
HAL Id: hal-02501912
https://hal.science/hal-02501912v1

Submitted on 8 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BotFP: FingerPrints Clustering for Bot Detection
Agathe Blaise, Mathieu Bouet, Vania Conan, Stefano Secci

To cite this version:
Agathe Blaise, Mathieu Bouet, Vania Conan, Stefano Secci. BotFP: FingerPrints Clustering for
Bot Detection. IEEE/IFIP Network Operations and Management Symposium (NOMS), Apr 2020,
Budapest, Hungary. �10.1109/NOMS47738.2020.9110420�. �hal-02501912�

https://hal.science/hal-02501912v1
https://hal.archives-ouvertes.fr

BotFP: FingerPrints Clustering for Bot Detection
Agathe Blaise∗†, Mathieu Bouet†, Vania Conan† and Stefano Secci‡

∗Sorbonne Université, CNRS LIP6, Paris, France
†Thales, Gennevilliers, France. Email: {name.surname}@thalesgroup.com

‡Cnam, Paris, France. Email: stefano.secci@cnam.fr

Abstract—Efficient bot detection is a crucial security matter
and has been widely explored in the past years. Recent ap-
proaches supplant flow-based detection techniques and exploit
graph-based features, incurring however in scalability issues
in terms of time and space complexity. Bots exhibit specific
communication patterns: they use particular protocols, contact
specific domains, hence can be identified by analyzing their
communication with the outside. To simplify the communication
graph, we look at frequency distributions of protocol attributes
capturing the specificity of botnets behaviour. In this paper, we
propose a bot detection technique named BotFP, for BotFinger-
Printing, which acts by (i) characterizing hosts behaviour with at-
tribute frequency distribution signatures, (ii) learning behaviour
of benign hosts and bots through a clustering technique, and
(iii) classifying new hosts based on distances to labelled clusters.
We validate our solution on the CTU-13 dataset, which contains
13 scenarios of bot infections, connecting to a Command-and-
Control (C&C) channel and launching malicious actions such as
port scanning or Denial-of-Service (DDoS) attacks. Our approach
applies to various bot activities and network topologies. The
approach is lightweight, can handle large amounts of data, and
shows better accuracy than state-of-the-art techniques.

I. INTRODUCTION

Back in 2000 appeared the first notorious botnet, which sent
1.25 million emails containing phishing scams [1]. During
the last 20 years, botnets evolved to become ever more
sophisticated and dangerous. In Sept. 2019, the French cyber
police freed over 850,000 computers from a botnet named
Retadup [2]. The worm spread through malicious email at-
tachments, then installed cryptomining software on infected
machines. All infected hosts mined Minero cryptocurrency,
reaping a huge amount of money. 2019 saw an increase up to
55% of IoT malware attacks like Retadup [3], thus the problem
of detecting them quickly is a major concern.

The word "botnet" comes from the combination of "robot"
and "network". In this display, the attackers infect and control
thousands of machines, then send them malicious commands
to execute, like infecting, attacking or scanning other hosts.
This large zombie network is a major vector of large-scale
attacks such as phishing DDoS, trojans, spams, etc. Their
early detection is crucial to limit harms as soon as possible.
However bots mimic normal traffic and hide their payload
characteristic by encryption. Recently they are also more
likely to use HTTP rather than IRC to be confounded with
classic web traffic. Furthermore, dynamic ports and change of
protocols enable botnets to bypass signature-based firewalls
and intrusion detection systems (IDS). For robust detection

systems, several flow-based botnet detection approaches [4],
[5], [6] have been proposed without packet payload infor-
mation. Rather than computing flow-based features, recently
proposed approaches to detect botnets consist in characterizing
and analyzing relationships between hosts in the network,
with techniques commonly referred to as graph-based anomaly
detection [7], [8], [9]. However these techniques are very
costly in terms of memory and processor usage, as they need
to compute complex features over very large graphs.

In this paper, we propose a lightweight bot detection tech-
nique BotFP that builds signatures modelling the behaviours of
hosts in a network. These signatures reflect the communication
pattern of each host, to highlight the differences between
normal hosts and bots. In particular, we exploit the fact that a
botnet performs various kinds of actions. One can simultane-
ously infect and scan other hosts, perform click fraud, launch
DDoS attacks, actions that can be qualified by finely analyzing
IP addresses, TCP and UDP port numbers and ICMP types and
codes. Then, a clustering algorithm aims at accurately defining
what constitutes bot and normal communications based on the
signatures of labelled hosts. Finally, we are able to classify
new hosts based on their distances to labelled clusters.

For our evaluation, we use the CTU-13 bot traffic
dataset [10], containing 13 scenarios of different botnet sam-
ples. On each scenario a specific malware is executed, which
performed different actions. We first learn from a training set
what constitutes normal or malicious communications, based
on the distribution of IP addresses and port numbers used
by hosts. Subsequently, we demonstrate that clustering the
data enables to detect all bots with a better accuracy and a
reduced complexity. After tuning some parameters, we show
that our algorithm outperforms state-of-the-art bot detection
techniques, with 100% true positive rate and 0.9% false pos-
itive rate. We also show that using an adaptive quantification
based on the volume of traffic enhances the results.

This paper is structured as follows. Section II addresses
related work. Section III presents our methodology to detect
bots based on their communication patterns. Section IV shows
the complexity of our algorithm. Section V introduces the
dataset and metrics used for our classifier evaluation, then Sec-
tion VI present the evaluation. Finally, Section VII concludes
this paper.

II. RELATED WORK

Considering the importance of the matter, numerous works
have been undertaken on the field of bot detection. Traditional

approaches rely on statistical and machine learning approaches
over per-flow features. BotHunter [4] aims to recognize the
infection and coordination dialog that occurs during a success-
ful malware infection. BotSniffer [5] focuses on the detection
of C&C channels by exploiting similarity property of botnet
C&C. Both approaches perform their evaluation on their own
honeynet, but these traces are not publicly available and [6]
highlighted the lack of suitable comparisons for bot detection
algorithms. Hence they propose a labeled dataset including
botnet, normal and background traffic. The authors also present
a method to identify bots in these traces, named CAMNEP,
which combines various state-of-the art anomaly detection
methods, such as MINDS, Xu and Lakhina volume [11].
However, these techniques miss some communication patterns
between hosts which are quite specific to a botnet. Also, the
complexity required to compute per-flow features is high.

Graph-based techniques [12] are designed to overcome these
limitations, by modelling the relations between several hosts of
a network. They have been used in various cases: to detect P2P
botnets [13], [14] or to recognize DNS traffic from malicious
domains [15]. BotGM [7] proposes an unsupervised graph
mining technique to identify abnormal communication patterns
as bots. The authors first construct a graph sequence of ports
for each pair of source and destination IP addresses, then
they compare each graph between them using the Graph-Edit
Distance (GED). They reach a very good accuracy between
78% and 95%, however the GED is computed once for each
pair of graph and its computation is known to be NP-complete.
The authors in [9] model network communications as graphs,
where hosts are edges and communications between hosts
vertices. They compute graph-based features such as degrees
and centrality measures. They use a hybrid learning method
and test various ML techniques to achieve a good detection
rate. However this incurs in a high computational overhead as
features are computed over a large communication graph, e.g.,
used by shortest paths algorithms computed for centrality mea-
sures. Other graph-based detection methods seem promising,
but their complexity is often high [8], [16], [17].

Our solution BotFP presents the advantages of a graph-
based technique, analyzing the communications of an host with
the outside, but compared to them it is lightweight like a per-
flow method would be.

III. BOTNET DETECTION

We present our bot detection technique BotFP, detailing the
different processing steps.

A. Overall approach

The goal of our solution is to label bots as such, avoiding
false positives. Let Sip, Dip, Sport and Dport represent
respectively the source and the destination IP addresses, the
source and the destination port numbers, of a flow. Fig. 1 sums
up the BotFP steps, through a trace example.

1) Flow records collection: flow records are first collected
to form a dataset. We split the dataset into two distinct
sets: one for training and one for testing.

2) Host network Sip filtering and grouping: from flow
records, we select the ones whose Sip is in the host
network and group them by such addresses. We discard
hosts with less than 150 packets. Indeed, irrelevant for
bot detection, they represent less than 0.7% of the traffic
and may generate noise.

3) Quantification: signatures of each host, denoted σSip ,
are defined as the concatenation of the normalized
frequency distributions of each attribute. TCP, UDP and
ICMP flows are characterized separately to better take
into account each protocol specificity.

4) Offline training (clustering): this consists in grouping
similar σSip from the training set into clusters, then
label them as bot or benign hosts based on ground truth.

5) Online classification (distances computation): finally
we classify hosts from the test set based on their distance
to labelled clusters.

Our algorithm takes into account two key parameters: b, the
number of intervals (bins) in the frequency distribution, and
ε , the density in the clustering algorithm.

B. Quantification (attribute frequency distributions)

Flow records are first collected to form a dataset (step 1
in Fig. 1). We split the dataset into two distinct sets: one for
training named T , and one for testing named E. We thus group
flows by Sip as shown in Fig. 1 (step 2).

Then, to characterize the host behavior, we consider 9 at-
tributes in total, discriminating between TCP, UDP and ICMP
packets, as follows : SportTCP, DportTCP, DipTCP, SportUDP,
DportUDP, DipUDP, TypeICMP, CodeICMP and DipICMP.

Let ãi
j denote the attribute vector for attribute i and host j,

representing the attribute frequency distribution, i.e., the ratio
of packets received for attribute i over its attribute range. More
precisely, each attribute vector contains b bins, where ãi

j [k]
is the value of the k th bin of attribute i for host j. For each
attribute, a bin aggregates the attribute occurrences over the
possible attribute range (e.g., many successive port numbers
grouped together in a bin) available for the specific attribute
(e.g., TCP source port).

Let σ j denote the signature of node j, keeping in mind
that a host is uniquely identified by its Sip. It is built as the
concatenation of all its attribute vectors, and expressed as:

σ j =

9n

i=1

ãi
j = ã1

j ‖ ã2
j ‖ · · · ‖ ã9

j (1)

where ‖ represents the concatenation operator between vectors.
The result of the concatenation is then one single vector σ j

of 9 × b entries.
1) Quantification technique: Let us further clarify how the

attribute frequency distributions can be aggregated in a set
of bins. To compute the attribute vector, b bins are used to
cover the attribute range, say [0, max]; e.g., for source and
destination port numbers max is equal to 65,536, and for
destination IP addresses to 232. It makes sense to set b as
a power of 2, as port numbers and IP addresses are typically

Fig. 1: Description of the processing steps of our solution.

organized into ranges of powers of 2 (e.g., reserved ports are
in [0, 1023] and ephemeral ports in [49152, 65536], while
IPv4 addresses are denoted by 4 Bytes).

We consider two different ways to aggregate bins:
Regular bins: attribute range intervals are uniformly dis-

tributed, of a fixed bin width set to max / b. Fig. 1 (step
3) shows an example of attribute frequency histogram for
attribute SportTCP: the attribute range corresponds to the
possible TCP source port numbers used by the Sip host.

Adaptive bins: intervals are chosen depending on the
amount of traffic. Intuitively, the more density of information
there is, the more sensitive (small) the step should be. Thus
we aim to define individual bin width so that we equalize the
occurrences over the different bins, i.e., it is always the same
for all the bins, each bin having potentially a different bin
width. We repeat this process for all the attributes.

2) Observable bot behavior and attributes: Let us elaborate
further on the observable behaviour for TCP, UDP and ICMP
attributes from traces we could have access to.

TCP - destination ports (DportTCP) usually range between 0
and 1023. These service ports are associated to given services
by the Internet Assigned Numbers Authority (IANA) [18], e.g.
TCP/80 typically runs HTTP and TCP/443 HTTPS. However,
bots show different usage of destination ports: they are usually
diverse and represent services often targeted by attackers such
as TCP/25 (SMTP) or TCP/23 (Telnet), vulnerable to spam and
attacks. We also observe some exotic destination port numbers
used to access proxies that host the C&C server.

TCP - source ports (SportTCP) are ephemeral ports, allocated
automatically from a predefined range by the IP stack software.
The range recommended by IANA is 49152 to 65535. Many
Linux kernels use the port range 32768 to 61000. FreeBSD
has used the IANA port range since release 4.6, and was
using [1025, 5000] before. Microsoft Windows Operating

Systems (OS) until Windows XP use the range [1025, 5000] as
ephemeral ports, while use the IANA range now. We observe
that bots rarely use the IANA recommended range, but rather
the range [1025, 5000]. This obviously depends on the OS of
the infected host. A report from Kaspersky Labs [19] shows
that Linux and Windows botnets represent respectively 95.75%
and 4.29% of all botnets, which is very different from the OS
distribution for regular devices (not bots).

TCP - destination IP addresses (DipTCP); only some specific
subnets are contacted by normal hosts. Among them, it is com-
mon to observe addresses in the same range of the source IP
address, private networks including 192.168.0.0/16, and
cloud service subnetworks, mostly Google ones. Destination
IP addresses cover a larger space for bots than for normal
nodes, in case of a spam or port scan for example.

UDP - destination ports (DportUDP) are associated to partic-
ular services, as for TCP. In the case of UDP, we often observe
a fixed destination port set to 53. It represents connections to
the local DNS server as UDP/53 typically runs DNS.

UDP - source ports (SportUDP) are used for ephemeral ports
as for TCP, their range depends on the OS implementation.

UDP - there is usually a fixed destination IP address
(DipUDP) that represents the DNS server IP address.

ICMP - type (SportICMP) indicates the type of ICMP mes-
sage and gives a global information about the kind of message
(e.g., 0 for Echo Reply and 3 for Destination Unreachable), as
specified in RFC2780 [20]. In case of a botnet, we sometimes
observe many ICMP messages with uncommon types and
codes, consisting in a Ping Flood or an ICMP DoS attack.

ICMP - code (DportICMP) represents the ICMP subtype and
gives additional context information for the message (e.g. if
the type is 3, the code can be 0 if the destination network is
unreachable or 1 if the destination host is unreachable, etc.).

ICMP - the hosts frequently reply to destination IP ad-

dresses (DipICMP) that targeted them, with messages like "port
unreachable" if it was a port scanning. The number of such
packets is low for benign hosts, and very high for bots that
scan hosts.

Looking to these attributes individually enables to retrieve
some botnets behaviours, but it is even better to observe these
attributes together. Actually, sometimes it is the combination
of two attributes that makes a host behaviour abnormal.

C. Training (clustering)

Clustering algorithms are designed to group similar vectors
into clusters and identify isolated ones as outliers. The similar-
ity between two vectors is evaluated using a distance function
like the Euclidean distance. We use as clustering algorithm
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [21]; it presents the advantage of discovering
clusters without knowing the number of clusters in advance,
using two parameters, and fits well our case because clusters
have close densities. ε specifies the radius of a neighborhood
with respect to some point, and minPts defines the minimum
number of points in a radius ε to form a cluster.

DBSCAN defines a cluster as the maximal set of points
where every pair of points p and q are within a distance ε
from each other, and considers points that do not belong to
any cluster as outliers. In our solution, DBSCAN is used in
a slightly different manner as illustrated in step 4 of Fig. 1.
We set minPts to 1 in order to consider singleton clusters as
well. Then DBSCAN is applied on the vectors of σ j from the
training set to build clusters of similar host signatures. Using
clusters instead of singular hosts enables to filter abnormal
hosts and get more consistent data.

The metric that we use for the computation of the distance
between two hosts in DBSCAN is the `1-norm defined as
| |σh | |1 = |σh[1]| + ... + |σh[n]|: this distance is robust and
does not vary with the number of bins, as the cumulative sum
of all elements stays equal. We consider it better than the `2-
norm – defined as | |σh | |2 =

√
|σh[1]|2 + ... + |σh[n]|2 which

increases with the number of bins.
Let C be the set of clusters obtained applying DBSCAN on

the training set. Each cluster c ∈ C contains several attributes:
• a set Hc of hosts belonging to the cluster;
• its position Pc computed as the centroid of the set of

signatures {σ1,σ2, ...,σN } of hosts in Hc , computed as
Pc = (σ1 + σ2 + ... + σN) / N ;

• a label identifying the nature of the cluster c, i.e., ma-
licious or benign, denoted Lc . The nodes that are bots
are known from the ground truth of the training set. The
cluster is identified as a bot cluster if it contains at least
one bot, else it is benign.

Fig. 1 (step 4) shows five clusters, including singletons,
labelled as ‘bot’ if they contain at least one bot, else benign.

D. Classification

We classify hosts from the test set based on their distance to
the set of labelled clusters C. For a host h ∈ E, if the closest
cluster is labelled as bot, h will be classified as a bot. If the

closest cluster is benign, h will be classified as benign too.
Using as distance function dist() the difference between the
`1-norm of two vectors, for a cluster c∗ where dist(σh ,Pc∗) =
minc [dist(σh ,Pc)], hosts are classified with

Lh =

‘bot’ if Lc∗ = bot
‘benign’ otherwise

. (2)

IV. COMPLEXITY

We qualify the space and time complexity of BotFP, con-
sidering its three main steps.

A. Attribute frequency distributions computation

First, we need to compute the fingerprint σ j for all hosts.
1) Space complexity: given a host and |A| attributes, we

need to store arrays of b bins for all the attributes, then the
per-host space complexity is equal to O(|A| · b). The overall
process is a one-shot operation over all hosts, resulting in a
complexity O(|T

⋃
E| · |A| ·b) In our setting we have |A| = 9.

2) Time complexity: for an host i, the computation of
each attribute vector comes with |ai | entry readings, be-
fore bin aggregation, thus the worst-case time complexity is
O(|A| · maxi |ai | · |T

⋃
E|).

B. Training (clustering)

The training consists in building host clusters from the
training set, each host being characterized by its fingerprint σ j .

1) Space complexity: DBSCAN presents a space complex-
ity of O(|T |) to store the positions and labels of the |T |
points, and the neighbors of the currently queried point.

2) Time complexity: DBSCAN presents a worst-case time
complexity of O(|T |2). For each point of the database, we
have to visit each other point to query their neighborhood.

C. Classification (distances computation)

The classification determines the closest cluster to each host
to classify, and assign its label to the host.

1) Space complexity: We have to store the positions of all
clusters. Also for each host, we need to store the distance
between its signature and each cluster. Therefore the total
space complexity is O(|C| · |A| · b + |E | · |C|).

2) Time complexity: we need to parse all hosts from the
test set, then to compare each of them to all clusters with a
`1-norm, thus the time complexity is equal to O(b·|A|·|E |·|C|).

V. EVALUATION METHODOLOGY

We present the dataset and the metrics we use to evaluate
BotFP.

A. Dataset

We used the publicly available CTU-13 dataset [6] made
of 13 scenarios of bot infections, containing botnet, normal
and background traffic. Botnet malwares are executed in a
virtual network to mimic the behaviour of an infection that
is spreading. Table I describes, for each scenario, the type of
C&C server as well as the malicious activities. The dataset has
been widely used in the already discussed recent bot detection

methods [7], [8], [9]. To evaluate the performances of our bot
detection method, we used scenarios 1, 2, 6, 8, 9 for the test set
(marked by the symbol * in Table I), and others for the training
set, as recommended by the authors of the CTU-13 [6].

Id Duration (hrs) #Bots Bot Activity
1* 6.15 1 Neris IRC, SPAM, CF
2* 4.21 1 Neris IRC, SPAM, CF
3 66.85 1 Rbot IRC, PS
4 4.21 1 Rbot IRC, DDoS
5 11.63 1 Virut SPAM, PS

6* 2.18 1 Menti PS
7 0.38 1 Sogou HTTP

8* 19.5 1 Murlo PS
9* 5.18 10 Neris IRC, SPAM, CF, PS
10 4.75 10 Rbot IRC, DDoS
11 0.26 3 Rbot IRC, DDoS
12 1.21 3 NSIS.ay IRC, P2P
13 16.36 1 Virut HTTP, SPAM, PS

TABLE I: Characteristics of the botnet scenarios.

B. Evaluation metrics

A confusion matrix is a table often used to evaluate the
performance of a classification model [22]. The basic terms
are the following : True Positive (T P) is the number of bots
correctly classified; True Negative (T N) is the number of
benign hosts correctly classified; False Positive (FP) is the
number of benign hosts incorrectly classified; False Negative
(FN) is the number of bots incorrectly classified.

From this matrix, we compute metrics about our classifier.
The accuracy, defined as ACC = TP+TN

TP+TN+FP+FN , shows the
fraction of true detection over total hosts. However, a bias
may be introduced with an unbalanced dataset like the CTU-
13 dataset with few bot activity. The true positive rate, defined
as T PR = TP

TP+FN , shows the percentage of predicted bots
versus all bots presented. The false positive rate, computed
as FPR = FP

FP+TN , refers to the ratio of incorrectly classified
benign hosts over all benign ones.

VI. EVALUATION

In this section, we evaluate the performance of BotFP using
the CTU-13 dataset.

A. First observations

Fig. 2 gives an example of dissimilar histograms for a
benign host and a bot, for attributes SportTCP and DipUDP.
SportTCP for the benign host are in the range [49152, 61000]
and [1025, 5000] for the bot, which indicates a first difference
in the ephemeral ports thus the OS (all bots from the dataset
display this characteristic). DipUDP shows a multitude of IP
addresses for the bot, and a single one for the benign host,
while both are only using source port UDP/53 which runs
DNS. Thus, the bot is not communicating with the DNS server,
but this is in fact an attempt of port scanning.

B. Botnet detection results

We apply our bot detection method on the CTU-13 dataset.
We analyze the influence of the number of bins b as well as the
benefits in using adaptive bins rather than regular ones. Fig. 3

Fig. 2: 32-bin histograms showing the frequency distribu-
tions of 2 attributes (SportTCP and DipUDP) for a benign
host in blue/left (147.32.84.17) and a bot in red/right
(147.32.84.165).

shows for regular bins the TPR (Fig. 3a), the FPR (Fig. 3b)
and the number of clusters (Fig. 3c). Fig. 4 shows for adaptive
bins the TPR (Fig. 4a), the FPR (Fig. 4b) and the number of
clusters (Fig. 4c) for b between 8 and 1024. Multiple ε values
(DBSCAN parameter) are tested in [0, 30, ..., 500].

Advantages of clustering: in Fig. 3 and 4, ε = 0 is
equivalent to not clustering the data, i.e., comparing each
host from the test set to labelled hosts from the training set.
Fig. 3a and 4a show that the TPR never reaches 100% in this
case , as the classification is too specific and we overfit the
data. However, increasing ε enables to detect all bots in some
setups. Clustering the data also reduces the complexity of the
classification, by limiting the number of comparisons to do.

Comparison between regular and adaptive bins: cluster-
ing the data turns out to be quite complex if we consider that
we have to tune ε : a large value may produce too large clusters
resulting in false positives, while a too small ε may overfit the
data and miss bots. Formatting the data by handling adaptive
bins gives more consistent results and eases the process of
clustering. For regular bins (Fig. 3a), the TPR values are quite
unstable even when ε rises. For adaptive bins on the contrary
(Fig. 4a), the TPR oscillates between 85% and 100% (i.e.,
between 0 and 2 undetected bots) for ε from 150 and all b.

We also observe that using adaptive bins (Fig. 4b) yields far
less false positives than regular ones (Fig. 3b). For these two
reasons, we could confirm the intuition that using adaptive bins
provides a more accurate analysis and therefore better results.

Number of bins b: we also need to choose the number of
bins b and ε accordingly. The objective is to find a setup with
a TPR equal to 100% (i.e., all bots detected) and a FPR as low
as possible. Using adaptive bins, the TPR reaches 100% for
nearly all values of b. However there is a strong correlation
between b and the FPR: the higher b, the lower the number
of false positives. Therefore the best solution is reached for a
high number of bins (b = 512 or 1024), for which the TPR
is equal to 100% and the FPR is very low. We can spot two
parameter combinations: (i) for b = 512 and 250 ≤ ε ≤ 320,

(a) TPR. (b) FPR. (c) Number of clusters.

Fig. 3: Regular bins: True and False Positive Rates (TPR & FPR) and number of clusters against ε .

(a) TPR. (b) FPR. (c) Number of clusters.

Fig. 4: Adaptive bins: True and False Positive Rates (TPR & FPR) and number of clusters against ε .

T PR = 100% and FPR ' 0.9% and (ii) for b = 1024 and
ε ≥ 360, T PR = 100% and FPR ' 1.6%.

We have shown that our solution detects all bots with very
few false positives. For the following experiments, we choose
ε = 300 and between 512 and 1024 bins.

Trade-off between the number of clusters and the accu-
racy: Fig. 3c and 4c show the number of clusters respectively
for regular and adaptive bins. For ε = 300 and adaptive bins
(Fig. 4c), we notice that b = 512 produces around 550 clusters
while b = 1024 around 638 ones. Therefore we would rather
choose 512 bins to reduce the number of positions to store,
with an equivalent accuracy. This also shows the benefits in
clustering the data: 550 clusters for b = 512 is approximately
60% less than the 910 initial hosts.

C. Comparison to state-of-the-art detection techniques

We now compare our solution to other state-of-the-art detec-
tion methods, namely BClus [6], CAMNEP [6], BotHunter [4],
BotGM [7] and [9] described in Section II.

Table II shows the confusion matrix for scenarios from the
test set with b = 512 and ε = 300. We detected bots from all
scenarios, which makes the true positive rate equal to 100%.
In total, we labelled 4 benign hosts as bots, which results in
a very low false alarm rate equal to 0.5%.

Id TP TN FP FN
1 1 163 3 0
2 1 131 0 0
6 1 111 0 0
8 1 165 5 0
9 10 133 1 0

TABLE II: Confusion matrix for scenarios 1, 2, 6, 8, 9 from
the test set, with b = 512 and ε = 300.

Table III reports the results for each solution and all
scenarios from the test set, as proposed in [6]. Our results
are very competitive as we reach an accuracy between 97%
and 100% with 512 bins while other algorithms provide an
accuracy between 30% and 95%. Only [9] achieves up to
100% accuracy for scenario #9 but it tested only that one and
trained on the 12 other scenarios.

Algorithm 1 2 6 8 9
BClus [6] (2014) 0.5 0.5 0.4 0.3 0.4

CAMNEP [6] (2014) 0.5 0.4 0.4 0.5 0.5
BotHunter [4] (2007) 0.4 0.3 0.38 0.42 0.4

BotGM [7] (2017) 0.91 0.78 0.95 0.89 0.83
Graph-based ML [9] (2019) X X X X 11

BotFP 0.98 1 1 0.97 0.99

TABLE III: Accuracy of different algorithms evaluated in [6]
and compared to BotFP with adaptive bins and ε = 300.

VII. CONCLUSION

Botnet attacks are always more sophisticated, and this
is expected to get even worse with the massive increase
of IoT devices. The quick detection of such bots is cru-
cial to Internet security. Our technique BotFP uses attribute
frequency distributions to characterize hosts communication,
where bots exhibit specific behaviours. Signatures of each host
are clustered, hence avoiding data overfitting and reducing the
complexity. The detection results are very promising, since
our algorithm detected all bots from the CTU-13 dataset. It
achieves an accuracy close to 100%, outperforming state-of-
the-art techniques, and is also very lightweight compared to
graph-based techniques. In the future, we plan to reduce the
number of dimensions in the per-host signatures. We also aim
at investigating other classification approaches than clustering,
like neural networks.

REFERENCES

[1] 9 of history’s notable botnets. [Online]. Available:
https://www.whiteops.com/blog/9-of-the-most-notable-botnets

[2] ZDnet. Avast and french police take over malware
botnet and disinfect 850,000 computers. [Online]. Avail-
able: https://www.zdnet.com/article/avast-and-french-police-take-over-
malware-botnet-and-disinfect-850000-computers/

[3] Mid-year update: 2019 sonicwall cyber threat report. [Online].
Available: https://blog.sonicwall.com/en-us/2019/07/mid-year-update-
2019-sonicwall-cyber-threat-report/

[4] G. Gu, P. Porras, V. Yegneswaran, and M. Fong, “BotHunter: Detecting
malware infection through ids-driven dialog correlation,” in Proceedings
of the USENIX Security Symposium. USENIX Association, 2007.

[5] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command
and control channels in network traffic,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2008.

[6] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Computers & Security, vol. 45, pp.
100–123, 2014.

[7] S. Lagraa, J. Francois, A. Lahmadi, M. Miner, C. Hammerschmidt, and
R. State, “BotGM: Unsupervised graph mining to detect botnets in traffic
flows,” in Proceedings of the Cyber Security in Networking Conference
(CSNet). IEEE, 2017.

[8] W. Chen, X. Luo, and A. N. Zincir-Heywood, “Exploring a service-based
normal behaviour profiling system for botnet detection,” in Proceedings
of the IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM). IEEE, 2017.

[9] A. A. Daya, M. A. Salahuddin, N. Limam, and R. Boutaba, “A graph-
based machine learning approach for bot detection,” in Proceedings of
the IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment (IM), 2019.

[10] Stratosphere Lab. The CTU-13 Dataset. A Labeled Dataset
with Botnet, Normal and Background traffic. [Online]. Available:
www.stratosphereips.org/datasets-ctu13

[11] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4, p. 219, oct 2004.

[12] S. Chowdhury, M. Khanzadeh, R. Akula, F. Zhang, S. Zhang, H. Medal,
M. Marufuzzaman, and L. Bian, “Botnet detection using graph-based
feature clustering,” Journal of Big Data, vol. 4, no. 1, may 2017.

[13] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “Botgrep:
Finding p2p bots with structured graph analysis,” in Proceedings of the
USENIX Security Symposium, 2010, pp. 95–110.

[14] H. Jiang and X. Shao, “Detecting p2p botnets by discovering flow
dependency in c&c traffic,” Peer-to-Peer Networking and Applications,
vol. 7, no. 4, pp. 320–331, jun 2012.

[15] F. Zou, S. Zhang, W. Rao, and P. Yi, “Detecting malware based on DNS
graph mining,” International Journal of Distributed Sensor Networks,
vol. 2015, pp. 1–12, 2015.

[16] J. Wang and I. C. Paschalidis, “Botnet detection based on anomaly
and community detection,” IEEE Transactions on Control of Network
Systems, vol. 4, no. 2, pp. 392–404, jun 2017.

[17] P. Kalmbach, A. Blenk, W. Kellerer, and S. Schmid, “Themis: A
data-driven approach to bot detection,” in IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2018.

[18] (2013) Service name and transport protocol port number registry.
[Online]. Available: https://www.iana.org/assignments/service-names-
port-numbers/service-names-port-numbers.xhtml

[19] Kaspersky. DDoS attacks in Q2 2019. [Online]. Available:
https://securelist.com/ddos-report-q1-2019/90792/

[20] IANA. Internet control message protocol (icmp) parame-
ters. [Online]. Available: https://www.iana.org/assignments/icmp-
parameters/icmp-parameters.xhtml

[21] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, 1996, pp. 226–231.

[22] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, 2018.

