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Abstract: This paper studies the extreme dependencies among energy, agriculture and metal 

commodities markets, with an emphasis on local co-movements. By applying a novel, copula-

based, local Kendall’s tau approach to measure nonlinear local dependence in regions, we 

identified asymmetric co-movements in and between bull and bear markets, as well as the 

changing trend in the degree of co-movements. Starting from a non-parametric mixture 

copula, we found that commodities markets’ co-movements increase in extreme situations. In 

addition, we found a stronger dependence between energy and other commodities markets at 

lower tails. Therefore, we showed that the energy market can offer diversification solutions 

for risk management in the case of extreme bull market events.  
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1. Introduction 

Energy prices’ co-movements with other commodities’ prices have generated a huge 

body of literature, given their implications for the economy. We have added to this literature 

by studying the extreme co-movements among energy, agriculture and metal commodities 

markets
1
 using sub-indices from the Rogers International Commodity Index. Unlike previous 

studies, we focussed on general commodities market indices instead of individual commodity 

prices to better capture the extreme dependence generated by the substitution effect between 

specific commodities, amplified by recent innovations and environmental concerns. In doing 

so, we first identified non-parametric mixture copulas that better fit the pair-wise 

combinations compared with individual copulas. As a novelty, starting from the best-fitted 

copula, we used a copula-based local Kendall’s tau approach to measure nonlinear local 

dependence in regions between commodities markets. As far as we know, this is the first 

paper to address this issue, and unlike previous studies’ findings, we found asymmetric co-

movements between energy and metal prices, which tend to become negative at peak returns.   

The price co-movements of different categories of commodities belonging to the 

principal commodities markets (energy, agriculture and metal) have been analysed from 

various angles and have received special attention following oil price shocks and after the 

food-price crisis from 2006 to 2008. These co-movements were attributed to production and 

transportation costs, increasing demand for biofuels and renewables, and the substitution 

effect between commodities generated by disruptive technologies, creating a specific 

mechanism for price transmission (Jiang et al., 2018). The financial channels are at work as 

well, given the existence of higher returns from commodity prices compared with classic 

financial assets (Brooks and Prokopczuk, 2013) and the opportunities that they provide for 

portfolio diversification and hedging risks (Doran and Ronn, 2008; Rafik and Bloch, 2016).  

                                                           
1
 According to the Commodities Market Outlook (October 2019), the energy, agriculture and metal commodities 

markets represent the principal categories of commodities (World Bank, 2019). 
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Therefore, recent empirical analyses have focussed on price co-movements (e.g., De 

Nicola et al., 2016; Lucotte, 2016; Pal and Mitra, 2017; Tiwari et al., 2018; Su et al., 2019), or 

have investigated price-volatility spillovers among energy, agriculture and metal commodities 

prices (e.g., Aguilera and Radetzki, 2017; Behmiri and Manera, 2015; Fasanya and 

Akinbowale, 2019; Ji et al., 2018a, 2018b, 2019; Luo and Ji, 2018; Mensi et al., 2014). 

However, only a few papers have investigated extreme co-movements and have resorted to 

copula analyses using various families of time-invariant and time-varying individual copula 

functions (Reboredo, 2012, 2013; Reboredo and Ugolini, 2016; Ji et al., 2018a; Jiang et al., 

2018; Yahya et al., 2019). However, these papers have analysed extreme dependence between 

specific commodity prices (i.e., oil and gold, or oil and biofuels) without considering overall 

commodities markets. Moreover, copula functions used in previous papers have modelled 

global dependence structures in energy markets, but could not measure nonlinear local 

dependence in regions, i.e., copulas might cover useful information on changing trends in the 

degree of commodities markets’ co-movement and in asymmetric co-movement in bear and 

bull markets. 

To overcome this limitation, we first used a novel, copula-based, local dependence 

framework recently proposed by Huang et al. (2018), which nests the concepts of global 

dependence and tail dependence. More precisely, we applied the local Kendall’s tau based on 

the mixture copula to identify co-movements and extreme dependencies among agriculture, 

metal and energy commodities markets that are invisible in a global framework.
2
 Investigating 

extreme dependencies in regions offers multiple advantages compared with analysing global 

dependencies. On one hand, investigating local dependencies allows for observing the changing 

trend of the degree of co-movement between two series. While time-varying copulas allow for 

analysing the time dynamics of the dependence, they do not identify asymmetries between bull 

                                                           
2
 Kendall’s tau represents a rank dependence coefficient used to measure dependencies of financial series and 

can be expressed via copula functions (e.g., Chollete et al., 2009; Rodriguez, 2007). 
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and bear markets. Huang et al.’s (2018) approach addressed this issue and proposed four 

classes of local dependence measures along both the main and minor diagonals, respectively. 

On the other hand, this approach provides more detailed dependence information between 

commodities markets, as it uncovered the relationship between copula functions and rank-

based, local dependence measures. Huang et al.’s (2018) approach is implemented in three 

steps. We first filtered the data to remove the index returns’ serial correlation and conditional 

heteroskedasticity. To this end, like Huang et al. (2019), we used an ARMA (p, q)-GARH (m, 

n) model. Second, we investigated global dependencies using individual copulas, accounting for 

asymmetric and heavy-tail dependencies (i.e., Gumbel, Clayton and rotated Gumbel and 

Clayton copulas), as well as several two-component mixtures.
3
 In doing so, we applied 

Zimmer’s (2012) approach to mixture copulas, and we found that the best-fitted copula is a 

mixture between Gumbel and rotated-Gumbel copulas (180 degrees). We also performed a 

rolling window analysis of the best-mixture copula to see how extreme dependencies evolve 

over time. Third, starting from this copula function, we computed the empirical local Kendall’s 

tau and drew corresponding theoretical and empirical local dependence surfaces in different 

regions (upper-upper, lower-lower, upper-lower and lower-upper tails), conducting a series of 

5,000 Monte Carlo simulations. As in Huang et al. (2018), we restricted quantiles of our series 

to the interval [0.05, 0.95] to ensure that we had enough observations to calculate the empirical 

local Kendall’s tau. Finally, we ranked commodities markets’ dependence structures, and we 

underlined the advantages of using local dependence measures to investigate extreme co-

movements in commodities markets. 

We also contributed to existing literature by performing an analysis of extreme 

dependencies and co-movements between general commodities markets, rather than between 

                                                           
3
 Huang et al.’s (2018) methodology can be applied to different families of symmetric and asymmetric copula 

functions, but most previous studies underline the advantages of asymmetric copulas, which led Huang et al. 

(2018) to estimate theoretical local dependence in the region for Gumbel, Clayton and their rotated versions. 

Simultaneously, the mixture of these asymmetric copulas in upper and lower tails is viewed as capturing more 

flexible dependence structures compared with individual copulas (e.g., Hu, 2006). 
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individual commodities’ prices. It is important to capture commodities markets’ global 

dynamics. Indeed, inside each category of commodities (energy, agriculture or metal), each 

element’s price behaviour might record opposite trends in the presence of a substitution effect 

(e.g., the price of natural gas and coal or the price of copper and aluminium), thereby 

distorting the analysis of different commodity categories’ price transmissions and co-

movements. Another reason to recommend the use of composite commodities market indices 

is represented by institutional investors’ focus on a broad-based international vehicle, making 

the investigation of extreme dependencies particularly appealing. For this purpose, we used 

three composite Rogers International Commodity Indices: Rogers International Commodity 

Index Energy (RICIE); Rogers International Commodity Index Agriculture (RICIA); and 

Rogers International Commodity Index Metals (RICIM). The advantages of using these 

indices can be found in their ability to characterise overall commodities markets by 

considering 38 commodity futures contracts’ prices using different weights (e.g., crude oil 

futures prices represent 37.50% of RICIE, while natural gas prices represent 15%; gold 

represents 19.92% of RICIM, while aluminium represents 15.93%; and corn prices represent 

13.61% of RICIA, whereas cotton represents 12.03%).
4
 At the same time, these indices’ 

composition is viewed as more stable compared with that of other commodity indices, 

increasing the transparency for making investment decisions. Finally, and most importantly, 

these indices are constructed based on futures prices rather than spot prices.
5
 As far as we 

know, Kang et al. (2017) and Liu et al. (2019) are the only papers that have addressed the 

dynamic spillover among commodities markets by using futures contract prices.  

The last contribution to the literature is represented by a portfolio analysis that 

examined pairs of commodity indices. Starting with Engle’s (2002) time-varying dynamic 

                                                           
4
 http://www.rogersrawmaterials.com/documents/RICIHndbk_01.31.19.pdf 

5
 Investigating the co-movement and extreme dependencies between futures prices has multiple advantages, as it 

allows for the mitigation of stale quotes and non-synchronous problems in the spot markets, while noise in 

futures prices is constant on average (for a detailed discussion, please refer to Albulescu et al., 2017). 
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conditional correlation (DCC) model, we computed hedge ratios following Kroner and Sultan 

(1993). Afterward, we used conditional volatilities to construct optimal portfolio weights, 

using Kroner and Ng’s (1998) approach.  

To preview our findings, we showed that co-movements increase in extreme situations 

for all pairs of commodity indices, a result of agreement with previous findings reported in 

the literature. However, unlike other studies, we found a stronger dependence at lower tails 

for the energy pairs of indices. In addition, for the agriculture-metal pair, we reported a ‘V-

type’ local dependence. Furthermore, the three-dimensional Kendall’s tau plot for upper tails 

in quantiles shows asymmetric co-movements for the energy-metal pair, which becomes 

negative at peak returns. Finally, we documented the existence of hedging and portfolio 

diversification opportunities among energy, agriculture and metal commodities markets. 

The rest of the paper is organised as follows: Section 2 presents the literature review on 

commodity price co-movements; Section 3 addresses the methodology; Section 4 presents the 

data and marginal model results; Section 5 describes the copula results; and Section 6 

provides the general and copula-based local dependence plots. The last section concludes the 

paper. 

 

2. Literature review 

The extensive literature addressing the co-movements and dependencies between 

commodities markets usually has focussed on individual commodity prices and has resorted 

to linear and non-linear cointegration techniques or volatility spillover analyses (Aguilera and 

Radetzki, 2017; Avalos, 2014; Baumeister and Kilian, 2014; Behmiri and Manera, 2015; 

Bildirici and Turkmen. 2015; Chen et al., 2010; Choi and Hammoudeh, 2010; De Nicola et al., 

2016; Ewing and Malik, 2013; Fowowe, 2016; Hammoudeh and Yuan, 2008; Hassouneh et 

al., 2012; Ji et al., 2018b;  Liu et al., 2017; Lucotte, 2016; Natanelov et al., 2011; Nazlioglu 
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and Soytas, 2012; Pal and Mitra, 2017; Rezitis, 2015; Saghaian, 2010; Su et al., 2019). Most of 

these works have documented increased co-movements and volatility spillovers between energy 

and other commodity prices (Du et al., 2011; Fasanya and Akinbowale, 2019; Ji and Fan, 

2012; Serra, 2011; Lucotte, 2016; Natanelov et al., 2011; Nazioglu et al., 2013; Mensi et al., 

2014; Su et al., 2019; Zhang and Qu, 2015).  

Nevertheless, only a few papers have addressed extreme co-movements and 

dependencies on commodities markets by resorting to copula functions (e.g., Ji et al., 2018a; 

Jiang et al., 2018; Liu et al., 2019; Reboredo, 2012; Reboredo, 2013; Reboredo and Ugolini, 

2016; Yahya et al., 2019). The first paper in this grouping is Reboredo (2012), who 

investigated the dependencies between oil and food prices using conditional and time-varying 

copulas, and reported the absence of extreme dependencies. With an emphasis on extreme 

dependencies between the energy and metal markets, and using weekly data from 2000 to 

2011, Reboredo (2013) examined the possibility that gold might represent a hedge against oil 

price volatility and documented a significant average dependence between gold and oil. 

However, Reboredo (2013) demonstrated the existence of tail independence between the two 

markets, stating that gold might be viewed as a safe haven against extreme oil price 

fluctuations. In the same spirit, Reboredo and Ugolini (2016) underlined oil price shocks’ role 

in explaining volatility in metal prices. Their results indicated that large downward and 

upward movements in oil prices generate asymmetric spillovers into the metal market.  

More recent studies have turned to time-varying or regime-switching copulas to 

investigate dependencies between energy and other commodity prices. Likewise, by adopting 

a time-varying copula with a switching dependence, Ji et al. (2018a) demonstrated that 

agriculture commodities are more sensitive to oil price shocks than gas price shocks. In the 

same vein, Liu et al. (2019) turned to Markov-switching GRG mixture copulas to study 

dependencies between oil and agriculture futures prices in both non-extreme and extreme 
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conditions. For most examined agriculture commodities, the authors reported positive extreme 

and non-extreme co-movements with oil futures prices. Jiang et al. (2018) and Yahya et al. 

(2019) combined time-frequency decomposition of commodity price series with copula 

functions to study extreme dependencies among energy, agriculture and metal commodities 

prices. Both papers documented an increased tail dependence during and after the recent 

global crisis. 

Nevertheless, all previous papers modelled commodities prices’ global dependence 

structure, thereby focussing on asymmetric co-movements and changing trends in co-

movements in bear and bull markets. Therefore, we added to this narrow literature strand and, 

unlike studies that used individual time-invariant and time-varying copulas, we used a mixture 

of copulas to explain commodities markets’ extreme dependencies more clearly, considering 

asymmetries in both upper and lower tails. Furthermore, to gain additional information about 

extreme co-movements in the upper and lower tails, we used a local dependence measure 

based on the Kendall’s tau, which combines global and tail dependence. This way, we could 

see whether extreme dependencies are symmetric in bear markets, bull markets or both 

climates. In addition, unlike existing studies, we examined general commodities markets’ 

indices, not individual prices, while focussing on futures instead of spot prices, for the reasons 

mentioned in the previous section.  

 

3. Methodology 

Copulas represent multivariate (joint) distribution functions that require uniform 

univariate marginal distributions. Therefore, in line with previous papers (i.e., Reboredo, 

2012, 2013), in the first step, we used an ARMA (p, q)-GARCH (m, n) model with skewed t-

distribution to remove the serial correlation and conditional heteroskedasticity in all index 

return series. In the second step, we used individual copula functions that allowed for an 
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investigation of asymmetric dependencies in both upper and lower tails (e.g., Gumbel and 

Clayton), and we compared their performance with a mixture of functions. Finally, starting 

from the copulas that better fit the pair-wise combinations, we constructed the copula-based 

local Kendall’s tau plots to assess local dependencies between commodities markets.
6
  

3.1. Copula functions 

Given the data properties that exhibit asymmetries and heavy tails, we used the Gumbel 

copula, which displays upper-tail dependence; the Clayton copula, which displays lower-tail 

dependence; their rotated versions; and their mixture. 

The bivariate Gumbel copula (  ) is expressed as: 

                                           ,    (1) 

in which         . When     , the variables exhibit more dependence. 

The rotated Gumbel copula at 180 degrees (   ) is: 

                              ,     (2) 

in which         . In this case, if    , the two variables are independent. 

The Clayton copula (   ) showed asymmetry, as the degree of dependence in the lower 

tail is higher than in the upper tail: 

                                  ,     (3) 

in which              and larger values of   indicate strong dependence. 

The rotated Clayton copula (    ) only showed lower tail dependence. Like    , larger 

values of   indicate strong dependence: 

                                .     (4) 

Building on Zimmer (2012) and Huang et al. (2018), we defined the mixture of four 

individual copulas as follows: 

                             ,      (5) 

                                                           
6
 Huang et al.’s (2018) nonlinear dependence in region can be applied not only to the Kendall’s tau, but also to 

the Spearman’s rho dependence measure, with similar results.  
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                               ,      (6) 

                             ,      (7) 

                               ,      (8) 

in which         is an estimable parameter that indicates the first copula’s proportional 

contribution to the mixture. 

3.2. General chi-plots for dependence identification 

The dependency pattern between two series can by identified by using chi-plots, which 

are estimated based on the joint distribution ( ) of copulas and show the shape of this joint 

distribution. Following Fisher and Switzer (1985), we generated a scatter plot for each pair of 

indices (       based on:   
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   ,        (10) 

in which    is a measure of distance from the center of the data set of the data point (     ),  
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3.3. Copula-based local Kendall’s tau plots 

The copula-based formula for the global Kendall’s tau (Schweizer and Wolf, 1981) for 

two variables   and   is: 

                         
 

 

 

 
.      (11) 

For two variables,   and    with   and   as their quantiles, the novel tail dependence 

measures on local Kendall’s tau, developed by Huang et al. (2018), are: 

   
                 

                ,      (12) 

   
                 

                  ,      (13) 
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                  ,      (14) 

   
                 

                ,      (15) 

in which    
       ,    

       ,    
        and    

        are the upper-upper, upper-lower, lower-

upper and lower-lower tail dependence measures based on the local Kendall’s tau. 

 

4. Data and filtering results 

4.1. Data sample 

The Rogers International Commodity Indices (RICI) represent commodity composite 

futures price indices that reflect price dynamics and expectations for energy, agriculture and 

metal commodities markets. According to the RICI Handbook (Rogers International 

Commodity Indices, 2019), for futures contracts, the indices roll over three days and are 

rebalanced monthly. RICI includes 38 commodities futures contracts: six for the energy index 

RICIE; 22 for the agriculture commodity index RICIA; and 10 for the metal index RICIM.
7
 

Our daily data were obtained from the Quandl database and cover the period 3 January 

2005 to 1 August 2018. Table 1 summarises general statistics from the log returns of three 

indices (dlnRICIA, dlnRICIE and dlnRICIM). The average returns were positive, but close to 

zero, except for the RICIM index, while greater volatility was observed for RICIE. The high 

kurtosis indicated the presence of extreme values in our series, especially in the case of the 

energy index. The Jarque-Bera test for the unconditional distribution’s normality strongly 

rejected the normality for all three series. The unit root tests ADF, PP, and KPSS indicated 

that all three series are stationary. 

[Insert Table 1 about here] 

Figures 1a, 1b and 1c show the indices and their log returns’ dynamics. It seems that 

RICIA and RICIM followed similar patterns, while RICIE did not exhibit the upward trend 

                                                           
7
 More details about each commodity’s weight inside the market index and futures contracts can be found at  

http://www.rogersrawmaterials.com/documents/RICIHndbk_01.31.19.pdf. 
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unregistered by the other two indices in 2011. During the final period of 2014, the RICIA and 

RICIE values decreased, while the RICIM index showed a slight increase after 2016. 

[Insert Figure 1 about here]  

 

4.2. Marginal model results 

Several ARMA (p, q)-GARH (m, n) marginal models were tested. For all our indices, 

the best filtering measure was an ARMA (1, 0)-GARCH (2, 1) model. The results reported in 

Table 2 show that the autocorrelation and the conditional heteroskedasticity for all three series 

were removed according to Ljung-Box and ARCH statistics. Our evidence indicates that the 

AR term is insignificant for RICIA.  

[Insert Table 2 about here] 

 

5. Copula results 

5.1. Individual and mixture copulas 

In what follows, we present a comparison between the results from the individual (Table 

3) and mixture copulas proposed in Equations (5)-(8) (Table 4). According to the information 

criteria (LR, AIC, BIC), in the case of individual copulas, the rotated Gumbel performed 

better among all commodity pairs, showing asymmetric co-movements that are more 

important for lower tails. For all commodities pairs (RICIA-RICIM, RICIA-RICIE and 

RICIM-RICIE), our findings show that mixture copulas perform better than individual 

copulas, according to all information criteria that we use. 

[Insert Table 3 about here] 

We observe in Table 4 that the best copula mixture model for all commodities pairs is 

        , namely a combination between the Gumbel and rotated Gumbel copulas. For the 

RICIA-RICIM and RICIM-RICIE pairs, the Gumbel copula ( ) weight is 24.8% and 29.1%, 
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respectively, while the RICIA-RICIE pair demonstrate the Gumbel copula weight at 40.3%. 

This evidence of asymmetry (especially for the RICIA-RICIM and RICIM-RICIE co-

movements) shows that the rotated Gumbel copula has the largest weight in the mixture (i.e., 

75.2% for the RICIA-RICIM pair). Therefore, we noted an increased dependence in both 

upper and lower tails, with co-movements in the lower tails being more important (co-

movements are higher during crisis periods).  

[Insert Table 4 about here] 

For the RICIM-RICIE pair, our copula findings differ from those reported by Reboredo 

and Ugolini (2016), who noticed that spillovers from upward oil price movements into metal 

prices are larger than for downward oil price spillovers. For the RICIA-RICIE pair, extreme 

downward oil price movements exert a negative effect on agriculture commodity prices. Our 

results validate the production-cost channels and contrast with results from Reboredo (2012), 

who reported no extreme market dependence between oil and food prices, indicating 

neutrality in agriculture commodities markets, especially before 2008. The evidence of 

asymmetric dependencies between oil and agriculture prices demonstrates the need to 

examine oil prices’ asymmetric effect on the stabilisation of food prices. 

 

5.2. Best mixture copula rolling analysis 

To gain further insights on commodities markets’ extreme co-movements, we 

performed a rolling window analysis (500 days) of the best copula mix (        ) to observe 

how dependencies fluctuate over time.
8
 To this end, starting from the coefficients’ standard 

errors, we generated confidence intervals at levels of 5%. Figure 2 presents the results for all 

pairs of indices. 

[Insert Figure 2 about here] 

                                                           
8
 This rolling window corresponds roughly to two years of trading days. Bai et al. (2018) used a similar rolling 

window in their analysis and underlined the advantages of using lengthy windows in copula analysis. 
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Figure 2a shows that with the RICIA-RICIM pair, the extreme dependencies 

predominantly are explained by the rotated Gumbel copula, which has a higher weight in the 

mixture copula. Therefore, for the 2007–2017 period, co-movements between the agriculture 

and metal commodities markets are more important in lower tails. A different pattern surfaced 

starting in 2018, when asymmetric co-movements generally were stronger in upper tails. 

In the case of the RICIA-RICIE pair (Figure 2b), the extreme dependencies are stronger 

and better explained by the rotated Gumbel copula, which clearly carries greater weight in the 

mixture. The exception is for the final period in 2015, when the Gumbel copula became 

dominant. These results show that the period after the Global Financial Crisis was 

characterised by higher dependencies in lower tails, while the recent period is characterised 

by asymmetric co-movements that increased in the upper tails. Finally, Figure 2c shows that 

from 2007 to 2015, the Gumbel and rotated Gumbel in the mixture exerted no clear 

dominance, indicating asymmetric and extreme co-movements in both bull and bear markets. 

Nevertheless, for the final period, the extreme dependencies are explained predominantly by 

the Gumbel copula. 

However, the true parameter values (Figure 2) do not explain the dependencies’ 

intensity over time. Therefore, we proceeded to a transformation of true values in Kendall's 

tau values (Figure 3). As in the previous case, we noticed a relative dominance in the rotated 

Gumbel copula during the sample’s first period. Starting with 2016, for all commodity pairs, 

we observed a dominance in the Gumbel copula, i.e., the extreme dependencies manifested 

particularly in the upper tails. When we analysed the dynamics of the mixture copula (        ) 

for the RICIA-RICIM pair (Figure 3a), we noticed an increased dependence between 

agriculture and metal markets after the Global Financial Crisis (2010 to 2015). A similar 

result was obtained for the RICIM-RICIE pair of commodities (Figure 3c). However, extreme 

dependence cycles were observed for the RICIA-RICIE pair over the entire analysed period. 
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This evidence shows that in the case of the energy-agriculture pair of indices, the extreme co-

movements manifest independently of the economic context. Consequently, the stabilisation 

of energy prices (i.e., oil prices) exerts an important effect on the stabilisation of agriculture 

and food prices.  

[Insert Figure 3 about here] 

 

6. General and copula-based local dependence plots 

6.1. General chi-plot results 

The chi-plots show that all pairs of commodity indices exhibit heavy-tail dependence, 

given that most distribution points are plotted beyond the control lines (+/- 0.05). Figure 4 

also shows that the extreme dependencies are positive (an increase in one index price is 

associated with an increase in the price of the corresponding pair), but they are asymmetric. 

However, the general chi-plots do not allow details of the dependencies to be seen, namely if 

an asymmetric local dependence pattern or asymmetry in both upper and lower tails is found. 

[Insert Figure 4 about here] 

6.2. Copula-based local Kendall’s tau results 

To compare the properties of the global and local Kendall’s tau based on         , we 

first computed the corresponding theoretical and empirical local dependence surfaces in 

different regions, performing Monte Carlo simulations for the product copula (with a sample 

size of 5,000 observations) for each pair of commodities (see Figures A1-A3 in Appendix A) 

and demonstrating their relationship. For all commodity pairs, the first two plots (Figures A1-

A3) indicate that local Kendall’s tau based on          copula shows significant asymmetric 

characteristics along the main diagonal. 

Following this, we compared global and local dependence co-movements’ properties 

using copula-based Kendall’s tau plots (Figure 5). Starting from Equations (12)-(15), we 
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computed the theoretical global and local Kendall’s tau and observed no noticeable difference 

between the global theoretical and empirical Kendall’s tau, indicating that global dependence 

may cover extreme co-movements. Based on the local Kendall’s tau for all commodity pairs, 

we noticed increased co-movements in extreme situations, i.e., in the lower and upper 

quantiles. For all commodity pairs, the local dependence in bull markets is obviously smaller 

than their local dependence in bear markets, exhibiting an asymmetric local dependence 

pattern. This result is consistent with findings reported in earlier literature, underlining the 

contagion phenomenon in crisis times (Yahya et al., 2019). We noticed a stronger dependence 

at lower tails in indices’ energy pairs and a ‘V-type’ local dependence in the agriculture-metal 

commodity pair. In contrast with Jiang et al. (2018), we found that tail dependence changes 

over time. These results indicate that the energy market is more connected with other 

commodities markets during periods of financial stress. At the same time, extreme 

dependencies between agriculture and metal commodities indices manifest during both bull 

and bear markets. 

[Insert Figure 5 about here] 

Given the existence of a stronger dependence in the lower and upper tails, we 

constructed three-dimensional Kendall’s tau plots for these in quantiles for each commodity 

pair (Figure 6). For the RICIA-RICIM pair, the results show that the extreme dependencies in 

the lower tails are higher (Figure 6b) and, as expected, symmetric, while the extreme 

dependencies in the upper tails are asymmetric (Figure 6a). This represents an original result 

that demonstrates symmetry and asymmetry are not only between upper and lower tails, but 

also inside upper and lower tails. This result’s economic intuition is simple and might be 

explained by economic mechanisms. In bear markets, when global demand diminishes, the 

price of industrial metals decreases. This is equivalent to a reduction in production costs for 
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agriculture commodities. However, in bull markets, speculation reasons might explain 

asymmetric co-movements between agriculture and metal commodities markets.  

[Insert Figure 6 about here] 

Similar findings are reported for the RICIA-RICIE pair of indices, although the co-

movements are not as strong. The extreme asymmetric dependence recorded in the upper tails 

can be associated with the substitution effect between energy and agriculture commodities, 

initially induced by the dominance of synthetic fibres, rubber, fertilizers and plastics, which 

have replaced natural materials. The rise of environmental concerns reversed this trend in 

recent years.  

A slightly different situation is seen for the RICIM-RICIE pair of indices, in which the 

upper tails’ co-movements are asymmetric and tend to become negative for the peak returns 

(Figure 6e). The negative dependencies can be explained by technological innovations (e.g., 

fibre-optic lines replacing copper cables, which are tied to the petrochemical industry). Two 

implications arise from this evidence. First, the dependencies between energy and metal 

markets reinforce energy prices’ impact on inflation, given that oil and gold are leading 

indicators for general price levels (Bildirici and Turkmen, 2015). Second, negative and 

asymmetric co-movements in the upper tails between energy and metal prices show that 

precious metals, such as gold, can represent a hedge against inflation for extreme, upper-tail 

values. Thus, our findings complement the results reported by Aye et al. (2016), who also 

viewed gold as an inflation hedge in the long run. 

Overall, these findings confirm the mixture of copula results and reinforce related 

literature in offering information about a more extensive dependence in quantiles. Our results 

show that commodities markets’ extreme dependencies are very complex and manifest 

differently for specific commodity indices, revealing commodity prices’ asymmetric 

behaviour, especially for the upper tails. 
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To better underline our findings’ importance, we performed a simple portfolio analysis 

whose results should be viewed with caution, given the documented asymmetries that 

characterise commodities markets’ co-movements in extreme situations. In fact, copulas 

represent alternative methods to analyse portfolio risk in bull and bear markets, and do not 

assume risk factors that are distributed normally, as classic portfolio analyses do.   

 

7. A classic portfolio analysis 

 

For the portfolio analysis, like Sadorsky (2012), we used Engle’s (2002) time-varying 

DCC model, with the correlation estimator (ρ): 

      
     

           
.         (16) 

The summary statistics of dynamic correlations are presented in Table 5 and show no 

important differences in terms of correlations between our pairs of indices. 

[Insert Table 5 about here] 

Starting from the computed conditional volatilities, we constructed, in a second step, 

hedge ratios using Kroner and Sultan’s (1993) approach and optimal portfolio weights 

following Kroner and Ng (1998). 

 

7.1. Hedge ratios 

The hedge ratio (β) proposed by Kroner and Sultan (1993) shows how a long position in 

the asset i can be hedged by a short position in the asset j: 

      
     

     
,          (17) 

in which       is the conditional covariance between assets i and j. 

The results are presented in Table 6 and show that the average hedge ratio between 

RICIA (long position) and RICIM (short position) is 0.42. This means that a $1 long position 
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in RICIA can be hedged for 42 cents with a short position in RICIM. The average hedge ratio 

between RICIE and RICIA is 0.67, meaning that a $1 long position in the energy market can 

be hedged for a 67-cent short position in the agriculture market.  

[Insert Table 6 about here]  

 

7.2. Portfolio weights 

Kroner and Ng’s (1998) approach is employed to design optimal portfolio weights (w). 

For two assets,       represents the weight of the asset i in the $1 portfolio of two assets i and j 

(therefore, the weight of the asset j is        ): 

      
           

                  
.         (18) 

For example, Table 7 indicates that the average weight between RICIA and RICIE is 

0.84, i.e., for a $1 portfolio optimisation, 84 cents should be invested in the agriculture 

commodity index, whereas 16 cents should be invested in the energy commodity index. 

Furthermore, if we consider the RICIM/RICIE pair, for a $1 portfolio optimisation, 69 cents 

should be invested in RICIM and 31 cents in RICIE. Therefore, we can conclude that 

agriculture and metal commodities markets can offer some portfolio diversification 

opportunities for the energy commodities market. 

[Insert Table 7 about here] 

 

8. Conclusions 

Using a copula-based local Kendall’s tau approach, this study investigated local 

dependencies and co-movements among energy, agriculture and metal commodities markets, 

relying on RICI indices over the 3 January 2005 to 1 August 2018 period (daily data). More 

precisely, we showed that a Gumbel and rotated Gumbel copula mixture better fit the pair-

wise combinations for all commodity pairs. Therefore, we posit that dependence structure is 
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asymmetric and exhibits both high- and low-tail dependence, with the low-tail dependence 

being stronger. We also showed that the novel copula-based local Kendall’s tau approach 

offers a deeper understanding of extreme dependencies compared with the global approach.  

Specifically, we noticed that in indices’ energy pairs, a stronger dependence at lower 

tails exists, while in the agriculture-metal pair, we reported a ‘V-type’ local dependence, in 

which extreme co-movements are higher in both the upper and lower tails. This behaviour is 

explained by the complementarity between agriculture and metal markets. When food demand 

increases, the production process in the agriculture field follows a similar process, triggering 

an increase in metal prices. At the same time, if we consider the case of the recent food crisis 

from 2007 and 2008, when agriculture commodities’ prices increased dramatically, we 

noticed that we recorded similar dynamics in precious metals’ prices. 

 In contrast to previous essays on commodities market co-movements, we demonstrated 

that the extreme upper-tail dependencies between energy and metal commodities markets are 

asymmetric and negative for high returns. This result is explained by the substitution effect 

existing between energy and metal commodities, amplified lately by the appearance of 

disruptive technologies implemented in the electricity generation and vehicle industries.   

Our findings reveal some complex and extreme dependencies among agriculture, energy 

and metal markets and should be of value to those in the field, particularly financial investors 

and risk managers. Although during periods of financial stress, the energy market does not 

offer a good option for portfolio diversification, during financial booms, the extreme co-

movements between energy and metal commodities markets become negative and highlight 

the potential for portfolio diversification. 

Finally, it is important to realise that the extreme co-movements between energy and 

agriculture markets manifest for the entire time horizon, while the local dependencies between 

energy and metal markets mainly are recorded during bull and bear markets. The agriculture 
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and metal markets offer portfolio diversification opportunities for investors in the energy 

futures market.  

Generally, in bull and bear markets, results from classic portfolio and risk management 

analyses that require normally distributed factors are misleading, and the global copula 

investigations only allow for the identification of asymmetries between upper and lower tails. 

Nevertheless, we showed that commodities markets’ co-movements are asymmetric in both 

bull and bear markets, and specific to each pair of commodities. For example, we showed that 

for the RICIA-RICIM pair, the extreme dependencies in upper tails are weaker compared with 

those recorded in lower tails, but are asymmetric. Another original result is that reported for 

the RICIM-RICIE pair, in which the asymmetric co-movements became negative at peak 

returns.   
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Appendixes 

Appendix A  

  

  

(a) Lower-lower and upper-upper (b) Upper-lower and lower-Upper   

Figure A1. Local dependence surfaces in different quadrants based on Kendall’s tau of product 

copula (RICIA-RICIM) 

(Note: The blue surfaces and yellow surfaces are the theoretical and empirical local dependence surfaces.) 

 

 

  

  
(a) Lower-lower and upper-upper (b) Upper-lower and lower-Upper 

Figure A2. Local dependence surfaces in different quadrants based on Kendall’s tau of product 

copula (RICIA-RICIE) 

(Note: The blue surfaces and yellow surfaces are the theoretical and empirical local dependence surfaces.) 
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(a) Lower-lower and upper-upper (b) Upper-lower and lower-Upper 

Figure A3. Local dependence surfaces in different quadrants based on Kendall’s tau of product 

copula (RICIM-RICIE) 

(Note: The blue surfaces and yellow surfaces are the theoretical and empirical local dependence surfaces.) 
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Figure 1. Commodity price indexes dynamics (log returns and standardised residuals) 
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(a) RICIA-RICIM 

   
 (b) RICIA-RICIE  

   
 (c) RICIM-RICIE  

Figure 2. Rolling window analysis for the best mixture copula 

(Notes: (i) UP (red line) and LW (green line) represent 5% confidence interval limits; (ii) if the blue line lies in the 

confidence interval, then the parameter is significant.) 
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(a) RICIA-RICIM (b) RICIA-RICIE 

 
(c) RICIM-RICIE 

Figure 3. Rolling window analysis for the best mixture copula using tau transformation 
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(a) RICIA-RICIM (b) RICIA-RICIE 

 
(c) RICIM-RICIE 

Figure 4. Chi-plots illustrated by each pair of commodity indexes 
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(a) RICIA-RICIM (b) RICIA-RICIE 

 
(c) RICIM-RICIE 

Figure 5. Lower-lower and upper-upper quantiles global and local Kendall’s tau plots along the main 

diagonal 

(Note: The red and blue dotted lines represent the empirical and theoretical global Kendall’s tau (there are no significant 

differences between the empirical and the theoretical global Kendall’s tau). The blue smooth and the red non-smooth lines 

with circles represent the theoretical and the empirical local Kendall’s tau along the main diagonal.) 
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(a) RICIA-RICIM upper tails (b) RICIA-RICIM lower tails 

  
c) RICIA-RICIE upper tails (d) RICIA-RICIE lower tails 

  
(e) RICIM-RICIE upper tails (f) RICIM-RICIE lower tails 

 

Figure 6. Local Kendall’s tau plots for upper and lower tails in quantiles 

(Note: The blue surfaces and yellow surfaces are the theoretical and empirical local dependence surfaces.) 

 

 

 



36 

 

Tables 

Table 1. Summary statistics 

 dlnRICIA dlnRICIE dlnRICIM 

Mean 0.002 0.009 0.143 

Median -0.020 0.048 0.040 

Maximum 11.23 29.00 19.88 

Minimum -10.28 -32.31 -20.94 

Std. Dev. 1.056 2.191 1.410 

Skewness -0.131 -0.342 -0.349 

Kurtosis 12.14 40.72 31.52 

Jarque-Bera 11901.4*** 202564.0*** 115840.1*** 

Stationary analysis 

ADF -58.85*** -67.44*** -65.19*** 

PP -58.86*** -67.45*** -65.16*** 

KPSS  0.093  0.109  0.336 

Observations 3414 3414 3414 

Note: ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively. 
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Table 2. ARMA (1, 0)-GARCH (2, 1) marginal model 

 RICIA RICIM RICIE 

 Coeff. Std.E t-value Coeff. Std.E t-value Coeff. Std.E t-value 

Cst (M) -0.014  0.014 -1.007  0.034**  0.016  2.079  0.034  0.023  1.441 

AR (1)  0.017  0.017  1.052 -0.051***  0.017 -3.001 -0.045**  0.017 -2.546 

Cst (V)  0.006**  0.003  2.201  0.020**  0.008  2.325  0.018*  0.010  1.690 

ARCH (α1)  0.070***  0.023  3.065  0.081***  0.024  3.298  0.110***  0.026  4.144 

ARCH (α2) -0.026  0.026 -1.008 -0.011  0.028 -0.417 -0.052*  0.028 -1.815 

GARCH (β1)  0.949***  0.014  67.79  0.920***  0.020  44.73  0.939***  0.016  56.94 

Student (DF)  6.749***  0.955  7.066  5.924***  0.719  8.236  6.782***  0.914  7.419 

Log Likelihood  -4553.7   -5375.0   -6712.4  

Akaike   2.671    3.152    3.936  

Q (10)   5.173    11.03    7.686  

p-value  [0.818]   [0.273]   [0.566]  

Q2 (10)   3.263    5.936    6.924  

p-value  [0.859]   [0.547]   [0.436]  

ARCH   1.384    2.488    2.179  

p-value  [0.250]   [0.083]   [0.113]  

Notes: (i) ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively; (ii) Q (10) is the Ljung–Box statistic 

for serial correlation in the model residuals computed with 10 lags. 
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Table 3. Individual copula results 

  

RICIA-

RICIM 

RICIA-

RICIE 

RICIM-

RICIE 

  RICIA-

RICIM 

RICIA-

RICIE 

RICIM-

RICIE 

Gumbel 

     1.262  1.256  1.324 

Rotated 

Gumbel 

      1.276  1.275  1.335 

s.e.  0.016  0.016  0.017 s.e.  0.016  0.016  0.017 

LR  198.6  192.5  280.0 LR  230.4  231.1  307.8 

AIC -395.3 -383.1 -558.1 AIC -458.8 -460.3 -613.6 

BIC -389.2 -377.0 -552.0 BIC -452.7 -454.2 -607.4 

Clayton 

      0.463  0.463  0.548 

Rotated 

Clayton 

      0.404  0.399  0.502 

s.e.  0.026  0.026  0.027 s.e. 0.026  0.025  0.027 

LR  203.2  200.6  263.5 LR 154.2  155.1  220.7 

AIC -404.5 -399.3 -525.0 AIC -306.4 -308.3 -439.4 

BIC -398.4 -393.1 -518.9 BIC -300.3 -302.2 -433.3 
Notes: (i) *** denotes significance at the 1% level; (ii) bold values indicate the best copula model among all the analysed 

individual copula models; (iii) s.e. means standard errors; (iv) 3,413 observations. 
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Table 4. Mixture copula results 

  

RICIA-

RICIM 

RICIA-

RICIE 

RICIM-

RICIE 

  RICIA-

RICIM 

RICIA-

RICIE 

RICIM-

RICIE 

                    

          0.386  0.580  0.425           0.820  0.732  0.779 

 

s.e.  0.094  0.064  0.069  s.e.  0.052  0.140  0.047 

Gumbel     1.454  1.208  1.575 Rotated 

Gumbel 

 

     1.247  1.303  1.298 

s.e.  0.171  0.031  0.143 s.e.  0.022  0.081  0.025 

Clayton 
     0.424  0.854  0.462 Rotated 

Clayton 
      1.143  0.532  1.221 

s.e.  0.099  0.150  0.083 s.e.  0.357  0.378  0.272 

 

LR  242.6  242.3  326.3  LR  244.1  243.9  330.4 

 

AIC -479.3 -478.7 -646.6  AIC -482.2 -481.8 -654.8 

 

BIC -460.9 -460.3 -628.2  BIC -463.8 -463.4 -636.4 

                    

          0.248  0.403  0.291          0.677  0.505  0.638 

 s.e.  0.064  0.101  0.058  s.e. 0.058  0.067  0.051 

Gumbel     1.607  1.189  1.726 Clayton     0.485  0.768  0.572 

 s.e.  0.178  0.068  0.161  s.e. 0.056  0.126  0.060 

Rotated 

Gumbel 
     1.220  1.375  1.251 Rotated 

Clayton 
     0.808  0.408  0.939 

s.e.  0.027  0.088  0.029 s.e. 0.180  0.073  0.165 

 LR  245.5  244.1  332.3  LR 241.1  242.0  323.7 

 AIC -485.1 -482.3 -658.7  AIC -476.3 -478.0 -641.4 

 BIC -466.7 -463.9 -640.3  BIC -457.9 -459.6 -623.0 

Notes: (i) *** denotes significance at the 1% level; (ii) bold values indicate the best copula model among all the analysed 

mixture copula models; (iii) s.e. means standard errors; (iv) 3,413 observations. 
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Table 5. DCC model conditional correlations summary statistics 

 

Mean St Dev Min Max 

RICIA/RICIM 0.414 0.128 0.094 0.740 

RICIA/RICIE 0.414 0.127 0.180 0.772 

RICIM/RICIA 0.469 0.133 0.130 0.732 
Note: Summary statistics for time-varying conditional correlations ρ. 
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Table 6. Hedge ratio (long/short) summary statistics 

 

Mean St Dev Min Max 

RICIA/RICIM 0.420 4.540 0.030 224.2 

RICIA/RICIE 0.260 0.070 0.110 0.550 

RICIM/RICIA 0.540 0.190 0.000 1.280 

RICIM/RICIE 0.390 0.130 0.000 0.980 

RICIE/RICIA 0.670 0.260 0.150 1.500 

RICIE/RICIM 0.640 2.550 0.140 126.3 
Note: Summary statistics for hedge ratios β. 
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Table 7. Portfolio weights summary statistics 

 

Mean St Dev Min Max 

RICIA/RICIM 0.710 0.140 0.000 1.000 

RICIA/RICIE 0.840 0.120 0.180 1.000 

RICIM/RICIE 0.690 0.170 0.010 1.000 
Note: Summary statistics for portfolio weights w. 

 

 

 


