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A study of continuous space word and sentence
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Sahar Ghannaya,∗, Yannick Estèvea,∗, Nathalie Camelina,∗

aLIUM - University of Le Mans, France

Abstract

This paper presents a study of continuous word representations applied to
automatic detection of speech recognition errors. A neural network architecture
is proposed, which is well suited to handle continuous word representations,
like word embeddings. We explore the use of several types of word representa-
tions: simple and combined linguistic embeddings, and acoustic ones associated
to prosodic features, extracted from the audio signal. To compensate certain
phenomena highlighted by the analysis of the error average span, we propose to
model the errors at the sentence level through the use of sentence embeddings.
An approach to build continuous sentence representations dedicated to ASR
error detection is also proposed and compared to the Doc2vec approach.

Experiments are performed on automatic transcriptions generated by the
LIUM ASR system applied to the French ETAPE corpus. They show that the
combination of linguistic embeddings, acoustic embeddings, prosodic features,
and sentence embeddings in addition to more classical features yields very com-
petitive results. Particularly, these results show the complementarity of acoustic
embeddings and prosodic information, and show that the proposed sentence em-
beddings dedicated to ASR error detection achieve better results than generic
sentence embeddings.

Keywords: ASR error detection, neural networks, prosodic features, linguistic
embeddings, acoustic embeddings, sentence embeddings.

1. Introduction

Recent advances in the field of speech processing have led to significant
improvements in speech recognition performance. However, recognition errors
are still unavoidable, whatever the quality of the ASR system. This reflects the
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system sensitivity to variability, e.g., to acoustic conditions, speaker, language5

style, etc. These errors may have a considerable impact on applications based on
the use of automatic transcriptions, like information retrieval, speech-to-speech
translation, spoken language understanding, etc.

Error detection aims at improving the exploitation of ASR outputs by down-
stream applications, but it is a difficult task because there are several types of10

errors, which can range from simple mistakes on word morphology, such as
number agreement, to the insertion of irrelevant words, which affect the overall
understanding of the word sequence.

For two decades, many studies have focused on the ASR error detection
task. Usually, the best ASR error detection systems are based on the use of15

Conditional Random Fields (CRF) [1]. In [2], the authors detect error regions
generated by Out Of Vocabulary (OOV) words. They propose an approach
based on a CRF tagger, which takes into account contextual information from
neighboring regions instead of considering only the local region of OOV words.
A similar approach for other kinds of ASR errors is presented in [3]: the authors20

propose an error detection system based on a CRF tagger using various ASR-
derived, lexical and syntactic features.

Recent approaches leverage neural network classifiers. A neural network
trained to locate errors in an utterance using a variety of features is presented
in [4]. Some of these features are gathered from forward and backward recurrent25

neural network language models in order to capture long distance word context
within and across previous utterances. The other features are extracted from
two complementary ASR systems. In [5], authors propose to use a neural net-
work classifier furnished by stacked auto-encoders (SAE), that helps to learn
the error word representations. In [6, 7], the authors investigated three types of30

ASR error detection tasks, e.g. confidence estimation, out-of-vocabulary word
detection and error type classification (insertion, substitution or deletion), based
on deep bidirectional recurrent neural networks.

In our previous researches [8, 9, 10] we studied the use of several types
of continuous word representations. In [8], we proposed a neural approach to35

detect errors in automatic transcriptions, and to calibrate confidence measures
provided by an ASR system. In addition, we studied different word embeddings
combination approaches in order to take benefit from their complementarity.
The proposed ASR error detection system integrates several information sources:
syntactic, lexical, ASR-based features, prosodic features as well as linguistic40

embeddings.
We proposed as well to enrich our ASR error detection system with acoustic

information which is obtained through acoustic embeddings. We showed in [10]
that acoustic word embeddings capture additional information about word pro-
nunciation in comparison to the information supported by their spelling. We45

showed that these acoustic embeddings are better than orthographic embed-
dings to measure the phonetic proximity between two words. Moreover, the
use of these acoustic embeddings in addition to other features improved the
performance of the proposed ASR error detection system [9].

In this paper, we first propose a summary of our previous studies, we report:50
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• the performance obtained by the combined linguistic embeddings

• the approach we used to build acoustic embeddings

• and the evaluation of the combination of linguistic and acoustic embed-
dings in the framework of the ASR error detection task

Then, we present new contributions on the combination of prosodic features and55

acoustic embeddings, and about sentence embeddings to characterize the level
of reliability of entire recognition hypotheses in order to better predict erroneous
words. Finally, in order to show that results presented on these experiments are
portable on current state of the art ASR systems, we also present, results applied
on the outputs produced by a Kaldi-based TDNN/HMM ASR system [11, 12].60

The paper is organized as follows. Section 2 presents our ASR error detection
system based on a neural architecture. This system is designed to be used
with word embeddings as part of the input features: different types of word
embeddings are used and each one is examined alone on the ASR error detection
task. Section 3 recalls the performance of the simple and combined linguistic65

embeddings and their comparison to a state of the art approach. The description
of the approach we used to build the acoustic embeddings, and the experimental
results that concern the evaluation of acoustic embeddings, as well as the impact
of their combination with prosodic features, are reported in section 4. Then,
section 5 presents the study of modeling recognition errors at the sentence level.70

Finally, section 5.5 presents the application of the proposed approach on the
outputs produced by a Kaldi-based TDNN/HMM ASR system ,just before the
conclusion.

2. ASR error detection system

The proposed error detection system has to attribute the label correct or75

error to each word in the ASR transcript. Each decision is based on a set
of heterogeneous features. In our approach, this classification is performed by
analyzing each recognized word within its context. The context window size
used in this study is two on each side of the current word.

This system is based on a feed-forward neural network and it is designed to80

be fed by different kinds of features, including word embeddings.

2.1. Architecture

This ASR error detection system is based on a multi-stream strategy to
train the network, named multilayer perceptron multi-stream (MLP-MS). The
MLP-MS architecture is used in order to better integrate the contextual in-85

formation from neighboring words. This architecture is inspired by [13] where
words and semantic features are integrated for topic identification in telephone
conversations. The training of the MLP-MS is based on a pre-training of the
hidden layers separately followed by a fine tuning of the whole network. The
proposed architecture, depicted in Figure 1, is detailed as follows: three feature90
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vectors are used as input to the network – feature vectors are described in the
next section. These vectors are respectively the feature vector representing the
two left words (L), the feature vector representing the current word (W) and
the feature vector for the two right words (R). Each feature vector is used sep-
arately in order to train a multilayer perceptron (MLP) with a single hidden95

layer. Formally, the architecture is described by the following equations:

H1,X = f(P1,X ×X + b1,X), (1)

where X represents one of the three feature vectors (L,W and R), P1,X is the
weight matrix and b1,X is the bias vector.

The resulting vectors H1,L, H1,W and H1,R are concatenated to form the100

first hidden layer H1. The H1 vector is presented as the input of the second
MLP-MS hidden layer H2 computed according to the equation:

H2 = g(P2 ×H1 + b2), (2)

Finally, the output layer is a vector Ok of k=2 nodes corresponding to the 2
labels correct and error:

Ok = q(PO ×H2 + bO). (3)

Based on our previous experiments, the functions f and g are respectively rec-105

tified linear units (ReLU) and hyperbolic tangent (tanh) activation functions,
and q is the Softmax function.

H2

output

H1,G H1,W H1,D

wi-2 wi-1 wi wi+1 wi+2

H1

L W R

Figure 1: MLP-MS architecture for ASR error detection task.

2.2. Feature vectors

In this section, we describe the features collected for each word and how
they are extracted. Some of these features are inspired by the ones presented110

in [3]. The word feature vector is the concatenation of the following features:
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• ASR confidence scores: confidence scores are the posterior probabilities
generated from the ASR system, computed over confusion networks [14].
Confusion networks are computed from word-lattices and provide better
word posteriors than word-lattices since they take into account the differ-115

ent instances of the same hypothesis word that are in concurrence in the
lattice, because of different factors (different language model histories, dif-
ferent variants of pronunciation, different temporal frontiers...). By sum-
ming all the word posteriors of the different instances of the same word in
a confusion bin, a better confidence score for this word is obtained [15, 16].120

Size and density of word-lattices used to build the confusion networks were
optimized in order to get the lowest WER on the developpment data of
the ETAPE corpus. More, during the official participation of the LIUM
ASR to the campaign ETAPE, only words with a confidence score greater
than 0.3 were kept. In the experiments described in this paper, all the125

recognized words were kept.

• Lexical features: lexical features are derived from the word hypoth-
esis output from the ASR system. They include the word length that
represents the number of letters in the word, and three binary features
indicating if the 3-grams containing the current word have been seen in130

the training corpus of the ASR language model.

• Syntactic features: we obtain syntactic features by automatically as-
signing part-of-speech tags (POS tags), dependency labels – such label is
a grammatical relation held between a governor (head) and a dependent –,
and word governors, which are extracted from the word hypothesis output135

by using the MACAON NLP Tool chain1 [17] to process the ASR outputs.

• Word: The orthographic representation of a word is used in CRF ap-
proaches as for instance in [3]. Using our neural approach we can handle
different word embeddings, which permits us to take advantage of the gen-
eralizations extracted during the construction of the continuous vectors.140

2.3. Description of experimental data

Experimental data for ASR error detection is based on the entire official
ETAPE corpus [18], composed from audio recordings of French broadcast news
shows, with manual transcriptions (reference). This corpus is enriched with
automatic transcriptions generated by the LIUM ASR system, which is a multi-145

pass system based on the CMU Sphinx decoder, using GMM/HMM acoustic
models. This ASR system won the ETAPE evaluation campaign in 2012. A
detailed description is presented in [19]. Notice that, as written above, in order
to show that results presented on these experiments are portable on current state
of the art ASR systems, we also present, in section 5.5 final results applied on150

the outputs produced by a Kaldi-based TDNN/HMM ASR system. Moreover,

1http://macaon.lif.univ-mrs.fr
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we also published a study showing that our approach can be used to detect
errors within ASR outputs produced by an unknown ASR system, including a
system based on DNN/HMM acoustic models [20].

The automatic transcriptions have been aligned with reference transcriptions155

using the sclite2 tool. From this alignment, each word in the corpora has been
labeled as correct (C) or error (E). The description of the experimental data,
in terms of size, word error rate (WER) as well as percentage of substitution
(Sub), deletion (Del) and insertion (Ins), is reported in Table 1. The repartition
of the different shows into train/dev/test sub-corpora has been made according160

to the source of shows (radio and title of the show), in order to balance this in
the sub-corpora. The WER information was not known when this distribution
has been done. We assume that some speakers or some topics occurring in some
shows in the training data were harder to decode than the ones in the Test data:
it is probably why the WER is higher on the training data in comparison to the165

Wer on Test or the Dev data.

Name #words #words WER Sub Del Ins
ref hyp

Train 349K 316K 25.3 10.3 12.0 3.1
Dev 54K 50K 24.6 10.3 11.0 3.3
Test 58K 53K 21.9 8.3 10.9 2.7

Table 1: Description of the experimental corpus in terms of size, word error rate (WER) as
well as percentage of substitution (Sub), deletion (Del) and insertion (Ins).

3. Linguistic word embeddings

Different approaches have been proposed to build linguistic word embeddings
through neural networks. These approaches can differ in the type of architecture
and the data used to train the model. Hence, they can capture different types170

of information: semantic, syntactic, etc.
In our previous studies [8, 21], we evaluated different kinds of word embed-

dings, including:

• Skip-gram: This architecture is proposed by [22], and trained using the
negative-sampling procedure. The target word wi is at the input layer,175

and the context words C are at the output layer. It consists of predicting
the contextual words C given the current word wi.

The skip-gram model with negative sampling seeks to represent each word
wi and each context C as d-dimensional vectors (Vwi

,VC) in order to have
similar vector representations for similar words. This is done by maximiz-180

ing the dot product Vwi
.VC associated with the good word-context pairs

2http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
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that occur in the document D and minimizing it for negative examples,
that do not necessarily exist in D. These negative examples are created
by stochastically corrupting the pairs (wi, C), thus the name negative
sampling.185

Also, the context is not limited to the immediate context, and training
instances can be created by skipping a constant number of words in its
context, for instance, wi−3 , wi−4 , wi+3 , wi+4 , hence the name skip-gram.

• GloVe: This approach is introduced by [23], and relies on constructing a
global co-occurrence matrix X of words, by processing the corpus using a190

sliding context window. Here, each element Xij represents the number of
times the word j appears in the context of word i.

The model is based on the global co-occurrence matrix X instead of the
actual corpus, thus the name GloVe, for Global Vectors.

This model seeks to build vectors Vi and Vj that retain some useful infor-195

mation about how every pair of words i and j co-occur, such as:

V T
i Vj + bi + bj = logXij (4)

where bi and bj are the bias terms associated with words i and j, re-
spectively. This is accomplished by minimizing a cost function J , which
evaluates the sum of all squared errors:

J =
∑∑

f(Xij)(V
T
i Vj + bi + bj − logXij)

2 (5)

where f is a weighting function which is used to prevent learning only200

from very common word pairs. The authors define f as follows [23]:

f(Xij) =

{
(
Xij

Xmax
)α if Xij < Xmax

1 otherwise

• w2vf-deps: Levy et al. [24] proposed an extension of word2vec, called
word2vecf and denoted w2vf-deps, which allows to replace linear bag-
of-words contexts with arbitrary features. This model is a generalization
of the skip-gram model with negative sampling introduced by [22], and205

it requires labeled data for training. As in [24], we derive contexts from
dependency trees: a word is used to predict its governor and dependents,
jointly with their dependency labels. This effectively allows for variable
window size.

Word embeddings evaluations were carried out on ASR error detection, nat-210

ural language processing (NLP), analogical and similarity tasks. In addition,
we compared three approaches to combine them via an auto-encoder, a princi-
pal component analysis (PCA), and a simple concatenation. We revealed that
the combination of word embeddings through an auto-encoder yields the best
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results compared to the other combination approaches (PCA and simple con-215

catenation).
Based on the results of these studies, we propose to use the best linguistic

word embeddings (w2vf-deps, skip-gram and GloVe) retained from the evalua-
tion task [21] and to combine them with an auto-encoder as in [8]. The resulting
combined linguistic word embedding is called Comb Emb further in the paper.220

A detailed description of the combination approaches is presented in [21].
Performance of simple and combined linguistic embeddings is reported in

the next sub-section.

3.1. Experimental setup

The linguistic word embeddings were computed from a large textual corpus225

in French, composed of about 2 billions of words. This corpus was built from
articles of the French newspaper “Le Monde”, the French Gigaword corpus,
articles provided by Google News, and manual transcriptions of about 400 hours
of French broadcast news. It contains dependency parses used to train w2vf-
deps embeddings, while the unlabeled version is used to train skip-gram and230

GloVe.

3.2. Experimental results

This section reports the experimental results made on the data set using the
ASR error detection system MLP-MS. These results concern the evaluation of
simple and combined linguistic word embeddings impact when adding them to235

the set of features presented in Section 2.2.
The performance of the proposed approach is compared with a state-of-the-

art system based on CRF [3] provided by the Wapiti tagger3 [25] and applied
to the set of features described in section 2.2.

The ASR error detection systems (MLP-MS and CRF) are trained on the240

training corpus (Train) and are applied on the test (Test) set. The development
set (Dev) was used to tune all the parameters: the learning rate, the batch size
and the hidden layers sizes of MLP-MS, and the features template of CRF, that
describes which features are used in training and testing.

The performance is evaluated by using recall (R), precision (P) and F-245

measure (F) for the misrecognized word prediction and global Classification
Error Rate (CER). CER is defined as the ratio of the number of misclassifica-
tions over the number of recognized words. Then, the significance of our results
is measured using the 95% confidence interval. Finally, based on confidence
interval evaluation, the significant relative improvements are underlined in next250

tables. To check the statistical significance, we used the Student’s t-test since
we observed that the CER follows a normal law by subsampling some parts of
the development data. Note that, in our study we are interested to the detection
of insertion and substitution errors.

3http://wapiti.limsi.fr
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We present in Table 2, the results obtained by using the simple and the com-255

bined embeddings in addition to the other features. We also present the results
of a baseline system (Base) that assign to all recognized words with the label
’Correct’, and the results of a simple error detection that only applies a thresh-
old on the ASR confidence scores to label ’Correct’ or ’Error’. In terms of global
classification error rate, the proposed neural approach outperforms the CRF, es-260

pecially by using the combined embeddings Comb Emb, it achieves 6.02% and
5.72% of CER relative reduction on Dev and Test. These results confirm the
ones obtained in our previous studies [8, 21]. We refer in the remainder of the
paper to the set of features presented in section 2.2 (ASR confidence scores,
lexical features, syntactic features) and the combined embedding Comb Emb to265

represent the word as the baseline features, named B-Feat.

Word Label Error Global
Corp. App. Representation P R F CER

Dev

Base always correct - - - 14.69
Simple ASR conf. score 66.78 49.13 56.61 11.08

Neural

w2vf-deps 73.01 50.17 59.47 10.06
Skip-gram 75.06 45.58 56.72 10.24

GloVe 73.81 46.98 57.41 10.26
Comb Emb 70.50 57.56 63.38 9.79

CRF discrete 68.11 55.37 61.08 10.38

Test

Base always correct - - - 12.04
Simple ASR conf. score 65.43 47.43 55.00 9.30

Neural

w2vf-deps 71.90 50.98 59.66 8.26
Skip-gram 74.45 46.75 57.44 8.30

GloVe 72.16 46.97 56.90 8.53
Comb Emb 69.66 57.89 63.23 8.07

CRF discrete 67.69 54.74 60.53 8.56

Table 2: Comparison of the use of different types of word embeddings in MLP-MS error
detection system on Dev and Test corpora.

4. Acoustic word embeddings

Until now, we experimented with several information sources: syntactic,
lexical, ASR-based features. However, we did not yet investigate the use of
acoustic information. One issue about representing such information is the270

need of a fixed size representation to be injected in the same way as used to
inject the other information sources at the word level in our neural architecture.
Acoustic word embeddings are an interesting solution to get a fixed length vector
representation. Acoustic word embeddings were successfully used in a query-
by-example search system [26, 27] and in a segmental ASR lattice re-scoring275

system [28]. Thus, we propose to evaluate their performance in the framework
of the ASR error detection.
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4.1. Building signal and acoustic word embeddings

The approach we used to build acoustic word embeddings is inspired by the
study proposed in [28]. Acoustic word embeddings are trained through a deep280

neural architecture, depicted in Figure 2, which relies on a convolutional neu-
ral network (CNN) classifier over words and on a deep neural network (DNN)
trained by using a triplet ranking loss [28, 29, 30]. This architecture was pro-
posed in [28] with the purpose to use the scores derived from the CNN word
classifier for lattice rescoring. The two architectures are trained using two dif-285

ferent inputs: speech signal and orthographic representation of the word.

convolution 
and max 
pooling 
layers

fully 
connected 

layers

Triplet Ranking Loss
DNNCNN

Embedding w+

 O+

Softmax

 O-

Embedding w-Embedding s

Lookup 
table

Word 

Letter n-grams

Wrong word 

Letter n-grams

...... .. .. .. .. .. .. ...... .. .. .. .. .. ..

Auto-encoder

Figure 2: Deep architecture used to train acoustic word embeddings. In the DNN part, all
the weights and biases are shared by the two DNNs.

The CNN is trained to predict a word given an acoustic sequence of T
frames (log-filterbanks computed every 10ms over a 25ms window yielding a
23-dimensional vector) as input. It is composed of several convolution and
pooling layers, followed by several number of fully connected layers that feed290

into the final Softmax layer. The final fully connected layer just below the
Softmax one is denoted s for signal word embedding (it was denoted e in [28]).
It contains a compact representation of the audio signal. This representation
tends to preserve acoustic similarity between words, such that words are close
in this space if they sound alike.295

The idea behind using the second architecture is to be able to build a unique
acoustic word embedding a from an orthographic word representation, especially
in order to get an acoustic word embedding for words not already observed in
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an audio speech signal. Above all, a such acoustic word embedding derived from
an orthographic representation can be perceived as a unique canonical acoustic300

representation for a word, since different pronunciations imply different signal
word embeddings s.

Like in [28], an orthographic word representation consists on a bag of n-
grams (n ≤ 3) of letters, composed of 10222 trigrams, bigrams, and unigrams
of letters, including special symbols [ and ] to specify the start and the end of305

a word. Since we do not access to the same amount of training data as Google
in [28], we chose to use an auto-encoder in order to reduce the size of this
bag of n-grams vector to d-dimensions to reduce the number of parameters to
train. To check the performance of the resulting orthographic representation, a
neural network is trained to predict a word given this compressed orthographic310

representation. It reaches 99.99% of accuracy on the training set composed of
the 52k words of the vocabulary, showing the richness of this representation.

Similar to [28], a DNN was trained by using the triplet ranking loss [28,
29, 30] in order to project the orthographic word representation into the signal
embeddings s space obtained from the CNN architecture, which is trained in-315

dependently. It takes as input a word orthographic representation and outputs
an embedding vector of the same size as s.

During the training process, this model takes as inputs the signal word em-
bedding s selected randomly from the training set, the orthographic represen-
tation of the matching word o+, and the orthographic representation of a ran-320

domly selected word o− different from the first word. These two orthographic
representations supply shared parameters in the DNN.

We call t = (s,a+,a−) a triplet, where s is the signal embedding, a+ is the
embedding obtained through the DNN for the matching word, while a− is the
embedding obtained for the wrong word.325

The triplet ranking loss is defined as:

Loss = max(0,m− Simdot(s, a
+) + Simdot(s, a

−)) (6)

where Simdot(x, y) is the dot product function used to compute the similarity
between two vectors x and y, and m is a margin parameter that regularizes the
margin between the two pairs of similarity Simdot(s,a

+) and Simdot(s,a
−).

This loss is weighted according to the rank in the CNN output of the word330

matching the audio signal.
The resulting trained model can then be used to build an acoustic word

embedding (a+) from any word, as long as one can extract an orthographic
representation from it.

Performance of signal embeddings s and word embeddings a applied to ASR335

error detection is summarized in the next section.

4.2. Experimental setup

4.2.1. Data

The training set for the CNN consists of 488 hours of French Broadcast
News with manual transcriptions. This dataset is composed of data coming340
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from the ESTER1 [31], ESTER2 [32] and EPAC [33] corpora. It contains 52k
unique words that are seen at least twice each in the corpus. All of them
corresponds to a total of 5.75 millions occurrences. In French language, many
words have the same pronunciation without sharing the same spelling, and they
can have different meanings; e.g. the sound [so] corresponds to four homophones:345

sot (fool), saut (jump), sceau (seal) and seau (bucket), and twice more by
taking into account their plural forms that have the same pronunciation: sots,
sauts, sceaux, and seaux. When a CNN is trained to predict a word given an
acoustic sequence, these frequent homophones can introduce a bias to evaluate
the recognition error. To avoid this, we merged all the homophones existing350

among the 52k unique words of the training corpus. As a result, we obtained a
new reduced dictionary containing 45k words and classes of homophones.

As written before, acoustic features provided to the CNN are log-filterbanks,
computed every 10ms over a 25ms window yielding a 23-dimensional vector
for each frame. A forced alignment between manual transcriptions and speech355

signal was performed on the training set in order to detect word boundaries. The
statistics computed from this alignment reveal that 99% of words are shorter
than 1 second. Hence we decided to represent each word by 100 frames, thus,
by a vector of 2300 dimensions. When words are shorter they are padded with
zero equally on both ends, while longer words are cut equally on both ends.360

4.2.2. Architectures

To build the signal and acoustic word embeddings, the CNN and DNN deep
architectures are trained on 90% of the training set and the remaining 10% are
used for validation.

• CNN: This architecture predicts a word given by a sequence of 100 frames.365

It contains two convolution and max-pooling layers followed by two fully-
connected layers, which feed into the final softmax layer over 45k words
and classes of homophones. The convolution layers have respectively 15
and 10 filters over 8 frames.

The max pooling layers perform over 4 units. The two fully connected370

layers are composed with 500 and 100 units respectively. The hyperbolic
tangent (Tanh) function is used as an activation function for all the layers.
This model achieves 61.51% of accuracy (i.e. word recognition precision)
on the validation set. It is used to extract the signal word embedding s.

• DNN: This architecture has to map the word orthographic representation375

into the signal embeddings space obtained by the CNN model. It is com-
posed of two fully connected Tanh layers of 300 and 100 units each. When
replacing in the CNN the signal word embedding s (Cf. Figure 2) by the
acoustic word embedding a+ computed by the DNN model from the ortho-
graphic embedding o+, the accuracy on the validation set becomes 50.15%.380

Since acoustic word embeddings are expanded in the acoustic space from
the orthographic notation, it is by nature more difficult to expand ortho-
graphic transcription into acoustic space than to expand the audio signal
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to this space. However, this result shows that acoustic word embeddings
are able to capture relevant acoustic information in a continuous space to385

model a word.

4.3. Experimental results

With the purpose to evaluate the performance of acoustic word embeddings
on ASR error detection, they were used as additional features into the MLP-MS
system.390

The signal and acoustic word embeddings (respectively s and a+) of the
current word were processed in a specific stream as shown in Figure 3. The
additional hidden layer H3 takes as input the concatenation of the two layers
H2-1 and H2-2-AC .

Three settings are compared corresponding to different types of features used395

in MLP-MS: baseline features (B-Feat) alone, then adding the signal embed-
dings s, and finally adding the acoustic word embeddings a+. Experimental
results reported in Table 3 show the usefulness of signal embeddings s, that
are able to characterize some suspicious acoustic segments. It yields a rela-
tive improvement in terms of CER reduction compared to the results of the400

neural baseline system (B-Feat). An additional slight relative improvement is
observed by adding the acoustic embedding a+.

H2-1

output

H1G H1W H1D

wi-2 wi-1 wi wi+1 wi+2

H1

H2-2-AC

si

H3

H2

ai
+

Figure 3: MLP-MS architecture for ASR error detection task, that integrates signal and
acoustic word embeddings in addition to the baseline features.

To improve further these results, we propose to add other informations ex-
tracted from the audio signal, which are prosodic features.

4.4. Performance of prosodic features405

Our use of prosodic features is motivated by state of the art studies [34,
35, 36]. Those studies reveal that misrecognized words have extreme prosodic
values [36], and prosodic features are useful for misrecognized utterance detec-
tion [35], whereas their combination with syntactic features is helpful to localize
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Word Label Error Global
Corp. Representation P R F CER

Dev
B-Feat 70.50 57.56 63.38 9.79
B-Feat ⊕ s 71.98 57.63 64.01 9.54
B-Feat ⊕ s ⊕ a+ 71.70 58.25 64.28 9.53

Test
B-Feat 69.66 57.89 63.23 8.07
B-feat ⊕ s 69.64 59.13 63.95 7.99
B-feat ⊕ s ⊕ a+ 70.09 58.92 64.02 7.94

Table 3: Performance of signal and acoustic embeddings for ASR error detection task on Dev
and Test corpora.

misrecognized words in a speaker turn [34]. We show in our previous study [8],410

the usefulness of prosodic features when they are combined with syntactic ones.
We aim in this study to evaluate their impact when they are combined with the
acoustic embeddings.

4.4.1. Prosodic features extraction

Automatic forced alignment is carried out using the LIMSI ASR system [37].415

As well as extra-lexical events such as silences, breath and hesitations, words
and corresponding phone segments are located (time-stamped) in the speech sig-
nal. Forced alignments are carried out twice: (i) using the manual / reference
transcription and (ii) using the hypothesis of the LIUM ASR system [19]. As a
result, we get among others word and phone segment durations that are relevant420

to prosody, rhythm and speech rate. The system’s pronunciation dictionary in-
cludes major pronunciation variants (e.g. optional schwas in word-internal and
word-final positions, optional liaison consonants, etc.) and the best matching
pronunciation variant is selected during alignments. The audio signal is pro-
cessed using Praat [38] (standard analysis parameters) to measure fundamental425

frequency (f0) every 5 milliseconds, depending on the method used in [39]. f0 is
the acoustic parameter corresponding to the perceived voice frequency. Speech
f0 variations are highly relevant to prosody, in particular if they can be linked to
phone segments and their embedding words and phrases [40]. The phone time-
codes delivered during forced alignment are used to retrieve the corresponding f0430

values both for reference and hypothesis transcriptions, on three points for each
vocalic segment. Since the properties of central segments show more acoustic
stability, we use measures taken at the middle of vocalic segments in order to
calculate f0 values at the word level: (i) f0 mean of the word (in Hertz) and
(ii) delta between f0 of the first vocalic segment of the word and f0 of the last435

vocalic segment of the word (in both Hertz and semitones).

4.4.2. Experimental results

Experimental results reported in Table 4 show the usefulness of prosodic
features, that yield a relative improvement in terms of CER reduction compared
to the results in Tables 3 and 2 for neural and CRF systems.440
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Corpus Approach
Word Label Error Global
Representation P R F CER

Dev

CRF
discret

68.11 55.37 61.08 10.38
CRF ⊕ pros 69.81 55.07 61.57 10.12

Neural

B-Feat (baseline) 70.50 57.56 63.38 9.79
B-Feat ⊕ pros 69.26 63.46 66.23 9.52
B-Feat ⊕ s ⊕ a+ 71.70 58.25 64.28 9.53
B-Feat ⊕ s ⊕ a+ ⊕ pros 71.70 59.96 65.31 9.38

Test

CRF
discret

67.69 54.74 60.53 8.56
CRF ⊕ pros 68.61 54.14 60.52 8.46

Neural
B-Feat (baseline) 69.66 57.89 63.23 8.07
B-Feat ⊕ pros 68.12 63.16 65.55 7.96
B-Feat ⊕ s ⊕ a+ 70.09 58.92 64.02 7.94
B-Feat ⊕ s ⊕ a+ ⊕ pros 70.27 61.32 65.49 7.75

Table 4: Performance of the combination of prosodic features and acoustic embeddings in
addition to the baseline features on Dev and Test corpora.

For neural systems, we observe that the integration of prosodic features (B-
Feat ⊕ pros) or acoustic embeddings (B-Feat ⊕ s ⊕ a+) obtains similar results
in terms of CER. The combination of prosodic features, linguistic and acoustic
embeddings in addition to the other features (B-Feat ⊕ s ⊕ a+ ⊕ pros) yields
the most interesting results, and achieves an interesting relative improvement in445

comparison to the baseline (B-Feat). These results show the complementarity of
acoustic and prosodic information and this best system is named MLP -MS-AC
further in the paper.

We observe as well, that the CER improvements are not fully consistent
with changes in F-measure. For reminder, the CER score is evaluated on both450

correct and error labels whereas the F-measure score focuses only on the error
label. Hence, the error variations seems not to be proportional between the two
labels.

For reminder, the CER score is evaluated on both correct and error labels
whereas the F-measure score focuses only on the error label. Hence, the error455

variations seems not to be proportional between the two labels.
Furthermore, we investigated the choice of extending the size of left- and

right- context windows. We experimented the use of a context window of three
words (three at left, and three at right). In a such way, performances decrease
to a CER of 7.87 (compared to 7.75 for the baseline). This result confirms what460

we observed in preliminary experiments carried on to choose the optimal size
of the context window. A size of two words was also optimal when using only
single linguistic word embeddings and part of speech information.

Last, we also investigated the use of acoustic embeddings for context words,
leading again to a loss in CER: 7.82 on test set.465

Note that, increasing the context size from 2 to 3 words, leads to increase
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the context window size from 5 to 7. Assuming, that the word features vec-
tor size is equal to 446d without taking into account the acoustic embeddings
(200d), the input of the network is equal to 3122d (446*7). The augmentation
of context size may require the use of more data to train the network and obtain470

better performance when adding such additional information like the acoustic
embeddings in the context words.

These two complementary experiments confirm us in our two parameter
choices.

4.5. Average span analysis of the ASR error detection system outputs475

In this section, we are interested in the analysis of the outputs generated by
our best system, MLP -MS-AC, in order to perceive the errors that are hard to
detect. We do not use the Test corpus for this part of our work in order to avoid
to introduce some biases in our future experiments. This analysis is based on
the average error segment size (average span), since we know that our system480

takes only local decisions and is not designed to perform optimally sequence
predictions.

Results summarized in Table 5 present the average span and the standard
deviation for the ground truth, the predictions (classifier outputs) and the cor-
rect predictions for MLP -MS-AC and CRF classifiers. The average span of485

the correct predictions is defined as the average error segment of the contiguous
errors correctly detected.

Corpus Approach
Average Standard

span deviation
Train

Ground truth
3.03 1.72

Dev 3.24 2.15
Test 3.10

Dev
CRF⊕pros

predictions 3.28 1.77
correct predictions 2.88 1.34

MLP -MS-AC
predictions 2.82 1.28
correct predictions 2.66 1.05

Test
CRF⊕pros

predictions 2.92 1.21
correct predictions 2.46 0.98

MLP -MS-AC
predictions 2.79 1.28
correct predictions 2.62 0.75

Table 5: The average span and the standard deviation for the ground truth, the predictions,
and the correct predictions for CRF and MLP -MS-AC systems.

We observe that the average span of CRF outputs is nearly the same as
the ground truth. However, for the MLP -MS-AC system the average span
of the predictions is smaller by 12.9% relative compared to the ground truth,490

with a smaller standard deviation by 40.5%. Regarding the correct predictions,
the average spans for correct predictions of both systems are smaller than the
ground truth, even if the one of CRF is closer to the ground truth.
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The gap related to the error segment size between the ground truth, the pre-
dictions and the correct predictions is due to the architecture of the proposed495

ASR error detection system (MLP -MS-AC). This one takes only local deci-
sions and is not currently designed to perform optimally sequence predictions
while CRF seems to be able to better capture such global information.

The results of this analysis provided us useful information in order to improve
the performance of the proposed ASR error detection system. For this purpose,500

we propose to explore the integration of global information, at the sentence
level, and evaluate their impact by using the same neural architecture.

5. Global decision: sentence embeddings

In this section, we focus on the integration of global information to en-
rich our ASR error detection system, through the use of sentence embeddings505

(Sent-Emb). These representations have been successfully used in sentence clas-
sification and sentiment analysis tasks [41, 42, 43]. Sentence embeddings can be
built in a general context by using the tool Doc2vec [41], or they can be adapted
to a specific task like for the sentiment analysis task as in [44].

For the error detection task, we propose to build sentence embeddings that510

carry information about the confidence of the recognition hypothesis at the
sentence level: whether the sentence is almost correct or highly erroneous. Then,
we compare the performance of the proposed sentence embeddings to the DBOW
(Distributed bag of words) embeddings provided by Doc2vec [41].

5.1. DBOW embeddings515

The DBOW approach consists on predicting the words randomly sampled
from the paragraph in the output: i.e. at each iteration of stochastic gradient
descent, we sample a text window, then sample a random word from the text
window and form a classification task given the paragraph vector [41]. This
model is also similar to the Skip-gram model in word vectors [45]. In our exper-520

iments, this model is trained on the ETAPE corpus to build 100-dimensional
embeddings, named EmbDBOW , for each automatic transcription (utterance).

5.2. Task-specific embeddings

The sentence embeddings EmbDBOW carry semantic information held in
the automatic transcriptions, but probably do not carry specific information for525

ASR error detection task. Thus, we propose to build specific sentence embed-
dings for the error detection task.

For this reason, we propose to use the embeddings extracted from a con-
volutional neural network, named EmbCNN , trained to predict whether an au-
tomatic transcription (utterance) is slightly erroneous (SE) or very erroneous530

(VE). The resulting sentence embeddings may capture information about the er-
ror. To build those embeddings we need to use a labeled corpus: each utterance
in the ETAPE corpus was tagged to “slightly erroneous” or “very erroneous”.
In this study, we arbitrarily consider a sentence as very erroneous if 20% of the
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words that it compose are incorrect. Indeed, as our goal is to build embeddings535

with information about errors in the utterances, the choice of the 20% seems
reasonable to predict the confidence of the utterances. The utterances with less
than 20% of incorrect words are then considered as slightly erroneous (including
fully correct utterances). Table 6 presents the description of the data used to
train the convolutional neural network.540

Corpus #Ref. Utt. # Hyp. Utt. #SE Utt. #VE Utt.

Train 22K 21.3K 13.3K 8.3K
Dev 3.7K 3.5K 2.2k 1.3k
Test 3.6K 3.5K 2.3K 1.1K

Table 6: Description of the data used to build the EmbCNN embeddings in terms of number
of reference and hypotheses utterances and the number of slightly erroneous (SE) and very
erroneous (VE) utterances.

The CNN takes as input an utterance represented by a vector of features and
has as output two labels “slightly erroneous” or “very erroneous”. The CNN
architecture is composed of two convolution and max pooling layers followed
by two fully connected layers. From the hidden layer just before the Softmax
layer we extracted the 100-dimensional sentence embeddings (EmbCNN ) for545

each utterance. Note that, the CNN classifier achieves 13.5% of classification
error rate on Test corpus transcriptions.

The utterance feature vector corresponds to the concatenation of the fea-
ture vectors of the words composing the utterance. The word feature vector is
composed of those used in MLP -MS-AC (B-Feat ⊕ s ⊕ a+ ⊕ pros).550

The size of the utterances is set to 50 words, since 98.37% of them have a size
that varies between 1 and 50 words. When the utterances are shorter they are
padded with zero equally on both ends, while longer utterances are cut equally
on both ends.

5.3. Experimental results555

This section summarizes the comparison results between both sentence em-
beddings: EmbDBOW and EmbCNN . The performance reached by using those
embeddings is compared to the ones got by the MLP -MS-AC . The sentence
embedding EmbDBOW or EmbCNN was processed by a specific stream as shown
in the fig. 4. In this case the last hidden layer H3 takes as input the concate-560

nation of the three hidden layers H2-1, H2-2-AC and Sent-EmbH.
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Figure 4: MLP-MS architecture for ASR error detection task, that integrates acoustic and
sentence embeddings in addition to the baseline features.

Experimental results, summarized in table 7, show that the integration of
sentence embeddings was helpful and yields to some relative improvements in
comparison to the results of MLP -MS-AC, especially when using the EmbCNN
embedding, which is better than the EmbDBOW embedding. The EmbCNN565

embedding yields to 1.27% and 0.77% of CER relative reduction in comparison
to MLP -MS-AC, respectively on Dev and Test. This system is named MLP -
MS-AC-EmbCNN further in the paper. From these results we can reveal that
the EmbCNN have captured information about the error useful for our targeted
task.570

Comparing to the results obtained by the best simple embeddings w2vf-deps,
our entire neural approach using the combined linguistic embeddings, acoustic
and sentence embeddings in addition to the prosodic and syntactic features
achieves statistically significant relative improvements, by respectively 7.95%
and 6.9% in terms of CER reduction on Dev and Test.575

Corpus
Sentence Label Error Global
Embed. P R F CER

Dev
- (baseline) 71.70 59.96 65.31 9.38
EmbDBOW 72.74 58.24 64.69 9.36
EmbCNN 72.49 59.80 65.53 9.26

Test
- (baseline) 70.27 61.32 65.49 7.75
EmbDBOW 72.48 57.32 64.01 7.72
EmbCNN 72.49 57.81 64.32 7.69

Table 7: Performance of sentence embeddings EmbDBOW and EmbCNN in comparison to
the results of MLP-MS-AC system on Dev and Test corpora

We revealed that the addition of the information extracted at the sentence
level improves the performance of our system. In order to confirm the hypothesis
discussed in section 4.5 on improving the performance of the error detection
through a better global modeling, that would indirectly better models error
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span, we report in this section the results of the average span analysis performed580

on the MLP -MS-AC-EmbCNN system outputs. Table 8 presents the average
spans and the standard deviations for the ground truth, the predictions and
the correct predictions for CRF, MLP -MS-AC and MLP -MS-AC-EmbCNN
systems. The results show that sentence embeddings have captured information
about the error propagation: indeed, the addition of these embeddings has585

improved the average span compared to the MLP -MS-AC system. Thus, the
MLP -MS-AC-EmbCNN system obtains results very close to the CRF, in terms
of average span for both predictions and correct prediction.

Approach
Average Standard

span deviation
Ground truth 3.24 2.15

CRF⊕pros (baseline)
predictions 3.28 1.77
correct predictions 2.88 1.34

MLP -MS-AC
predictions 2.82 1.28
correct predictions 2.66 1.05

MLP-MS-AC-EmbCNN
predictions 3.15 1.70
correct predictions 2.84 1.22

Table 8: The average span and the standard deviation for the ground truth, the predictions,
and the correct predictions for CRF, MLP -MS-AC and MLP-MS-AC-EmbCNN systems.

5.4. Comparison to bidirectional LSTM system

These last experiments revealed the usefulness of the sentence embeddings in-590

tegration in our MLP-MS architecture. Since some neural architectures showed
recently to be effective to process sequence to sequence tasks [46], it could be
interesting to compare the neural approach used until now in our experiments
to measure the impact of continuous representations to the use of a bidirectional
LSTM architecture. Such an architecture is designed to learn how to integrate595

relevant long distant information, and was successfully used for the ASR error
detection task in [6, 7].

In our experiments, the bidirectional LSTM architecture is composed of two
hidden layers of 512 hidden units each, i.e. 256 units in each forward and
backward sides and a fully connected layer of 128 units. It integrates the same600

features as the MLP-MS-AC system: ASR confidence scores, lexical features,
syntactic features, prosodic features, linguistic embeddings and acoustic em-
beddings. This system is called BLSTM-AC. For the BLSTM-AC system we
did include sentence embeddings that capture global information about the sen-
tence, because we suppose the BLSTM-AC by nature, should be able to capture605

this kind of information. Results summarized in table 9 show that BLSTM-AC
and MLP-MS-AC systems obtain comparable results. Notice that BLSTM-AC
system obtains better results on Dev but not on Test corpus. It seems that
the BLSTM architecture does not generalize well in these experiments. This
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behaviour is not due to the number of parameters to train: there are about610

3.5 millions of parameters (weight + biases) to train in the BLSTM while they
are 3.6 millions in the MLP-MS. To explain the better generalization observed
on MLP-MS, we assume that the topology of the MLP-MS architecture helps
during the training process. For instance the use of an optimized neighbor size,
or the use of specific streams in relation to the nature of the input features615

have learned during the training process by the BLSTM while they are known
before the training, by nature, in the MLP-MS architecture. Maybe with more
training data, the BLSTM can improve its generalization capacity. Moreover,
as we can see the addition of sentence embeddings to the BLSTM architecture
(BLSTM-ACCNN ), yields to almost the same results on Dev, but degraded the620

results on Test, this mainly due to the lack of training data as we mentioned
before.

In this paper we focus on word and sentence continuous word representa-
tions, and evaluate them for the ASR error detection task through the use of
a feedforward neural architecture. These results with the BLSTM architecture,625

recently proposed for this task, validate our previous experiments, and show
that they cannot be questioned in relation to the use of a more sophisticated
neural architecture.

Moreover, these results confirm our hypothesis about the integration of
global information in MLP-MS system in order to take better local decisions,630

since the MLP-MS-AC-EmbCNN system achieves better results than the BLSTM-
AC system.

Corpus
System Label Error

P R F CER

Dev
MLP-MS-AC 71.70 59.96 65.31 9.38
MLP-MS-AC-EmbCNN 72.49 59.80 65.53 9.26
BLSTM-AC 70.49 63.60 66.87 9.28
BLSTM-ACCNN 73.56 57.84 64.76 9.27

Test
MLP-MS-AC 70.27 61.32 65.49 7.75
MLP-MS-AC-EmbCNN 72.49 57.81 64.32 7.69
BLSTM-AC 68.90 63.26 65.96 7.83
BLSTM-ACCNN 71.09 56.82 63.16 7.95

Table 9: Comparison of the proposed MLP-MS architecture to a BLSTM architecture.

5.5. Application to neural ASR outputs

This section reports the results of the application of our approach on the out-
puts produced by a Kaldi-based TDNN/HMM ASR system as we mentioned in635

section 2.3. The acoustic models of this ASR system were trained with the same
training data as the one previously used. The same vocabulary and the same
language models were used. Acoustic models are based on chain model, based
on a sub-sampled time-delay neural network (TDNN) [12]. This kind of model
is trained with a sequence-level objective function (the log probability of the640
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correct phone sequence) [47]. It can be viewed as training with the maximum
mutual information (MMI) criterion, implemented without lattices, by doing a
full forward-backward on a decoding graph derived from a phone n-gram lan-
guage model and using a three times smaller frame rate at the output of the
neural network. Training this model was done by using high-resolution MFCC645

features (without dimensionality reduction, keeping the 40 cepstra) concate-
nated with 100-dimensional i-vectors for speaker adaptation, accounting for an
input dimension of 140.

For these experiments, we recomputed all the features presented in this paper
for each new recognized words, including acoustic word embeddings, sentence650

embeddings,.. and we retrained all the different systems presented in this paper:
CRF, MLP-MS and BLSTM.

The description of the experimental data, in terms of size, word error rate
(WER) as well as percentage of substitution (Sub), deletion (Del) and insertion
(Ins), is reported in Table 10.655

Name #words #words WER Sub Del Ins
ref hyp

Train 347k 328k 21.2 6.9 9.9 4.5
Dev 53k 51k 21.6 6.7 10.0 5.0
Test 57k 54k 19.0 5.7 9.2 4.1

Table 10: Description of the neural ASR outputs in terms of size, word error rate (WER) as
well as percentage of substitution (Sub), deletion (Del) and insertion (Ins).

To build sentences embeddings for neural ASR outputs we used the same
experimental protocol as mentioned in section 5.2. So, we arbitrarily consider
a sentence as very erroneous if 20% of the words that it compose are incorrect.
Table 11 presents the description of the data used to train the convolution neural
network to train the sentence embeddings.660

Corpus #Ref. Utt. # Hyp. Utt. #SE Utt. #VE Utt.

Train 22k 21k 16k 5k
Dev 3.7 3.5 2.6k 0.9k
Test 3.6 3.5 2.6k 0.9k

Table 11: Description of the data used to build the EmbCNN embeddings in terms of number
of reference and hypotheses utterances and the number of slightly erroneous (SE) and very
erroneous (VE) utterances.

Note that, the CNN classifier achieves 16.11% of classification error rate on
Test corpus transcriptions.

Table 12 summarizes the different experimental results obtained by applying
the different systems presented in this paper: CRF, MLP-MS and BLSTM on
the outputs produced by the neural ASR system. For neural systems, both665

results without and with sentence embeddings EmbCNN are presented. As we
can see, these results confirm the ones got on the GMM/HMM based-ASR
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system. The MLP-MS system obtains better results than BLSTM and CRF
systems. In addition, results obtained with BLSTM match the results obtained
in section 5.4, since the BLSTM architecture does not generalize well in these670

experiments too.

Corpus
System Label Error

P R F CER

Dev
MLP-MS-AC 69.01 45.15 54.59 8.13
MLP-MS-AC-EmbCNN 68.75 46.38 55.39 8.09
BLSTM-AC 65.22 36.65 46.93 8.64
BLSTM-AC-EmbCNN 67.50 42.02 51.80 8.15
CRF 65.60 37.99 48.12 8.87

Test
MLP-MS-AC 69.12 49.27 57.53 6.32
MLP-MS-AC-EmbCNN 69.04 50.04 58.03 6.29
BLSTM-AC 65.31 39.69 49.38 7.08
BLSTM-AC-EmbCNN 64.48 46.36 53.94 6.88
CRF 66.58 39.44 49.53 6.99

Table 12: Performance of the proposed MLP-MS architecture, BLSTM architecture and CRF
on Kaldi outputs.

6. Conclusions and future work

This paper presents a study that focuses on the use of different types of con-
tinuous representations applied to the ASR error detection task. An important
objective in this task is to locate possible linguistic or/and acoustic incongruities675

in automatic transcriptions. For this, we focused on the use of different types of
embeddings that are able to capture information from different levels: linguistic
word embeddings, acoustic word embeddings, and sentence embeddings.

Experiments, that were performed on the French ETAPE corpus, show that
the combination of linguistic embeddings, acoustic embeddings, and prosodic680

features in addition to other more classical features yields very competitive re-
sults. Particularly, these new results show the high complementarity of acous-
tic word embeddings and prosodic information, and show that the proposed
task-specific sentence embeddings achieve better results than the general ones
proposed by Doc2vec.685

Finally, the use, in a simple feed forward neural architecture, of combined
linguistic embeddings, prosodic features, acoustic and sentence embeddings as
additional sources of evidence, strongly and significantly improves the results
in comparison to the use of the best single linguistic word embeddings, while
this last approach was yet better than the use of Conditional Random Fields690

that were the state-of-the-art for this task until very recently. In addition, we
show that using a BLSTM architecture does not improve the ASR error detec-
tion: the MLP-MS architecture fed by a sliding window of relevant continous
representations is particularly effective. Last, we show that results presented
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on these experiments are portable on current state of the art ASR systems,695

by applying the proposed approach on the outputs produced by a Kaldi-based
TDNN/HMM ASR.

In a future work, we expect to develop new approaches in order to automati-
cally classify the nature (acoustic, linguistic, phonetic. . . ) of a recognition error
if such an error is detected, and we also work on improving the ASR system700

performances by exploiting and injecting in the loop this good quality detection.
Last, we will explore the use and the adaptation of word and sentence con-

tinuous representations in other tasks, e.g. spoken language understanding.
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