
HAL Id: hal-02501918
https://hal.science/hal-02501918

Submitted on 8 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralization of 5G slice resource allocation
Francesca Fossati, Stefano Moretti, Stephane Rovedakis, Stefano Secci

To cite this version:
Francesca Fossati, Stefano Moretti, Stephane Rovedakis, Stefano Secci. Decentralization of 5G slice
resource allocation. IEEE/IFIP Network Operations and Management Symposium (NOMS), Apr
2020, Budapest, Hungary. �10.1109/NOMS47738.2020.9110391�. �hal-02501918�

https://hal.science/hal-02501918
https://hal.archives-ouvertes.fr

Decentralization of 5G slice resource allocation
Francesca Fossati, Stefano Moretti‡, Stephane Rovedakis, Stefano Secci

Cnam, Cedric, Paris, France. Email: firstname.lastname@cnam.fr
‡ CNRS UMR7243, PSL, Université Paris-Dauphine, Paris, France. Email: stefano.moretti@lamsade.dauphine.fr

Abstract—The 5G infrastructure brings a key novelty in net-
worked systems design that is a new resource provisioning entity,
the so-called “network slice”. A network slice is meant to serve
end-to-end services as a composition of different network and
system resources as the radio, the link and a variety of computing
resources (CPU, RAM, storage), generally each managed by
a distinct decision-maker (platform, provider, orchestrator or
controller). Naturally, centralized slice orchestration approaches
have been proposed, where a multi-domain orchestrator allocates
the resources, using a multi-resource allocation rule. Nonetheless,
while simplifying the algorithmic approach, centralization can
come at the expense of scalability and performance. In this paper,
we propose new ways to decentralize the slice resource allocation
problem, using cascade or parallel resource allocations. We pro-
vide an exhaustive analysis of the advantages and disadvantages
of the different approaches together with a numerical analysis
in a realistic environment.

I. INTRODUCTION

The fifth-generation (5G) of communication networks needs
to meet multiple and diverse requirements of new mobile
services categorized in 3 types: enhanced mobile broad-
band (eMBB), Ultra Reliable Low Latency Communica-
tions (URLLC) and massive machine type communications
(mMTC) - characterized by bandwidth, latency, frequency and
reliability requirements. To serve these services, the concept
of network slice was introduced [1]. A network slice is an
independent and logically-isolated end-to-end virtual network
running on a shared physical infrastructure aiming to provide
the customers required service or vertical corresponding to
different business domains such as health care, transport,
smart office, agriculture, industry, automotive etc [2]. It fol-
lows that a network slice spans different parts of the net-
work as the access, transport, core and data-center segments,
combining networking, computing and storage programmable
resources [3]. The interest towards network slicing is moti-
vated by the increasing programmability of the Radio Access
Networks (RANs) thanks to the novel technologies such as
Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) [1].

Provisioning resources along an end-to-end path is therefore
a multi-resource allocation problem. In the literature, differ-
ent multi-resource allocation techniques targeting forms of
fairness are proposed, e.g., the Dominant Resource Fairness
(DRF) [4] and generalization of single-resource allocation
rules and other ones [13] - such allocation rules are based
on a centralized approach. In network slicing, a centralized
approach implies the presence of a multi-domain orchestrator
able to manage heterogeneous resources. Nowadays each part

of the network is managed separately and the presence of this
kind of orchestrator may be not viable in practice because
resource can belong to different resource providers, e.g., the
radio resource is managed by radio operator and the cloud
resource is managed by a cloud service provider.

In this paper, we are interested in investigating distributed
algorithms able to allocate slices. In particular, we propose
three algorithms: two use a cascading approach and one
a parallel approach. Our reference scenario is an end-to-
end path where the resources to allocate are of three types:
radio, link and cloud, while being applicable to an arbitrary
number of distributed resources. We compare the approaches
quantitatively (time complexity, message complexity, latency
budget) and qualitatively (advantages, disadvantages).

The paper is organized as follows. Section II provides a
background on well-known single- and multi-resource allo-
cation rules, along with a background on recent network
slice allocation works. In section III we describe the three
proposed algorithms, called Cascading Resource Allocation
(CRA), Ordered Cascading Resource Allocation (OCRA) and
Parallel Resource Allocation (PRA). Section IV-A provides the
evaluation of the algorithms. Section V concludes the paper.

II. BACKGROUND

Let us give an overview of single and multi-resource allo-
cation rules, along with a state of the art on network slicing.

A. Single and multi-resource allocation

Resource allocation problems can be divided into two types:
single-resource ones, when only one resource has to be shared
among the users, and multi-resource ones, when there are at
least two resources to share.

Being N = {1, · · · , n} the set of users, a single resource
allocation problem can be modeled by a pair (d,R) where d is
a vector containing the demands of the n users (or tenants) and
R is the amount of available resource that has to be shared
among the users. An allocation a is a n-dimensional vector
where ai is the amount of resource given to user i ∈ N . The al-
location has to satisfy: (i) non-negativity (ai ≥ 0), (ii) demand
boundedness (ai ≤ di) and (iii) efficiency (

∑n
i=1 ai=R) [5].

Let now N = {1, ..., n} be the set of users and let
M = {1, ...,m} be the set of resources, then a multi-resource
allocation problem can be modeled as a pair (D,R); R is
the vector of the available resource amounts and D is the
matrix of demands (dij ∈ D is the quantity of resource j
demanded by user i ∈ N). The allocation matrix A is given
by assigning to user i for resource j the amount aij=dij ·

xi, where x = (x1, ..., xn) - with 0 ≤ xi ≤ 1 ∀i ∈ N - is
the vector of the ratios of resource allocated to each tenant.
The allocation has to belong to the admissible region F s.t.∑
i∈N aij ≤ rj , ∀j ∈M .
We now summarize the most common allocation rules,

which do solve a problem when the resource is scarce, i.e.,
when

∑
i∈N di > R in case of single resource, or when there

exists at least one resource j for which
∑
i∈N dij > Rj in the

case of multiple resources. Existing rules are as follows:
Weighted proportional rule [6]: computes the allocation

that maximizes the
∑n
i=1 pi log ai. When the weight pi is

equal to 1 for each user, the solution is such that increasing
the allocation of a user, at least another user will have a loss
in proportion larger than the gain of the previous user. When
the weights are chosen equal to the demand di for each user i,
the allocation assigns the same proportion of demand to each
user, maximizing the Jain’s index [7].

Max-Min Fair (MMF) rule [8]: is an egalitarian solution,
privileging the weak users (with small demands). It is calcu-
lated in a recursive way maximizing the minimum allocation,
then the second lowest allocation, and so on.
α-fair rule [9]: generalizes both the MMF and the pro-

portional rules. It is obtained by maximizing
∑n
i=1

a
(1−α)
i

1−α . If
α = 1 the solution is the proportional one and if α→∞ it is
the MMF one [9].

Mood value rule [10], [11]: is a solution conceived for
complete awareness situation when users have knowledge of
the other users demand and of the resource. Each user i can so
compute its minimal right mini (what remains if all the other
users are fully satisfied) and maximal right maxi (its own
demand or the available resource, if the demand overcomes
it), and the allocation is computed as mini+m(maxi−mini)
where m in [0,1] is the ratio between what remains when users
get the minimum and

∑n
i=1(maxi −mini).

Dominant Resource Fairness (DRF) [4] rule: generalizes
the MMF rule for a multi-resource context. The allocation is
the solution of the following problem:

maximize x

subject to dsixi = dsjxj , ∀i, j ∈ N
(1)

where x ∈ F , and dsi = maxk∈M{dikrk } is called dominant
share of user i.

Other multi-resource rules: Alternatively to the DRF, other
multi-resource allocation rules can be considered: (i) the asset
fairness [4], aiming at equalizing the resource allocated to each
users, (ii) the Nash product that maximizes the product of
the percentage of resource to allocate [4] (iii) the Bottleneck-
Based Fairness (BBF) equalizing the share received on the bot-
tleneck resource [12] and (iv) the MURANES [13] family of
allocation rules, generalizing above single and multi-resource
allocations and introducing two ones. An exhaustive survey on
multi-resource allocations is given in [14].

The described allocation rules (single and multi-resource)
are Pareto efficient.

Definition 1. An allocation a is Pareto efficient if for any
other allocation a′ we have a′kj > akj for some k ∈ N and

j ∈M =⇒ a′k′j < ak′j for some k′ ∈ N .

B. Resource allocation in network slicing

Recent works address resource allocation problems in
network slicing from many points of view. Categorizing them
by the type of resource, some such as [15] deal with the
allocation of network link and computing resources, and others
that address the radio allocation [16], [17].

Many objectives are adopted for the slice allocation. Some
examples are (i) the maximization of the slice customers
profit [18], (ii) the maximization of network revenue [19] or
(iii) the achievement of a desirable fairness across the network
slices of different tenants and their associated users [16].

Different methods are used. A game approach is adopted
in [20], where the authors propose a network slice game as a
non-cooperative game, with existence of a Nash equilibrium
under appropriate hypothesis; in [17], where the network
slicing game is a cooperative game, but solved with a dis-
tributed algorithm not to force the mobile network operator
to reveal private information; in [19] and [21], where the
resource allocation is the outcome of an auction. Instead, a
utility optimization approach, with different objectives, is used
in [15], [16] and [18].

Let us position our work with respect to these works: (i)
we consider multi-resource allocation problems in order to
provide end-to-end network slices, and not only spectrum
sharing problems as in [16], [17]; (ii) we provide decentralized
algorithms, in order to let each resource provider (or decision-
maker) play a role in the slice provisioning, (iii) we consider
the scenario in which each network slice has a resource
demand vector for each resource that has to be allocated,
similarly to what was done in [21].

III. DISTRIBUTING THE SLICE RESOURCE ALLOCATION

We consider three algorithmic approaches for solving the
multi-resource allocation problem in a distributed way. The
first two follow a cascading behavior while the third one
exploits parallelism. In this section we analyze the slice
resource allocation process under the three approaches, de-
scribing advantages and disadvantages of each procedure.

A. Problem modelling

Let N = {1, ..., n} be the set of tenants, M = {1, ...,m} be
the set of available resources and P = {1, ..., p}, with p ≤ m
be the set of resource providers. The allocation problem is
represented as a triplet (D,R, γ), where D is a n×m matrix
with dij equal to the quantity of resource j ∈M demanded by
tenant i ∈ N , R = (r1, ..., rm) is a vector of positive numbers
rj equal to the amount of each available resource j ∈M , and
γ is a n-dimensional vector containing the priority index of
the service required by tenants.

In this work, the priority index γ is linked to the latency of
the service. Services requiring low latency have high priority
and a low value of γ, those tolerant to higher latency have
lower priority and the correspondent value of γ is high. E.g.,
considering the three classes of service formalized for the 5G,

Algorithm 1 Priority-aware allocation rules logic

Input: R,D,N,M, γ
Output: x

for pr = 1:s do
S=set of user with γ = pr
Q=set of user with γ > pr
if
∑
i∈S dij ≤ rj ,∀j ∈M then

x=ones(|S|)
else
xS= solution of the selected allocation rule
xQ=zeros(|Q|)
exit for loop

end if
end for

following what is recommended in [22], the importance of
latency requirement is high for URLLC services, which refers
to wireless connection with low latency, medium for eMBB
services, which needs high data bandwidth and moderate
latency, and low for mMTC services because they focus on
massive objects connectivity, with no strict latency require-
ments [23]. For this reason, at first instance, we consider 3
priority levels characterizing the 3 5G classes of services.

Another important aspect to model in network slice resource
allocation is the relation between allocated resources. As
already assumed in previous work [13], [15], [24], we model
a linear relationship; this means that if a user asks for 10
Gbps, 40 CPU and 160 GB and it receives only 5 Gbps then
the cloud resource provider has to allocate 20 CPU and 80
GB because if the allocation is superior, the cloud resource is
wasted, while if inferior, the link resource is wasted.

Let the allocation outcome be represented by a matrix A
with components aij = dij · xi where x = (x1, ..., xn),
0 ≤ xi ≤ 1 ∀i ∈ N , is the vector of the percentage of
demand allocated to each tenant. The allocation is not trivial
if it exists a resource j ∈ M such that

∑n
i=1 dij > rj

because the resource is not sufficient to fully allocate the
demands of the users (i.e. the resource is congested - in the
trivial case the resource provider can allocate the demand
and x = (1, · · · , 1)). The three algorithms proposed in next
subsections take into account that resources can be congested.

The congestion level (µ) of a resource provider p is defined
as the ratio between the sum of the demands for its resource(s)
and the available quantity of resource(s), i.e. µj =

∑n
i=1 dij
rj

, if
it provides only one resource j ∈M . Contrarily, if it provides
more than one resource, the congestion level is the maximum
between the level of each resource it provides. If µp > 1 the
resources provided by the provider p are congested.

Example 1. Let us consider the problem (D,R, γ) with

R = (100, 30, 600, 80) and D =

[
20 10 160 40
20 25 488 64
30 10 160 40

]
and γ =

(1, 1, 1). The resources are resource blocks (RB), link (Gbps),
RAM in GB and number of CPUs (CPU). The resource
providers are 3: radio, network link and cloud providers.

The congestion level is: µ1 = 20+20+30
100 = 0.7, µ2 =

10+25+10
30 = 1.5, µ3 = max{ 160+488+160

600 , 40+64+40
80 } = 1.8.

Each resource provider has to take into account the priority
index so that the allocation rule described in Section II has to
be adapted to the context. In this work we consider a simple
algorithm 1 to adapt the allocation rules. We suppose that the
priority index takes integer value from 1 to s, where s is the
priority index of the lower priority required service, and lower
value of γ corresponds to higher service priority.

For the sake of illustration, from now on we consider a
reference scenario with 3 resources providers (P = {1, 2, 3})
providing radio, link and cloud resources. To make the notation
clearer from now on we use the subscript r for radio (p = 1),
l for link (p = 2) and c for cloud (p = 3).

B. Cascading Resource Allocation (CRA)

The first algorithm we propose follows a cascading ap-
proach, i.e., each resource provider sends to the following one
the information about its allocation, and passing through all
the providers the allocation is adjusted taking into account the
congestion level of each resource. In our scenario, the order
we follow is radio-link-cloud, as presented in Figure 1. The
step of the algorithm are depicted between the parenthesis and
described in the following.
(1) When a new demand arrives, each provider receives the

information about the demand for the resource it provides,
i.e., a column or a sub-matrix of the demand matrix,
depending on the number of resources it manages.

(2) The radio resource provider calculates the single-resource
allocation using the allocation rule that it prefers.

(3) The radio provider sends the vector xr = (xr1 , ..., xrn)
containing the information about the demand fraction
allocated to each user to the link provider.

(4) The link resource provider checks if it can allocate the
same fraction of the radio resource, i.e., it checks if∑n
i=1 dijxri > rj with j equal to the link resource. If

this is possible it allocates the resources using the xr
(i.e., xr = xl) otherwise it calculates a new allocation
such that xli ≤ xri ,∀i ∈ N .

(5) The link resource provider sends the vector containing
the information about the demand fraction allocated to
each user to the cloud resource provider.

(6) The cloud resource provider checks if it can allocate the
same percentage of the link resource. If this is possible
then xl = xc, contrarily it calculates a new allocation
such that xci ≤ xli ,∀i ∈ N .

(7) The cloud provider sends the vector containing the infor-
mation about the demand fraction allocated to each user
to the link resource provider and to the radio resource
provider that reallocate the resources. This step can be
avoided if the vector xr is admissible for each resource.

Example 2. Let us consider the same problem (D,R, γ) of
Example 1. The algorithm’s steps are:
(1) The radio resource provider receives the demand vec-

tor (20, 20, 30), the link resource provider receives the

Fig. 1: CRA algorithm.

demand vector (10, 25, 10) and cloud resource provider

receives the demand matrix
[
160 40
488 64
160 40

]
.

(2) The radio resource provider calculates the allocation. In
this case there is no congestion so ar = (20, 20, 30) and
xr = (1, 1, 1).

(3) The link resource provider receives the vector xr.
(4) The link resource provider calculates the allocation. In

this case there is congestion so xr is not an admissible
solution. The provider uses an allocation rule; if it is for
example the MMF one, the allocation is al = (10, 10, 10)
and xl = (1, 0.4, 1).

(5) The cloud resource provider receives the vector xl.
(6) The cloud resource provider checks if xl is admissible:

• 160 · 1 + 488 · 0.4 + 160 · 1
?
< 600→ yes

• 40 · 1 + 64 · 0.4 + 40 · 1
?
< 80→ no

Due to the fact that the proposed xl is not admissible;
the cloud provider calculates a new allocation, taking
into account that for each user i the upper bound for
xci is xli . For example using the DRF rule we get

xc = (0.68, 0.4, 0.68) and ac =
[
108.8 27.2
195.2 25.6
108.8 27.2

]
.

(7) The cloud resource provider sends the vector
xc = (0.68, 0.4, 0.68) to the link and radio resource
providers that re-allocate the resources obtaining
ar = (13.6, 8, 20.4) and al = (6.8, 10, 6.8).

C. Ordered Cascading Resource Allocation (OCRA)
In the presence of a multi-domain orchestrator that is able

to schedule how resource allocation takes one can partially
avoid resource re-allocation. Before each decision is taken,
the orchestrator asks or receives the congestion level of each
resource (radio, link and cloud) and re-order the resources.
This can not guarantee to bypass the re-allocation for all
resources, but it can strongly reduce its impact on the solution
(see Example 3). The algorithm is similar to the CRA one but
with two more steps, step (2) and (3) below (see Figure 2):
(1) Step (1) of CRA.
(2) Each resource provider calculates the congestion level

and sends it to the multi-domain orchestrator.
(3) The multi-domain orchestrator orders the resources from

the most to the least congested ones, and it sends the

Fig. 2: OCRA algorithm. The steps not always necessary are
drawn in dashed line.

order to the resource providers. In the following steps,
the resources are named A, B, C according to the order
defined by the multi-domain orchestrator.

(4) Step (2) of CRA replacing radio resource with resource
A.

(5) Step (3) of CRA replacing radio resource with resource
A and link resource with resource B.

(6) Step (4) of CRA replacing radio resource with resource
A and link resource with resource B.

(7) Step (5) of CRA replacing link resource with resource
B and cloud resource with resource C. If xA is not
admissible for resource B, xB is sent to resource A, that
provides to re-allocate the resource.

(8) Step (6) of CRA replacing link resource with resource B
and cloud resource with resource C.

(9) If xB is not admissible for resource B, xC is sent to
providers for A and B to re-allocate the resources.

Example 3. Let us consider the same problem (D,R, γ) of
Example 1. The algorithm’s steps are:

(1) Each resource provider receives the demand vec-
tor/matrix.

(2) Each resource provider calculates the congestion level:
µr = 0.7 µl = 1.5, µc = 1.8.

(3) The multi-domain orchestrator sends the resources order
to the resource providers. The first resource to be allo-
cated is the cloud followed by the link and the radio.

(4) The cloud resource provider calculates the allocation, for
example using the DRF: xA = (0.67, 0.412, 0.67), ac =[
107.2 26.8
201.1 26.4
107.2 26.8

]
(5) The link resource provider receives the vector xA.
(6) The link resource provider checks if xB is admissible:

10 · 0.67 + 25 · 0.412 + 10 · 0.67
?
< 30→ yes.

The allocation is: xB = xA, al = (6.7, 10.3, 6.7).
(7) The radio resource provider receives the vector xB .
(8) The radio resource provider accepts the proposed xB

because the resource is not congested. The allocation is:
ar = (13.4, 8.24, 20.1).

(9) Step not necessary because no resource re-allocation.

Fig. 3: PRA algorithm - PRA-1 using the 1-phase consensus
algorithm, PRA-2 using the 2-phases consensus algorithm

It is worth noting that with this algorithm one cannot always
avoid re-allocation. In fact if, in Example 3 we increase the
value of d22 from 25 to 30, the order of the resource, based on
the congestion level, remains the same (µl = 1.67), but if the
cloud provider proposes the allocation xA = (0.2, 1, 0.2), the
link provider cannot accept it because 10·0.2+30·1+10·0.2 >
30. This shows that the re-allocation is not always avoided with
this algorithm, but at least its negative impact is decreased.

D. Parallel Resource Allocation (PRA)

In the previous proposed algorithms the computation of
the resource allocation is done following a weakly distributed
manner. Indeed, the resource allocation is computed according
to a defined sequence among the resource providers, which
implies a high dependency and a low collaboration degree
between providers. Thus, the computation time required by
these algorithms is related to the resource provider with the
highest response time. To limit the impact of such a situa-
tion, we design a fully-distributed algorithm which allows to
increase the level of parallelism to compute the allocation and
to reduce the computation time. Contrary to the two preceding
algorithms, the idea of the algorithm is to allow each provider
to compute its own allocation, then all the resource providers
exchange their allocation and use a distributed consensus
approach [26] to obtain the final allocation.

The algorithm depicted in Figure 3 is:
(1) When a new demand is formulated, each provider re-

ceives the information about the demands for the resource
it provides, i.e., a column or a sub-matrix of D, depending
on the number of resources it manages.

(2) Each resource provider calculates the allocation.
(3) A consensus algorithm provides the final allocation.

We propose two different consensus algorithms. The first
one has the property of being fast, but it does not guarantee
to saturate at least one of the congested resources, so it is
not Pareto efficient as we prove later (Section IV-B). The
second one introduce an additional information exchange to
the process, but it guarantees to saturate at least one of the
congested resources.

The first consensus algorithm is a 1-phase algorithm (PRA-
1); each resource provider diffuses to all the other ones the
value of x, and the allocations are obtained in the following

Algorithm Best case Worst case Message complexity
Centralized 2τ + δ 2τ + δ 2p+ 1

CRA (p+ 1)τ + δ (p+ 1)τ + pδ 3p− 2

OCRA (p+ 2)τ + δ (p+ 3)τ + pδ [4p− 1,
(p)(p+7)

2
− 1]

PRA-1 2τ + δ 2τ + δ p2

PRA-2 3τ + 2δ 3τ + 2δ p2 + p− 1

TABLE I: Delay budget and message complexity - General
case with p resource providers.

way: (min{xr1 , xl1 , xc1}, · · · ,min{xrn , xln , xcn}). The non-
saturation of the resources can happen when there exists
at least one user for which the dominant resource, i.e., the
resource in percentage most requested by the user, is not the
one with higher congestion level (see Example 4).

The second algorithm is a 2-phase algorithm (PRA-2);
each resource provider diffuses (i) the value of the allocation,
(ii) the congestion level and (iii) the resource share of each
resource it provides for each user, i.e., rsi = {dijrj } ∀i ∈ N
and for each resource j it provides. The provider with the most
congested resource can identify itself and calculate the value
of x using a multi-resource approach. In fact, the information
about the resource share allows the provider to take into
account the capacity constraints; moreover the optimization
objective is decided by the provider following its fairness
goal. We can notice that the calculus of the allocation of
each provider is thus not necessary and can be avoided to
decrease the delay budget. PRA-2 guarantees a Pareto efficient
allocation as proven later.

Example 4. Let us consider the problem (D,R, γ) of Exam-
ple 1. The value of x calculated in a parallel way is xr=(1, 1, 1)
for the radio resource, xl=(1, 0.4, 1) for the link resource using
the MMF allocation rule and xc=(0.67, 0.412, 0.67) for the
cloud resource, using the DRF allocation rule.

Using the 1-phase consensus algorithm (PRA-1) each
resource provider allocates the resources using x =
(0.67, 0.4, 0.67). The allocations are: ar = (13.4, 8, 20.1),

al = (6.7, 10, 6.7), ac =
[
107.2 26.8
195.2 25.6
107.2 26.8

]
and the resource used

is (41.5, 23.4, 409.6, 79.2). This shows that the saturation of
the resources is not guaranteed when we use the 1-phase
algorithm. In fact, for user 2 the dominant resource is the
link resource but the resource with higher congestion level is
the cloud one.

When we use the 2-phase algorithm (PRA-2), the three
resource providers diffuse the following information:
• xr = (1, 1, 1), rsr = (0.2, 0.2, 0.3), µr=0.7.
• xl = (1, 0.4, 1), rsl = (0.33, 0.83, 0.33), µl=1.5.
• xc = (0.67, 0.412, 0.67), rsc = (0.5, 0.81, 0.5), µc=1.8.

The cloud resource is the most congested one and the
cloud provider calculates the value of x. For example, if
it choose to use a proportional approach (equalizing the x
of each tenant), the solution is x = (0.556, 0.556, 0.556),
ar = (11.12, 11.12, 16.68), al = (5.56, 13.9, 5.56), ac =[

89 22.2
271.3 35.6
89 22.2

]
.

(a) Centralized (b) CRA (c) OCRA (d) PRA

Fig. 4: Involved signaling for the centralized algorithm and the proposed distributed algorithms, as a function of time, under
the hypothesis of equal transfer times (τ) and equal allocation computing times (δ). The dashed arrows indicate not necessary
steps, and the red arrows correspond to extra steps of the 2-phase consensus algorithm.

IV. NUMERICAL EVALUATION

In this section we provide a qualitative and quantitative
analysis of the proposed algorithms. Section IV-A provides
an analysis in terms of delay budget, Section IV-B highlights
advantages and disadvantages of each algorithm, and in Sec-
tion IV-C we numerically compare the algorithms.

A. Delay budget

We are here interested in estimating the delay budget of each
algorithm, i.e., the global time between the submission of a
slice demand and the moment in which the slice is allocated.
Delay contributions in slice provisioning are the transmission
delay and the propagation delay for each message, and the
allocation computation time. Time for checking if an allocation
x is admissible can be considered negligible. We do also
assume in the following that the transmission delay to be
negligible, given the likely short message size in stake.

Figure 4 shows delay budget diagrams for the three pro-
posed algorithms, and an arbitrary centralized approach where
a multi-domain orchestrator receives the tenants demand and
computes the allocation as a one-shot operation. Under the
simplification that propagation delays are all roughly equal
to a value τ and all allocation computing times are equal to
δ, we obtain the estimation of the delay budget in Table I
for the general case with p resource providers. We report the
value of the delay budget in the best and worst case; these two
values do not coincide in case of cascading approaches: the
best case is the one in which only one allocation is calculated
and is admissible for all the other resource providers, while
the worst one is in case an allocation has to be calculated
by each resource provider. Moreover, we give in Table I the
message complexity, i.e., the number of exchanged messages,
for each algorithm to allocate the resources.

Clearly the centralized approach is the one with lower
delay budget together with the first distributed approach.
The algorithm closer to the centralized approach is PRA-1.
Cascading approaches have a higher figure; note that while
for the centralized and PRA approaches the value of delay
budget does not depend on the number of resource providers
p, for cascading approaches it does. Figure 5 compares the
delay budget of all the approaches with 3 resource providers,

Fig. 5: Comparison of delay budgets with p = 3. Case 1: τ �
δ, t = δ. Case 2: δ � τ , t = τ . Case 3: τ = δ = t.

in 3 different cases: (case 1) the propagation delay is negligible
with respect to the computing time, i.e., τ � δ, (case 2) the
reverse case, i.e., δ � τ and (case 3) the two parameters are
comparable - we plot the case τ = δ.

B. Pros and cons

Let us draw advantages and disadvantages of the different
algorithms. Table II summarizes the following observations.

Choosing a centralized approach we have the advantages
of a low delay budget in the creation of the slice, due to the
fact that the decision is taken atomically by a single entity.
Meanwhile the fact of having centralization at a multi-domain
orchestrator can be seen as an obvious drawback in terms of
reliability from the one hand, and confidentiality from the
other hand as each provider has to share possibly sensible
information, as for example the quantity of resource available
in its domain. The presence of a multi-domain orchestrator
is also necessary for the OCRA approach, in order to order
the resource providers. In this case it has only a function
of dispatcher (note that for OCRA it is however possible to
avoid the presence of the multi-domain orchestrator using a
distributed approach to exchange the information about the
resources congestion level, however impacting performance).
All the other approaches have the advantage of non having the
necessity of such a centralized orchestrator.

Concerning cascading approaches they have the disadvan-
tage of re-allocating resources during the slice provisioning;
this is expected to be highly reduced with the OCRA approach.

Fig. 6: Messages complexity as function of the provider.

Advantages of parallel approaches are (i) the low delay bud-
get, due to the simultaneously computation of the allocation
and diffusion of the information, and (ii) the possibility to
independently allocate some resources. For example, this can
be useful for the radio resource for which the hypotheses of
linearly dependency with the other resources may appear less
acceptable with some radio scheduling protocols.

If parallel approaches have good behavior in terms of
delay budget compared to the cascading ones, considering
the number of messages that have to be exchanged (message
complexity) the judgment is reverse. From Table I and Figure 6
we can see that the number of exchanged messages grows
quadratically with the number of providers p. In case in which
p = 10 the number of the exchanged messages is between 21
and 30 for the centralized and cascading approaches, while it
is 100 and 109 for the two distributed ones. This is the price
to pay when we distribute the calculus of the allocation to
avoid a single point of failure. Among the disadvantages, for
the PRA-1 we find also the possibility to get a solution that
is not Pareto efficient (see Theorem 1).

Theorem 1. CRA, OCRA and PRA-2 algorithms provide
Pareto-efficient solutions.

Proof. CRA and OCRA and algorithms provide Pareto-
efficient solutions because the allocation coincides with the
one proposed by one provider that selects a Pareto efficient
allocation rule. The PRA-2 algorithm provides a Pareto effi-
cient solution because the most congested provider calculates
a multi-resource allocation; it solves an optimization problem
where the objective function depends on its fairness goal and
the capacity constraints are written considering the resource
share of each user for each resource. The algorithm PRA-
1, using the minimum value for each component allows the
increasing of the allocation of one tenant without decreasing
the one of the other. Let us consider the example 4. If we
increase the allocation of tenant 2 from 0.4 to 0.412 we obtain
the allocation proposed with the OCRA in Example 3. Thus,
the allocation proposed with PRA-1 is not Pareto-efficient.

C. Numerical analysis

We present a numerical analysis to measure (1) the oc-
currence of reallocation using the OCRA algorithm, (2) the
occurrence of inefficient solutions for the PRA-1 algorithm,
and (3) the distance of the proposed decentralized approaches

Algorithm Advantages Disadvantages

Centr. Low delay budget
Multi-domain orchestrator

High confidentiality
disclosure

CRA No multi-domain orcherstrator Re-allocation

OCRA Rarely re-allocation High delay budget
Multi-domain orchestrator

PRA-1
No multi-domain orchestrator Pareto efficient solution

Low delay budget not guaranteed
Independent radio allocation High message complexity

PRA-2
No multi-domain orchestrator High message complexity

Low delay budget Low confidentiality
Independent radio allocation disclosure

TABLE II: Pros vs cons of studied algorithms.

Allocation rule No re-allocation 1 re-allocation 2 re-allocations
MMF 82.7% 17% 0.3%

Mood value 100% 0% 0%
Proportional 100% 0% 0%

TABLE III: Occurrence of re-allocations with the OCRA
algorithm using common single-resource rules.

from the centralized one. The analysis for (1) and (2) is done
considering services with the same priority.

1) Occurrence of re-allocation: The aim here is to under-
stand if there is a real gain using an ordered approach, i.e., if
the re-allocation of the resources is reduced and consequently
the delay budget induced by allocation computation. We
generate 300 problems with 3 tenants, 3 resources belonging
to 3 providers, randomly associating a level of congestion
between 0.1 and 2 for each provider. Table III shows the results
of the simulations when all providers use the same allocation
rule (Proportional, Mood value, MMF). We can see that there
is a real gain in using an OCRA approach because with the
proportional allocation and the mood value we have no re-
allocations, while with the MMF there are situations in which
one re-allocation is needed, but two are needed only for a
negligible number of cases.

2) Percentage of inefficient solutions in PRA-1: We test
here the efficiency of the solutions when we use the PRA-
1 algorithm. Using the same data generated for the previous
simulations, we calculate the percentage of time in which the
PRA-1 algorithm does not provide a Pareto-efficient solution
(Table IV) and we estimate how much is the loss for the
tenants in term of resources (Fig. 7). Clearly, PRA-1 has high
probability to provide allocations that are not Pareto-efficient.
When providers use the same allocation rule, more than half
of the time the produced allocation is not Pareto efficient.
Furthermore the resource loss is high. The median value in
percentage, obtained in the boxplot (Fig. 7) belongs to the
interval of [0.8, 0.9].

3) Distance from a centralized approach: We firstly intro-
duce a measure of the distance between a centralized approach
and a decentralized one. A simple measure we can consider
is the Chebyshev distance (or L∞ metric) defined as follows.

Definition 2. The Chebyshev distance between two vectors
y1 and y2 is dche = maxi|y1i − y2i |.

In our case, considering a solution vector obtained with
a centralized approach and one with a decentralized one,

Allocation rule Percentage of non-Pareto efficient solutions
MMF 57%

Mood value 72%
Proportional 56%

TABLE IV: Pareto efficiency results using PRA-1.

(a) MMF (b) Proportional (c) Mood value

Fig. 7: Percentage of resource loss.

the measure indicates the gain (or loss) of the user that
obtains the maximum gain (or loss) when a decentralized
approach is used. This measure provides an estimation of
the satisfaction (unsatisfaction) of the users in adopting a
decentralized approach.

We simulate 200 problems with 5 tenants, taking inspiration
from Amazon EC2 instances [25] (the considered instances are
the same of those used in [13]); we select those templates with
different ‘instance type’ (‘General Purpose’, ‘Computer Op-
timized’, ‘Memory Optimized’, ‘Accelerated Computing’and
‘Storage Optimized’) and we consider 3 resources belonging
to 2 providers (CPU and memory for the cloud provider, link
capacity in Gbps for the network link provider), a level of
congestion between 0.1 and 1.5 for each provider, and both the
case in which the tenants have the same priority and belong to
the same class (single-class) and the case in which the tenants
have different priorities and belong to different classes (multi-
class). In the second case we arbitrarily associate to the differ-
ent Amazon templates a type of service as follows: URLLC
to Accelerated Computing instance, eMBB to Computer and
Memory Optimized instance, mMTC to Storage Optimized
instance, and best effort to General Purpose instance.

Figure 8 shows the boxplot of the distance for each algo-
rithm, using different combinations of allocation rules, when
the centralized approach uses the DRF rule. When the priority
is the same for each tenant there are users that can gain or loose
a lot when the providers adopt as decentralized approach the
CRA, OCRA and PRA-1. In the single-class case, the distance
is reduced using the PRA-2 approach because the proposed
allocation is calculated as a multi-resource allocation taking
into account the information provided by each provider. In the
multi-class case we notice a performance improvement of the
decentralized algorithm. In fact, in this case, the differences
emerge only for the group of tenants belonging to the same
priority class for which the remaining resource, after that
tenants with higher priority are fully served, is not enough.
In this case due to the small cardinality of the subset of users
belonging to same class, there is a high probability that the
decentralized solution is close to the centralized one.

(a) Mono-class (b) Multi-class

Fig. 8: Chebyshev distance.

(a) CRA (b) OCRA

(c) PRA-1 (d) PRA-2

Fig. 9: Chebyshev distance average and service rate.

We then consider the distance measure inside each group
of services and the service rate (Figure 9). The decentralized
algorithm always serves the users with higher priority and the
service rate decreases with the service priority. On average,
the distance increases decreasing the service priority, but a
decrease of the distance is possible because (i) services with
low priority have high probability not to be served both with
the centralized and decentralized approaches (Fig. 9) and (ii)
as already said, if the cardinality of the last served group is
small the decentralized and centralized solutions can be close.

V. CONCLUSION

We proposed algorithms to decentralize 5G slice resource
allocation, two using a cascading approach and two using a
parallel approach. We extensively compared them, showing
pros and cons, also with respect to a centralized approach.
Further work is needed to extend the algorithms for run-time
operations and to include service level agreements.

ACKNOWLEDGEMENT

This work was partially funded by the MAESTRO-5G
(Management of Slices in the Radio Access of 5G Networks)
funded by ANR (Agence Nationale de la Recherche), contract
nb. ANR-18-CE25-0012 (https://maestro5g.roc.cnam.fr).

REFERENCES

[1] 5G Americas, “Network Slicing for 5G and Beyond”. White Paper, 2016.
[2] NGMN. “5G white paper”. Next generation mobile networks, 2014.
[3] 3GPP TS 22.261 V15.5.0, 5G; Service requirements for next generation

new services and markets.
[4] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker and I.

Stoica, “Dominant resource fairness: fair allocation of multiple resource
types.” Proc. of USENIX NSDI 2011.

[5] W. Thomson. “Axiomatic and game-theoretic analysis of bankruptcy and
taxation problems: an update”, Math. Soc. Sciences 74:41-59, 2015.

[6] FP. Kelly, AK. Maulloo, DKH Tan. “Rate control for communication
networks: shadow prices, proportional fairness and stability.” J. of the
Operational Research society 49.3, 1998.

[7] R. Jain, DM. Chiu, WR. Hawe. “A quantitative measure of fairness and
discrimination for resource allocation in shared computer system.” Vol.
38. Hudson, MA: East. Res. Lab., Digital Equipment Corporation, 1984.

[8] DP. Bertsekas, RG. Gallager, P. Humblet. Data networks. Vol. 2. New
Jersey: Prentice-Hall International, 1992.

[9] J. Mo, J. Walrand. “Fair end-to-end window-based congestion control.”
IEEE/ACM Trans. on Networking (ToN), 2000.

[10] F. Fossati, S. Moretti, S. Secci. “A Mood Value for Fair Resource
Allocations”. IFIP Networking 2017, 2017.

[11] F. Fossati, S. Hoteit, S. Moretti, S. Secci. “Fair Resource Allocation in
Systems with Complete Information Sharing”. IEEE/ACM Transactions
on Networking, 26 (6), pp.2801-2814, Nov. 2018.

[12] Y. Etsion, T. Ben-Nun and D. G. Feitelson, “ A global scheduling
framework for virtualization environments.” IEEE Int. Symposium on
Parallel and Distributed Processing, 2009

[13] F. Fossati, S. Moretti, P. Perny and S. Secci, ”Multi-Resource Allocation
for Network Slicing.”, 2019. hal-02008115

[14] P. Poullie, T. Bocek, B. Stiller.“A survey of the state-of-the-art in
fair multi-resource allocations for data centers.” IEEE Transactions on
Network and Service Management, 15.1: 169-183, 2018.

[15] M. Leconte, G. S. Paschos, P. Mertikopoulos and U. C. Kozat, “A
resource allocation framework for network slicing.” IEEE INFOCOM
2018.

[16] P. Caballero, A. Banchs, G. De Veciana and X. Costa-Pérez, “Multi-
tenant radio access network slicing: Statistical multiplexing of spatial
loads.” IEEE/ACM Transactions on Networking (TON), 25.5: 3044-3058,
2017.

[17] Y. Xiao, M. Hirzallah, and M. Krunz. “Distributed Resource Allocation
for Network Slicing Over Licensed and Unlicensed Bands.” IEEE
Journal on Selected Areas in Communications, 36.10: 2260-2274, 2018.

[18] G. Wang, G.Feng, W. Tan, S. Qin, R. Wen and S. Sun, “Resource
Allocation for Network Slices in 5G with Network Resource Pricing.”
IEEE GLOBECOM 2017, 2017

[19] M.Jiang, M. Condoluci, T. Mahmoodi, “Network slicing in 5G: An
auction-based model.” IEEE ICC 2017, 2017.

[20] P. Caballero, A. Banchs, G. De Veciana and X. Costa-Pérez, “Network
slicing games: Enabling customization in multi-tenant networks.” IEEE
INFOCOM 2017, 2017.

[21] H. Halabian. “Distributed Resource Allocation Optimization in 5G Vir-
tualized Networks.” IEEE Journal on Selected Areas in Communications
37.3: 627-642, 2019.

[22] M. Series, “IMT VisionFramework and overall objectives of the future
development of IMT for 2020 and beyond.” Recommendation ITU:
2083-0, 2015.

[23] P. Popovski, K.F. Trillingsgaard, O., Simeone and G. Durisi, “5G wire-
less network slicing for eMBB, URLLC, and mMTC: A communication-
theoretic view.” IEEE Access 6, 2018.

[24] S. Lee, et al., “ Resource Management in Service Chaining.” IETF
Secretariat, Intert-Draft, 2016.

[25] Amazon EC2 instances comparison: https://www.ec2instances.info.
[26] G. Coulouris and J. Dollimore and T. Kindberg. “Distributed systems -

concepts and designs (3rd ed.).” Addison-Wesley, p. 452, 2001.

