 1−Db20

2(a0 − 1)
=

1− 2a0 + 1

2(a0 − 1)
= −1
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So for the non-square natural D ≡ 1, 2 (mod 4) we get a solution of negative Pell equation
(2) with roots

x0 =

√
a0 − 1

2
and y0 =

b0
2x0

as natural numbers; here (a0, b0) is the fundamental solution of corresponding positive Pell equa-
tion (1). Proposed approach easily gives Mollins/Srinivasan criterion a0 ≡ −1 (mod 2D) from
[5], because this criterion easily follows from a0 = x2

0 +Dy20 and (2).
In both cases the fundamental solution (a0, b0) of corresponding positive Pell equation (1) is

necessary.
At the end three illustrative examples. Negative Pell equation (2) is solvable for D = 2, 5, 10, 13,

because we can get natural number values for (x0, y0).

D a0 + b0
√
D x0 + y0

√
D

2 3 + 2
√
2 1 +

√
2

5 9 + 4
√
5 2 +

√
5

10 19 + 6
√
10 3 +

√
10

13 649 + 180
√
13 18 + 5

√
13

For D values from A 031398 irrationality in the third column looks different.

D a0 + b0
√
D x0 + y0

√
D

34 35 + 6
√
34

√
17
17

(17 + 3
√
34)

146 145 + 12
√
146

√
2
2
(12 +

√
146)

178 1601 + 120
√
178

√
2
2
(40 + 3

√
178)

194 195 + 14
√
194

√
97
97

(97 + 7
√
194)

205 39689 + 2772
√
205

√
41
41

(902 + 63
√
205)

221 1665 + 112
√
221

√
13
13

(104 + 7
√
221)

The same is for D values with 4n+ 3 factors.

D a0 + b0
√
D x0 + y0

√
D

3 2 +
√
3

√
2
2
(1 +

√
3)

7 8 + 3
√
7

√
14
14

(7 + 3
√
7)

15 4 +
√
15

√
6
6
(3 +

√
15)

18 17 + 4
√
18

√
2
2
(4 +

√
18)
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