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A MIXED FINITE ELEMENT DISCRETIZATION OF DYNAMICAL

OPTIMAL TRANSPORT

ANDREA NATALE AND GABRIELE TODESCHI

Abstract. In this paper we introduce a new class of finite element discretizations of the
quadratic optimal transport problem based on its dynamical formulation. These general-

ize to the finite element setting the finite difference scheme proposed by Papadakis et al.
[SIAM J Imaging Sci, 7(1):212–238,2014]. We solve the discrete problem using a proxi-

mal splitting approach and we show how to modify this in the presence of regularization

terms which are relevant for physical data interpolation.

1. Introduction

Optimal transport provides a convenient framework for density interpolation as a convex
optimization problem. Its most remarkable feature is its sensitivity to horizontal displace-
ment, which generally allows one to retrieve translations when interpolating between two
densities. This property has motivated the application of optimal transport to many imaging
problems, especially in the context of physical sciences and fluid dynamics. A typical exam-
ple comes from satellite image interpolation in oceanography. In this case, one is interested
in reconstructing the evolution of a quantity of interest such as Sea Surface Temperature
(SST) or Sea Surface Height (SSH) between two given observations. As highlighted in [19],
for this type of applications one needs to include appropriate regularization terms to avoid
the appearance of unphysical phenomena such as mass concentration in the reconstructed
density evolution.

In this paper we propose a finite element approach to solve the dynamical formulation of
optimal transport with quadratic cost on unstructured meshes (and therefore can be easily
implemented on complex domains) and that can be easily modified to include different type
of regularizations which are relevant for the dynamic reconstruction and interpolation of
physical quantities. For some choices of finite element spaces, using the framework intro-
duced in [22], we can prove convergence of our discrete solutions to the ones of the continuous
problem.

The dynamical formulation of optimal transport inspired some of the first numerical
methods for this problem. This reads as follows: given two probability measures ρ0, ρ1 ∈
P(D) on a compact domain D ⊂ Rd, find the curve t ∈ [0, 1] 7→ ρ(t, ·) ∈ P(D) which solves

(1.1) inf
ρ,v

{∫ 1

0

∫
D

|v(t, ·)|2

2
dρ(t, ·)dt ; ∂tρ+ divx(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}
where v : [0, 1]×D → Rd is a time-dependent velocity field on D tangent to the boundary
∂D, and | · | denotes the Euclidean norm. In other words, problem (1.1) selects the curve of
minimal kinetic energy with fixed endpoints ρ0 and ρ1.

Benamou and Brenier [5] realized that introducing the momentum m := ρv, problem
(1.1) can be recast into a convex optimization problem in the variables (ρ,m), with a linear
constraint, since the continuity equation becomes

(1.2) ∂tρ+ divxm = 0 .

If we define σ := (ρ,m), regarded as a measure on [0, 1]×D, this constraint is equivalent to
div σ = 0, where now div denotes the divergence operator on the space-time domain [0, 1]×D.
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2 A. NATALE AND G. TODESCHI

Introducing the dual variable q = (a, b) where a ∈ C([0, 1] ×D) and b ∈ C([0, 1] ×D;Rd),
the kinetic energy minimized in (1.1) can be written in the form

sup
q

{∫ 1

0

∫
D

q · dσ ; a+
|b|2

2
≤ 0

}
.

Combining this expression with (1.1) we obtain a saddle point problem in the variables (q, σ)
with a nonlinear constraint on q and a linear one on σ.

The numerical method proposed in [5] involves discretizing q and σ by their values on a
regular grid, and expressing the constraint on σ via a Lagrange multiplier; then the dual
problem can be solved by an Augmented Lagrangian ADMM approach, optimizing sepa-
rately in q and the Lagrange multiplier and then performing a gradient descent step on
σ. Disregarding the discretization in space-time, the convergence of the method has been
studied in [17, 20]. The same approach was used to discretize different problems related to
optimal transport (e.g., gradient flows [8], mean field games [7], unbalanced optimal trans-
port [15]) using a finite element discretization in space-time. Importantly, in these cases the
numerical method is obtained by discretizing the several steps of the augmented Lagrangian
approach rather than as a discrete optimization algorithm. This implies that in general it
is difficult to establish the convergence of the discrete algorithms. Moreover, for these type
of methods, convergence results towards the continuous solutions with mesh refinement are
only available for specific settings (e.g., the L1-type optimal transport problems studied in
[21]), but they are not available for the optimal transport problem (1.1).

Papadakis, Peyré, and Oudet proposed in [27] a staggered finite difference discretization
on regular grids of the optimal transport problem (1.1), and they considered different prox-
imal splitting algorithms to solve it. The computational bottleneck for these methods as
well as for the original augmented Lagrangian approach is the projection onto the space of
divergence-free vector fields σ, which amounts to solving a Poisson equation at each iter-
ation. This however can be avoided by exploiting the Helmholtz decomposition of vector
fields, as recently showed in [18], or adding regularization terms as in [24]. Recently, Car-
rillo and collaborators [11] proposed a finite difference scheme similar to that in [27] (in the
context of the discretization of Wasserstein gradient flows), for which they could also prove
its convergence with mesh refinement, but only upon strong regularity assumptions on the
solutions of the continuous problem.

In [23] a numerical scheme was proposed using tools from finite element and finite vol-
ume methods, where one explicitly constructs a duality structure for the discrete variables.
Later Lavenant [22] proved convergence of this scheme, unconditionally with respect to the
time/space step size, to the solutions of the optimal transport problem, proposing a general
framework for convergence of discretizations of problem (1.1) between two arbitrary prob-
ability measures. This filled a critical gap for the analysis of discrete dynamical transport
models, since previously convergence results were only known in case of sufficiently smooth
solutions (as in [11]) or conditional to the relative time/space step sizes (e.g., in the context
of finite volume methods, combining the results in [14] and [16]).

1.1. Contributions and structure of the paper. In this paper we propose a mixed
finite element discretization of (1.1) which generalizes to the finite element setting the finite
difference scheme proposed by Papadakis et al. [27]. We derive our method by discretizing
a saddle point formulation of the dynamic optimal transport problem on Hilbert spaces,
where one looks for a solution (q, σ) ∈ L2([0, 1]×D;Rd+1)2. Nonetheless, we stress that the
method we obtain is still well-defined when the initial and final data are arbitrary probability
measures. By using H(div)-conforming spaces for the variable σ, we are able to construct
discrete solutions that satisfy exactly the weak form of the continuity equation (1.2).

Using the framework of [22], we also show that our discrete solutions, for specific choices
of finite element spaces, converge towards the solutions of the optimal transport problem
between two arbitrary measures, and therefore even when the solution σ is only a measure
(see Theorem 5.4). Such a result carries over also to a slight modification of the finite
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difference scheme proposed in [27], which can be viewed as a particular instance of our
discretization on a uniform quadrilateral grid (see Remark 5.6).

Finally, as in [27], we solve the discrete problem using a proximal splitting algorithm
[28]. Importantly, this is not only a discretization of the same algorithm applied to the
continuous saddle point formulation as in previous works, but also a genuine optimization
scheme applied to the finite dimensional problem. Furthermore, we observe numerically that
the proposed modification of the finite difference scheme in [27] (which we derived to prove
convergence with mesh refinement) also yields a remarkable speedup for the convergence of
the proximal splitting algorithm itself, keeping approximately the same computational cost
per iteration.

The paper is structured as follows. We establish the notation in Section 2. In Section 3 we
give the precise formulation of problem (1.1) and describe the proximal splitting algorithm
applied to the continuous problem in the Hilbert space setting. In Section 4 we introduce and
discuss the main finite element tools we use for our method. In Section 5 we define our finite
element discretization of problem (1.1) and state the convergence result. In Section 6 we
detail the steps required for solving our discrete optimal transport problem with a proximal
splitting algorithm. In Section 7 we describe how to introduce regularization terms in the
formulation. Finally in Section 8 we present some numerical results.

2. Notation

Throughout the paper we will denote by D ⊂ Rd a convex polytope, with d ∈ {2, 3}, and
by Ω := [0, 1]×D the space-time domain. For differential operators such as ∇ or div, we use
the subscript x to emphasize that these are defined on D rather than Ω, but we will drop
this subscript when this is clear from the context.

We use the standard notation for Sobolev spaces on D or Ω. In particular, Lp(D;Rd)
denotes the space of functions f : D → Rd whose Euclidean norm |f | is in Lp(D). We use
a similar notation for functions taking values on a subset K ⊂ Rd, or defined on Ω. We
denote by H(div;D) the space of vector fields f : D → Rd in L2(D;Rd) whose divergence
is in L2(D). Similarly, H(div; Ω) the space of vector fields f : Ω → Rd+1 in L2(Ω;Rd+1)
whose divergence is in L2(Ω).

Finally, we denote byM(D) the set of finite signed measures on D, byM+(D) ⊂M(D)
the convex subset of positive measures; by P(D) ⊂ M+(D) the set of positive measures
of total mass equal to one; and by C(D) the space of continuous functions on D. We use
a similar notation for the spaces of measures and continuous functions on Ω. We use 〈·, ·〉
to denote either the duality pairing between measures and continuous functions or the L2

inner product, on either D or Ω, according to the context.

3. Dynamical formulation of optimal transport

The dynamical optimal transport problem (1.1) can be formulated as a saddle point
problem on the space of measures σ := (ρ,m) ∈ M(Ω) ×M(Ω)d. This can be written as
follows

(3.1) inf
σ∈C
A(σ), A(σ) := sup

q∈C(Ω;K)

〈q, σ〉,

where C is the set of measures σ ∈M(Ω)d+1 satisfying div σ = 0 in distributional sense with
boundary conditions

(3.2) σ · n∂Ω = X , X :=

 ρ0 on {0} ×D,
ρ1 on {1} ×D,
0 otherwise,

with ρ0, ρ1 ∈ P(D), and where C(Ω;K) is the space of continuous functions on Ω taking
value in the convex set

(3.3) K :=

{
(a, b) ∈ R× Rd ; a+

|b|2

2
≤ 0

}
.
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It will be convenient to treat time and space as separate variables. In particular we will also
use the action defined by

A(ρ,m) := sup
(a,b)∈C(D;K)

〈ρ, a〉+ 〈m, b〉 ,

for any (ρ,m) ∈ M(D)d+1. Then, A(ρ,m) is finite if and only if m has a density with
respect to ρ and in that case A(ρ,m) =

∫
D
B(ρ,m), where B : R × Rd → [0,+∞] is the

function given by

B(a, b) :=


|b|2
2a if a > 0,

0 if a = 0, b = 0,
+∞ if a = 0, b 6= 0 or a < 0 .

Due to the definition of the function B, any saddle point of problem (3.1) must satisfy ρ ≥ 0.
The value of the infimum of problem (3.1) coincides with W 2

2 (ρ0, ρ1)/2, where W2(·, ·)
denotes the Wasserstein distance associated with the L2 cost (see Theorem 5.28 in [30]).
Moreover the infimum itself is attained by a measure σ = (ρ,m), where ρ is known as the
Wasserstein geodesic between ρ0 and ρ1 (see proposition 5.32 in [30]). We refer the reader
to [30] for more details on the links between the dynamical formulation and the Wasserstein
distance.

3.1. Hilbert space setting and proximal splitting. Before discussing the discretization
of problem (3.1), we review its reformulation on Hilbert spaces, and discuss the convergence
of the proximal splitting algorithm.

Proposition 3.1 (Guittet [17]; Hug et al. [20]). Suppose ρ0, ρ1 ∈ L2(D). Then problem
(3.1) is equivalent to

(3.4) inf
σ∈C

sup
q∈L2(Ω;K)

〈q, σ〉 ,

where C is the set of functions σ ∈ H(div; Ω) satisfying div σ = 0 in weak sense with boundary

conditions given by (3.2). Moreover, assuming that supp(ρ0)∪ supp(ρ1) ⊂
◦
D, there exists a

saddle point (σ∗, q∗) ∈ C × L2(Ω;K) solving problem (3.4).

The equivalence of problem (3.4) to (3.1) can be easily deduced by a regularization argu-
ment on σ and then applying Lusin’s theorem as in Proposition 5.18 in [30]. The proof for
the existence of a saddle point problem is more delicate and can be found in [20].

In order to apply a proximal splitting algorithm to solve problem (3.4), we first write it
in the form

(3.5) inf
σ∈L2(Ω;Rd+1)

sup
q∈L2(Ω;Rd+1)

〈q, σ〉+ ιC(σ)− ιK(q) ,

where ι denotes the convex indicator function and

K := L2(Ω;K) = {q ∈ L2(Ω;Rd+1) ; q ∈ K a.e.}.
Note in particular that C and K are closed convex sets of L2.

We apply to (3.5) the primal-dual projection algorithm proposed in [28]. In particular,
given τ1, τ2 > 0 and an admissible (σ0, q0) ∈ C × K, we define the sequence {(σk, qk)}k by
the two-step algorithm:

Step 1 : σk+1 = PC(σ
k − τ1qk) .(3.6a)

Step 2 : qk+1 = PK(qk + τ2(2σk+1 − σk)) .(3.6b)

where PC and PK are the L2 projections on the closed convex sets C and K, respectively.
The projection onto C amounts to computing the Helmholtz decomposition of σk− τ1qk and
selecting the divergence-free part, whereas the projection onto K is a pointwise projection
applied to a representative of qk + τ2(2σk+1 − σk).

The proof of convergence in [28] holds also in our setting. More precisely, the following
convergence theorem holds.
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Theorem 3.2 (Pock et al. [28]). If τ1τ2 < 1 then (σk, qk)→ (σ∗, q∗) ∈ C × K which solves
(3.4).

Discretizing problem (3.5), and consequently the proximal splitting algorithm (3.6), with
finite elements requires choosing finite-dimensional spaces for σ and q so that the steps in
(3.6) are well-posed and computationally feasible. However, satisfying these requirements
is not enough to guarantee convergence of the discrete solutions to the ones of the infinite
dimensional problem. Hereafter we will identify a class of finite element spaces for which the
theory developed in [22] applies, which allows us to deduce convergence to the solutions of
problem (3.1), i.e. even when ρ0 and ρ1 are arbitrary probability measures and the Hilbert
space setting presented in this section is not well-defined.

4. Mixed finite element setting

4.1. Finite element spaces on D. We recall that D is a convex polytope in Rd, with
d ∈ {2, 3}. We consider a triangulation of D which we denote Th, i.e. a decomposition of D
in either simplicial or quadrilateral (disjoint) elements, where h is the maximum diameter
of the elements in Th. We assume that there exists a constant Cmesh such that

(4.1) |h|d ≤ Cmesh|T | , ∀T ∈ Th .
This implies that the mesh is quasiuniform, meaning that the ratio of any two element
diameters is uniformly bounded by a constant depending only on Cmesh, and shape-regular,
that is, for each element T ∈ Th, the ratio of its diameter and the diameter of the largest
inscribed ball is uniformly bounded by a constant depending only on Cmesh (see, e.g., [2]).

For any T ∈ Th, we denote by Pk(T ) the space of polynomials of degree up to k on T .
If T is a quadrilateral element, i.e., in general, if T is obtained by an affine transformation
φ : Id → T where I is the unit interval, then we define Pk1,...kd(Id) := Pk1(I)⊗ . . .⊗Pkd(I)
and Pk1,...kd(T ) := Pk1,...kd(Id) ◦ φ−1.

We now define the finite element spaces Qh and Vh which will serve to construct approx-
imations of the density ρ and the momentum m, respectively. We set

Qh := {ϕ ∈ L2(D) ; ϕ|T ∈ P0(T ), ∀T ∈ Th},
Vh := {v ∈ H(div;D) ; v|T ∈ Vh(T ), ∀T ∈ Th}.

where Vh(T ) is the so-called shape function space. We distinguish two cases:

(1) for simplicial elements (triangles or tetrahedrons), we take Vh(T ) to be either

RT 0(T ) := {v = v0 + v1x̂ ; v0 ∈ (P0(T ))d , v1 ∈ P0(T )} ⊂ (P1(T ))d,

where x̂ = (x1, . . . , xd) ∈ (P1(T ))d, which generates the lowest order Raviart-
Thomas space; or BDM1(T ) = (P1(T ))d, which generates the lowest order Brezzi-
Douglas-Marini H(div)-conforming space;

(2) for quadrilateral elements, we set T = φ(Id), where I is an interval and φ an affine
transformation, and we take Vh(T ) to be the tensor product space which generates
the lowest order Raviart-Thomas space on quadrilateral elements. This is defined
as follows:

RT [0](T ) :=

{
P1,0(T )e1 + P0,1(T )e2 if d = 2 ,
P1,0,0(T )e1 + P0,1,0(T )e2 + P0,0,1(T )e3 if d = 3 ,

where {ei}i is the basis for Rd aligned with the edges of T .

In other words, the space Vh is chosen as one of the standard lowest order H(div)-
conforming spaces. In fact, the property of being piece-wise linear will be crucial in the
following, namely to prove the convergence result in Theorem 5.4 (see, in particular, Propo-
sition A.2 in the appendix). A graphical representation of the degrees of freedom associated
with these spaces is shown in figure 1.

Importantly, with the choices mentioned above, one can define projection operators ΠQh :
L2(D)→ Qh and ΠVh : VD ⊂ H(div;D)→ Vh that commute with the divergence operator
[2, 10], where VD is a dense subset of sufficiently smooth vector fields. By an appropriate



6 A. NATALE AND G. TODESCHI

(a)
RT 0

(b)
BDM1

(c)
RT [0]

Figure 1. Degrees of freedom for different choices of shape function space
Vh(T )

regularization procedure of such operators (see, e.g., Section 5.4 in [2]), one can construct

bounded projections Π̃Qh : L2(D) → Qh and Π̃Vh : H(div;D) → Vh satisfying a similar
property. In other words, the following diagram commutes

H(div;D) L2(D)

Vh Qh

Π̃Vh

div

Π̃Qh

div

As a consequence, the divergence operator is surjective onto Qh when restricted on Vh, i.e.
div Vh = Qh. Finally, we let Q+

h ⊂ Qh the convex subset of non-negative piecewise constant
functions.

Remark 4.1. For the proof of Theorem 5.4 in the appendix, we will consider as commuting
projections ΠVh and ΠQh the canonical projections defined in Section 5.2 of [2]. Here, we
will only need the explicit definition of ΠQh , which is given by

(4.2) ΠQhρ|T =
1

|T |

∫
T

ρ ,

for any T ∈ Th. Note, in particular, that ΠQh is well-defined on M(D) and its restriction
on M+(D) is surjective onto Q+

h .

4.2. Finite element spaces on Ω. We now introduce finite element spaces on the space-
time domain [0, 1]×D. We first define a decomposition Th,τ , obtained by a tensor product
construction. In other words, we assume that Th,τ is obtained by tensor product of a
triangulation Th of D and a decocomposition of [0, 1] of maximum size τ , so that any
element S ∈ Th,τ is of the form S = [t0, t1]⊗ T where T ∈ Th.

We now define the finite element spaces Fh,τ and Zh,τ on the space-time domain. The
space Zh,τ will be constructed using the standard tensor product construction based on the
spaces Qh and Vh defined on D, and continuous P1 and discontinuous P0 spaces on [0, 1]. In
our discretization, the space-time vector field (ρ,m) will be an element of Zh,τ whereas Fh,τ
will be the space of discrete Lagrange multipliers associated with the continuity equation,
which is equivalent to the constraint that the space-time divergence of (ρ,m) is zero.

More precisely, we define

Fh,τ := {φ ∈ L2(Ω) ; φ|S ∈ P0(S), ∀S ∈ Th,τ},
Zh,τ := {v ∈ H(div; Ω) ; v|S ∈ Zh,τ (S), ∀S ∈ Th,τ}.

For S = [t0, t1]⊗ T , the shape function space Zh,τ (S) is built by defining a shape function
space for the density, in the space-time domain, which is given by

Qh,τ (S) := P1([t0, t1])⊗Qh(T )
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(i.e. the density is piecewise linear in time), and a shape function space for the momentum,
in the space-time domain, which is given by

Vh,τ (S) := P0([t0, t1])⊗ Vh(T )

(i.e. the momentum is piecewise constant in time). Then, we set

Zh,τ (S) := (Qh,τ (S) t̂)⊕ Vh,τ (S) ,

where t̂ is the unit vector oriented in the time direction. The spaces Fh,τ and Zh,τ inherit
from Qh and Vh the commuting diagram property mentioned above. In particular, there
exist bounded projections Π̃Fh,τ : L2(Ω) → Fh,τ and Π̃Zh,τ : H(div; Ω) → Zh,τ for which
the following diagram commutes

(4.3)

H(div; Ω) L2(Ω)

Zh,τ Fh,τ

Π̃Zh,τ

div

Π̃Fh,τ

div

where the divergence is the one associated with the space-time domain Ω. Then, as before,
the divergence operator is surjective onto Fh,τ when restricted on Zh,τ , i.e. divZh,τ = Fh,τ .
Note that the precise definition for the projection operators on tensor product meshes can
be found in [1].

4.3. Discrete projection on the divergence-free subspace. Denote by B the kernel of
the divergence operator on H(div; Ω). Given ξ ∈ L2(Ω) we define the projection PB(ξ) to be
the divergence-free vector field σ minimizing the L2 distance from ξ. This can be obtained
solving the following problem for (σ, φ) ∈ H(div; Ω)× L2(Ω)

(4.4)

{
〈σ, v〉+ 〈φ, div v〉 = 〈ξ, v〉 ∀v ∈ H(div; Ω) ,
〈div σ, ψ〉 = 0 ∀ψ ∈ L2(Ω) .

Let Bh,τ be the kernel of the divergence operator restricted on Zh,τ . We define the projection
PBh,τ (ξ) to be the divergence-free vector field σh,τ ∈ Zh,τ minimizing the L2 distance from
ξ. This can be obtained solving the following problem for (σh,τ , φh,τ ) ∈ Zh,τ × Fh,τ

(4.5)

{
〈σh,τ , v〉+ 〈φh,τ ,div v〉 = 〈ξ, v〉 ∀v ∈ Zh,τ ,
〈div σh,τ , ψ〉 = 0 ∀ψ ∈ Fh,τ .

The commuting diagram (4.3) implies well-posedness of the discrete system. In particular,
it implies the following inf-sup condition: there exists a constant β > 0 independent of h
and τ such that

inf
φ∈Fh,τ

sup
σ∈Zh,τ

〈φ, div σ〉
‖σ‖H(div)‖φ‖L2

≥ β ,

see for example proposition 5.4.2 in [10]. Then, problem (4.5) is well-posed, i.e. it has a
unique solution (σh,τ , φh,τ ) which verifies σh,τ ∈ B and

‖σh,τ‖L2 ≤ C1‖ξ‖L2 ,

‖φh,τ‖L2 ≤ C2‖ξ‖L2 ,

‖σh,τ − σ‖L2 + ‖φh,τ − φ‖L2 ≤ C3‖ξh,τ − ξ‖L2 ,

where C1, C2, C3 > 0 are constants independent of h and τ , ξh,τ is the L2 projection of ξ
onto Zh,τ and (σ, φ) is the unique solution of problem (4.4) (e.g., these results can be derived
as particular cases of Theorems 4.3.2, 5.2.1 and 5.2.5 in [10]).

In the following we will need to compute the discrete version of the L2 projection onto C.
In particular we define

(4.7) Ch,τ := {σ ∈ Bh,τ , σ · n∂Ω = Xh,τ} ,
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where, since ΠQh can be defined on M(D) (see equation (4.2)), we set

(4.8) Xh,τ :=

 ΠQhρ0 on {0} ×D,
ΠQhρ1 on {1} ×D,
0 otherwise.

The well-posedness results described above for the L2 projections onto B and Bh,τ hold
also for the L2 projections onto C and Ch,τ up to adding Neumann boundary conditions
to the spaces H(div; Ω) and Zh,τ , and replacing L2(Ω) and Fh,τ by L2(Ω)/R and Fh,τ/R,
respectively.

5. Discrete dynamical formulation and convergence

In this section we formulate the discrete problem and state a convergence result obtained
by applying the theory developed in [22]. For this, we need to introduce a space for the
discrete dual variable q. We adopt the same notation as for the spaces defined in Section 4.
In particular, we set for r ∈ {0, 1},

Xr
h := {φ ∈ L2(D) ; φ|T ∈ Xr

h(T ), ∀T ∈ Th}.
The superscript r denotes the polynomial order of the shape function space Xr

h(T ). We
distinguish two cases:

(1) for simplicial elements (triangles or tetrahedrons), we take Xr
h(T ) := Pr(T ).

(2) for quadrilateral elements, we set T = φ(Id), where I is an interval and φ an affine
transformation, and we take Xr

h(T ) := Pr(I)d ◦ φ−1.

The associated space-time space is defined by

Xr
h,τ := {φ ∈ L2(Ω) ; φ|S ∈ Xr

h,τ (S), ∀S ∈ Th,τ},
with Xr

h,τ (S) = P0([t0, t1]) ⊗ Xr
h(T ). In order to simplify the notation, we will omit the

superscript r when not relevant to the discussion.

Remark 5.1. The choice r ∈ {0, 1} is dictated by computational feasibility of the algorithm.
In fact, for these cases, we can compute explicitly the projection on K ∩Xr

h,τ (with respect

to appropriate inner products) as it will be explained in the next section. On the other hand,
we restrict ourselves to piecewise constant functions in time since this is crucial for the
convergence of the algorithm, as shown in [22].

The discrete action (at fixed time) is defined as follows:

Ah(ρ,m) := sup
(a,b)∈(Xh)d+1

{〈ρ, a〉+ 〈m, b〉 ; (a, b) ∈ K a.e.}

for any (ρ,m) ∈ Qh × Vh. By construction, Ah : Qh × Vh → [0,+∞] is a proper convex
function −1-positively homogeneous in its first variable and 2-positively homogeneous in its
second variable. Moreover, it is non-increasing in its first argument, i.e. Ah(ρ1 + ρ2,m) ≤
Ah(ρ1,m) for any ρ1, ρ2 ∈ Q+

h and m ∈ Vh. In fact, suppose that Ah(ρ1 + ρ2,m) < +∞.

Then there exists (a∗, b∗) ∈ (Xh)d+1 ∩K such that 〈ρ1 + ρ2, a
∗〉+ 〈m, b∗〉 = Ah(ρ1 + ρ2,m);

in particular a∗ ≤ 0. Then

Ah(ρ1,m) ≥ Ah(ρ1 + ρ2,m)− 〈ρ2, a
∗〉 ≥ Ah(ρ1 + ρ2,m) ,

and by a similar reasoning we obtain that if A(ρ1 + ρ2,m) = +∞ then we also have
A(ρ1,m) = +∞.

The space-time discretization of problem (3.1) is given by

(5.1) inf
σ∈Ch,τ ,
ρ≥0

Ah,τ (σ), Ah,τ (σ) := sup
q∈(Xrh,τ )d+1∩K

〈q, σ〉 .

Note that, by definition, Ah,τ is convex and non-negative. Therefore, problem (5.1) always
admits minimizers.

Suppose that the time discretization is given by a decomposition of the interval [0, 1] in
N elements, i.e. fixing the points 0 = t0 < t1 < . . . < tN+1 = 1. Given σ = (ρ,m) ∈ Zh,τ ,
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we can identify the density ρ with the collection {ρi}N+1
i=0 with ρi ∈ Qh, and the momentum

m with the collection {mi}N+1
i=1 with mi ∈ Vh. Since q is piecewise constant in time, we have

the following equivalent formulation

(5.2) Ah,τ (σ) =

N+1∑
i=1

Ah

(
ρi + ρi−1

2
,mi

)
|ti − ti−1| .

Note that in order to obtain (5.2) from (5.1), we relied on the particular choice of finite
element spaces for density (piecewise linear in time), momentum (piecewise constant in
time) and the corresponding dual variables (piecewise constant in time).

Remark 5.2 (Continuity constraint). The choice of a H(div)-conforming finite element
space for σ implies that the weak form of the continuity equation ∂tρ+divxm = 0 is satisfied
exactly by any solution of the discrete saddle point problem (5.1) (this is also directly implied
by the definition of the constraint set Ch,τ in (4.7)) .

Remark 5.3 (Positivity constraint). Note that removing the positivity constraint in the
formulation (5.1), we obtain a different scheme. In that case, since the action is evaluated
on the mean density (in time), the positivity constraint ρ ≥ 0 is then only enforced on
ρi+ρi−1

2 , rather than on each ρi separately.

The objects introduced until now define a finite dimensional model of optimal transport
in the sense of Definition 2.5 in [22]. The framework developed therein can be used to deduce
a convergence result for our scheme.

Theorem 5.4. Let ρ0, ρ1 ∈ P(D) be given and {Th,τ}h,τ>0 a family of tensor-product
decomposition of Ω such that the time discretization is uniform, i.e. ti − ti−1 = τ for all
i = 1, . . . , N + 1, and the space discretization Th satisfies equation (4.1). Let σh,τ be a
minimizer of problem (5.1) associated with Th,τ and for r = 1. Then, as h, τ → 0, up to
extraction of a subsequence, σh,τ converges weakly to σ ∈M(Ω)d+1 a minimizer of problem
(3.1).

The proof is essentially an extension of the one presented in [22] and is postponed to the
appendix.

Remark 5.5 (Stability). The existence of bounded projections sastifying the commuting
diagram (4.3) ensures stability of the projection onto Ch,τ (see (4.6)). Such commuting pro-
jections are also crucial to estabilish the convergence result in Theorem 5.4: in [22], they are
used to sample the continuous solution into a discrete one satisfying the continuity equation,
therefore providing an admissible candidate for the discrete problem. Nonetheless, due to
the nonlinear constraint q ∈ K, one cannot apply the standard linear theory in [10], for
example, so the commuting diagram condition does not imply directly a stability result anal-
ogous to (4.6) for the saddle point problem (5.1) (even if we see it as a discretization of the
Hilbert space formulation in Proposition 3.1). Numerically (see Section 8) the finite element
pairs considered here (Zh,τ , X

r
h,τ ) appear to be stable when r = 1, but strong oscillations

may occur for r = 0 and Vh = BDM1, providing empirical evidence of the instablity of the
discretization for this case.

Remark 5.6. Suppose that D = [0, 1]d and that Th,τ is a uniform quadrilateral discretization
of Ω = [0, 1]d+1. Then for r = 0 and removing the constraint ρ ≥ 0 (see Remark 5.3), the
discrete problem (5.1) coincides with the discretization proposed in [27]. Theorem 5.4 shows
that modifying this method with r = 1 and adding the positivity constraint at all times, one
can prove convergence to the solution of the continuous problem (3.1).

6. The proximal splitting algorithm

We now describe in detail the discrete version of the proximal splitting algorithm in-
troduced in Section 3.1, in the simplest setting where we remove the additional positivity
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constraint on the density, i.e. we solve

inf
σ∈Ch,τ

Ah,τ (σ), Ah,τ (σ) := sup
q∈(Xh,τ )d+1∩K

〈q, σ〉 .

As mentioned in Remark 5.3, this amounts to enforcing positivity only on the mean density
in time between consecutive time-steps. Using this formulation rather than (5.1) we can
reproduce the structure of the continuous version of the scheme, described in Section 3.1.
Note, however, that one can actually solve problem (5.1) with a similar strategy, e.g., by
first reformulating the problem intrudicing a Lagrange multiplier to enforce the continuity
equation, and then applying the same proximal splitting algorithm considered here but with
the new variables and with an appropriate choice of norms.

We start by defining

Krh,τ := K ∩ (Xr
h,τ )d+1 := {q ∈ (Xr

h,τ )d+1 ; q ∈ K a.e.} .
We write the discrete problem as follows:

(6.1) inf
σ∈L2(Ω;Rd+1)

sup
q∈L2(Ω;Rd+1)

〈q, σ〉+ ιCh,τ (σ)− ιKh,τ (q) ,

where Ch,τ is defined in (4.7). Then, the proximal splitting algorithm of section 3.1 applied
to problem (6.1) can be formulated as follows: given τ1, τ2 > 0 and an admissible (σ0, q0) ∈
Ch,τ × Kh,τ , we define the sequence {(σk, qk)}k by performing iteratively the following two
steps:

Step 1 : σk+1 = PCh,τ (σk − τ1qk) .(6.2a)

Step 2 : qk+1 = PKh,τ (qk + τ2(2σk+1 − σk)) .(6.2b)

The convergence result in Theorem 3.2 clearly holds also in the discrete setting and gives
convergence of the algorithm to a discrete saddle point (σh,τ , qh,τ ), if the condition τ1τ2 < 1
is satisfied. The two steps in the algorithm can be computed as follows.

Step 1. As discussed in Section 4.3, the projection PCh,τ can be computed modifying the
system given by (4.5) by adding the Neumann boundary conditions associated with the
function (4.8).

Step 2. Since PKh,τ is an L2 projection, we have that PKh,τ = PKh,τ ◦ P(Xrh,τ )d+1 , where

P(Xrh,τ )d+1 denotes the L2 projection onto (Xr
h,τ )d+1. This means that we only need to

be able to compute PKh,τ when applied to an element of Xr
h,τ . In addition, since Xr

h,τ is
discontinuous across elements, we can compute the projection element by element, and since
functions in Xr

h,τ (S) are constant along the time direction, we can also eliminate the time

variable in the projection. In other words, we only need to solve for each element [t0, t1]×S
a problem in the form

(6.3) ξK := argmin{‖ξ − q‖2L2(T ) ; q ∈ (Xr
h(T ))d+1 , q(x) ∈ K ∀x ∈ T}

for a given ξ ∈ (Xr
h(T ))d+1. We distinguish two cases:

(1) if r = 0, the projection (6.3) is just the projection of a vector ξ ∈ Rd+1 onto the
convex set K;

(2) if r = 1, any ξ ∈ (X1
h)d+1 is fully determined by its value on the vertices {vi}i of T ,

and the condition ξ ∈ K, is equivalent to ξ(vi) ∈ K, by convexity of the set K (see
equation (3.3)). However the problem is coupled in these variables when computing
the projection in the L2 norm. Here, we use instead a different projection and we
simply set

ξK(vi) = argmin{|ξ(vi)− q|2 ; q ∈ K} .
Note that this is a variational crime, but it can be avoided by reformulating the
algorithm using as inner product on X1

h a weighted `2 inner product on the degrees
of freedom.
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In both cases we only need to compute for each degree of freedom the projection of a given
vector (ā, b̄) ∈ R × Rd onto K. If (ā, b̄) /∈ K, such a projection is given explicitly by the
vector (

−µ
2

2
, µ

b̄

|b̄|

)
where µ ≥ 0 is the largest real root of the third order polynomial

x 7→ x3

2
+ x(ā+ 1)− |b̄| .

Remark 6.1. As for the finite difference discretization studied in [27], different optimization
techniques could be applied to solve problem (5.1). In particular, it should be noted that the
ADMM approach orginally proposed by Benamou and Brenier [5] could also be applied. This
would lead to a very similar algorithm to (6.2), but it would require the introduction of an
additional variable which avoids coupling of the degrees of freedom in the optimization step
with respect to q. In other words, this is needed in order to be able to perform the projection
on K for each degree of freedom separately. More details on this issue can be found in [27]
for the discretization studied therein, and they hold also in the finite element setting.

7. Regularization

The optimal transport problem does not involve any regularizing effect on the interpola-
tion between two measures. In fact, one can even expect a loss of regularity in some cases,
namely if one is interpolating between two smooth densities on a smooth but non-convex
domain. Such a loss of regularity (which is often unphysical when the density represents a
physical quantity) can be avoided introducing additional regularization terms in the formu-
lation. In this section we describe how to do so, and how these modifications translate at
the algorithmic level.

We consider the Hilbert space setting discribed in Section 3.1 and we study problems in
the form

(7.1) inf
σ∈C
A(σ) + αR(σ)

where R : L2(Ω)→ R is a convex, proper and l.s.c. functional, and α > 0. For this type of
problem, we can still apply the proximal splitting algorithm (3.6) replacing the projection
onto C by proxτ1F , the proximal operator of F := ιC + αR, defined by

proxτ1F (ξ) = argmin
η∈L2(Ω;Rd+1)

‖ξ − η‖2

2τ1
+ F(η) .

This leads to the so-called PDGH algorithm, which for τ1τ2 < 1 can be seen just as a
proximal point method applied to a monotone operator [12], and therefore we still have
convergence in the Hilbert space setting. As mentioned in [22] convergence of the discrete
problem with mesh refinement is more delicate and will not be discussed here.

7.1. Mixed L2-Wasserstein distance. Define for any σ = (ρ,m) ∈ L2(Ω)× L2(Ω;Rd)

R(σ) :=

{ 1
2‖∂tρ‖

2
L2(Ω) if ∂tρ ∈ L2(Ω) ,

+∞ otherwise .

With this functional, problem (7.1) yields an interpolation between the Wasserstein distance
and the L2 distance. It was originally considered in [6], where a conjugate gradient method
was proposed to compute the minimizers. Let V := H1([0, 1];L2(D))×L2([0, 1];H(div;D))

and let
◦
V be the same space with homogenous boundary conditions on the fluxes. For

any ξ ∈ L2(Ω)d+1, σ = proxτ1F (ξ) is obtained by solving the following system for (σ, φ) ∈
V × L2(Ω)/R 〈σ, v〉+ ατ1〈∂tρ, ∂tvt〉+ 〈φ, div v〉 = 〈ξ, v〉 , ∀v ∈

◦
V ,

〈div σ, ψ〉 = 0 , ∀ψ ∈ L2(Ω)/R ,
σ · n∂Ω = X ,
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where vt = v · t̂ is the component of v in the time direction. Well-posedness can be obtained
by standard methods for saddle point problems [10] and it translates directly into well-
posedness of the discrete system obtained by replacing V with Zh,τ , L2(Ω) with Fh,τ , and
X with Xh,τ .

7.2. H1 regularization. Define for any σ = (ρ,m) ∈ L2(Ω)× L2(Ω;Rd)

(7.2) R(σ) :=

{ 1
2‖∇xρ‖

2
L2(Ω) if ρ ∈ L2([0, 1];H1(D)) ,

+∞ otherwise .

In this case we set V := H(div; Ω), W := L2([0, 1];H(divx;D)) and let
◦
V and

◦
W be the same

spaces with homogenous boundary conditions on the fluxes. Then, for any ξ ∈ L2(Ω)d+1,

σ = proxτ1F (ξ) is obtained by solving the following system for (σ, η, φ) ∈ V ×
◦
W ×L2(Ω)/R

〈σ, v〉 − ατ1〈divxη, vt〉+ 〈φ, div v〉 = 〈ξ, v〉 , ∀v ∈
◦
V ,

〈ρ, divxw〉+ 〈η, w〉 = 0 , ∀w ∈
◦
W ,

〈div σ, ψ〉 = 0 , ∀ψ ∈ L2(Ω)/R ,
σ · n∂Ω = X ,

where vt = v · t̂ is the component of v in the time direction. As before, well-posedness can
be obtained by standard methods for saddle point problems [10].

We introduce the space Wh,τ ⊂ L2([0, 1];H(divx;D)) whose shape functions on S =
[t0, t1]⊗ T are given by

Wh,τ (S) := P1([t0, t1])⊗ Vh(T ).

We denote by
◦
Wh,τ the same space with the boundary conditions η ·n∂Ω = 0 on [0, 1]× ∂D.

Denote by ∇hx : L2(Ω)→
◦
Wh,τ the adjoint of −divx defined by

〈∇hxφ, η〉 = −〈φ, divxη〉 , ∀ (φ, η) ∈ L2(Ω)×
◦
Wh,τ .

We define a discrete version of (7.2) as follows:

Rh,τ (σ) :=
1

2
‖∇hxρ‖2L2(Ω).

Let Fh,τ := ιCh,τ + αRh,τ . Then for any ξ ∈ L2(Ω)d+1, σ = proxτ1Fh,τ (ξ) is obtained by

solving the following system for (σ, η, φ) ∈
◦
Vh,τ ×

◦
Wh,τ × Fh,τ/R:

〈σ, v〉 − ατ1〈divxη, vt〉+ 〈φ, div v〉 = 〈ξ, v〉 , ∀v ∈
◦
Vh,τ ,

〈ρ,divxw〉+ 〈η, w〉 = 0 , ∀w ∈
◦
Wh,τ ,

〈div σ, ψ〉 = 0 , ∀ψ ∈ Fh,τ/R ,
σ · n∂Ω = Xh,τ .

8. Numerical results

In this section we describe two numerical tests that demonstrate the behaviour of the
proposed discretization both qualitatively and in terms of convergence of the algorithm.
For both tests the time discretization is uniform, but we will use different meshes and
finite element spaces for the discretization in space. For all tests, we set τ1 = τ2 = 1
as parameters of the proximal splitting algorithm (6.2). The results shown hereafter have
been obtained using the finite element software Firedrake [29] (see [26, 9], for the tensor
product constructions) and the linear solver for the mixed Poisson equation is based on
PETSc [3, 4]. The code to perform the tests in this section can be found in the repository
https://github.com/andnatale/dynamic-ot.git.

https://github.com/andnatale/dynamic-ot.git
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8.1. Qualitative behaviour and convergence of the proximal-splitting algorithm.
We set D = [0, 1]2, and consider either a structured triangular mesh, an unstructured one,
or a uniform Cartesian mesh (shown in figures 2, 3 and 4), and τ := |ti+1 − ti| = 1/20. The
initial and final densities are given by

(8.1) ρ0(x) ∝ 3

2
+ cos(2π|x− x0|), ρ1(x) ∝ 3

2
− cos(2π|x− x0|) ,

where x0 = (0.5, 0.5), and they are normalized so that the total mass is equal to one. In
figures 2, 3 and 4, the interpolation at time t = 0.5 is shown for different choices of spaces Vh
and Xh and different meshes. The discretization corresponding to the couple Vh = BDM1

and X0
h yields a very oscillatory solution both on the structured and unstructured mesh.

Oscillations appear also for Vh = RT 0, although the qualitative features of the solution are
well captured. For this latter case, the oscillations seem to be very sensitive to the structure
of the mesh and are attenuated when choosing X1

h instead of X0
h. On the Cartesian mesh the

scheme does not generate any oscillations, with the choice of the space X1
h leading to slightly

more diffusive results. Note that the appearance of oscillations is not related to the positivity
constraint since in the case considered here the interpolation is strictly positive. On the other
hand, we remark that for tests leading to pure translation of compactly supported densities
(not shown) the oscillations disappear almost entirely even for the couple Vh = BDM1, X0

h.
In figure 5, the different schemes are compared in terms of convergence of the proximal
splitting algorithm. For each mesh and combination of spaces, we compute a reference
solution σ∗ corresponding to 104 iterations of the algorithm and we estimate the error at
the nth iteration by ‖σn − σ∗‖L2(Ω). The cases corresponding to X1

h appear to converge

significantly faster than those corresponding to X0
h. Note that in the case Vh = RT [0],

X0
h, the resulting discretization as well as the optimization algorithm coincide with the

ones proposed in [27], since here we consider a uniform Cartesian grid. Also in this case,
replacing X0

h with X1
h (besides providing a convergence guarantee, see Remark 5.6) yields a

considerable speedup of the algorithm.

RT 0, X0
h RT 0, X1

h

BDM1, X0
h BDM1, X1

h

Figure 2. Comparison between optimal transport interpolations of the
densities in (8.1) for different spaces on a structured triangular mesh. Note
that in the case Vh = BDM1, X0

h, the data exceeds the color map range.
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RT 0, X0
h RT 0, X1

h

BDM1, X0
h BDM1, X1

h

Figure 3. Comparison between optimal transport interpolations of the
densities in (8.1) for different spaces on an unstructured triangular mesh.
Note that in the case Vh = BDM1, X0

h, the data exceeds the color map
range.

RT [0], X
0
h RT [0], X

1
h

Figure 4. Comparison between optimal transport interpolations of the
densities in (8.1) for different spaces on an uniform Cartesian mesh.

8.2. Non-convex domain. We now consider a non-convex polygonal domain D, with the
spatial mesh Th represented in figure 6 and τ := |ti+1 − ti| = 1/30. Note that even if
the case of a non-convex domain is beyond the domain of applicability of the convergence
results presented in this paper, our scheme is still well-defined for this case. The boundary
conditions are given by

ρ0(x) = exp

(
−|x− x0|2

2s2

)
, ρ1(x) = exp

(
−|x− x1|2

2s2

)
,

with s = 0.1, x0 = (0.5, 0.1) and x1 = (0.5, 0.9). Such boundary conditions are illustrated
in figure 6. In this case, the exact density interpolation is not absolutely continuous, since
mass concentrates on the segment connecting the two non-convex corners of the domain.
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RT 0(str.) BDM1(str.) RT [0]

RT 0(unstr.) BDM1(unstr.)

Figure 5. Convergence of the proximal splitting algorithm measured by
‖σn − σ∗‖L2(Ω) for different spaces Vh and Xr

h on the structured (str.) and
unstructured (unstr.) triangular mesh, and on the Cartesian mesh.

Note that we have therefore refined the mesh along the diagonal where we expect the mass
to concentrate.

In figure 7, 9 and 8 we show the density evolution up to time t = 0.5 (the other half
of the time evolution being symmetric in space given the boundary conditions and the
domain shape) for the non-regularized case, the H1 regularization and the L2 regularization,
respectively. For both regularizations the density profile appears to be smoothened, but only
the H1 regularization avoids concentration at the corners.

The proximal operator of the projection on the continuity equation is more expensive
computationally for the H1 regularization than for the other two cases, since we have to
solve a larger mixed system at each iteration. However, for both regularizations, the proximal
splitting algorithm itself converges much faster than the non-regularized case, as it can be
seen in figure 10.
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t = 0 t = 1

Figure 6. Mesh, and initial and final density for the non-convex domain
test.

t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure 7. Density evolution on the non-convex domain without regular-
ization, Vh = RT 0, X1

h (color scale is rescaled to fit data range).
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t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure 8. Density evolution on the non-convex domain with L2 regular-
ization, α = 0.002, Vh = RT 0, X1

h (color scale is rescaled to fit data range).

t = 0 t = 0.1 t = 0.2

t = 0.3 t = 0.4 t = 0.5

Figure 9. Density evolution on the non-convex domain with H1 regular-
ization, α = 0.002, Vh = RT 0, X1

h (color scale is rescaled to fit data range).
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Figure 10. Convergence of the proximal splitting algorithm measured by
‖σn+1 − σn‖L2(Ω) for non-convex domain test without regularization (a);

with the H1 regularization and α = 0.002 (b); with the L2 regularization
and α = 0.002 (c).
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Appendix A. Proof of Theorem 5.4

Applying Theorem 2.16 in [22], in order to prove Theorem 5.4 it is sufficient to check that
the conditions listed in definition 2.9 of [22] are verified. Such conditions translated to our
finite element settings are listed in Proposition A.2 below.

From now on, we assume r = 1, and Xh stands for X1
h. We also denote by I is the

standard nodal interpolant onto Xh, defined element by element.
First of all, we introduce some notation and list some technical results [13]. Denote by

PXh and PVh the L2 projections onto Xh and Vh, respectively. Then,

‖PXhϕ‖Lp ≤ C‖ϕ‖Lp , ∀ϕ ∈ Lp , 1 ≤ p ≤ ∞ ,

and moreover ∀T ∈ Th
‖ϕ− PXhϕ‖Lp(T ) ≤ ChT ‖∇ϕ‖Lp(T ) , ∀ϕ ∈W 1,p(T ) , 1 ≤ p ≤ ∞ ,

where, with an abuse of notation, we have used PXh to denote the L2 projection onto Xh(T ).
These imply the following lemma.

Lemma A.1. Given the regularity assumption in (4.1) on Th, we have

‖I|PVhb|2‖L∞ ≤ C‖b‖2L∞ ,

for any b ∈ L∞(D), and

‖I|PVhb|2 − |b|2‖L∞ ≤ Ch|b|W 1,∞‖b‖L∞ ,

for any b ∈W 1,∞(D).

Proof. For the first inequality, using standard inverse inequalities, we have

‖I|PVhb|2‖L∞ ≤ ‖|PVhb|2‖L∞

≤ Ch−d‖|PVhb|2‖L1

= Ch−d‖PVhb‖2L2

≤ Ch−d‖P(Xh)db‖2L2

≤ C‖P(Xh)db‖2L∞
≤ C‖b‖2L∞ .

For the second inequality , we observe that

‖I|PVhb|2 − |b|2‖L∞ ≤ ‖I|PVhb|2 − I|b|2‖L∞ + ‖I|b|2 − |b|2‖L∞ .

The second term of the right-hand side is easy to control. For the first term, we have

‖I|PVhb|2 − I|b|2‖L∞ ≤ ‖|PVhb|2 − |b|2‖L∞

≤ ‖|PVhb|2 − |P(Xh)db|2‖L∞ + ‖|b|2 − |P(Xh)db|2‖L∞ .

Again, the second term is easy to control. For the first tem, using the same reasoning as
above,

‖|PVhb|2 − |P(Xh)db|2‖L∞ ≤ Ch−d‖|PVhb|2 − |P(Xh)db|2‖L1

≤ Ch−d
d∑
i=1

‖(PVhb)2
i − (PXhbi)

2‖L1

≤ Ch−d
d∑
i=1

‖(PVhb)i − PXhbi‖L1‖b‖L∞

≤ Ch− d2 ‖PVhb− PXhb‖L2‖b‖L∞
≤ Ch‖∇PXhb‖L∞‖b‖L∞ ≤ Ch‖∇b‖L∞‖b‖L∞ .

�
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As mentioned in Section 4.1, there exist projection operators ΠQh : L2(D) → Vh and
ΠVh : VD → Qh commuting with the divergence operator, where VD is a dense subset of
H(div;D). We pick these to be the canonical projections introduced in Section 5.2 of [2], and
in particular ΠQh as in equation (4.2). Such operators verify the following approximation
properties (see Theorem 5.3 in [2]): for any ϕ ∈ H1(D) and η ∈ H1(D)d

(A.1) ‖ΠQhϕ− ϕ‖L2(D) ≤ Ch‖ϕ‖H1(D) , ‖ΠVhη − η‖L2(D)d ≤ Ch‖η‖H1(D)d .

Notice in particular that given the mesh regularity assumption (4.1), equation (A.1) is a
standard property for ΠQh as defined in equation (4.2).

Proposition A.2 below contains the properties needed for convergence: it can be seen as
a specific instance of Definition 2.9 of [22]. Note that a few of the properties listed therein
are omitted here because they are either unnecessary or true by construction in our setting.
Note also that the sampling operators used in [22] are replaced here with the canonical
projections ΠQh and ΠVh , where ΠQh can be naturally extended to M(D) (see equation
(4.2)) and ΠVh is considered to be defined on a dense subset of M(D)d. Moreover the
reconstruction operators are simply the injection operators from Qh and Vh to M(D) and
M(D)d, respectively. Finally, we define for any (ρ, b) ∈M(D)× C(D;Rd)

A∗(ρ, b) :=

∫
D

|b|2

2
ρ ,

so that if (ρ,m) ∈M+(D)×M(D)d then

A(ρ,m) = sup
b∈C(D;Rd)

〈m, b〉 −A∗(ρ, b);

and for any (ρ, b) ∈ Qh × Vh,

A∗h(ρ, b) := sup
m∈Vh

〈m, b〉 −Ah(ρ,m) .

Proposition A.2. The following properties hold:

(1) For any ρ ∈M+(D), ΠQhρ→ ρ as h→ 0 weakly in M(D).
(2) Let B ⊂ (C1(D))d a bounded subset. Then there exists a constant εh tending to 0

as h→ 0 such that for any b ∈ B and ρ ∈ Qh
A∗h(ρ, PVhb) ≤ A∗(ρ, b) + εh‖ρ‖ ,

where PVh denotes the L2 projection onto Vh. Moreover there exists a constant C ≥ 1
such that for any b ∈ C(D)d, there holds

A∗h(ρ, PVhb) ≤
C

2
‖ρ‖‖b‖2L∞ .

(3) Let B ⊂ C0(D) ∩ H1(D) a bounded subset such that for all ρ ∈ B there holds
ρ > C > 0, and let B′ ⊂ (C0(D) ∩ H1(D))d a bounded subset. There exists a
constant εh tending to 0 as h → 0 such that, given (ρ,m) ∈ M(D)d+1 such that ρ
has density in B and m in B′, then

Ah(ΠQhρ,ΠVhm) ≤ A(ρ,m) + εh.

(4) There exists εh tending to 0 as h→ 0 and a continuous function ω satisfying ω(0) =
0 such that: for any x, y ∈ D and h > 0 there exists ρ ∈ Q+

h and m1,m2 ∈ Vh
satisfying

(A.2)

{
divm1 = ρ−ΠQh(δx)
divm2 = ρ−ΠQh(δy)

and Ah(ρ,mi) ≤ ω(|x− y|) + εh ,∀i ∈ {1, 2}.

Remark A.3. In [22] point (3) of Proposition A.2 is stated with B and B′ bounded subsets
of C1(D) and C1(D)d, respectively. The condition we require here is stronger, but it is
needed since we considered a convex polytope domain rather than a domain with a smooth
boundary as in [22]. As a matter of fact, in [22] one applies the condition (3) on a regularized
measure (ρ̃, m̃) ∈ M(D)d+1 obtained by convolution with the heat kernel and by solving an
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appropriate elliptic problem (see proposition 3.2 in [22]). For a convex polytope domain this
procedure yields a couple (ρ̃, m̃) with densities which are not C∞ given the singularities of
the boundary. By classical elliptic regularity estimates on non-smooth domains (e.g., [31]
and [25]), the regularity we require in condition (3) is however sufficient for the proof in [22]
to apply without changes.

Proof. The first point is immediate from the definition of ΠQh in equation (4.2). For (2),
we observe that

Ah(ρ,m) = sup
b∈Xh

〈m, b〉 − 1

2
〈ρ, I|b|2〉 ,

where we recall that I is the standard element-wise nodal interpolant onto Xh. In fact,
for any b ∈ (Xh)d, we have b2 ≤ I|b|2, and therefore when ρ ≥ 0 we can “saturate” the
constraint setting a = −I|b|2/2. On the other hand if ρ < 0 on some element both sides of
the equality are +∞. For (ρ, b,m) ∈ Qh × Vh × Vh define

A∗I,h(ρ, b) :=
1

2
〈ρ, I|b|2〉, ĀI,h(ρ,m) := sup

b∈Vh
〈m, b〉 −A∗I,h(ρ, b).

Then, since when ρ < 0 on some element A∗h(ρ, b) = −∞,

Ah(ρ,m) ≥ ĀI,h(ρ,m), A∗h(ρ, b) ≤ Ā∗I,h(ρ, b) ≤ A∗I,h(ρ, b),

and we can prove (2) for A∗I,h. In particular, we have

A∗I,h(ρ, PVhb) ≤ A∗(ρ, b) +
1

2
‖I|PVhb|2 − |b|2‖L∞‖ρ‖,

and we obtain the result applying Lemma A.1. Using again Lemma A.1, we easily obtain
the second bound as well.

For point (3), observe first that Ah(ΠQhρ,ΠVhm) ≤ A(ΠQhρ,ΠVhm) by definition. Then
given the assumption on ρ and m we can simply write

Ah(ΠQhρ,ΠVhm)−A(ρ,m) ≤
∫
D

|ΠVhm|2

2ΠQhρ
− |m|

2

2ρ

≤ 1

2

∫
D

| |ΠVhm|2 − |m|2

ΠQhρ
|+ | |m|

2

ΠQhρ
− |m|

2

ρ
|

≤ C(‖ΠQhρ− ρ‖L2 + ‖|ΠVhm|2 − |m|2‖L1) ,

where the constant C depends on the uniform lower bound on ρ and on the L∞ norm of
|m|. We conclude using Cauchy–Schwarz inequality on the second term and then equation
(A.1).

For the last point, we will establish a connection between our scheme and the one proposed
by Gladbach, Kopfer and Maas [16] and then use propoperty (A.2) for this scheme which
was proved in [22]. We will consider only the case of a simplicial mesh and Vh = RT 0 (which
covers also the case of Vh = BDM1, since RT 0 ⊂ BDM1). The quadrilateral case with
Vh = RT [0] can be dealt with in a completely analogous way.

First, we introduce some notation. For each T ∈ Th, let Th,T be the set of neighbouring

elements L ∈ Th such that fT,L := T ∩ L 6= ∅, which we assume to be oriented. Define by
Fh the set of (d− 1)-dimensional facets in the triangulation. Let T, L ∈ Th be neighbouring
elements, we denote by ϕT,L ∈ RT 0 the canonical basis function associated with the oriented
facet fT,L. Then, any m ∈ RT 0 can be written as

m =
∑

fT,L∈Fh

mT,LϕT,L ,

where mT,L is the flux of m on the oriented facet fT,L. In other words we can identify
functions in (ρ,m) ∈ Qh × RT 0 with their finite volume representation {ρT ,mT,L}T,L.
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Then, we can interpret the action for the finite volume scheme [16], which we denote by
AFVh (ρ,m), as a function on Qh ×RT 0. This is given by the following expression

AFVh (ρ,m) :=
∑

fT,L∈Fh

m2
T,L

2θ(ρT , ρL)
|fT,L||xT − xL| ,

where θ : R+ × R+ → R+ is an appropriate function (see [16]) which we take to be the
harmonic mean.

Now, in order to construct ρ ∈ Q+
h and m1,m2 ∈ RT 0 satisfying (A.2), we use the same

construction as in [22] for the finite volume scheme, and interpolate these to the spaces RT 0

and Q+
h to obtain ρ, m1 and m2 satisfying{

divm1 = ρ−ΠQh(δx) ,
divm2 = ρ−ΠQh(δy) .

In particular the support of ρ, m1 and m2 is a chain of neighbouring elements T1, . . . , TN .
To prove the bound on the action, we observe that Ah(ρ,mi) ≤ A(ρ,mi). Then, we only
need to bound A(ρ,mi) by the action of the finite-volume scheme AFVh (ρ,mi), since AFVh
satisfies the desired inequality thanks to the regularity assumption (4.1) on the mesh [22].
By the regularity assumption on the triangulation, we can assume∫

T∪L
|ϕT,L|2 dx ≤ C|fT,L||xT − xL|

uniformly. Then, by explicit calculations we obtain A(ρ,mi) ≤ CAFVh (ρ,mi) and we are
done.
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2015.

[31] Guido Stampacchia. Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni hölderiane.
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