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EUCLIDEAN VOLUME GROWTH FOR COMPLETE

RIEMANNIAN MANIFOLDS

GILLES CARRON

ABSTRACT. We provide an overview of technics that lead to an Eu-

clidean upper bound on the volume of geodesic balls.

RÉSUMÉ: Nous donnons un aperçu des techniques qui conduisent à

une borne supérieure euclidienne sur le volume des boules géodésiques.

1. INTRODUCTION

In this paper, we survey a number of recent results concerning the fol-

lowing question: when does a complete Riemannian manifold (Mn, g) has

Euclidean volume growth, i.e. we are looking for estimates of the type

(EVG) ∀R > 0 : volB(x,R) ≤ CRn

where the constant C may depend on the point x or not. We will also

obtain some new results and will give several examples that illustrate the

optimality of certains of these results.

Such an estimate has some important consequences:

i) A complete Riemannian surface (M2, g) satisfying (EVG) is parabolic.

That is to say (M2, g) has no positive Green kernel: there is noG : M×
M \ Diag −→ (0,∞) such that ∆yG(x, y) = δx(y). We recommend

the beautiful and very comprehensive survey on parabolicity written by

A. Grigor’yan [19]. In dimension 2, parabolicity is a conformal prop-

erty and a parabolic surface with finite topological type1 is conformal

to a closed surface with a finite number of points removed : there is a

closed Riemannian surface (M, ḡ), a finite set {p1, . . . , pℓ} ⊂ M and

a smooth function f : M \ {p1, . . . , pℓ} −→ R such that (M2, g) is

isometric to
(

M \ {p1, . . . , pℓ}, e2f ḡ
)

.
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1that is homeomorphic to the interior of a compact surface with boundary.
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2 GILLES CARRON

ii) In higher dimension, the condition (EVG) implies that the manifold is

n−parabolic. It is a non linear analogue of the parabolicity ([12, 22,

23]).

iii) According to R. Schoen, L. Simon and S-T. Yau [28], if a complete

stable minimal hypersurface Σ ⊂ Rn+1 with n ∈ {2, 3, 4, 5} satisfies

the Euclidean volume growth (EVG) , then Σ is an affine hypersurface.

In dimension n = 2, M. Do Carmo and C.K. Peng proved that a stable

minimal surface in R3 is planar [17]. But nothing is known in higher

dimension.

iv) If Mn is the universal cover of a closed Riemannian manifold M̆ and

satisfies the Euclidean volume growth (EVG) , then the fundamental

group of M̆ is virtually nilpotent [21].

v) Another topological implication is that if a complete Riemannian man-

ifold (Mn, g) is doubling: there is a uniform constant γ such that for

any x ∈ M and R > 0: volB(x, 2R) ≤ Cγ volB(x,R), then M has

only a finite number of ends, that is to say there is a constantN depend-

ing only of γ such that for any K ⊂ M compact subset of M , M \K
has at most N unbounded connected components ([8]). In particular if

(Mn, g) satisfies a uniform upper and lower Euclidean volume growth:

for any x ∈M and R > 0:

θ−1Rn ≤ volB(x,R) ≤ θRn

then M has a finite number of ends.

vi) In ([30]), G. Tian and J. Viaclovsky have obtained that if (Mn, g) is a

complete Riemannian manifold such that

• ∀x ∈M, ∀R > 0: volB(x,R) ≥ cRn.

• ‖Rm‖(x) = o (d(o, x)−2)
then (Mn, g) satisfies (EVG) and it is an Asymptotically Locally Eu-

clidean space. This result was a key point toward the description of the

moduli spaces of critical Riemannian metrics on manifolds of dimen-

sion 4 ([31]).

We will review 3 different technics that leads to (EVG).

I- Comparison theorem and elaborations from the classical Bishop-Gromov

comparison theorem.

II- Spectral theory and elaborations from a result of P. Castillon.

III- Harmonic analysis and the relevance of the concept of Strong A∞
weights of G. David and S. Semmes for conformal metrics.

In the next section, we first give a short overview of these technics. More

details and some proofs of new results will be given in specific sections.

New results will labelled by letters (A,B...). The third section is devoted

to news results obtained with comparison technics, the fourth section is
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devoted to the presentation of the results obtained from spectral theory, the

application of Strong A∞ weights is described in the fifth section. The last

section will be devoted to construction of news examples.

Acknowledgements. I wish to thank S. Gallot and H. Rosenberg for use-

ful suggestions. I thank the Centre Henri Lebesgue ANR-11-LABX-0020-01

for creating an attractive mathematical environment. I was partially sup-

ported by the ANR grants: ANR-17-CE40-0034: CCEM and ANR-18-

CE40-0012: RAGE.

2. OVERVIEW OF THE DIFFERENT TECHNICS AND RESULTS

2.1. Comparison theorem. When (Mn, g) is a complete Riemannian man-

ifold, we defined Ric- : M −→ R+ by Ric-(x) = 0 if Ricci(x) ≥ 0 and if

Ricci(x) has a negative eigenvalue then −Ric-(x) is the lowest eigenvalue

of Ricci(x). Hence on a manifold with non negative Ricci curvature, we

have Ric- = 0. S. Gallot, P. Li and S-T. Yau, P. Petersen and G. Wei, E.

Aubry have obtained some refinement of the Bishop-Gromov comparison

theorem under some integral bound on the negative part of the Ricci cur-

vature [18, 25, 27, 3]. The proof of these volume estimates leads to the

following new result:

Theorem A. Let (Mn, g) be a complete Riemannian manifold of dimension

n ≥ 3. Assume that there is some ν > n such that:
∫

M

Ric-
n
2 dv <∞ and

∫

M

Ric-
ν
2 dv <∞,

then there is a R0 depending only on n, ν, ‖Ric- ‖Ln
2

and ‖Ric- ‖L ν
2

such

that if x ∈M then

volB(x,R) ≤ 2ωnR
n, R ≤ R0

and

volB(x,R) ≤ C(n, ν)Rn

(

log

(

2R

R0

))
n
2
−1

, R ≥ R0.

Remark 2.1. The statement is new but the proof follows from the one of S.

Gallot, P. Li, S-T. Yau, P. Petersen, G. Wei and E. Aubry.

This result has the following corollary

Corollary B. In the setting of Theorem A, the Riemannian manifold (Mn, g)
is n−parabolic.

And this volume estimate also gives an improvement of [10, Theorem

2.1]:
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Corollary C. Let Ω be a domain of (M, g0) a compact Riemannian mani-

fold of dimension n > 2. Assume Ω is endowed with a complete Riemannian

metric g which is conformal to g0. Suppose moreover that for some ν > n :
∫

M

‖Ricci ‖n
2 dvg <∞ and

∫

M

|Ric- |
ν
2 dvg <∞

Then there is a finite set {p1, . . . , pk} ⊂ M such that

Ω =M \ {p1, . . . , pk},
Moreover (Ω, g) satisfies the Euclidean volume growth (EVG).

Remarks 2.2. • The hypotheses of [10, Theorem 2.1] required more-

over the estimate

volg B(o, R) = o
(

Rn logn−1(R)
)

.

According to Theorem A, this volume estimate is implied by the

other hypotheses.

• The Euclidean volume growth is a consequence of [2, theorem 1.6 ]

(see also Theorem 5.4-b).

We will give examples that illustrate that the conclusions of Theorem A

and Corollary C are optimal. When g is a Riemannian metric on a manifold

M , the function σ−(g) : M → R+ is defined by σ−(g)(x) = 0 if all the

sectional curvature at x are non negative and in the other case, −σ−(g)(x)
is the lowest of the sectional curvature of g at x.

Theorem D. For any n ≥ 3 and R > 3, there is a complete conformal

metric gR = e2fReucl on Rn whose sectional curvatures satisfy:

σ−(gR) ≤ C(n) and

∫

Rn

σ−(gR)
n
2 dvgR ≤ C(n)

and such that

volgR (B(o, R)) ≥ Rn (logR)
n
2
−1 /C(n),

where the positive constant C(n) depends only on n

Theorem E. If n ≥ 3, there is an infinite set Σ ⊂ S
n and a complete

conformal metric g = e2fcan on Sn \ Σ whose sectional curvature are

bounded from below and such that
∫

Sn\Σ
σ−(g)

n
2 dvg <∞.

These constructions are slight modifications of examples furnished by S.

Gallot and E. Aubry ([18, 3]).
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2.2. Harmonic analysis. The Euclidean volume growth (EVG) result in

Corollary C is in fact a consequence of the following result ([2])

Theorem 2.3. Let g = e2f eucl be a conformal deformation of the Eu-

clidean metric on Rn such that:

• vol(Rn, g) = +∞,

•
∫

Rn

| Scalg |n/2 dvg < +∞.

Then there is constant C such that any g-geodesic ball Bg(x,R) ⊂ Rn

satisfies

C−1Rn ≤ volg Bg(x,R) ≤ CRn.

Hence (Rn, g) satisfies the Euclidean volume growth (EVG).

The constant C here does not only depend on ‖ Scalg ‖Ln
2

; but there is

some ǫn > 0 and some C(n) such that if ‖ Scalg ‖Ln
2
< ǫn then any g-

geodesic ball Bg(x,R) ⊂ R
n satisfies

C(n)−1Rn ≤ volg Bg(x,R) ≤ C(n)Rn.

The Theorem D shows the importance of the hypothesis on the control of

the positive part of the scalar curvature.

This result is obtained using real harmonic analysis tools and in particular

the notion of the strongA∞ weights which were introduced by G. David and

S. Semmes ([15]). The original motivation was to find a characterization of

weights that are comparables with a quasiconformal Jacobian. The result of

[2] has been inspired by a similar study of Y. Wang who obtained in [34] a

similar result based on the L1 norm of Q of the metric g, that is of
∫

Rn

∣

∣∆
n
2 f
∣

∣ (x)dx.

2.3. Spectral theory. The study of volume growth estimate through spec-

tral theory is motivated by the above question iii) about stable minimal hy-

persurfaces. Indeed let Mn be a complete stable minimal hypersurface im-

mersed in the Euclidean space R
n+1 and let II be its second fundamental

form, the stability condition says that the Schrödinger operator ∆g −|II|2 is

a non-negative operator, that is to say
∫

M

|II|2ϕ2 dvg ≤
∫

M

|dϕ|2g dvg, ∀ϕ ∈ C∞
0 (M).

But the Gauss-Egregium theorem implies that

Ricci(ξ, ξ) = −〈II(ξ), II(ξ)〉.
In particular, we have

Ric-(x) ≤
n− 1

n
|II|2
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and the stability condition implies that Schrödinger operator ∆ − n
n−1

Ric-
is non negative.

In dimension 2, a very satisfactory answer is given by the following very

beautiful result of P. Castillon ([6])

Theorem 2.4. Let (M2, g) be a complete Riemannian surface. Assume that

there is some λ > 1
4

such that the Schrödinger operator ∆g + λKg is non

negative then there is a constant c(λ) such that for any x ∈ M and any

R > 0:

aera (B(x,R)) ≤ c(λ)R2.

Moreover such a surface is either conformally equivalent to C or C \ {0}.

Remarks 2.5. i) The non negativity condition on the Schrödinger opera-

tor ∆g + λKg is equivalent to the fact that for every ϕ ∈ C∞
0 (M):

0 ≤
∫

M

[

|dϕ|2 + λKgϕ
2
]

dAg.

ii) A similar conclusion holds under the condition that the Schrödinger

operator ∆g + λKg has a finite number of negative eigenvalue, or

equivalently that there is a compact set K ⊂ M such that for any

ϕ ∈ C∞
0 (M \M):

0 ≤
∫

M\K

[

|dϕ|2 + λKgϕ
2
]

dAg.

But in that case, there is a closed Riemannian surface (M, ḡ), a finite

set {p1, . . . , pℓ} ⊂ M and a smooth function f : M \ {p1, . . . , pℓ} −→
R such that (M2, g) is isometric to

(

M \ {p1, . . . , pℓ}, e2f ḡ
)

.
iii) This result is optimal; indeed the hyperbolic plane has exponential vol-

ume growth and the Schrödinger operator ∆g + 1
4
Kg = ∆g − 1

4
is

nonnegative.

A natural question is about a higher dimensional analogue of Theorem 2.4.

However, the proof used strongly the Gauss-Bonnet formula for geodesic

balls and the regularity of geodesic circles. Hence it is not clear wether it

is possible to find an interesting generalization of this theorem. We will

explain how the argument of Castillon can apply in the case of 3D Cartan-

Hadamard manifolds Theorem F and of rotationally symmetric manifolds

Theorem G. In particular this last result shows that it could be tricky to

find examples that invalidate an extension of Theorem 2.4 result in higher

dimension. In the recent paper [9], we have stress that a stronger spec-

tral condition (a kind of non negativity in L∞ of the Schrödinger operator

∆− λRic- for some λ > n− 2) implies the Euclidean volume growth esti-

mate (EVG) . One of this result consequence thsi result (see Theorem 4.4)

is the following corollary that is based on a result of B. Devyver ([16]):
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Corollary 2.6. If (Mn, g) is a complete Riemannian manifold of dimension

n > 2 that satisfies the Euclidean Sobolev inequality

∀ψ ∈ C∞
0 (M) : µ

(
∫

M

ψ
2n
n−2 dvg

)1− 2
n

≤
∫

M

|dψ|2g dvg .

Assume that

Ric- ∈ L
ν−
2 ∩ L

ν+
2

where ν− < n < ν+, then there is a constant C such that for any x ∈ M
and R > 0:

volB(x,R) ≤ C Rn.

The constant C here does not only depend on the Sobolev inequality con-

stant and the Lν±/2 norms of Ric-, it depends also on the geometry on some

unknown compact subset K ⊂M .

3. RICCI COMPARISON

Certainly, the most famous result that leads to an Euclidean volume growth

estimate (EVG) is the Bishop-Gromov comparison theorem : If (Mn, g) is

a complete Riemannian manifold with non negative Ricci curvature then2

∀x ∈ M, ∀R > 0 : volB(x,R) ≤ ωnR
n. From a pointwise lower

bound on the Ricci curvature, one gets estimates on other geometric and

analytic quantity (isoperimetric profile, heat kernel estimate, Sobolev con-

stant, spectrum of the Laplace operator). In 1988, S. Gallot showed that

some geometric estimate could also be deduced from an integral estimate

on the Ricci curvature [18]. The volume estimate has also been proven in-

dependently by P. Li and S-T. Yau [25]. Latter on, these results has been

extended by P.Petersen and G. Wei [27] and A. Aubry [3]. We are now go-

ing to explain how the proof of these volume estimate can be read in order

to prove Theorem A.

Proof of theorem A . We assume that (Mn, g) is a complete Riemannian

manifold of dimension n such that for some ν > n, we have
∫

M

Ric-
n
2 d volg <∞ and

∫

M

Ric-
ν
2 d volg <∞.

Then for every p ∈ [n, ν], we have also
∫

M

Ric-
p

2 d volg <∞.

2where ωn is the Euclidean volume of the Euclidean unit n−ball.
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Hence we can assume that n < ν ≤ n + 1. Let σn−1 be the volume of the

rounded unit (n− 1)−sphere and for p > n, we define:

C(p, n) = 2

(

p− 1

p

)
p

2
(

(n− 1)(p− 2)

p− n

)
p

2
−1

.

Note that the integral
∫

M
Ric-

ν
2 d volg is not scale invariant hence by scaling

we can assume that:

(1) C(ν, n)

∫

M

Ric-
ν
2 d volg = (ν − n)ν−1

(

2
1

ν−1 − 1
)ν−1

σn−1.

Indeed, we can consider R−2
0 g in place of g where R0 is defined by

C(ν, n)Rν−n
0

∫

M
Ric-

ν
2 d volg = (ν − n)ν−1

(

2
1

ν−1 − 1
)ν−1

σn−1.

Let x ∈ M and expx : TxM → M be the exponential map; using polar

coordinate (r, θ) in TxM (where r > 0 and θ ∈ Sx = {u ∈ TxM, gx(u, u) =
1}, we have

exp∗
x d volg = J(r, θ)drdθ.

For each θ ∈ Sx, there is a positive real number iθ such that the geodesic

r 7→ expx(rθ) is minimizing on [0, iθ] but not on any larger interval. If

U = {(r, θ) ∈ (0,+∞) × Sx, r < iθ} then expx : U → expx(U) is a

diffeomorphism and

volg (M \ expx(U)) = 0.

For each θ ∈ Sx the function h(r, θ) = J ′(r,θ)
J(r,θ)

satisfies the differential in-

equation of Riccati’s type :

h′ +
h2

n− 1
≤ Ric- .

In order to compare the behavior of the volume of geodesic ball to its Eu-

clidean counterart, P. Petersen and G. Wei introduced :

Ψ(r, θ) =

(

h(r, θ)− n− 1

r

)

+

and they showed that on (0, iθ), we have (in the barrer sense):

Ψ′ +
Ψ2

n− 1
+

2

r
Ψ ≤ Ric-
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From this inequality, one deduces easily that

d

dr

(

Ψν−1J
)

≤ (ν − 1)Ψ′Ψν−2J + hΨν−1J

≤ (ν − 1)

(

− Ψ2

n− 1
− 2

r
Ψ+ Ric-

)

Ψν−2J +ΨνJ +
n− 1

r
Ψν−1J

≤
(

(ν − 1)Ric-Ψ
ν−2 − ν − n

n− 1
Ψν

)

J − 2ν − 1− n

r
Ψν−1J

≤
(

(ν − 1)Ric-Ψ
ν−2 − ν − n

n− 1
Ψν

)

J.

Using the inequality:

abν−2 ≤ 2

ν

(a

ǫ

)ν/2

+
ν − 2

ν
ǫ

ν
ν−2 bν ,

one gets:

(2)
d

dr

(

Ψν−1J
)

≤ C(ν, n) Ric-
ν/2 J.

We introduce now the subset of the unit sphere Dr = {θ ∈ Sx, r < iθ} and

L(r) =
∫

Dr
J(r, θ)dθ. So that we have

volB(x,R) =

∫ R

0

L(r)dr.

From the inequality (2) and the fact that Ψ(r, θ) is bounded near r = 0, one

easily deduce that

(3)

∫

Dr

Ψν−1(r, θ)J(r, θ)dθ ≤ C(ν, n)

∫

M

Ric-
ν/2(y)d volg(y).

Using the fact that r 7→ Dr is non increasing, we easily obtain that (in the

barrer sense):
d

dr

(

L(r)

rn−1

)

≤
∫

Dr

Ψ(r, θ)
J(r, θ)

rn−1
dθ.

And with Hölder inequality, one arrives to

d

dr

(

L(r)

rn−1

)
1

ν−1

≤ 1

ν − 1

(
∫

Dr

Ψν−1(r, θ)
J(r, θ)

rn−1
dθ

)
1

ν−1

≤ 1

ν − 1
r−

ν−1
n−1

(

C(ν, n)

∫

M

Ric-
ν/2(y)d volg(y)

)
1

ν−1

.

Hence one gets:

(

L(r)

rn−1

)
1

ν−1

≤ σ
1

ν−1

n−1 +
1

ν − n
r

ν−n
n−1

(

C(ν, n)

∫

M

Ric-
ν/2(y)d volg(y)

)
1

ν−1

.
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With the assumption (1), one gets that for any r ∈ [0, 1] then

(4) L(r) ≤ 2σn−1r
n−1 and volB(x, r) ≤ 2ωnr

n.

In order to estimate the volume of balls of radius larger than 1, we will used

the same argument and get that for any p ∈ (n, ν] and any r > 1:

d

dr

(

hp−1J
)

≤ C(p, n) Ric-
p/2 J.

This estimate was one of the key point in Gallot’s work. We let

Ip =

∫

M

Ric-
p/2(y)d volg(y)

and we obtain similarly:

d

dr
(L(r))

1
p−1 ≤ 1

p− 1

(
∫

Dr

hp−1(r, θ)J(r, θ)dθ

)
1

p−1

≤ 1

p− 1

(
∫

Dr

hp−1(1, θ)J(1, θ)dθ

)
1

p−1

+
1

p− 1
(C(p, n)Ip)

1
p−1

≤ 1

p− 1

(
∫

D1

hp−1(1, θ)J(1, θ)dθ

)
1

p−1

+
1

p− 1
(C(p, n)Ip)

1
p−1 .

We have to estimate the first term, with Hölder inequality, we easily get

(
∫

D1

hp−1(1, θ)J(1, θ)dθ

)
1

p−1

≤ L(1)
1

p−1
− 1

ν−1

(
∫

D1

hν−1(1, θ)J(1, θ)dθ

)
1

ν−1

,

using h(1, θ) ≤ (n− 1) + Ψ(1, θ), we have

(
∫

D1

hν−1(1, θ)J(1, θ)dθ

)
1

ν−1

≤ (n−1)L(1)
1

ν−1+

(
∫

D1

Ψν−1(1, θ)J(1, θ)dθ

)
1

ν−1

.

But with (3) and (1), we have

(
∫

D1

Ψν−1(1, θ)J(1, θ)dθ

)
1

ν−1

≤ (C(ν, n)Iν)
1

ν−1 = (ν−n)
(

2
1

ν−1 − 1
)

σ
1

ν−1

n−1,

so that
(
∫

D1

hν−1(1, θ)J(1, θ)dθ

)
1

ν−1

≤ 2
1

ν−1 (ν − 1)σ
1

ν−1

n−1,

and with (4), one gets

(
∫

D1

hp−1(1, θ)J(1, θ)dθ

)
1

p−1

≤ 2
1

p−1 (ν − 1)σ
1

p−1

n−1.
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And we get the following inequality for p > n and r > 1:

(L(r))
1

p−1 ≤ (L(1))
1

p−1 + 2
1

p−1
ν − 1

p− 1
σ

1
p−1

n−1(r − 1) +
r − 1

p− 1
(C(p, n)Ip)

1
p−1

≤ 2
1

p−1σ
1

p−1

n−1 + 2
1

p−1
ν − 1

p− 1
σ

1
p−1

n−1(r − 1) +
r − 1

p− 1
(C(p, n)Ip)

1
p−1

≤ 2
1

p−1 (ν − 1)σ
1

p−1

n−1r +
r − 1

p− 1
(C(p, n)Ip)

1
p−1

Using the inequality (a + b)p−1 ≤ 2p−2 (ap−1 + bp−1) and assuming that

n < p ≤ n+ 1, one gets

L(r) ≤ 2nnnσnr
p−1 + 2p−2

(

r − 1

p− 1

)p−1

C(p, n)Ip.

One comes back to the definition of the constant C(p, n) and we obtain the

estimate

2p−2

(

1

p− 1

)p−1

C(p, n) = 2p−1 1

(p− 1)p−1

(

p− 1

p

)
p

2
(

(n− 1)(p− 2)

p− n

)
p

2
−1

=
2p−1

p

(

n− 1

p

)
p

2
−1(

p− 2

p− 1

)
p

2
−1

(p− n)−
p

2
+1

≤ 2n

n
(p− n)−

p

2
+1.

And one gets:

(5) L(r) ≤ 2nnnσnr
p−1 +

2n

n
(p− n)−

p

2
+1Ipr

p−1.

The idea is now to choose p = n + (ν − n) 1
log(er)

= n + (ν − n)ǫ, where

ǫ = 1
log(er)

. By Hölder inequality, one has

Ip ≤ I
ν−p

ν−n
n I

p−n

ν−n
ν ≤ I1−ǫn Iǫν .

We easily get the estimates

rp−1 = rn−1 exp

(

(ν − n)
log(r)

log(er)

)

≤ e rn−1,

(p− n)−
p

2
+1 =

(

log(er)

ν − n

)
n
2
−1

((ν − n)ǫ)−
ν−n
2
ǫ .

Using that (ν − n)ǫ ∈ (0, 1] and that if x ∈ (0, 1] then x−x ≤ e
1
e ≤ 4, one

gets

(p− n)−
p

2
+1 ≤ 2

(

log(er)

ν − n

)
n
2
−1

.
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Now the second term in the right hand side of the inequality (5) is bounded

above by:

2n+1

n
eAǫν,nr

n−1

(

log(er)

ν − n

)
n
2
−1

σn

(

In
σn−1

)1−ǫ
,

where with our scaling assumption

Aν,n =
Iν
σn−1

=

(

2
1

ν−1 − 1
)ν−1

(ν − n)3
ν
2
−2

2
(

ν−1
ν

)
ν
2 ((n− 1)(ν − 2))

ν
2
−1
.

Using 3 ≤ n < ν ≤ n+ 1, one easily verifies
(

2
1

ν−1 − 1
)ν−1

2
(

ν−1
ν

)
ν
2

=

(

1− 1

2
1

ν−1

)ν−1(

1 +
1

ν − 1

)
ν
2

≤ 1.

Hence Aν,n ≤ 1 and letting J := max
{

1, In
σn−1

}

, we eventually obtain

L(r) ≤ σn1r
n−1

(

2nnn +
2n+1

n
eJ

(

log(er)

ν − n

)
n
2
−1
)

and

volB(x, r) ≤ ωnr
n

(

2nnn +
2n+1

n
eJ

(

log(er)

ν − n

)
n
2
−1
)

.

Hence we have shown that there are positive constant Γ that depends only

of n, ν,
∫

M
Ric-

n/2(y)d volg(y) such that for any r ≤ 1:

volB(x, r) ≤ 2ωnr
n

and for any r ≥ 1:

volB(x, r) ≤ Γrn (log (er))
n
2
−1 .

�

Proof of of first statement in Corollary C. The Theorem 2.1 in [10] states

that if Ω is a domain of (M, g0), a compact Riemannian manifold of dimen-

sion n > 2 and if g = e2fg0 is a complete Riemannian metric on Ω whose

Ricci tensor satisfies
∫

Ω

‖Riccig ‖
n
2 (x)d volg(x) <∞

and such that for some point x0 ∈ Ω:

volg B(x0, r) = o(rn logn−1 r),
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then there is a finite set {p1, ..., pk} ⊂M such that

Ω =M − {p1, ..., pk}.
Hence Theorem A and this theorem implies the first statement of Corol-

lary C. �

4. SPECTRAL ASSUMPTIONS

4.1. A formula. The following formula is easy to show using the equation

of Jacobi fields (see for instance [7, lemme 1.2]).

Lemma 4.1. Let (Mn, g) be a complete Riemannian manifold and let Σ ⊂
M be a smooth compact hypersurface with trivial normal bundle and ~ν : Σ −→
TM be a choice of unit normal vectors field. Let II be the associated second

fundamental form and h = Tr II be the mean curvature. If Σr is the parallel

hypersurface defined by:

Σr = {expx(r ~ν(x)); x ∈ Σ}
then

(6)
d2

dr2

∣

∣

∣

∣

r=0

vol Σr =

∫

Σ

[

H2 − |II|2 − Ricci(~ν, ~ν)
]

dσg.

Using the Gauss Egregium theorem, one can give another expression for

formula (6). If RΣ is the scalar curvature of the induced metric on Σ and

RM the scalar curvature of M and K is the sectional curvature of M , then

if (e1, . . . , en−1) is an orthonormal basis of TxΣ then

H2 − |II|2 − Ricci(~ν, ~ν) = RΣ −
∑

i,j

K(ei, ej)−
n−1
∑

i=1

K(ei, ~ν)

= RΣ −
n−1
∑

i=1

Ricci(ei, ei).

In particular, if we let ρ(x) be the lowest eigenvalue of the Ricci tensor at x
then we get

(7)
d2

dr2

∣

∣

∣

∣

r=0

vol Σr ≤
∫

Σ

[RΣ − (n− 1)ρ] dσg.

4.2. The case of 3D Cartan-Hadamard manifolds.

Theorem F. Let (M3, g) be a Cartan-Hadamard manifold such that for

some λ > 1
2
, the Schrödinger operator ∆g + λρ is non negative then there

is a constant c(λ) such that for any x ∈M and any R > 0:

aera (B(x,R)) ≤ c(λ)R3.
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We are grateful to S. Gallot who suggests that Castillon’s proof could be

adapted in the setting of 3D Cartan-Hadamard manifolds.

Proof. Recall that a Cartan-Hadamard manifold is a complete simply con-

nected Riemannian manifold with non positive sectional curvature and on

such a manifold the exponential map is a global diffeomorphism. In partic-

ular the geodesic sphere are smooth hypersurfaces. In the setting of Theo-

rem C, we fixe o ∈ M and consider A(r) = aera (∂B(o, r)). It is a smooth

function and A(0) = 0 and A′(0) = 0. We define ξ(r) = (R − r)α with

α > 1/2. Integrating by parts, we easily get :

∫ R

0

A′′(r)ξ2(r)dr =

∫ R

0

A(r)
(

ξ2
)′′

(r)dr = 2
2α− 1

α

∫ R

0

A(r) (ξ′(r))
2
(r)dr.

If we define now

ϕR(x) =

{

(R− d(o, x))α if d(o, x) ≤ R

0 if d(o, x) ≥ R.

We get

2
2α− 1

α

∫

M

|dϕR|2 dv =

∫ R

0

A′′(r)ξ2(r)dr.

Using the formula (7) and the Gauss-Bonnet formula one gets:

2
2α− 1

α

∫

M

|dϕR|2 dv ≤ 8π

∫ R

0

ξ2(r)dr − 2

∫

M

ρϕ2
R dv

= 8π
R2α+1

2α + 1
− 2

∫

M

ρϕ2
R dv .

Hence
(

2− 1

α

)
∫

M

|dϕR|2 dv+
∫

M

ρϕ2
R dv ≤ 4π

R2α+1

2α+ 1
dv .

We choose α > 1/2 such that

1

α
+

1

λ
< 2,

the non negativity of ∆g + λρ implies that

0 ≤ 1

λ

∫

M

|dϕR|2 dv+
∫

M

ρϕ2
R dv,

and we obtain
(

2− 1

α
− 1

λ

)
∫

M

|dϕR|2 dv ≤ 4π
R2α+1

2α + 1
,
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with

α2

(

R

2

)2α−2

volB(o, R/2) ≤
∫

M

|dϕR|2 dv

one obtains:

volB(o, R/2) ≤ 22απ λ

α(2α+ 1) (λ(2α− 1)− 1)
R3.

�

Remarks 4.2. i) A similar conclusion holds under the condition that the

Schrödinger operator ∆g + λρ has a finite number of negative eigen-

value for some λ > 1/2.

ii) By comparison theorem, we already know that

volB(o, R) ≥ ωnR
3.

Hence in the setting of Theorem C, the volume of geodesic balls in

uniformly comparable to R3.

iii) Again this result is optimal because for the hyperbolic space, the Schrödinger

operator ∆g +
1
2
ρ = ∆g − 1 is non negative.

4.3. The case of rotationally symmetric manifold.

Theorem G. We consider Rn endowed with a rotationally symmetric metric

(dr)2 + J2(r)(dθ)2,

where J is smooth with J(0) = 0 and J ′(0) = 1. If for some λ ≥ n−1
4

the

Schrödinger operator ∆+ λρ is non negative, then

volB(0, R) ≤ c(n, λ)Rn.

Proof. We let A(r) = vol ∂B(0, R), then

A′′(r) ≤ σn−1(n− 1)(n− 2)fn−3(r)− (n− 1)

∫

∂B(0,r)

ρdσ.

Using the same function ϕR one gets:
(

4− 2

α

)
∫

M

|dϕR|2 dv+(n−1)

∫

M

ρϕ2
R dv ≤

∫ R

0

σn−1γnf
n−3(r)(R−r)2αdr

where γn = (n− 1)(n− 2). But using Hölder inequality, we also have

∫ R

0

fn−3(r)(R−r)2αdr ≤
[
∫ R

0

(R− r)2α−2fn−1(r)dr

]

n−3
n−1
[

R2α+n−2

2α+ n− 2

]
2

n−1

,

but
∫ R

0

(R− r)2α−2σn−1f
n−1(r)dr =

1

α2

∫

M

|dϕR|2 dv .
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Now one chooses α > 1/2 such that 0 < 4− 2
α
− n−1

λ
, and one gets

(

4− 2

α
− n− 1

λ

)
n−1
2
∫

M

|dϕR|2 dv ≤ γ
n−1
2

n

αn−3
σn−1

R2α+n−2

2α + n− 2
.

And the same argumentation yields

volB(o, R/2) ≤ c(n, λ)Rn.

�

4.4. With a stronger spectral assumption. On a non compact manifold,

the behavior of the heat semigroup of a Schrödinger operator may be very

different on L2 and on L∞. For instance, E-B. Davies and B. Simon have

studied the case of the Schrödinger operator Lλ = ∆−λV on the Euclidean

space Rn where the potential V is defined by:

V (x) =

{

1/‖x‖2 if ‖x‖ ≥ 1

0 if ‖x‖ < 1.

When λ ∈ (0, (n − 2)2/4), the operator Lλ is non negative hence for any

t > 0:
∥

∥e−tLλ
∥

∥

L2→L2 ≤ 1.

Let α = n−2
2

−
√

(

n−2
2

)2 − λ. According to E-B. Davies and B. Simon [15,

Theorem 14], we have that for any ǫ > 0 there are positive constants c, C
such that

c(1 + t)α−ǫ ≤
∥

∥e−tLλ
∥

∥

L∞→L∞
≤ C(1 + t)α+ǫ.

Recall that a Schrödinger operator L on a non compact Riemannian mani-

fold is non negative if and only if there is a positive function h solution of

Lh = 0 ([1, 26]).

Definition 4.3. A Schrödinger operator L is gaugeable with constant γ ≥ 1
is there is a h : M −→ R such that

Lh = 0 and 1 ≤ h ≤ γ.

Hence if a Schrödinger operator L is gaugeable, then it is non negative.

One can also show that if Schrödinger operatorL is gaugeable with constant

γ, then for any t > 0, then

∥

∥e−tLλ

∥

∥

L∞→L∞
≤ γ.
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One can even show that if (M, g) is stochastically complete3 and if

sup
t>0

∥

∥e−tLλ

∥

∥

L∞→L∞
= γ

then L is gaugeable with constant γ. In [9], we have shown the following

result

Theorem 4.4. If (Mn, g) is a complete Riemannian manifold of dimension

n > 2 that satisfies the Euclidean Sobolev inequality

∀ψ ∈ C∞
0 (M) : µ

(
∫

M

ψ
2n
n−2 dvg

)1− 2
n

≤
∫

M

|dψ|2g dvg

and such that for some δ > 0 the Schrödinger operator ∆ − (n − 2)(1 +
δ) Ric- is gaugeable with constant γ then there is a constant θ depending

only on n, δ, γ and the Sobolev constant µ such that for all x ∈ M and

R ≥ 0:

1

θ
Rn ≤ volB(x,R) ≤ θRn.

4.5. Volume growth and heat kernel estimates. If (Mn, g) is a complete

Riemannian manifold, its heat kernel H : (0,+∞)×M ×M → (0,+∞)
is the Schwartz kernel of the operator e−t∆:

∀f ∈ C∞
0 (M) :

(

e−t∆f
)

(x) =

∫

M

H(t, x, y)f(y) dvg(y).

Estimates of heat kernels is known to imply estimate on the volume of geo-

desic balls. For instance, the lower Gaussian bound:

∀t > 0, x, y ∈M : H(t, x, y) ≥ γ t−n
2 e−

d(x,y)2

ct

implies the (EVG) conditions:

∀x ∈M, ∀R > 0: volg(B(x,R) ≤ cnc
−n

2γ−1Rn.

This result is classical and a proof can be found in [13, Proof of Theorem

4.1], we also recommend the nice survey of A. Grigor’yan [20] about these

relationships in the context of metric spaces.

3For instance (see [19]) when one has for some o ∈ M :

volB(o,R) ≤ cecR
2

,
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5. CONFORMAL GEOMETRY AND REAL HARMONIC ANALYSIS

G. David and S. Semmes have introduced a refinement of the notion of

Muckenhoupt A∞-weights.

Definition 5.1. A measure dµ = enfdx on Rn is said to be a strong A∞-

weight if there is a positive constant θ such that:

i) for any Euclidean ball B(x,R): µ (B(x, 2R)) ≤ θµ (B(x,R)) .
ii) if df is the geodesic distance associated to the conformal metric g =

e2f eucl then for any x, y ∈ R
n,

df(x, y)
n/θ ≤ µ

(

B[x,y]

)

≤ θdf(x, y)n,
where B[x,y] is the Euclidean ball with diameter the segment [x, y].

Remarks 5.2. (1) If the definition, we assume that f is a smooth func-

tion, but it is possible to define strong A∞-weight under the sole

condition that enf is locally integrable.

(2) It is possible to define what is strongA∞-weight for Ahlfors regular

metric measure space (X, d, ν) [29, 11, 24].

It turns out that conformal metrics induced by a strong A∞-weight have

very nice properties.

Theorem 5.3. ([15]) Let (Rn, g = e2f eucl) be a conformal metric such

that dvg = enfdx is a strong A∞ weight then there is a positive constant γ

such that

i) for any gf -geodesic ball B(x, r)

γ−1rn ≤ volg(B(x, r)) ≤ γrn,
ii) for any smooth domain Ω ⊂ Rn:

(volg(Ω))
n−1
n ≤ γ volg (∂Ω) .

There are several analytic criteria on f or geometric criteria on the con-

formal metric g implying that the associated volume measure is a strong

A∞ weight.

Theorem 5.4. Let (Rng = e2f eucl) be a conformal metric. Then any of the

following hypotheses yields that dvg = enfdx is a strong A∞ weight:

a) f = (1 + ∆)−s/2v with s ∈ (0, n) and v ∈ L
n
s , ([4, 5]).

b)
∫

Rn |df |ndx <∞, ([2]).

Let γn := 1
2

∫

Sn
Qrounded dvrounded.

c) The conformal metric g is normal and if its Qg-curvature satisfies
∫

Rn (Qg)+ dvg <

γn and
∫

Rn |Qg| dvg <∞, ([33, 34]).
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d) The Qg-curvature satisfies
∫

Rn |Qg| dvg <∞,
∫

Rn (Qg)+ dvg < γn and

if the negative part of the scalar curvature satisfies
∫

Rn (Scalg)
n
2
− dvg <

∞, ( [32]).

e) We have vol(Rn, g) = ∞ and the scalar curvature satisfies
∫

Rn |Scalg|
n
2 dvg <

∞, ([2]).

The main steps of the proof of Theorem 2.3 are the following :

Stage 1: Show that if g = e2f eucl is such that
∫

Rn |df |ndx <∞, then enfdx
is a strong A∞ weight.

Stage 2: Study the scalar curvature equation

∆f − n− 2

2
|df |2 = 1

2(n− 1)
Scalg e

2f ,

and for large R > 0, find a solution of the equation

∆f − n− 2

2

∣

∣df
∣

∣

2
=

1

2(n− 1)
Scalg e

2f 1Rn\B(R)

satisfying df ∈ Ln

Stage 3: Show that f − f is a bounded function on Rn.

6. EXAMPLES

6.1. The proof of Theorem E relies upon the follow family of metrics:

Lemma 6.1. Let n ≥ 3 and R > 3, there is a warped product metric on

R× Sn−1

hR = dt2 + JR(t)
2dθ2

such that

• σ−(hR) ≤ C(n)

•
∫

R×Sn−1

σ−(hR)
n
2 dvhR

≤ C(n) (logR)1−
n
2

• ([R,+∞)× Sn−1, hR) and (−∞,−R]× Sn−1, hR) are isometric to

(Rn \ B(ρ(R)), eucl)) where ρ(R) < R and

lim
R→+∞

ρ(R)

R
= 1.

Moreover there is a there is a smooth radial function ϕR ∈ C∞(Rn \ {0})
such that

i) ϕR ≥ 0
ii) ϕR = 0 on Rn \ B(ρ(R)) ⊂ Rn \ B(R)

iii) the Riemannian manifold (R× S
n−1, hR) is isometric to (Rn \ {0}, e2ϕReucl).
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Proof of Lemma 6.1. We start by the following observation: If h = dt2 +
J(t)2dθ2 is a warped product on R × Sn−1 such that J ′′ ≥ 0 and |J ′| ≤ 1
then

σ−(h) =
J ′′

J
.

Indeed the curvature operator of h has two eigenvalues

−J
′′

J
and

1− J2

J2
.

We consider a convex even function ℓ : R −→ R+ such that

• ℓ(0) = 1.

• If |t| ≥ 2 then ℓ′(t) = log |t|.
It is easy to see that for any t ∈ [−R,R]

ℓ(t) ≤ 1 + |t| logR.
Hence there is a constant γ such that for any R ≥ 2:

(8)

∫ R

−R

(ℓ′′(t))
n
2 (ℓ(t))

n
2
−1 dt ≤ γ (logR)n

2 .

And for R ≥ 2, we defined jR : R −→ R+ by

jR(t) =

{

ℓ(t)/ log(R) if |t| ≤ R

t− a(R) if |t| ≥ R.

where a(R) = R− ℓ(R)
logR

. By definition, jR is a C1 function that is smooth on

R \ {−R,R}. The metric kR = dt2 + jR(t)
2dθ2 on (R \ {−R,R})× Sn−1

satisfies

σ−(kR)(t, θ) ≤
ℓ′′(t)

ℓ(t)
≤ sup

t∈R
ℓ′′(t) = sup

t∈[0,2]
ℓ′′(t).

and with the estimation (8) we get that
∫

(R\{−R,R})×Sn−1

σ−(kR)
n
2 dvkR ≤ σn−1γ (logR)

1−n
2 .

Now ([R,+∞) × Sn−1, kR) and (−∞,−R] × Sn−1, kR) are isometric to

(Rn \ B(ρ(R)), eucl)) where

ρ(R) = jR(R) =
ℓ(R)

logR

but we have

ℓ(R) = ℓ(2) +

∫ R

2

log(t)dt = ℓ(2) +R logR− R− 2 log 2 + 2.
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and ℓ(2) ≤ 1 + 2 log 2 hence for R > 3 we have ℓ(R) < R and we also

have

lim
R→+∞

ρ(R)

R
= 1.

We now regularize the function jR while preserving the properties of the

warped product metric. Let χ ∈ C∞(R) such that
∫ 1

1
χ(x)dx = 1 and

χ(t) =

{

1 if t ≤ −1

0 if t ≥ 1.

Let δ ∈ (0, 1), we let Sδ to be the even function defined by

Sδ(x) =











1 if 0 ≤ x ≤ 1− δ
χ
(

x−1
δ

)

if x ∈ [1− δ, 1 + δ]
0 if x ≥ 1 + δ.

Then Tδ is the odd function defined by

Tδ(x) =

∫ x

0

Sδ(ξ)dξ.

We have Tδ(x) = x if |x| ≤ 1− δ and

Tδ(x) = 1− δ+
∫ 1+δ

1−δ
χ

(

ξ − 1

δ

)

dξ = 1 if x ≥ 1 + δ.

We consider

Jδ,R(t) =
1

logR
+

∫ t

0

Tδ

(

ℓ′(τ)

logR

)

dτ.

If R1−δ ≥ 2, then we have

• On [−R1−δ, R1−δ], Jδ,R(t) = jR(t).
• On [R1+δ,+∞), Jδ,R(t) = t− R1+δ + Jδ,R

(

R1+δ
)

.

Moreover we always have

• Jδ,R(t) ≤ jR(t),
•
∣

∣J ′
δ,R(t)

∣

∣ ≤ 1,

• 0 ≤ J ′′
δ,R(t),

• If t ≥ 0 : then J ′′
δ,R(t) ≤ ℓ′′(t)

logR
.

Hence for the smooth metric gδ,R = (dt)2 + J2
δ,R(t)dθ

2, we have

i) For t ≥ 0:

σ−(gδ,R)(t, θ) =
J ′′
δ,R(t)

Jδ,R(t)
≤
J ′′
δ,R(t)

Jδ,R(0)
≤ sup

t∈R
ℓ′′(t) = sup

t∈[0,2]
ℓ′′(t).
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ii)
∫

R×Sn−1

σ−(gδ,R)
n
2 dvgδ,R ≤ 2σn−1

∫ R1+δ

0

(

J ′′
δ,R(t)

)
n
2 (Jδ,R(t))

n
2
−1 dt

≤ Cn(1 + δ)
n
2
−1 (logR)1−

n
2 .

iii) ([R1+δ,+∞) × S
n−1, gδ,R) and

(

(−∞,−R1+δ]× S
n−1, gδ,R

)

are iso-

metric to (Rn \ B(ρ(δ, R)), eucl)) where ρ(δ, R) = Jδ,R
(

R1+δ
)

≤
jR1+δ(R1+δ) < R1+δ and

lim
R→+∞

ρ(δ, R)/R1+δ = 1

It remains to demonstrate the last assertion. The radial function ϕδ,R is

defined by the equations

eϕδ,R(r)r = JR and eϕδ,R(r)dr

dt
= 1,

We easily get that

d

dt
ϕδ,R(r(t)) =

J ′
δ,R − 1

Jδ,R
.

This implies that the function r 7→ ϕδ,R(r) is non increasing, hence choos-

ing a solution of this differential equation that is zero for large positive r we

get that for all r > 0: ϕδ,R(r) ≥ 0.

The smooth metric hR will be defined by

hR = gδ,T

where 3
1−δ

1+δ = 2 and T = R
1

1+δ . �

6.2. Proof of Theorem E. As (Sn\{N}, can) is conformally equivalent to

(Rn, eucl). We are going to show that there is an infinite set Σ ⊂ R
n and a

complete conformal metric g = e2feucl on Rn \ Σ with sectional curvature

bounded from below and such that
∫

Rn\Σ
σ−(g)

n
2 dvg <∞.

We find a sequence of Euclidean balls {B(xk, Rk)}k such that:

• ∀k : Rk ≥ 3,

•
∑

k

log(Rk)
1−n

2 <∞,

• ∀ℓ 6= k : B(xℓ, 2Rℓ) ∩ B(xk, 2Rk) = ∅.

From the Lemma 6.1, for each k, one can find a smooth non-negative func-

tion ϕk ∈ C∞
0 (Rn \ {xk}) such that

• ϕk = 0 outside B(xk, Rk),
• (Rn \ {xk}, e2ϕkeucl) is isometric to the metric hRk

.
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If we define f =
∑

ϕk then the Riemannian metric g = e2feucl satisfies

the conclusion of Theorem E.

6.3. The proof of Theorem D relies on the following familly of Riemann-

ian metric

Lemma 6.2. Let n ≥ 3 and R ≥ 3 and R ∈
(

1
logR

,+∞
)

. There is a

warped product metric on Rn

gR,R = dt2 + LR,R(t)
2dθ2

such that

• σ−(gR,R) ≤ C(n)

•
∫

Rn

σ−(gR,R)
n
2 dvgR,R

≤ C(n) (logR)1−
n
2

• (
[

0, π
2
R
]

× Sn−1, gR,R) is isometric to a rounded hemisphere of ra-

dius R.

• There is some r ∈ (R, 2R + πR) such that ([r,+∞)× S
n−1, gR,R)

is isometric to (Rn \ B(ρ(R)), eucl).
• The diameter of the ball {t ≤ r} is bounded from above by 2π(R+
R).

Moreover there is a smooth non-negative function ψR,R ∈ C∞
0 (Rn) such

that ψR,R = 0 on Rn \ B(R) and such that the Riemannian manifold

(Rn, gR,R) is isometric to
(

Rn, e2ψR,Reucl
)

.

Proof of Lemma 6.2. Let R ≥ 3 . Let R ≥ 3. Let τ ∈ (0, R ), define R by

R =
ℓ(τ)

√

log2(R)− (ℓ′(τ))2
.

It is easy to show that τ 7→ R is increasing between 1/ logR and +∞. So

that any R > 1/ logR determines a unique τ ∈ (0, R).
Let θ ∈ (π/2, π) be defined by











R sin (θ) = ℓ(τ)
logR

− cos (θ) = ℓ′(τ)
logR

(1) On [0, θR], we let

LR,R(t) = R sin

(

t

R

)

.

(2) On [θR,+∞), we let

LR,R(t) = jR (t− θR− τ) .
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By construction, LR,R is smooth on (0,+∞) \ {θR,R + τ + θR} and C1

on (0,+∞). We introduce the warped product metric on Rn:

gR,R = (dt)2 + L2
R,R(t)dθ

2.

It is easy to show that that the sectional curvature of gR,R is uniformly

bounded from below and that
∫

((0,+∞)\{θR,R+τ+θR})×Sn−1

σ
n
2
−(gR) dvgR ≤ C(n) (logR)1−

n
2 .

If we let r = R + τ + θR, then by definition ([r,+∞) × Sn−1, gR,R) is

isometric to (Rn \ B(ρ(R)), eucl). As before, one can smooth the metric

gR,R while keeping the geometric properties. �

6.4. Proof of Theorem D. Let R ≥ 9. We can find in B(0, 4R) \ B(0, R)
N(R) disjoint balls B(xi, 2

√
R), with

cn (logR)
n
2
−1 ≤ N(R) ≤ Cn (logR)

n
2
−1 .

When consider the function fR(x) =
∑

iψR,
√
R(x − xi). By construction

the conformal metric gR = e2fReucl satisfies:
∫

Rn

σ−(gR) dvgR ≤ C(n) (logR)
n
2
−1 × (logR)1−

n
2 ≤ C(n).

Moreover, the gR-diameter of the Euclidean ball B(0, 4R) is less that 4R +

2π(R+
√
R) ≤ 20R hence

volgR (B(0, 20R)) ≥ cn (logR)
n
2
−1 σn

2
Rn.

6.5. Conformal metric on Rn. The same idea leads easily to the following

examples:

Theorem 6.3. Let n ≥ 3. For any sequence (ak)k∈N such that

∑

k

akk
1−n

2 <∞

there is a complete conformal metric g = e2feucl whose sectional curvature

is bounded from below and such that

∫

Rn

σ−(g)
n
2 dvg <∞

and such that for all k ∈ N :

volB(o, 2k) ≥ c(n)ak
(

2k
)n
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LABORATOIRE DE MATHÉMATIQUES JEAN LERAY (UMR 6629), UNIVERSITÉ DE
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