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Abstract: The present study proposes a workflow to extract from orthomosaics the enormous 

amount of dry stones used by past societies to construct funeral complexes in the Mongolian 

steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs 

non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and 

digital elevation models (both derived from aerial imaging). Comparative analysis used two colour 

spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the 

topographic position index, combined with nine supervised learning algorithms (nearest centroid, 

naive Bayes, k-nearest neighbours, logistic regression, linear and quadratic discriminant analyses, 

support vector machine, random forest, and artificial neural network). When features are processed 

together, excellent output maps, very close to or outperforming current standards in archaeology, 

are observed for almost all classifiers. The size of the training set can be drastically reduced (to ca. 

300 samples) by majority voting, while maintaining performance at the highest level (about 99.5% for 

all performance scores). Note, however, that if the training set is inadequate or not fully 

representative, the classification results are poor. That said, the methods applied and tested here are 

extremely rapid. Extensive mapping, which would have been difficult with traditional, manual, or 

semi-automatic delineation of stones using a vector graphics editor, now becomes possible. This 

workflow generally surpasses pedestrian surveys using differential GPS or a total station.  

 

 

 

 

Keywords: pixel classification, grey level co-occurrence matrix, RGB colour space, texture, 
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1. Introduction 

Soon after the start of aerial photography, which became fully operational during WW1, 

archaeologists realized the potential of this technique for discovering new sites, apprehending large 

complexes in a new way, and understanding the spatial organization of archaeological structures [1]. 

For a long time, greyscale pictures were captured in low sunlight to reveal elevation anomalies as 

shadow marks [2]. Later, the introduction of colour photography became an important asset to 

identify subtle colour variations, which may occur in field crops, either because soils above buried 

walls generally retain less moisture, or because water may accumulate close to the structures [3]. 

Nowadays, the range of acquisition techniques in aerial archaeological investigation is huge, from 

satellites to small unmanned aerial vehicles (UAVs), and images are produced in both in visible and 

invisible spectra (e.g. [4]). However, because of their low cost and versatility, UAVs are often 

privileged by archaeologists over other solutions. High-definition surveys over several km2 are 

possible with UAVs, by dividing the area of interest into several smaller tiles (depending on UAV flight 

capacity). In contrast with pioneering works, photographs are now often acquired not only to provide 

aerial images, but also high-definition, georeferenced orthomosaics, and digital elevation models, 

also known as DEMs [5]. Landscape representations are then reconstructed with the help of 

photogrammetry, a technique that is about to become the new standard in archaeology for field 

documentation [6,7]. Scientists dealing with such a massive information flow may, however, 

encounter serious difficulties in producing documentation suitable for further exploitation in a 

reasonable amount of time [8], particularly when stones or archaeological structures are delineated 

manually with a vector graphics editor. The burial structures in the Arkhangai province (Mongolia) 

are a perfect example of this type of bottleneck. This region is extremely rich in funeral monuments 

dating from the Bronze Age and the Iron Age. Funeral complexes from the Iron Age are composed of 

decametric dry-stone arrangements [9-10], sometimes encompassing several km2. Even for a skilled 

expert, it is extremely difficult to identify any clear organisation of the monument from the ground, 

mainly due to the vast area covered. By contrast, orthomosaics provide extremely valuable 
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information [11]. Almost every individual stone can be distinguished in the open steppes, especially 

when the grass is low due to livestock grazing. In this specific example, as in many other situations of 

this kind, a rapid and accurate procedure to extract, at least semi-automatically, stone boundaries 

from the data acquired by UAV would be a valuable improvement in the acquisition speed of 

archaeological documentation. The problem, in a nutshell, consists of a binary pixel classification 

(stone vs non-stone), and solutions can be sought in the numerous machine learning algorithms 

increasingly used in archaeology [12-15]. Colour information is an obvious candidate for input data, 

as stones are clearly visible in the images. Other variables, such as those related to the spatial 

arrangement of the tonal information (also known as textural features) may also be highly relevant, 

as demonstrated in various fields, such as remote sensing, ecology, etc. [16-17]. Local altitudinal 

variations may also be useful as input data for classification [18].  

 

2. Research aim 

To treat the set of input features mentioned above, supervised learning should be privileged in the 

present case, because the operator determines the number of output classes (here two) in a very 

specific way, in conformity with the objectives, unlike unsupervised learning [19]. Although this 

approach inevitably introduces a manual and relatively time-consuming training step, outcomes 

should be much closer to documentation directly exploitable from an archaeological point of view. 

Here, our objective is to compare several solutions for binary pixel classification, by combining 

different input features: colour, textural parameters, and topography, with nine supervised machine 

learning algorithms: nearest centroid, naive Bayes, k-nearest neighbours, logistic regression, linear 

and quadratic discriminant analyses, support vector machine, random forest, and artificial neural 

network. For the first example, the famous 9-ha site of Jargalant, descriptive features were 

progressively introduced into the algorithms, and classification performance was investigated 

statistically and then empirically, by assessing the archaeological potential of the maps obtained. 
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Once the best approach had been selected, it was applied to the larger area of Tsatsiin Ereg, and 

the results were evaluated. 

 

3. Material and methods 

 

3.1. The sites 

The photogrammetric campaign took place during three summer periods (2016 to 2018), within the 

framework of the “Joint Monaco-Mongolian Archaeological Mission”. It focused mainly on the site of 

Tsatsiin Ereg, in the Khoid Tamir valley, located about 500 km southwest of Ulaanbaatar, but also on 

other smaller sites, either in the vicinity of Tsatsiin Ereg, or in Jargalant, a site famous for its deer 

stones, about 80 km away [20]. The site of Tsatsiin Ereg is characterized by a remarkable 

concentration of large, well-preserved complexes, including barrows, satellite quadrangles, circles, 

enclosures, and stone alignments formed by the accumulation of dry stones. The most sophisticated 

complexes, which can extend over several square kilometres, date from the late 2nd to early 1st 

millennium BC [21-23]. The plethora of structures composing these funeral complexes makes it 

difficult to understand the precise chronology of the building phases. However, the repetition of 

certain elements, related to funeral practices, sacrificial rituals, and artistic style, indicates cultural 

coherence shared over a large area by past nomadic societies, which should be studied to better 

apprehend cultural interactions.  

 

3.2.  Orthomosaic and DEM production 

Pictures were captured by an unmanned aerial vehicle (UAV), a DJI Phantom 3 PRO equipped with a 

GPS and a 12 Mpix camera. The lens was a 20 mm (equivalent 35 mm) f/2.8, producing a diagonal 

field of view of 94°. The flight plan was programmed via a free Android application (Altizure App, 
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https://www.altizure.com/), where target area positioning is facilitated by displaying a satellite 

image as background. The operator sets the height flight above ground, the size and orientation of 

the region of interest, as well as the capture density, by choosing the amount of forward and side 

overlap (typically 75-80%). The UAV can then automatically follow a zigzag pattern, taking a series of 

photographs in the nadir direction. As sensor definition and focal of the lens are fixed, the distance 

between the centres of two consecutive pixels at ground level, also known as the ground sample 

distance (GSD), depends only on the height of flight [24]. At this point, it is worth recalling that GSD 

should be at least half the size of the smallest details to be captured optically. If the smallest stones 

of interest measure approximately 20 cm, they should be recognisable at a flight height of 100-150 m 

(GSD of 4.3-6.5 cm/px, theoretically). In practice, the areas studied were divided into smaller square 

regions of interest of approximately 9-10 ha, which can be covered by UAV without battery 

replacement at a flight height of 100-150 m, a value typically used. Ground control points were 

placed before acquisition, and the distances between them were measured with a laser telemeter 

Leica Disto D510, able to work in sunlight up to 200 m, with a precision of ca 1 mm. Typically 80-110 

pictures were captured per tile, taking 15-20 min in the field. In the laboratory, orthomosaics and 

DEMs were produced by the Photoscan PRO software, v. 1.4.3 from Agisoft. Picture alignment and 

subsequent sparse cloud construction were strongly constrained by the distances between GCPs. 

This step, which helps to structure the 3D model, was useful here, as wind causing movement of long 

grass (which dominates the landscape studied) may lead to the accumulation of slight alignment 

errors between pictures. The workflow then consisted in densifying the cloud, producing height field 

models, DEMs, and orthomosaics, at a fixed resolution of 5 cm / pixel for Tsatsiin Ereg and 8 cm/pixel 

for Jargalant (see [22, 25] for more details about the photogrammetrical workflow). It is worth 

mentioning that the use of GCPs precisely georeferenced with differential GPS, for example, would 

have been optimal for accurate positioning of the maps produced. Although georeferencing here 

only derives from the GPS embarked into the drone because of logistic constraints, the relative error 
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of the models produced does not exceed 10-20 cm, while absolute error, assessed by projecting 

orthomosaics on Google Earth (considered as true reference), does not exceed 1-3 m.  

 

3.3. Feature inputs 

In order to evaluate which input feature (or combination of features) is the most pertinent for binary 

classification (i.e. stone vs non-stone), several image representations were obtained from original 

orthomosaics and DEMs. 

RGB colour space. In its most common version: 24-bit encoding, the image is composed of one 

channel for each of the three primary colours processed by cameras and computers: red, green, and 

blue. Each is encoded on 8 bits, producing 256 possible discrete values per channel, and a palette of 

16 777 216 discrete combinations. This colour space uses additive colour mixing to compose the final 

image. In the following, images are split into 3 channels (namely R, G, and B), and each colour 

channel is treated separately as a single feature (Fig. 1). 

HSV colour space. Colour transformations into non-RGB colour space have sometimes been shown 

to enhance classification performance [26]. Similarly to the RGB colour model, the HSV colour space 

is composed of three channels (for hue, saturation, and value), denoting colour property, perceived 

colour intensity, and perception of brightness (Fig. 1) [27]. The HSV channels are obtained from those 

composing the RGB.  

Grey Level Co-Occurrence Matrix (GLCM) and texture parameters. Developed by Haralick et al. (1973) 

[28], GLCM texture parameters belong to the family of statistics describing the arrangement of pixels 

separated by a certain distance, in different directions. Originally 14 parameters were proposed as 

image texture features, but only three of them are used in the following: contrast (CON), 

homogeneity (HOM), and entropy (ENT), because they have been recognized to enhance 

classification accuracy [29,30]. Their calculation is a two-step process: the computation of the grey 



9 
 

level co-occurrence matrix from an image with g grey levels (obtained from the RGB image), and the 

calculation of the descriptors from this matrix (see [31] for details). The contrast descriptor, 

calculated for each pixel, illustrates the local variation of pixel intensity within a certain spatial range, 

while homogeneity and entropy describe the local sameness of grey levels of pixels, in other words 

the tonal variations in space. Three parameters must therefore be tuned: spatial scale (i.e. window 

size), the number of grey levels in the image to be processed, and the directions for which GLCM is 

computed (Note that calculations  covered all directions using 32 grey levels and a window size of 9 x 

9 pixels, i.e. representing typically 0.2-0.5 m2. See Fig. 1 for map examples).  

Topographic position index (TPI). This index, widely used for automatic landform classification [32], is 

simply defined as the difference in altitude between a central pixel and the mean of the surrounding 

cells in the DEM [33]. The TPI depends only on topography and the size of the search window 

defining neighbours. In the present case, this size should be larger than the elements of interest, to 

highlight them as positive or negative anomalies (In the following, a square window of 201 x 201 

pixels, covering about 100-250 m2, was found appropriate. See Fig. 1, where the DEM is coloured and 

hill-shaded for better understanding).  

 

3.4. Machine learning algorithms 

Underlying idea. Here, the aim is to predict, for each pixel, the presence or absence of stone, from a 

set of features selected among those enumerated above (i.e. colour channels, texture maps, and 

TPI). Let Y be the class ensemble composed, in our case, of two categories: yc, (with c ∈ [0,1]), and x a 

vector describing the set of n features, x = {x1,…,xn}. In supervised learning, the operator first teaches 

the mathematical model, labelling by hand a set of pixels with and without stones. From that training 

set or a subset of it, patterns are sought in x to predict class labels, Y. The classifier tries to find a 

mapping function (i.e. a decision rule), f(x)→ Y, which is then used to map new, unseen data. Nine 

popular classifiers listed below were tested in this study. As they are extensively explained in many 
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textbooks [34-36], they are only briefly described, to facilitate clearer understanding for readers 

unfamiliar with machine learning, and a simplified pipeline is provided in Fig. 2.  

Naive Bayes (NB). This classifier is one of the simplest algorithms used for binary classification. As 

indicated by its name, it is based on the Bayes’ theorem, and is naïve as it assumes that every pair of 

features is independent, a situation rarely met in real-world data. Continuous variables are assumed 

to follow Gaussian distributions within each class, allowing the calculation of conditional 

probabilities, ����|�	
, from the training set [37]. Combined with the independence assumption, a 

class label, ���, corresponding to the most probable class (that with maximum a posteriori 

probability) is assigned following: 

��� = argmax
	

 ��y	
 � ����|�	

�

���
  

Nearest centroid (NC). It simply compares the position of a sample in the feature space to the 

centroid of each class determined from the training set, and labels it with the class where the mean, 

µc, is the closest (see Supplementary Material S1a for an illustration):  

���� = argmin
	

 ‖�	−!‖  

k-nearest neighbours (KNN). For the classification task, the KNN algorithm identifies the k nearest 

neighbours in the feature space of the training samples, " = #$���, … , $'��(, and proceeds by 

majority voting to assign a class label, ��)�� (Supplementary Material S1b): 

��)�� = argmax
	

 * +��	 = ����

,-∈ .

  

with ����the class label of the i-th neighbour among the k nearest neighbours, and +��	 = ����
 

equal to 1 if the classes of  $��� and �	 are the same, and 0 otherwise. Despite its simplicity, this 

algorithm often provides competitive results, but the value of k (usually odd) needs to be set by the 

operator, or optimized [38]. The operator may also choose the metric used for distance, e.g. 
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Euclidian, Manhattan, and possibly a weight, inversely proportional to the distance of each of the k 

neighbours, which may be useful when classes are clearly unbalanced.  

Logistic regression (LR). A new variable, z, is first built as input from a linear combination of weights 

and sample features: z=wTx. Then, the logistic function, also known as a sigmoid cumulative logistic 

distribution, quashes the range of possible outputs within the [0, 1] range that can be interpreted in 

terms of probabilities (Supplementary Material S1c). From these results, a class label is assigned as 

follows [35]: 

��/0 = argmax
	

 ��y	|!, 1
  

Several different strategies exist to optimize the weights, w, and to perform a regularization step, to 

handle collinearity among features, as well as to prevent overfitting. Logistic regression performs 

well for classes that are linearly separable (details can be found in [39]). 

Linear and quadratic discriminant analyses (LDA & QDA). These models assume a Gaussian density 

for each class. Bayes’ rule is applied to calculate conditional probabilities, ��y	|!
, and hence to 

predict classes, by choosing c, which maximizes ��y	|!
. For LDA, all classes are supposed to have 

the same covariance matrix, and decision boundaries are linear (Supplementary Material S1d), but 

not for QDA (Supplementary Material S1e), which makes decision boundaries more flexible [40]. 

Support-vector machine (SVM). This very popular algorithm for classification seeks to maximize the 

margin between the decision boundary hyperplane and the closest training samples from this 

hyperplane, which are called support vectors [41]. The idea behind this procedure is to produce a 

clear gap between samples belonging to both categories (Supplementary Material S1f). Interestingly, 

SVM can also be used for data not linearly separable, after the application of a mapping function, 

which transforms the input data, in a higher dimensional space where classes become linearly 

separable. This step takes advantage of the so-called “kernel trick” for computation, by applying, 

most often, a radial basis function (RBF), which is in fact a Gaussian kernel [42].   
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Random forest (RF). It belongs to the class of ensemble methods, capable of both classification and 

regression, in the case of linear and non-linear problems. The algorithm proceeds by aggregating a 

bunch of classification trees built randomly: instead of constructing splits on the basis of feature 

importance, the best feature is sought among a random subset of input variables (Supplementary 

Material S2a). The idea behind the algorithm is that predictions made by individual decision trees 

may not be correct but, once they have been combined, label predictions will be more accurate and 

stable [43]. Several parameters must be tuned for forest construction (e.g. number of trees, number 

of levels in each decision tree, etc.), and concerning the method used for sampling data points. 

Artificial neural network (ANN). This algorithm is vaguely inspired by the human brain [44]. Several 

hidden layers composed of several nodes are placed between input (i.e. features) and output (class 

labels) layers. Each node receives input values from the previous layer. Values are pondered by 

weights and biased, and then passed through an activation function, used to determine whether and 

to what extent the signal moves to the next layer (Supplementary Material S2b). Weight and bias 

values are optimized by iterating the following steps: (i) predicted output calculation (feedforward 

step), and (ii) update of weight and bias (backpropagation step) [36]. The operator must set the 

number of hidden layers and units, the learning rate, the type of activation function, etc. 

Hard voting. Hard voting consists in aggregating predictions made by each individual classifier, or a 

subset of them, and then predicting the class by simple majority voting (Supplementary Material 

S2c). The underlying idea is that several models are probably more reliable than just one.  

 

3.5.  Hyperparameter tuning and metrics for model evaluation 

Basically, a good practice to evaluate the capacity of the models produced to generalize to unseen 

data is to split the supervised data into two groups, one for training (here 70% of the dataset), with 

the remainder (30%) as a test dataset [36]. However, depending on learning strategies, as mentioned 

above, several model hyperparameters (some of them tackling overfitting via regularization) have to 
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be fine-tuned. This optimization step is operated by a brute force search on a grid of possible 

hyperparameter values, using inner cross-validation on the training set. For final model evaluation, 

two strategies are possible. The first simply applies the model to the test dataset. This method 

provides a single evaluation value, which is unbiased, as these data were not used to build the 

models [44]. Note, however, that results may depend on how the data were split into training and 

test sets. The second strategy computes an outer cross-validation by splitting the data into k folds, 

applying the model to k-1 folds, keeping the remainder for performance evaluation, and repeating 

the operation k times [45]. Results are almost unbiased [46] and, interestingly, may be expressed in 

terms of confidence intervals. Both strategies were used here.  

Several metrics are available to evaluate the models, including precision, recall, F1-score, and 

accuracy [36]. Let TP, TN, FP, and FN be the True Positive, True Negative, False Positive and False 

Negative, respectively (with positive being a stone). 

Precision =  TP
TP + FP 

Recall =  TP
TP + FN  

F1-Score deals with both precision and recall. It is the harmonic of both scores: 

F1 − Score = 2. Precision . Recall
Precision + Recall 

Accuracy is defined as the percentage of correct predictions: 

Accuracy = TP + TN
TP + FP + TN + FN 

Most archaeologists prefer to save all the stones if possible, even if they need to perform a minor a 

posteriori cleaning of false positives. As a consequence, hyperparameters were tuned to maximize 

recall. 
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3.6. Practical implementation 

Computation of GLCM and TPI used the glcm package and a homemade script, both written for the 

free R software (https://www.r-project.org/). Colour manipulation, application of machine learning 

algorithms to standardized data, and georeferencing of the maps produced used the scikit-

learn 0.20.3, opencv 4.1.1, rasterio 1.0.22, gdal 2.4.2, and scipy 1.2.1 

libraries for Python 3.7.1 (https://www.python.org/). Final results, expressed as georeferenced 

polygon vector layers, were integrated using the free QGIS software (https://www.qgis.org). Point 

pickup to produce the training dataset used ImageJ (https://imagej.nih.gov/ij/), or a homemade 

snippet based on OpenCV.  

   

4. Results and discussion 

4.1.  Feature engineering and choice of machine learning algorithm 

Tests to select the best combination of features and algorithm were conducted, for the Jargalant site, 

on images extending over 5043 x 4546 pixels. Six feature combinations: (i) R + G + B, (ii) H + S + V, (iii) 

H + S, (iv) CON + HOM + ENT, (v) R + G + B + CON + HOM + ENT, and (vi) R + G + B + CON + HOM + ENT 

+ TPI were evaluated with each of the 9 algorithms listed above. Such a progressive scheme of 

feature selection aims at identifying the most relevant features in the classification process, thus 

building a better classifier without computational overload. Results, expressed as precision, recall, 

F1-Score, and accuracy using an inner cross-validation on the training set are summarized for each 

combination in Table 1 (see also Supplementary Material SM3 for scores from test set). Pixels were 

manually picked out on the orthomosaic to train the model with 363 positive and 1010 negative 

cases. Such a dataset may appear oversized and time-consuming for a procedure requiring manual 

operation. This is especially true when repeated several times for large sites, covering several square 

kilometres. However, the objective here was to evaluate the influence of the size of the training set, 

in terms of performance, which therefore required a vast number of samples.  
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RGB as input features. Results appear to be good, most of the time > 93%, up to 98.5%, whatever the 

algorithm applied to the RGB information alone (Table 1). These good scores are all the more 

remarkable in that they include some rather basic procedures, such as naive Bayes, nearest centroid, 

and, to a lesser extent, linear discriminant analysis, which is among the four best results (Table 1). It 

is worth mentioning that the passage of clouds during aerial picture acquisition resulted in colour 

inhomogeneity, especially in the northern half of the orthomosaic (cf. Fig. 1). This could have 

affected the classification performance based on colour, but an appropriate training set 

circumvented this problem. The SVM procedure was finally selected, because it slightly 

outperformed the other procedures. Another reason for this choice is the capacity of SVM, in 

comparison with the other algorithms, to train relatively quickly at this level of quality, although 

convergence between the training and cross-validation scores was not reached, even when 1000 

samples were processed for training (Fig. 3a). In terms of archaeological output, the map produced 

by SVM is acceptable (Fig. 3b), but several bare soil areas, corresponding to car tracks, were 

erroneously classified as dry stones. As a result, serious manual cleaning would be necessary before 

producing usable documentation.  

HSV or HS as input features. When HSV channels were applied as alternative input features to RGB, 

results were, at best, similar to those obtained by RGB (e.g. SVM, RF, ANN), or exhibited worse 

performances (e.g. NB, LR, LDA, QDA) (Table 1). Using H and S alone could be a better option, 

because of the gain in robustness (for H and S) against illumination changes (V) [47], whereas the 

RGB colour space is generally sensitive to this parameter (Sural et al. 2002). This was not the case 

here, as the results obtained from H and S (not shown) decreased dramatically in comparison with 

those based on HSV, similarly to results already observed in other circumstances [26]. As a 

consequence, the RGB colour space will be preferred in the following. 

Texture features alone. The combination of contrast, homogeneity, and entropy yields an excellent 

classification for all algorithms, always surpassing RGB by a few percent, which is noticeable at this 
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level of performance (Table 1). The logistic regression model was selected for its efficiency, and 

because convergence is reached quickly, after 300-400 total samples, at a level of accuracy close to 

99.3% (Fig. 3c). This procedure provides a map where car tracks have now disappeared, 

demonstrating the power of texture features for classification (Fig. 3d). 

Combining both texture features and RGB. Such a combination should take into account both spatial 

arrangement of the tonal information, and spectral distribution of light; two sets of features which 

are not fully independent because the former is, in part, deduced from the latter, but which should 

describe two different sides of the image. This might push classification capabilities a little further 

[48]. Table 1 confirms this expectation, as performances increased slightly, almost systematically 

(note however that these improvements cannot be statistically demonstrated, considering 

confidence intervals). The classifier trained quickly (Fig. 3e), and several isolated false positives have 

vanished from the resulting map, although such an improvement is difficult to see at the scale of the 

document (Fig. 3f).  

Combining texture features, RGB and TPI. Stone mounds exhibit positive relief with respect to their 

immediate surroundings, while hollows are expected for furrows resulting from agricultural activities, 

or car tracks in the steppes. As a consequence, information derived from topography might 

efficiently enrich the feature set. When TPI is introduced as a new input variable, together with RGB 

colour and texture, performance scores tend to improve by a further few tenths of a percent (Table 

1). Random forest, logistic regression, and SVM slightly surpass other approaches, and produce 

scores that generally exceed 99.5%. However, attention must be paid to training speed in addition to 

performance scores, because the more rapidly the model learns, the less time-consuming will be the 

supervision step. Here, even for the most favourable case, at least 400 samples were necessary to 

reach convergence between the training and cross-validation scores (not shown). Hard voting was 

therefore tested, using the results of the KNN, SVM, LR, LDA, RF and ANN classifiers, in the hope of 

reducing this number, if possible, without impacting score quality. This ensemble-based method 
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reached correct convergence for only 200 training samples (Fig. 3g), while maintaining scores at their 

highest levels: > 99.5% for precision, F1-Score, and accuracy (Fig. 3h displays the resulting map). Note 

that gradient boosting and adaboost (i.e. adaptive boosting), which seek to transform a set of weak 

learners into strong learners [49], were also tested. Both methods produced scores comparable to 

those of hard voting, but at a lower learning speed. As a consequence, hard voting was preferred.   

 

4.2. Visual evaluation of the Jargalant output map 

Introducing complexity into a model to improve classification performance by only a few percent or 

tenths of a percent in comparison with the use of RGB alone might appear, at first glance, not really 

relevant, but purely academic. It must, however, be kept in mind that a gain of only 0.1% in terms of 

accuracy corresponds to more than 20 000 pixels in an image of more than 20 Mpix. Any 

improvement, even minimal, may therefore save a considerable amount of time during post-

processing, so that efforts must be made in this direction. Fig. 4a displays the original orthomosaic of 

Jargalant, overlain by a vector layer corresponding to a polygonised black and white map, obtained 

by hard voting (i.e. Fig. 3h), and a close-up of two particular areas (Fig. 4bc). At this scale, the quality 

of the output map is undeniable. All archaeological structures composed of accumulations of dry 

stones were precisely delineated, while bare soils were not misclassified as stones (see Fig. 4bc), 

except in very few instances in the north-east (arrow 1), on the car track in the south-east (arrow 2), 

and for the livestock enclosure in the west of the orthomosaic (arrow 3). Some positive cases were 

also delineated in the fields, but they correspond to actual stones raised to the surface by ploughing.  

 

4.3. Performance of the method for a large site and evaluation of the operational framework  

At Tsatsiin Ereg, archaeological structures cover several square kilometres. However, only nine tiles, 

of about 10 ha each, corresponding to the B10 complex are presented here (Fig. 5a), because this 
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area has already been the object of a precise survey by two topographers, equipped with a total 

station during 2 missions, each lasting 1 month (Fig. 5b). Each of the 9 orthomosaics was produced 

from about 100 pictures acquired in 2016, and hard voting was applied to RBG + texture + TPI, 

following the procedure described above. About 200-250 samples per tile for both positive and 

negative cases were selected manually, so that, without the test subset, the total number of training 

samples finally used for learning was around 300; a value sufficient to reach an acceptable 

convergence between training and cross-validation scores.  

During the past 3000 years, rain erosion has almost certainly led to the accumulation of a thin slope-

wash layer made of granitic arena, but as it is only 5-10 cm thick, even small stones can be 

recognized. Dry stone structures are therefore perfectly visible in the steppes and can be correctly 

delineated. The method proposed clearly outperforms pedestrian surveys. It appears more precise, 

partly because human error during topographic surveys of an area very dense in anthropogenic 

structures can be avoided. From flight programming to photo processing, the gain in working time for 

the operator is considerable (cf. Table 2). Only 15-20 minutes of flight are necessary to cover an area 

of 400 x 400 m2, which is remarkable, considering that time spent in the field is the main limiting 

factor for massive recording. Interestingly, the operator can also evaluate orthomosaics the same 

day, to detect possible technical problems, and so perform the operation again if necessary. Note 

that several isolated rocks are recorded. Depending on the final objective, these positive cases could 

be easily removed, either by hand (taking typically less than 30 min), or automatically using an 

algorithm, taking into account the local density of positive cases, and/or the distance to the nearest 

positive neighbours.   

One final test was performed to examine if the time spent acquiring the training dataset could be 

significantly reduced. Tiles n°5 and n°3 were treated with their specific training dataset, but also with 

that acquired to process tile n°4 (Fig. 6). Good results were anticipated for n°5, since the images were 

captured the same day, approximately at the same time, and thus in the same lightning and topsoil 
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moisture conditions, but there was some doubt about tile n°3, which exhibits greener images (like 

tile n°6), probably because the images were taken after a rainy event. In fact, both treatments 

produce comparable outcomes (Fig. 6ab and Fig. 6cd), because texture variables are less prone to 

variation than colour variables. However, it must be noticed that, when training used samples from 

tile n°4, more false positives were observed for tile n°5, while a few stones were missed on tile n°3. 

Again, depending on the final objective, the operator will be able to decide between optimal 

accuracy, but a relatively time-consuming training step, or simplified training by picking pixels from 

only a single tile. 

 

5. Conclusion  

In the context of large archaeological sites, covering several hectares, with little vegetation, acquiring 

images by drone, with treatment by appropriate methods, is a very effective solution for further 

automatic archaeological mapping. The low cost and simple logistics, especially in remote field 

conditions, undeniably argue for this type of aerial photogrammetry. The method proposed for 

treating the data generally surpasses pedestrian surveys , as it is almost fully automatic, rapid, and 

accurate, while a traditional record by GPS or total station is time-consuming, and may lead to errors 

difficult to avoid when archaeological structures are small and numerous. Acquisition speed is a 

strong asset, as one of the most limiting factors is the time spent in the field, especially for studies 

undertaken overseas, where field campaigns are often time-constrained. With the increasingly high 

resolution of images, and technological progress making it possible to collect hundreds of images for 

each flight, applying machine learning algorithms becomes indispensable. The operator intervenes 

significantly during two crucial steps. The first is the manual selection of the training dataset. In the 

examples presented, it was very important to sample different kinds of stones, but also grass, car 

tracks, bare soil, etc., because if the training data is inadequate or not adequately representative, 

poor classification results are to be expected. The second step concerns feature engineering. While 

the selection of the best learning model and hyperparameter tuning can be performed almost 
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automatically, the workflow consisting in reformatting, processing, enriching, calibrating, and finally 

selecting features requires some experience. In the present case, the use of colour information in the 

RGB colour space, three texture parameters among those available, and one feature derived from 

the topography produced suitable outputs for almost all classifiers tested. That is probably a good 

start for undertaking such mapping in other circumstances, but it is likely that some adjustments will 

be necessary to attain optimal results. Depending on the final objective, it may be interesting (or not) 

to keep isolated stones. In our examples, their position might be useful for cultural heritage 

preservation, by better understanding of stone displacements caused by livestock perambulation or 

water runoff. By contrast, for studying the spatial organisation of archaeological structures, these 

isolated stones can be removed manually, or alternatively by using an appropriate algorithm. For the 

sake of completeness, it must however be mentioned that this study takes place in a part of the 

world where conditions are optimal: the archaeological structures are not masked by vegetation, and 

they have almost never been buried or disturbed since their construction. Such a situation is rarely 

met in other environments, probably making the application of the proposed workflow more 

difficult. Finally, although binary pixel classification was here proved to perform well, other extremely 

powerful approaches, such as deep learning for object detection, should also be tested in the near 

future.  
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Figure caption 

 

Figure 1: Scheme of feature engineering. Colour as RGB and HSV colour space; texture features as 

HOM (homogeneity), ENT (entropy), and CON (contrast). TPI for topographic position index, deduced 

from DEM, displayed as colour hill-shaded map. 

Figure 2: The machine-learning pipeline for binary pixel classification  

Figure 3: Feature selection and best machine learning algorithm for the site of Jargalant. Four feature 

combinations are presented:  RGB, texture (CON + HOM + ENT), RGB + texture, RGB + texture + TPI. 

Left: training and cross-validation scores with their 95% confidence interval as a function of the size 

of the training dataset; right: output map with the model selected.Figure 4: Original orthomosaic of 

Jargalant overlain by a vector layer corresponding to a polygonised black and white map obtained by 

hard voting (A); two close-ups (B and C). Three arrows (1-3) point out specific areas. 

Figure 5: Comparison between delineation of stones obtained by machine learning (a) and the map 

resulting from pedestrian survey by topographers equipped with a total station (b) for the funeral 

structure B10, Mongolia. The figure (a) displays 9 orthomosaics, noted 1-9, overlain by vector layers 

corresponding to polygonised black and white maps, obtained by hard voting. 

Figure 6: Comparison between delineation of stones obtained by a model trained using a dataset 

specifically acquired for tiles n°5 and n°3, respectively (a) and (c), and delineation obtained with a 

common training dataset acquired from tile n°4 (b) and (d). 
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 RGB 

 
 

 
      HSV 

 
 

      Texture 
 
 

       
     Texture + RGB 
 

 

Texture + RGB 
          + TPI 

 

                 

NB precision 90.3 ± 2.0 88.1 ± 4.1 94.8 ± 2.0 94.8 ± 2.0 94.6 ± 3.5 

recall 96.7 ± 1.1 91.7 ± 3.4 98.9 ± 1.0 99.2 ± 0.7 99.5 ± 0.7 

F1-Score 93.4 ± 1.2 89.8 ± 2.4 96.8 ± 0.8 96.9 ± 0.9 96.9 ± 2.0 

accuracy 96.4 ± 0.7 94.5 ± 1.4 98.3 ± 0.5 98.3 ± 0.5 98.3 ± 1.1 

NC precision 87.6 ± 2.5 84.9 ± 3.9 96.0 ± 1.1 96.6 ± 1.3 98.1 ± 2.3 

recall 91.1 ± 1.2 98.1 ± 1.4 97.8 ± 0.7 99.4 ± 0.7 99.4 ± 1.1 

F1-Score 92.8 ± 1.8 91.0 ± 2.6 96.9 ± 0.7 98.0 ± 0.6 98.8 ± 1.5 

accuracy 95.9 ± 1.0 94.8 ± 1.6 98.3 ± 0.4 98.9 ± 0.3 99.3 ± 0.8 

KNN precision 98.0 ± 1.5 96.4 ± 2.1 99.4 ± 1.1 99.7 ± 0.5 99.2 ± 1.1 

recall 93.4 ± 3.6 94.2 ± 2.8 97.0 ± 1.6 98.6 ± 1.5 99.2 ± 1.1 

F1-Score 95.6 ± 1.9 95.3 ± 2.3 98.2 ± 1.0 99.2 ± 0.7 99.2 ± 0.8 

accuracy 97.7 ± 1.0 97.5 ± 1.2 99.1 ± 0.5 99.6 ± 0.4 99.6 ± 0.4 

LR precision 97.2 ± 1.4 91.9 ± 2.7 99.4 ± 1.1 99.7 ± 0.6 99.4 ± 1.1 

recall 96.4 ± 1.9 93.1 ± 2.6 98.3 ± 1.0 98.9 ± 0.6 99.2 ± 1.1 

F1-Score 96.4 ± 1.3 92.5 ± 2.4 98.9 ± 0.9 99.3 ± 0.4 99.3 ± 1.1 

accuracy 98.3 ± 0.7 96.0 ± 1.3 99.4 ± 0.5 99.6 ± 0.2 99.6 ± 0.6 

LDA precision 98.0 ± 0.7 88.9 ± 3.5 98.3 ± 1.0 99.2 ± 1.1 99.2 ± 1.1 

recall 95.9 ± 2.5 96.4 ± 2.2 96.4 ± 1.9 98.6 ± 0.0 98.9 ± 1.0 

F1-Score 96.9 ± 1.5 92.5 ± 2.7 97.4 ± 1.2 98.9 ± 0.6 99.0 ± 0.8 

accuracy 98.0 ± 0.8 95.9 ± 1.6 98.6 ± 0.6 99.4 ± 0.3 99.5 ± 0.4 

QDA precision 94.7 ± 2.3 88.3 ± 3.2 95.3 ± 1.3 95.8 ± 1.9 96.1 ± 2.5 

recall 97.0 ± 2.0 92.8 ± 2.9 98.9 ± 1.0 99.4 ± 0.7 99.7 ± 0.6 

F1-Score 95.8 ± 1.8 90.5 ± 2.6 97.0 ± 0.7 97.6 ± 0.9 97.9 ± 1.4 

accuracy 97.7 ± 1.0 94.8 ± 1.4 98.4 ± 0.4 98.7 ± 0.5 98.8 ± 0.8 

SVM precision 98.6 ± 1.5 98.4 ± 1.6 99.5 ± 1.1 98.4 ± 1.6 98.9 ± 1.6 

recall 96.1 ± 2.0 96.4 ± 2.6 98.4 ± 1.0 98.6 ± 1.5 99.4 ± 1.1 

F1-Score 97.3 ± 1.6 97.3 ± 1.4 98.9 ± 0.3 98.5 ± 0.7 99.2 ± 1.3 

accuracy 98.6 ± 0.8 98.6 ± 0.7 99.4 ± 0.2 99.2 ± 0.4 99.6 ± 0.7 

RF precision 95.8 ± 1.6 96.4 ± 2.6 99.4 ± 1.1 99.5 ± 0.7 99.7 ± 0.6 

recall 94.2 ± 3.5 94.2 ± 2.9 97.8 ± 0.7 99.2 ± 1.1 99.5 ± 0.7 

F1-Score 95.0 ± 2.3 95.3 ± 2.5 98.6 ± 0.8 99.3 ± 0.6 99.6 ± 0.6 

accuracy 97.4 ± 1.1 97.5 ± 1.3 99.3 ± 0.4 99.6 ± 0.3 99.8 ± 0.3 

ANN precision 97.0 ± 1.6 96.2 ± 2.3 99.4 ± 0.7 98.9 ± 1.0 98.1 ± 1.8 

recall 96.1 ± 2.0 95.3 ± 1.9 97.5 ± 1.6 98.9 ± 0.6 98.9 ± 1.0 

F1-Score 96.5 ± 1.3 95.7 ± 0.7 98.5 ± 1.1 98.9 ± 0.5 98.5 ± 1.3 

accuracy 98.2 ± 0.7 97.7 ± 0.4 99.2 ± 0.5 99.4 ± 0.3 99.2 ± 0.7 

                 

Voting hard precision             99.6 ± 0.6 

 recall             99.7 ± 0.3 

 F1-Score             99.6 ± 0.5 

 accuracy             99.7 ± 0.4 

                 

 

Table 1: Scores and standard deviation (obtained using an inner cross-validation on the training set) 

of combinations between features and machine learning algorithms for the site of Jargalant. Note 
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that for such high values, close to 100%, the standard deviation calculation is no longer correct. It is 

nonetheless provided for comparison purposes. NB for Naive Bayes, NC for nearest centroid, KNN for 

k-nearest neighbours, LR for logistic regression, LDA and QDA for linear and quadratic discriminant 

analyses, SVM for support vector machine, RF for random forest, ANN for artificial neural network. 

Texture features encompass contrast, homogeneity, and entropy. In bold, the results corresponding 

to the four feature combinations:  RGB, texture (CON + HOM + ENT), RGB + texture, RGB + texture + 

TPI, presented in Fig. 3. 

  



29 
 

 

  
Time consumed 

 

 
Picture acquisition by drone (automatic) 

 
15 min 

Production of DEM and orthomosaic by photogrammetry (automatic) 2h30 – 3h00 
Production of texture maps (automatic) 40 min 
Production of TPI map (automatic) 5 min 
Point selection for training dataset (manual) 10 min 
Classification by hard voting and construction of vector layers (automatic) 15 min 
  
Post-production & wrong polygon cleaning (manual) < 30 min* 
  

 

Table 2: Time necessary for processing one tile of about 300 x 300 m2 (final images of ca. 40 Mpix). 

These times must be compared to the two months needed for two people in the field to record only 

the B10 structure (see Fig. 5). *: maximum time provided for cleaning vectorized outputs of 

Jergalant. Note that this value may be different, depending on the area targeted. Both DEMs and 

orthomosaics were produced using a computer equipped with an i7 5960X CPU, 64 Go of RAM, and 

two NVIDIA GeForce GTX 980 mounted in SLI. 
















