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This paper surveys benchmarking principles, machine learning devices including GPUs, FPGAs, and ASICs, and deep learning software frameworks. It also reviews these technologies with respect to benchmarking from the perspectives of a 6-metric approach to frameworks and an 11-metric approach to hardware platforms. Because MLPerf is a benchmark organization working with industry and academia, and offering deep learning benchmarks that evaluate training and inference on deep learning hardware devices, the survey also mentions MLPerf benchmark results, benchmark metrics, datasets, deep learning frameworks and algorithms. We summarize seven benchmarking principles, differential characteristics of mainstream AI devices, and qualitative comparison of deep learning hardware and frameworks.

INTRODUCTION

After developing for about 75 years, deep learning technologies are still maturing. In July 2018, Gartner, an IT research and consultancy company, pointed out that deep learning technologies are in the Peak-of-Inflated-Expectations (PoIE) stage on the Gartner Hype Cycle diagram [START_REF] Hare | Hype Cycle for Data Science and Machine Learning[END_REF] as shown in Figure 2, which means deep learning networks trigger many industry projects as well as research topics [START_REF] Dai | Improving data quality through deep learning and statistical models[END_REF][3] [START_REF] Keefer | A Survey on Document Image Processing Methods Useful for Assistive Technology for the Blind[END_REF].

Image data impacts accuracy of deep learning algorithms. The accuracy of deep learning algorithms can be improved by feeding high quality images into these algorithms. Well-known image sets useful for this include CIFAR-10 [START_REF] Torralba | 80 million tiny images: A large data set for nonparametric object and scene recognition[END_REF], MNIST [START_REF] Yann | THE MNIST DATABASE of handwritten digits[END_REF], ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], and Pascal Visual Object Classes (P-VOC) [START_REF] Everingham | The pascal visual object classes (VOC) challenge[END_REF]. The CIFAR-10 dataset has 10 groups, and all images are 32×32 color images. MNIST has digital handwriting images, and these images are black and white. ImageNet and P-VOC are high quality image datasets, and are broadly used in visual object category recognition and detection.

Benchmarking is useful in both industry and academia. The definition from the Oxford English Dictionary [START_REF] Online | Oxford English Dictionary Online[END_REF] states that a benchmark is "To evaluate or check (something) by comparison with an established standard." Deep neural learning networks are leading technologies that extend their computing performance and capability based on flexibility, distributed architectures, creative algorithms, and large volume datasets. Comparing them via benchmarking is increasingly important.

Even though previous research papers provide knowledge of deep learning, it is hard to find a survey discussing qualitative benchmarks for machine learning hardware devices and deep learning software frameworks as shown in Figure 1. In this paper we introduce 11 qualitative benchmarking metrics for hardware devices and six metrics for software frameworks in deep learning, respectively. The paper also provides qualitative benchmark results for major deep learning devices, and compares 18 deep learning frameworks.

According to [START_REF] Nurvitadhi | Can FPGAs beat GPUs in accelerating nextgeneration deep neural networks?[END_REF], [START_REF] Ovtcharov | Accelerating Deep Convolutional Neural Networks Using Specialized Hardware[END_REF], and [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], there are seven vital characteristics for benchmarks. These key properties are: Evaluating artificial intelligence (AI) hardware and deep learning frameworks allows discovering both strengths and weaknesses of deep learning technologies. To illuminate, this paper is organized as follows. Section II reviews hardware platforms including CPUs, GPUs, FPGAs, and ASICs, qualitative metrics for benchmarking hardware, and qualitative results on benchmarking devices. Section III introduces qualitative metrics for benchmarking frameworks and results. Section IV introduces a machine learning benchmark organization named MLPerf and their deep learning benchmarking metrics. Section V presents our conclusions. Section VI discusses future work. AI algorithms often benefit from many-core hardware and high bandwidth memory, in comparison to many non-AI algorithms that are often encountered. Thus computational power is not just a one-dimensional concept. The type of computations the hardware design is best suited for must be considered, since a hardware platform can have more or less computational power depending on the type of computation on which it is measured. GPUs (graphics processing units) do well on the kind of parallelism often beneficial to AI algorithms, in comparison to CPUs (central processing units), and thus tend to be well suited to AI applications. FPGAs (field programmable gate arrays), being configurable, can be configured to perform well on AI algorithms although currently they lack the rich software layer needed to fully achieve their potential in the AI domain. ASICs (application specific integrated circuits) are similar to FPGAs in this regard, since in principle a specially configured FPGA is a kind of ASIC. Thus GPUs, FPGAs and ASICs have the potential to expedite machine learning algorithms in part because of their capabilities for parallel computing and high-speed internal memory.

Nevertheless, while earlier generation CPUs have had performance bottlenecks while training or using deep learning algorithms, cutting edge CPUs can provide better performance and thus better support for deep learning algorithms. In 2017, Intel released Intel Xeon Scalable processors, which includes Intel Advance Vector Extension 512 (Intel AVX-512) instruction set and Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) [START_REF] Rodriguez | Lower Numerical Precision Deep Learning Inference and Training[END_REF]. The Intel AVX-512 and MKL-DNN accelerate deep learning algorithms on lower precision tasks. Comparing mainstream 32-bit floating point precision (fp32) on GPUs, the 16-bit and 8-bits floating-point precisions (fp16/fp8) are lower in precision, but can be sufficient for the inference of deep learning application domain. In addition, Lower precision also can enhance usage of cache and memory, and can maximize memory bandwidth. Let us look specifically at GPUs, FPGAs, and ASICs next.

A. GPU Devices

GPUs are specified unitary processors that are dedicated to accelerating real time three-dimensional (3D) graphics. GPUs contain an internal cache, high speed bandwidth, and quick parallel performance. The GPU cache accelerates matrix multiplication routines because these routines do not need to access global memory.

GPUs are universal hardware devices for deep learning. After testing neural networks including ones with 200 hidden layers on MNIST handwritten data sets, GPU performance was found to be better than CPUs [START_REF] Steinkraus | Using GPUs for machine learning algorithms[END_REF]. The test results show NVIDIA GeForce 6800 Ultra has a 3.3X speedup compared to the Intel 3GHz P4; ATI Radeon X800 has 2.4-3.4X speedup. NVIDIA GPUs increase FLOPS (floating point operations per second) performance. In [START_REF] Owens | GPU computing[END_REF], a single NVIDIA GeForce 8800 GTX, released in November 2006, had 575 CUDA cores with 345.6 gigaflops, and its memory bandwidth was 86.4 GB/s; by September 2018, a NVIDIA GeForce RTX 2080 Ti [START_REF]Graphics Reinvented: NVIDIA GeForce RTX 2080 Ti Graphics Card[END_REF] had 4,352 CUDA cores with 13.4 Teraflops, and its memory bandwidth had increased to 616 GB/s.

B. FPGA Devices

FPGAs have dynamical hardware configurations, so hardware engineers developed FPGAs using hardware description language (HDL), including VHDL or Verilog [START_REF] Galloway | The Transmogrifier C hardware description language and compiler for FPGAs[END_REF] [START_REF] Lacey | Deep Learning on FPGAs: Past, Present, and Future[END_REF]. However, some use cases will always involve energy-sensitive scenarios. FPGA devices offer better performance per watt than GPUs. According to [START_REF] Nurvitadhi | Can FPGAs beat GPUs in accelerating nextgeneration deep neural networks?[END_REF], while comparing gigaflops per watt, FPGA devices often have a 3-4X speed-up compared to GPUs. After comparing performances of FPGAs and GPUs [START_REF] Ovtcharov | Accelerating Deep Convolutional Neural Networks Using Specialized Hardware[END_REF] on ImageNet 1K data sets, Ovtcharov et al. [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] confirmed that the Arria 10 GX1150 FPGA devices handled about 233 images/sec. while device power is 25 watts. In comparison, NVIDIA K40 GPUs handled 500-824 images/sec. with device power of 235 watts. Briefly, [START_REF] Ovtcharov | Accelerating Deep Convolutional Neural Networks Using Specialized Hardware[END_REF] demonstrates FPGAs can process 9.3 images/joule, but these GPUs can only process 2.1-3.4 images/joule. 

C. ASIC Devices

Usually, ASIC devices have high throughout and low energy consumption because ASICs are fabricated chips designed for special applications instead of generic tasks. While testing AlexNet, one of the convolutional neural networks, the Eyeriss consumed 278 mW [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]. Furthermore, the Eyeriss achieved 125.9 images/joule (with batch size N=4) [START_REF] Chen | Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks[END_REF]. In [START_REF] Owens | GPU computing[END_REF], Google researchers confirm that the TPU 1.0, based on ASIC technologies, has about 15-30X speed-up compared to GPUs or CPUs during the same period, with TOPS/watt of about 30-80X better.

D. Enhance Hardware Performance

Even though multiple cores, CPUs, and hyper-threading are mainstream technologies, these technologies still show weaknesses in the big data era. For example, deep learning models usually have products and matrix transpositions [START_REF] Steinkraus | Using GPUs for machine learning algorithms[END_REF], so that these algorithms require intensive computing resources. GPUs, FPGAs, and ASICs have better computing performance with lower latency than conventional CPUs because these specialized chipsets consist of many cores and on-chip memory. The memory hierarchy on these hardware devices is usually separated into two layers: 1) off-chip memory, named global memory or main memory; and 2) on-chip memory, termed local memory or shared memory. After copying data from global memory, deep learning algorithms can use high-speed shared memory to expedite computing performance. Specific program libraries provide dedicated application programming interfaces (APIs) for hardware devices, abstract complex parallel programming, and increased executive performance. For instance, the CuDNN library, released by NVIDIA, can improve performance of the Apache MXNet and the Caffe on NVIDIA GPUs [START_REF] Mxn | Apache MXNet(incubating) -A Flexible and Efficient Library for Deep Learning[END_REF] [START_REF] Ovtcharov | Accelerating Deep Convolutional Neural Networks Using Specialized Hardware[END_REF].

Traditionally, multiple cores, improved I/O bandwidth, and increased core clock speed can improve hardware speeds [START_REF] Sze | Efficient Processing of Deep Neural Networks: A Tutorial and Survey[END_REF]. In Figure 3, Arithmetic Logic Unit (ALU), single instruction, multiple data (SIMD), and single instruction, multiple thread (SIMT) systems concurrently execute multiply-accumulate (MACs) tasks based on shared memory and configuration files.

However, there are new algorithms to improve computing performance. GPUs are low-latency temporary storage architectures, so the Toeplitz matrix, fast Fourier transform (FFT), and Winograd and Strassen algorithms can be used for improving GPU performance [START_REF] Sze | Efficient Processing of Deep Neural Networks: A Tutorial and Survey[END_REF]. Data movement consumes energy. FPGAs and ASICs are spatial architectures. These devices contain low-energy on-chip memory, so that reusable dataflow algorithms provide solutions for reducing data movements. Weight stationary dataflow, output stationary dataflow, no local reuse dataflow, and row stationary dataflow were developed for decreasing energy consumption of FPGAs and ASICs [START_REF] Sze | Efficient Processing of Deep Neural Networks: A Tutorial and Survey[END_REF]. In addition, co-design of deep learning algorithms and hardware devices are other approaches. According to [START_REF] Sze | Efficient Processing of Deep Neural Networks: A Tutorial and Survey[END_REF], there are two solutions. 1) Decrease precision: There are several algorithms to decrease precision of operations and operands of DNN, such as 8-bit fixed point, binary weight sharing, and log domain quantization. 2) Reduce number of operations and model size: Some algorithms need to be highlighted, such as exploiting activation statistics, network pruning algorithms, and knowledge distillation algorithms.

E. Qualitative Benchmarking Metrics on Machine

Learning Hardware GPUs, FPGAs, and ASICs can be used in different domains besides deep learning, including cloud servers and edge devices. There are 11 qualitative benchmarking metrics we distinguish on machine learning devices, as follows. In addition, results of the benchmarks are shown in Table I. [START_REF]Google reveals more details about its second-gen TPU AI chips[END_REF]. TPU 3.0, released in May 2018, offers 23.0 petaflops [START_REF]Google announces a new generation for its TPU machine learning hardware[END_REF]. However, NVIDIA GeForce RTX 2080 Ti has only 13.4 Teraflops [START_REF]Graphics Reinvented: NVIDIA GeForce RTX 2080 Ti Graphics Card[END_REF]. According to [START_REF] Berten Dsp | GPU vs FPGA Performance Comparison[END_REF] and [START_REF] Parker | Understanding Peak Floating-Point Performance Claims[END_REF], ASICs have the most FLOPs, and GPUs are better than FPGAs. 2) Low latency describes an important chipset capability [START_REF] Patterson | LATENCY LAGS BANDWITH[END_REF], and is distinguished from throughout [START_REF] Owens | GPU computing[END_REF]. In [START_REF] Owens | GPU computing[END_REF][24], ASICs have the lowest latency, while FPGAs are lower than GPUs. 3) Energy efficiency in computing is particularly important for edge nodes because mobile devices generally have limited power. In [START_REF] Owens | GPU computing[END_REF][24] ASICs have the highest energy efficiency, and FPGAs and GPUs come in second and third, respectively. 4) Compatibility means devices can be supported by multiple deep learning frameworks and popular programming languages. FPGAs needs specially developing libraries, so that FPGAs are not that good with respect to compatibility. GPUs have the best compatibilities [START_REF] Berten Dsp | GPU vs FPGA Performance Comparison[END_REF]. ASICs currently are second. For example, TPUs support TensorFlow, cafe, etc. 5) Research costs refer to the total costs for developing devices incurred from designing architectures, developing algorithms, and deploying chip sets on hardware devices. GPUs are affordable devices [START_REF] Berten Dsp | GPU vs FPGA Performance Comparison[END_REF]. ASICs are expensive, and FPGAs are between GPUs and ASICs. 6) Research risks are determined by hardware architectures, development risks, and deployed chip sets. ASICs have the highest risks before market scaling. FPGAs are very flexible, so that their risks are limited. GPUs are in the middle. 7) Upgradability is a challenge for most hardware devices. In [START_REF] Berten Dsp | GPU vs FPGA Performance Comparison[END_REF], GPUs are the most flexible after deployment, and are better than FPGAs. ASICs are the most difficult to update after delivery.

8) Scalability means hardware devices can scale up quickly with low costs. Scalability is vital for clouds and data centres. ASICs have excellent scalability. GPUs have good scalability, but not as good as

ASICs. FPGAs are the lowest on this dimension. 9) Chip Price means price of each unit chip after industrial-scale production. In [START_REF] Vansteenkiste | New FPGA Design Tools and Architectures[END_REF], FPGAs have the highest chip cost after production scale-up.

ASICs have the lowest cost, and GPUs are in the middle. 10) Ubicomp (also named ubiquitous computing) indicates hardware devices used extensively for varied use cases including e.g. large scale clouds and low energy mobile devices. FPGAs are very flexible, so that the devices can be used in different industries and scientific fields. ASICs usually are dedicated to specific industry needs. GPUs like FPGAs can be developed for many research fields and industry domains. 11) Time-to-market means the length of time from

design to sale of products. According to [START_REF] Lacey | Deep Learning on FPGAs: Past, Present, and Future[END_REF], [START_REF] Berten Dsp | GPU vs FPGA Performance Comparison[END_REF],

and [START_REF] Vansteenkiste | New FPGA Design Tools and Architectures[END_REF], FPGAs and GPUs have lower development time than ASICs.

III. MAINSTREAM DEEP LEARNING FRAMEWORKS

Open source deep learning frameworks allow engineers and scientists to define activation functions, develop special algorithms, train big data, and deploy neural networks on different hardware platforms, from x86 servers to mobile devices.

Based on the wide variety of usages, support teams, and development interfaces, we split 18 frameworks into three sets including mature frameworks, developing frameworks, and inactive frameworks. The 10 mature frameworks can be used currently to enhance training speed, improve scalable performance, and reduce development risks. The developing frameworks are not yet broadly used in industries or research projects, but some developing frameworks could be used in specific fields. Retired frameworks are largely inactive.

A. Mature Frameworks 1) Caffe and Facebook Caffe2: Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF] was developed at the University of California, Berkeley in C++. According to [START_REF] Xu | CaFPGA: An automatic generation model for CNN accelerator[END_REF], Caffe can be used on FPGA platforms. Caffe 2 [START_REF]Caffe2, GitHub Repository[END_REF] is an updated framework supported by 2) Chainer Framework: Chainer [START_REF] Developers | Chainer Repository[END_REF], written in Python, can be extended to multiple nodes and GPU platformws through the CuPy and MPI4Python libraries [32][33].

3) DyNet Framework: DyNet [START_REF] Neubig | Dynet: The dynamic neural network toolkit[END_REF] was written in C++. The framework can readily define dynamic computation graphs, so DyNet can help improve development speed. Currently, DyNet only supports single nodes and not multiple node platforms. 

B. Developing Frameworks

In addition, some deep learning frameworks are less frequently mentioned by academic papers because of their limited functions. For example, 1. Apache SINGA [START_REF] Ooi | SINGA: A Distributed Deep Learning Platform[END_REF] was developed in C++. The framework is supported by the Apache group [START_REF] François | Keras: The Python Deep Learning library[END_REF] [45].

2. BigDL [START_REF] Ng | Announcing PlaidML: Open Source Deep Learning for Every Platform[END_REF][47], built with Scale codes, is a deep learning framework that can run on Apache Spark and Apache Hadoops.

3. In [START_REF]Deeplearning4j: Open-source distributed deep learning for the jvm[END_REF], the authors mentioned DeepLearning4J (DL4J), which can be accelerated by cuDNN.

4. The PaddlePaddle deep learning framework was developed by Baidu using Python [START_REF] Company | PaddlePaddle-based AI[END_REF].

C. Inactive Frameworks

We mention two of these. (1) Torch [START_REF]Torch,GitHub repository[END_REF], was written in Lua. It is inactive. (2) Purine [53][54] is open source and not updated since 2014.

D. Qualitative Benchmarking Metrics for Deep Learning Frameworks

Benchmarking metrics for frameworks for deep learning include six qualitative metrics described next. Consistent with these six metrics, there are 16 mainstream deep learning frameworks as shown in Figure 4 and Table II [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF] are among the image datasets. WMT English-German [START_REF]Third Conference on Machine Translation[END_REF] and MovieLens-20M [START_REF]GroupLens: Movielens-20m data sets[END_REF] are translation and recommendation datasets, respectively. MLPerf benchmark frameworks are TensorFlow, PyTorch, MXNet, Intel Caffe, and Sinian. MLPerf deep learning algorithms benchmarked [START_REF] Mattson | MLPerf Training Algorithms[END_REF] include ResNet50-v1.5, MobileNet-v1, SSD-MobileNet, and SSD-ResNet34.

V. CONCLUSIONS

Deep learning has increased in popularity dramatically in recent years. This technology can be used in image classification, speech recognition, and language translation. In addition, deep learning technology is continually developing. Many innovative chipsets, useful frameworks, creative models, and big data sets are emerging, resulting in extending the markets and uses for deep learning.

While deep learning technology is expanding, it is useful to understand the dimensions and methods for measuring deep learning hardware and software. Benchmarking principles include representativeness, relevance, equity, repeatability, affordable cost, scalability, and transparency. Major deep learning hardware platform types include CPUs, GPUs, FPGAs, and ASICs. We discussed machine learning platforms, and mentioned approaches that enhance performance of these platforms. In addition, we listed 11 qualitative benchmarking features for comparing deep learning hardware.

AI algorithms often benefit from many-core hardware and high bandwidth memory, in comparison to many non-AI algorithms that are often encountered in practice [START_REF] Anadiotis | AI chips for big data and machine learning: GPUs, FPGAs, and hard choices in the cloud and on-premise[END_REF]. Thus it is not just the computational power of hardware as a one-dimensional concept that makes it more (or less) suited to AI applications, but also the type of computations the hardware excels in. A hardware platform can have more or less computational power depending on the type of computation on which it is measured. GPUs (graphics processing units) often do comparatively well on the kind of parallelism often beneficial to AI algorithms, and thus tend to be well suited to AI applications. FPGAs, being configurable, can be configured to perform well on AI algorithms although currently they lack the rich software layer needed to be as useful for this as they could become. ASICs are similar to FPGAs in this regard, since in principle a specially configured FPGA is a kind of ASIC.

Software frameworks for deep learning are diverse. We compared 16 mainstream frameworks through license types, compliant hardware devices, and tested deep learning algorithms. We split popular deep learning frameworks into three categories: mature deep learning frameworks, developing frameworks, and retired frameworks.

Deep learning benchmarks can help link industry and academia. MLPerf is a new and preeminent deep learning benchmark organization. The organization offers benchmarking metrics, dataset evaluation, test codes, and result sharing.

VI. FUTURE WORK

Deep learning technology including supporting hardware devices and software frameworks is increasing in importance, so scientists and engineers are developing new hardware and creative frameworks. We are planning a website named Benchmarking Performance Suite (http://www.animpala.com/research.html) for collecting and updating results of benchmarking hardware and frameworks. Users will be able to access the website for sharing deep learning knowledge.
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TABLE I .

 I QUALITATIVE BENCHMARKING HARDWARE

	#	Attributes	ASICs	FPGAs	GPUs
	1	Computing Performance	High	Low	Moderate
	2	Low Latency	High	Moderate	Low
	3	Energy efficiency	High	Moderate	Good
	4	Compatibility	Low	Moderate	High
	5	Research Costs	High	Moderate	Low
	6	Research Risks	High	Low	Moderate
	7	Upgradability	Low	Moderate	High
	8	Scalability	High	Low	Moderate
	9	Chip Price	Low	High	Moderate
	10 Ubicomp	Low	High	High
	11 Time-to-Market	Low	High	High
	1) Computing Performance can be measured by
		FLOPS. For measuring ASICs and GPUs, a
		quadrillion (thousand trillion) FLOPS (petaflops)
		are used in testing modern chipsets. In May 2017,
		Google announced Tensor Processor Unit 2.0
		(TPU 2.0), which provides 11.5 petaflops per chip

FOR MACHINE LEARNING ([10]-[20])

  (shown after the references). MLPerf Training Results v0.6, and the deep learning reference results v0.5 will be released soon. MLPerf benchmarks involve benchmark metrics, datasets, deep learning algorithms, and deep learning frameworks. MLPerf members execute deep learning algorithms on hardware devices, then record execution time, deep learning algorithms, deep learning frameworks, and tested open datasets. Time is a critical metric for measuring MLPerf training or inference benchmarks [65]. Short run time is associated with high performance of deep learning devices. Benchmark datasets consist of image datasets, translation datasets, and recommendation datasets. ImageNet and COCO

	IV. A MACHINE LEARNING BENCHMARK ORGANIZATION
	MLPerf is a machine learning benchmark organization
	that offers useful benchmarks that evaluate training and
	inference on deep learning hardware devices. MLPerf and
	its members are associated with advanced chip hardware
	companies and leading research universities. Hardware
	companies include Google, Nvidia, and Intel. Research
	universities include Stanford University, Harvard
	University, and University of Texas at Austin.
	MLPerf members share their benchmarking results.
	Benchmark results, source codes, deep learning algorithms
	(also called deep learning models), and configuration files
	are submitted to a website on github.com. Currently MLPerf
	members already have submitted the MLPerf Training
	Results v0.5 and
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