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Abstract In a Hilbert space setting, we analyze the convergence properties of a new class of proximal
ADMM algorithms with inertial features. They aim to quickly solve convex structured minimization
problems with linear constraint. As a basic ingredient, we use the maximally monotone operator M
which is associated with the Lagrangian formulation of the problem. We specialize to this operator the
inertial proximal algorithm recently introduced by Attouch and Peypouquet (Math. Prog. 2019) to resolve
general monotone inclusions. This gives an inertial proximal ADMM algorithm where the extrapolation
step takes into account recent advances concerning the accelerated gradient method of Nesterov. Based
on an appropriate adjustment of the viscosity and proximal parameters, we analyze the fast convergence
properties of the algorithm, as well as the convergence of the iterates to saddle points of the Lagrangian
function. Among the perspectives, we outline a new direction of research, linked to the introduction of the
Hessian damping in the algorithms.

Key words: Convex structured optimization; linear constraint; Lagrange multipliers; proximal ADMM;
maximally monotone operators; inertial methods; Nesterov accelerated method; Hessian damping.
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1 Introduction

Our study concerns the resolution by accelerated (ADMM) algorithms of the convex structured minimiza-
tion problem with linear constraint

(P) xegr({i;ley {f(z) +g(y) : Az — By = 0},

where the following standing assumptions are made on the data of (P):

X,Y, Z are real Hilbert spaces;
(H) f: X >RU{+ooc}andg:Y — RU {400} are convex lower semicontinuous and proper;

A:X — Zand B : Y — Z are linear continuous operators.

We set |22 = (z,2), lyll* = (v, ), l|l2]> = (z,2) forz e X,y e Y,z € Z. !

'Without ambiguity, we don’t use indexes to specify which space, scalar product or norm is considered.
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1.1 Lagrangian function and maximally monotone operator attached to (P)

Classically, we can reformulate (7P) as a saddle value problem

(Wgrg)lgxygleazx{f(w) +9(y) + (2, Az — By)}. (1.1)

The Lagrangian L : X x Y x Z — RU {+o00} associated to (1.1) is the extended-real-valued function

L(z,y,2) = f(x) + g(y) + (2, Ax — By) .

It is convex with respect to (x,y), and affine (and hence concave) with respect to z. A pair (z,y) is
optimal for (P), and z is a corresponding Lagrange multiplier if and only if (x,y, z) is a saddle point of
the Lagrangian function L. We denote by S the set of saddle points of L. Equivalently

df (z) + Al(z) > 0;
dg 50

(y) — B'(2)
B(y) — A(z) = 0,

(x,y,2) € S <~

where we use the classical notions and notations of the linear and convex analysis: Jf is the subdifferential
of f, g is the subdifferential of g, A® : Z — X is the transposed operator of A, and B! : Z — Y is the
transposed operator of B. The above system can be written equivalently as the monotone inclusion

Mp(2,y,2) 20 (1.2)
where Mp : X x Y x Z — 2X>XY*Z g the set-valued mapping defined by
Mp(x,y,2) = (OpyL,—0,L) (x,y,2) = (af(a:) + A'z, 0g(y) — B'z, By — Aac) . (1.3)

The crucial point is that the operator M p is maximally monotone on X X Y x Z. Indeed, this follows
simply from the following observation. The operator Mp can be splitted as

Mp = My + Ms (1.4)

where M (z,y,2) = (9f(z), dg(y),0), and Ma(x,y,z) = (A'z, —B'z, By — Az). Thanks to the
classical rules of the subdifferential calculus, it can be observed that M7 = 0® is the subdifferential of
the convex lower semicontinuous proper function ®(x,y,z) = f(z) + g(y), and therefore is maximally
monotone. The operator M is linear continuous and skew symmetric, and therefore it is also maximally
monotone. This immediately implies that Mp is maximally monotone as the sum of two maximally
monotone operators, one of them being Lipschitz continuous ([37, Lemma 2.4, page 34]). 2 This can also
be achieved as a consequence of the general properties relying convexity and monotonicity, see Rockafellar
[68]. Thus, S can be interpreted as the set of zeros of a maximally monotone operator. As such, it is a
closed convex subset of X XY x Z. The application of the proximal algorithm to the maximally monotone
operator Mp gives the proximal (ADMM) algorithm. This will be the guiding idea of our approach, with
a non-trivial adaptation for the inertial versions.

The above structure was used by Briceno-Combettes [38] to develop a primal-dual splitting method based on the forward-
backward-forward algorithm.
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1.2 Examples of problems (P)

The optimization problem (P) intervenes in the modeling of a wide range of situations possibly involving
spaces of infinite dimension. Let’s briefly describe some of them:

e In the case of the finite dimension, the Regularized Least Squares method (RLS) is the composite
optimisation problem on R",

. 1
i {nBy |2 +g<y>} (RLS)
yeRn | 2

where B is a linear operator from R"™ to R™, m < n, g : R" — R U {400} is a proper lIsc.
convex function which acts as a regularizer. Problem (RLS) falls within the setting of (P) by taking
f(z) = %HxHQ, and the affine coupling equation x — By = —b (the operator A is the identity of
R™). 3 Problem (RLS) is used intensively in a variety of fields ranging from inverse problems in
signal/image processing, to machine learning and statistics. Typical examples of function g include
the ¢; norm (Lasso), the /1 — ¢2 norm (group Lasso), the total variation, or the nuclear norm (the
¢1 norm of the singular values of x € RN*N jdentified with a vector in R™ with n = N?). These
examples induce a sparsity property of the solution. For a recent account of these methods and an

extended bibliography, see Liang-Fadili-Peyré [53].

e For optimal control of linear systems, Axz— By = 0 is the state equation which links the state variable
x to the control variable y. The functions f and g are respectively the criteria to be minimized and
the cost of the control. Note that the convex constraints on x and y can be integrated respectively in
the function f and g via their indicator functions. Recall that f and g are authorized to take extended
real values. In this context, the variable z is often called the adjoint state. It plays a central role in
the numerical solution of the problem, and in the study of its properties of sensitivity and stability.
One can consult Allaire [2] for an in-depth presentation of the optimal control of distributed systems
and PDE’s in mechanics, and the use of the adjoint state.

e Potential games give rise to the slightly more general form of the problem (P)

min {f(x) + g(y) + Q(z,y) : Ax — By = 0}

where @) is a coupling function between the respective actions x and y of the two players, and
Az — By = 0 takes account of the limitation of ressources. In this setting, the proximal (ADMM)
algorithm has a natural interpretation as a best response dynamic with cost to change (to move), see
Attouch-Redont-Soubeyran [24].

e Domain decomposition for PDE’s. One of the main objectives of domain decomposition is to solve
partial differential equations and the associated boundary value problems on complex geometries by
partitioning the original domain 2 in smaller and simpler subdomains. Let us consider the case of
two subdomains, i.e. 2 = 2y U {2y U X where 27 and €2, are two open sets which do not intersect,
and X is the interface bewteen the two subdomains. This leads to consider the problem (P) where
f and g are the respective energy functions on the two subdomains and A and B are the respective
trace operators relative to the interface 3. The condition Az — By = 0 reflects the continuity of the
solution at the interface of the two subdomains. This approach was developped by Attouch-Briceno-
Combettes in [7] to provide a full splitting primal-dual algorithm.

3passing from the linear constraint to the affine constraint is a straightforward extension.
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1.3 Presentation of the results

To guide our study, we use the close link between continuous evolution equations governed by maximally
monotone operators and the proximal algorithms which result from their implicit temporal discretization,
see Peypouquet-Sorin [65] for first order evolution systems. Indeed, continuous inertial systems are very
useful in our context: they provide a deep mechanical intuition and suggest Lyapunov functions of energy
type. More precisely, we rely on the second order evolution equations with inertial features and the as-
sociated relaxed proximal algorithms recently introduced by Attouch-Peypouquet [22] for the resolution
of inclusions governed by maximally monotone operators. As a main feature, these algorithms involve
an extrapolation term in the line of the Nesterov method, and an appropriate tuning of the proximal and
relaxation parameters. Before introducing them, we need some preparatory results. In section 2 we review
the classical results concerning the convergence properties of the proximal (ADMM) algorithm (without
inertia). In section 3 we present the abstract results of [22] concerning the convergence properties of a
relaxed inertial proximal algorithm for general monotone inclusions. Then in section 4 we specialize these
results to the maximally monotone operator M p which is attached to problem (7P), and present our main
results concerning the convergence properties of a new class of inertial proximal (ADMM) algorithms.
Section 5 concerns a variant of the inertial proximal algorithm which is completely splitted. The last sec-
tion presents some new research directions, notably the introduction into these algorithms of correcting
terms associated with the Hessian driven damping.

Our work is part of an active research trend. Each of the following recent articles follows a specific
approach. In [33] Bot-Csetnek develop an inertial alternating direction method of multipliers which is
based on the abstract inertial Douglas-Rachford algorithm which was previously developed in [34]. But
the extrapolation coefficient is not allowed to go to zero, as is the case in the accelerated gradient method
of Nesterov. A closely related approach has been developed by Marques Alves-Eckstein-Geremia-De
Melo who consider an inexact variant of the Douglas-Rachford splitting method for maximally monotone
operators, thus allowing to cover a large class of algorithms. In [49], Kim develops an accelerated proximal
point method for maximally monotone operators based on the performance estimation problem (PEP)
approach of Drori-Teboulle [45]. The convergence rate of the method is evaluated in terms of the fixed-
point residual. But no convergence of the iterates is obtained. Another approach by Combettes-Glaudin
[43] uses a new iterative scheme in which the update is obtained by applying a composition of quasi-
nonexpansive operators to a point in the affine hull of the orbit generated up to the current iterate. In
[42], Chen-Chan-Ma-Yang analyze the convergence properies of an inertial proximal (ADMM) algorithm
where the proximal terms are calculated relative to general weighting matrices which can be positive
semidefinite, thus unifying many existing results. But the damping parameter is fixed, which does not
take into account the Nesterov acceleration. In [48] Goldstein-O’Donoghue-Setzer-Baraniuk develop fast
alternating direction optimization methods based on the Nesterov accelerated method, and obtain fast
convergence rates using strong convexity assumptions and/or restarting methods. A similar approach was
followed by Goldfarb-Ma-Scheinberg in [47].

In our approach, we will get rid of some of the limitations present in the above articles, by considering
an inertial proximal algorithm (ADMM) which takes advantage of recent advances in the accelerated
gradient method of Nesterov (see [10], [17], [22], [40], [72] and the references contained therein). In
general Hilbert spaces, we get both the convergence of the iterates and fast convergence rates.

2 The (prox-ADMM) algorithm

Let us review some classical facts concerning the maximally monotone approach to the proximal (ADMM)
algorithm. Let us recall that the operator Mp : X x Y x Z — 2XXY*Z which is defined by

Mp(z,y,2) = (0pyL, —0,L) (x,y,2) = (8f(:v) + Alz, dg9(y) — B'z, By — Am)
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is maximally monotone on X XY x Z. When the proximal algorithm is applied to the maximally monotone
operator Mp, one obtains the so-called proximal method of multipliers. This method was initiated by
Rockafellar [67, 68, 69] (1976). A comprehensive presentation on the subject can be found in Chen-
Teboulle [41] (1994). This approach is described below: By applying the proximal algorithm to Mp
with positive proximal parameter \, we obtain the iteration (zj, Yk, 2k) — (Tg+1, Yk+1, 2k+1) Where
(Thy1, Yrrt1s 26s1) = (I + AMp) = (xk, Yk, 21) is the solution of the following system

3 (@rg1 — xp) + 0f (@r41) + Al (2r41) 2 0;
3 (k1 — Yk) + 09 (Ye+1) — B (z41) 2 0; 2.1
+ (k1 — 21) + B(yrt1) — A(zgg1) = 0.

Equivalently

+ (@1 — k) + Of (Tpy1) + Al (zk + MA(zpy1) — B(yk+1))> 50;
X W1 = ve) + 09(yes1) — B <Zk + AMA(zr41) — B(yk+1))> > 0; (2.2)
3 (zrt1 — 2) + B(yk+1) — A(zpgr) = 0.

The two first equations can be interpreted as the optimality conditions of the convex optimization problem

A
(Tht15 Y1) = argming pve x v {1 (€) +9(n) + (2, AS — Bn) + §||A§ — By|]? 03

1 9 1 2
+5H5 | +5H77 vk~ }-

Thus, the proximal method of multipliers can be naturally interpreted with the help of the augmented
Lagrangian function

La(2,9.2) = [(2) + 9(u) + (= Az — By) + 5| Az — By?

in the following way: at each iteration of the algorithm, given (x, yx, 2 ), one performs a proximal mini-
mization step of the augmented Lagrangian L with respect to (x, y) to obtain the next iterate (541, Yx+1)-
Then, one updates the multiplier by the iteration zx1 = 2z + A(Axk4+1 — Byk+1), which is nothing but
a proximal maximization step of the augmented Lagrangian with respect to z. Note that the Lagrangian
function is a convex-concave function. In this convex setting, the Lagrangian formulation is equivalent
to the augmented Lagrangian formulation. As a consequence of the convergence properties of the proxi-
mal algorithm for general maximally monotone operators, this algorithm generates sequences that always
(weakly) converges to a saddle point of L, and hence an optimal solution of (7). One just needs to assume
that the set of saddle points of L is non empty. The main disadvantage of this method is that, when per-
forming the proximal minimization step to find (z1,yr+1), one is faced with the minimization problem
(2.3) which is not separable, because of the presence of the quadratic coupling term || Az — By||2.

Indeed, by combining this method with the alternating proximal algorithms for weakly coupled min-
imization problems, see Attouch-Bolte-Redont-Soubeyran ([S], 2008), a fully split method is obtained.
This approach, developed by Attouch-Soueycatt in [25], is described below. Starting with an initial arbi-
trary triple (xo, Yo, 20) € X XY x Z, the sequence (zx, Y, zx) € X X Y X Z is generated by the iterative
scheme:

(xkaykv Zk‘) — (xk-‘rlayk-‘rlv Zk‘-l—l) k= Oa ]-a 25
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Tpp1 = argmin {f(€) + (21, AE) + 31| AE — Buplly + %1€ —2el% : €€ X}
Y1 = argmin{g(n) — (2, Bn) + 3|Bn — Az 1|3 + ln—well3: neY} 24
Zet1 = 2k + (ATp1 — Bygkgr)-

Because of the proximal quadratic terms, the two above convex minimization problems have unique
respective solutions, xx11 and yi41. The above algorithm can be seen as performing alternate proximal
minimization (consecutive) steps on the augmented Lagrangian. It is called the “proximal Alternating Di-
rection Method of Multipliers” (prox-ADMM) in short. Writing optimality conditions gives the equivalent
form of the algorithm:

1 (@rg1 — op) + 0f (Tpg1) + A” [z + AM(Azp1 — Byr)] 3 0;
3 W1 — yk) + 09 (Y1) + B [—z + A(BYrt1 — Azgi)] 3 0; (2.5)

Zh1 = 2k + (ATpy1 — BYrg1)-

(prox — ADMM)

2.1 Convergence properties of (prox-ADMM)

The following result has been obtained in [25, Theorem 2.1]. It extends the seminal convergence result
obtained by Eckstein [46] for this algorithm.*
Recall that the set of equilibria S = M, 1(0) is a closed convex subset of X x Y x Z.

Theorem 2.1 Assume that the set S of equilibria is non empty. Let us start from an arbitrary point
(z0,Y0,20) € X XY X Z, and consider the corresponding sequence (Ty,yr,2r) € X X Y X Z gen-
erated by the “proximal alternating direction method of multipliers” algorithm (prox-ADMM). Then, the
following properties are satisfied:

i) (Tk, Yk, 2 ) converges weakly in X XY x Z to an equilibrium (o, Yoo, 200) € S as k — +o0.
ii) (xg, yx) is a minimizing sequence for problem (P).
iii) Axy, — By converges strongly to zero in Z as k — +o0.

— 2|l = 0as k — +o0.

) || Trt1

Let us now introduce some dynamical aspects of this algorithm.

2.2 Dynamical system attached to (prox-ADMM)

It is known for long that the proximal method is obtained by the implicit discretization of the evolution
system governed by the maximally monotone operator. Thus, in our setting we are led to consider the
evolution system in the product space X x Y x Z governed by the maximally monotone operator Mp :
X xY x Z — 2XXY*Z We obtain the system of first-order differential inclusions

@(t) + Of (x(t)) + A'(=(t)) >
y(t) +dg(y(t)) — B(2(t)) = (2.6)
2(t) + B(y(t)) — A(xz(t)) = 0.

The general theory for semi-groups of contractions generated by maximally monotone operators ap-
plies to this system. Following Brezis [37], the Cauchy problem for (2.6) is well posed. Precisely, for any

“The approach developed by Eckstein in [46] is different from ours. It relies on the application of the Douglas-Rachford
algorithm to the dual formulation of (P).
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initial data (z9, yo, 20) € domM p, there exists a unique strong solution (x, y, z) : [0, +00[— X XY x Z of
(2.6) that satisfies x(0) = o, y(0) = yo, 2(0) = 2. The solution trajectories of (2.6) converge weakly in
an ergodic sense to equilibria, which are the zeros of the operator M p. The implicit temporal discretization
of the above evolution equation with step size A > 0 gives the (prox-ADMM) algorithm. Note that taking
a fixed positive step makes an important difference between the continuous and the discrete dynamic. For
the continuous dynamic there is only ergodic convergence, while for the discrete one (algorithm) there is
convergence of the iterates. The close link between proximal algorithms and continuous dynamics gen-
erated by maximally monotone operators will serve us as a guideline for introducing the corresponding
inertial systems and algorithms. > This is analyzed in the next section.

3 Inertial dynamics and algorithms for solving monotone inclusions

In this section, we consider the case of a general maximally monotone operator M. In this abstract setting,
we will describe the inertial dynamics and the algorithms that support our approach. Then, in the next
section, we will particularize these results to the operator M p which is attached to the problem (P).

3.1 Inertial dynamics for solving monotone inclusions
3.1.1 The cocoercive case

The starting point of our approach is the work of Alvarez-Attouch [3] and Attouch-Maingé [19] who stud-
ied the second-order evolution equation (4 (-) and Z(-) stand respectively for the velocity and acceleration)

#(t) +ya(t) + M(z(t)) = 0, 3.1)

where M is a maximally monotone operator which is supposed to be A-cocoercive, for some positive
parameter A. The positive parameter  is a (viscous) damping coefficient. Recall that M : H — H is
A-cocoercive (A > 0) if it satisfies

Ve,y e H (My— Mz,y—x) > N|My — Mz|?.

M : 'H — H A-cocoercive implies that M is maximally monotone, and Lipschitz continuous with Lip-
schitz constant % Assuming that the cocoercivity parameter A and the damping coefficient ~ satisfy
Ay? > 1, it is shown in [19] that each trajectory of (3.1) converges weakly to an element of S.

Moreover, the condition Ay? > 1 is sharp, as shown by the following example: Take C endowed with
the standard real Hilbert structure (u,v) = Re(uv). Consider the Heavy Ball with Friction equation

(HBF)V Z(t) +~v2(t) + M(2(t)) =0, t>0, (3.2)
where + is a positive damping parameter, and M : C — C is given by
Mz := (w? — iyw)z withw > 0.

The operator M is A-cocoercive with A = A solution of (HBF),Y is given by the harmonic

1
wra2:
oscillator z(t) = e**. We can observe that z(-) is bounded but not convergent for any w > 0. By letting
w — 07 we get \y2 — 17 . Consequently, \y? < 1 is not a sufficient condition for the convergence of

(HBF) , for a general A-cocercive operator.

jwt

3In the case of first order evolution equations, a detailed study can be found in Peypouquet-Sorin [65]
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3.1.2 The general maximally monotone case

Let now suppose that M is a general maximally monotone operator acting on a real Hilbert space 7. The
development of fast inertial methods to solve the inclusion governed by a general maximally monotone
operator M allows us to consider in a unifying way different classes of problems. To cite some of the most
important cases:

e M = 90 : convex minimization.
e M = (0,L,—0,L) : convex-concave saddle value problem, (augmented) Lagrangian methods.
e , M =1 — T fixed point of nonexpansive operator.

Consider a maximally monotone operator M which is not supposed to be cocoercive (for example, a
skew symmetric linear operator). To reduce ourselves to the cocoercive case, we use the Yosida approx-
imation of M. Recall that, for each A > 0, the resolvent of index A of M, Jyur : H — H, is given by
I = I +A\M )_1, where [ is the identity operator. We will use indifferently the two notations Jys
and (I + AM)~! in the case of a general maximally monotone operator M ©, and the proximal notation
prox,s in the case of the subdifferential of a convex function M = 0®. The resolvent is everywhere
defined (that’s Minty theorem), and firmly nonexpansive. The Yosida approximation of index A of M is
the operator M) : H — H defined by

1
X\

The following properties of the Yosida approximation play a central role in our analysis (see [26], [37]):

My=—(T-Jw).

(i) My is X-L1psch1tz continuous.

(i) M;1(0) = M~1(0) (preservation of the solution set).
(4i7) M A 1S A-cocoercive.

(iv) (My)u = My, forall A\, > 0 (resolvent equation).
(v) Mx(z) € M(Jxp(x)) forall z € H, forall A > 0.

Based on the convergence results in the cocoercive case [3], [19], and property (zi7) of the Yosida approx-
imation, we immediately deduce that, under the condition \y? > 1, each trajectory of

#(t) + i (t) + My(2(t)) =0 (3.3)

converges weakly to a zero of M. It turns out that taking a fixed damping coefficient v induces too much
friction, which prevents the inertial effect to be fully effective. In the quest for a faster convergence, we
follow the dynamic intepretation given by Su-Boyd-Candes in [72] of the Nesterov acceleration method.
This leads us to replace in (3.3) the fixed damping coefficient v by the vanishing damping coefficient
¢, where « is a positive parameter (Nesterov method corresponds to o = 3). To preserve the condition
A2 > 1 which links the damping and the cocoercive parameters, we are led to introduce a time-dependent
regularization parameter \(-) satisfying the condition

2

[0

This leads us to introduce the continuous non-autonomous evolution equation
(FIRST)  &(t) + %:i:(t) + My (2(t) =0,  t>to>0.

We call it the Fast Inertial Regularized SysTem, (FIRST) for short. One can show that the corresponding
Cauchy problem is well posed (see [22, Appendix]). In accordance with the above approach, the following
convergence result for the trajectories of (FIRST) has been obtained in [22].

%Indeed the notation (I 4+ AM) ™! is sometimes more clear when there are several varying parameters in the formula
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Theorem 3.1 Let M : H — 2™ be a maximally monotone operator such that S = M~(0) # (. Let us
suppose that the parameters entering the evolution equation (FIRST) satisfy the conditions o > 2 and

t? 2
At)=(1+ e)g for some € > paY

Then, for each solution trajectory x : [ty, +0o[— H of (FIRST), we have that x(t) converges weakly to an
element of S, as t — +00. Moreover limy_, ||Z(t)|| = lims— 4o ||Z(t)]] = 0.

Proof. We just sketch the beginning of the proof, which shows the role played by the tuning of the
proximal parameter A(t). The proof is based on the Opial lemma A.2 (see the Appendix). Let us show that
forall z € S = M~1(0), the limit of the anchoring function h(t) := ||z (t) — z||* exists when ¢ — +oc.
According to the classical derivation chain rule, we have

ha(t) = {a(t) = 2,8(1)), ha(t) = (@(t) — 2, (1) + |(0)[|*.

Using the constitutive equation (RIMS),, ,, we deduce that

Ra(t) + Sha(t) + My (t)), () = 2) = @)

Since M)y is A(t)-cocoercive and z € S, we have (M, (2(t)), z(t) — z) > A(t)|| My (x(t))]|%.
Combining this inequality with the above equation, we obtain

ha(®) + Zha(t) + A My () < @) (3:4)

According to (RIMS),, 5, we have M) (z(t)) = —i(t) — $2(t). By replacing My (x(t)) with this
expression in (3.4), and after developing, we obtain

. a2

ha(t) + %hz(t) + <)\(t)t2 Alt) d

eI + A0|E@)]* < 0.

- 1) 1) + a

By assumption, A(t) = (1 + 6)5722 Therefore,

hatt) + Chat) + el + 20 L a2 4 2@ ) < 0. (3.5)

Integration of (3.5) gives
+oo +oo |
/ Hl(8)||2 dt < +o0 and / () (1) dt < +o0.
to to

From this last estimate, we classically obtain that lim;_, ; o h, (%) exists. Returning to (3.4) we obtain the
estimate t;roo tA(E) M\ (x(t))||* dt < +o0, which plays a key role in the continuation of the proof. m

In the subdifferential case M = 0, the rate of convergence of the Nesterov accelerated method is
achieved by the above dynamic, which justifies the “fast” terminology for (FIRST). Precisely, the following
result has been obtained by Attouch-Cabot in [9]:

Theorem 3.2 Suppose that M = 0P, where ® : H — R U {+o0} is a convex lower semicontinuous
proper function, and \(-) is a nondecreasing function of class C* such that \(t) < Ct2 for some positive
constant C. Then, for each solution trajectory x : [ty, +00[— H of (FIRST), we have

i) Casea>3: ®(p(t)) —miny & = (’)(t%) where p(t) = prox ;e (1)-

1) Case o > 3: x(t) converges weakly to an element of S, and lim;_, 1 « ||z(t) — p(t)|| = 0.
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3.2 Inertial algorithms for solving monotone inclusions

Let us introduce the inertial proximal algorithms resulting from the temporal discretization of the continu-
ous dynamic (FIRST). We choose to discretize it implicitely in order to follow closely the continuous-time
trajectories. Moreover, the implicit scheme does not imply more complicated computation than the explicit
one: they have the same iteration complexity (they each need a computation of resolvent per iteration).
Taking a fixed time step h > 0, and setting tx, = kh, ; = x(t;), A\ = A(tx), an implicit finite-difference
scheme for (FIRST) with centered second-order variation gives

1 0"
ﬁ(iﬂk—f—l — 2z 4+ xp—1) + m(ﬂ?k — zp—1) + My, (xp41) = 0. (3.6)

After developing (3.6), we obtain

(6]
Tt + B2My, (Tpy1) = zp + (1 - E) (x) — Tp—1)- (3.7

Setting s = h?, we equivalently have

Tpr1 = I+ sM/\k)f1 <xk + <1 - %) (x — $k—1)) , (3.8)

where (I + sM)y, )71 is the resolvent of index s > 0 of the maximally monotone operator M), . This gives
the algorithm

{ e = arp+ (1— %) (@p — zp—1) 3.9)

apir = (L+sMy) ™" (w)-

As a key property, the resolvents of the Yosida approximation M can be expressed simply in terms of the
resolvents of M. Using the resolvent equation (M), = M), we obtain the two following equivalent
formulations for (I + sMy) ™

A s

I+ sMy) ' = I I+ (A4 s)M)™* 3.10
(I+ M) A+s +)\+5( + (A +s)M) ( )
=1 —sMy,s. (3.11)
Using (3.10), we can reformulate (3.9) as follows
Q
Yp = Tp+ (1 - E) (T — Tp—1)
(RIPA) A s

Tht1 Yk + T SJ(Ak+s)M(yk)7

A+ s

where (RIPA) stands for the Regularized Inertial Proximal Algorithm. Convergence of (RIPA) algorithm
has been established by Attouch-Peypouquet in [22, Theorem 3.4], see Attouch-Cabot [11] for the exten-
sion to general extrapolation coefficients. We recall it below.

Theorem 3.3 Let M : H — 2™ be a maximally monotone operator such that S = M ~1(0) # (). Let ()
be a sequence generated by the Regularized Inertial Proximal Algorithm (RIPA) where o > 2 and

2
A= (1+ 6)%]62 for some € > 5 and all k> 1.
a

Then,

i) The speed tends to zero. More precisely,

Tpp1 — o = O(3) and 3, kl|wk — zp—1]|> < +oc.

i1) The sequences () and (yy) converge weakly to the same limit & € S, as k — +oc.
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This is illustrated in the following picture:

Th—1

Tk

ye=ak+ (1— %) (zp — z-1)

7wk = Yk xm (Jowrs)mr (k) — Uk)

Ove+s)M (Yk)

(RIPA) algorithm

As k — 400, let us observe that A\, = (1 + e)ﬁk2 — 400, and 3 *; — 0. Therefore, Jiy, 150 (Yx) ~
proj¢(yx) which is an excellent direction. But we can only take a small step in this direction.
Let us make the link with the classical inertial proximal algorithm which corresponds to a discrete

version of the heavy ball method.

Remark 3.1 Letting A\, — 0 in (RIPA) gives the classical form of the inertial proximal algorithm

. yr = T+ ag(Tr — Tp-1)
(Inertial-Prox)
Ter1 = Jsm(Yk)-

The case 0 < ai < & < 1 was considered by Alvarez-Attouch in [3], who proved that, under the
summability assumption

ZakakH — zg|? < +oo, (3.12)

k

then, for any sequence (z) generated by (Inertial-Prox), (xj) converges weakly to some & € S, as
k — +o00. The assumption (3.12) can be enforced by applying an appropriate on-line rule, for example

_ . _ . _ 1
o € [07ak] with ap = mln{oz, m} .

But the hypothesis 0 < aj < @ < 1 is rather restrictive. In the line of the Nesterov accelerated gradient
method, the case o, — 1 is the most interesting for obtening fast methods, see the rich literature on the
subject in the case of convex minimization [8], [10], [17], [22], [27], [40], [50, 51], [72]. Our approach,
which relies on the Yosida approximation of the operator M, will allow us to get rid of this restrictive
hypothesis.

In the subdifferential case M = 0, the rate of convergence of the Nesterov accelerated method
(which is optimal for first order methods in the general convex case) is achieved by the above algorithm.
Precisely, the following result has been obtained by Attouch-Cabot [13] and Attouch-Peypouquet [21].

Theorem 3.4 Suppose that M = 0P, where ® : H — R U {+oo} is a convex lower semicontinuous
proper function with S = argmin ® # (). Suppose that (\y) is a nondecreasing sequence, and s > 0 is a
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positive parameter.
Let (xy,) be a sequence generated by algorithm

8]
yp = xp+ (1 - E) (xfp — p—1)
(RIPA) A i
Thy1 SV Ll v Prox, 4s)a (Yk)-

Then, the following properties are satisfied:
e Case > 3: @y y(z) — ming & = O(k™2).
As a consequence, selting pr = Proxy, oo (Zx), we have
: _ —2 2 _ A
D(py) — miny @ = O(k2), and ||oy — pil]? = O (3) -
e Case o > 3: Suppose moreover that supkz—’; < +o0.

Then z), — & € S, ®(pg) — miny ® = o(k~2), limg_, o ||px — 2|l = 0.

3.3 Perturbation, errors, Tikhonov regularization

The following variant of the (RIPA) algorithm has been introduced in [22]. It involves additive errors (eg):
Q
yp = Tk + (1 - E) (T — 1)
k

S
= )\k s (yk + Sek) + m‘]()\kJFS)M (yk + Sek).

(RIPA-pert)

Tr+1
The convergence of (RIPA-pert) algorithm is analyzed in the following theorem.

Theorem 3.5 Let M : H — 2™ be a maximally monotone operator such that S = M ~1(0) # (). Let ()
be a sequence generated by the algorithm (RIPA-pert) where o« > 2 and

s 2s 4

for some € > 2t5 and all k > 1. Suppose that 3" k|lex|| < 400 and Y-, k3|leg||* < +oc. Then,

i) The speed tends to zero. More precisely, |xx41 — x| = O(3) and 3, k|| zg — zx—1]|* < +o0.

ii) The sequences (x1) and (yi) converge weakly to the same element T € S, as k — +0o0.

Remark 3.2 In connection with theorem 3.5, there is the case where e; comes from a Tikhonov regular-
ization with vanishing coefficient ;. As a general rule, when the Tikhnonov coefficient ¢; does not tend
to zero to quickly, we asymptotically obtain the solution of minimum norm. This result was proven in the
case of the accelerated gradient method of Nesterov by Attouch-Chbani-Riahi in [16]. It is probable that
such a phenomenon occurs within the framework of theorem 3.5. This is an interesting subject to explore.

4 An inertial (ADMM) algorithm

Our program will consist in applying the convergence results obtained for the regularized inertial proximal
algorithm (RIPA) to the specific operator Mp described in the sections 1 and 2. The next step will be to
completely decompose the method, and thus obtain an inertial proximal ADMM algorithm. According to
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(2.1), the resolvent of the operator M p, which is a basic ingredient of (RIPA), is given by the following
formula: for any (u,v,w) € X xY x Z, Jxpp (u, v, w) = (2,9, 2) is the unique solution of the system
(x —u) + df(x) + A (w + M\(Ax — By)) 3 0;

(y —v) +9g(y) — B* (w+ A(Az — By)) 3 0;

(z —w) + By — Az = 0.

M= s >

4.1)
Hence (RIPA) writes as follows: Starting with an initial arbitrary triple (o, yo,20) € X X Y x Z, the

sequence (z, Yk, 2k) € X X Y X Z is generated by the iterative scheme (Proximal Inertial Method of
Multiplier):

I——) (yx — Yr-1)

( ur = T + (1—%) (xk — TK—1)
Uk:yk+( )

wg = 2 + (1 — E) (zk — 2k—1)

s (0k —uk) + 0f (pr) + A" (wg + (A + 5)(Apy, — Bay,)) 3 0
(PIMM) xors (e — vk) + 0g(qr) — B (wg + (A + s)(Apy, — Bgy)) 3 0
ot (e = wi) + B, — Ap, = 0

S
k+}\k—|—8pk
S

k
Lh+1 = )\k—i—su

[

k
= —
Yk+1 Nt s

)\k+s%
S
L+

Zk+1 =

k
A+ 8 v A+ Srk
A direct application of Theorem 3.3 gives the following convergence properties of (PIMM).

Theorem 4.1 Let make assumption (H) and assume that the set S of equilibria is non empty. Let’s consider
the Proximal Inertial Method of Multiplier (PIMM) where o > 2 and

S .2

for some € > ﬁ and all k > 1. Then, starting from an arbitrary point (xg,yo,20) € X X Y X Z, the
corresponding sequence (xy, Yk, 2r) € X XY X Z generated by (PIMM) satisfies the following properties:

i) The speed tends to zero. More precisely,

Trr1 — k|| = O(3) and 3", k|lxy, — zp—1||? < +oc.
ii) The sequences (xy) and (yy) converge weakly to the same element & € S, as k — +oc.

Yet, as for the proximal method of multipliers, (PIMM) is not completely decomposed. This appears
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clearly when writing the equivalent variational formulation

«
U = T+ <1 — E) (mk — l’k,1)
o
vy = Yk + (1 - %) (Yr — Yr—1)
«a
W = 2+ (1 — E) (Zk — Zkfl)
(pe-ar) =  argmin {f(&)+ g(n) + (wk, A — Bn) + 252||A¢ — By||?
(€m)eX XY
+omrey (16— wrll® + lln — vell*)}
e = wip+ (A + 5)(Apr — Bag)
. _ Ak N s
k+1 = )\k+suk )\k+8pk.
Yk+1 )\k)\+s k )\k+8%-
_ k S
[ T )\k+swk+ /\k+srk'

Remark 4.1 Take into account the fact that the operator M p is associated with an optimization problem,
it would be interesting to study the convergence rate of the values f(xx) + g(yx) — inf P as k — +o0.

Remark 4.2 In the general approach developed in [11] and [22], it is considered the case where the
operator M satisfies a a quadratic growth property (it contains the strongly monotone case). Adapting
this result to (PIMM) is also an interesting question.

S A full splitting algorithm

Let us follow the strategy which has been developed in [25] in order to completely decompose the problem.
It consists in applying one step of the alternating proximal minimization algorithms for weakly coupled
minimization problems, see [5], [24]. Other strategies can be developed, for example based on the forward-
backward splitting method, see [7]. We obtain the following algorithm called the inertial proximal ADMM
algorithm, (ip-ADMM) for short.

,

up = T+ (1 — %) (g — xp—1)
v = yr+ <1 - %) (Yk — Yr—1)
wy = 2+ < — %) (2l — 2k—1)

pr = argmingey{f(&) + (wk, A — Bug) + 25| A¢ — Buy|)?
+omra 16 — ul®}

(ip-ADMM){ g = argmin,cy{g(n) + (wy, Apy — Bn) + 252|| Ap, — Bn|?

+omnra Im — vell?}

e = wp+ (A +s)(Apr — Bay)

/\k + S
X = u .
s A+ 8 k A+ spk
k + S
— v .
Yk+1 Mo+ 5 k Ao+ SQk:
Ak s
Zk+1 =

Ak + ka + Ak + Srk.
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Equivalently
( «
U = T + (1 E) T — l‘k—l)
(6]
U, = Uk + (1 E) Yk — Yk—1)
[0
Wi = 2k + (1 E) Zk — Zk—l)

N

pr) + A" (wi + (M + 5)(Ape — Bug)) 3 0
ar) — B* (wi + (A + 5)(Apr. — Bax)) 0

s (Pe—uwk) +0f

(
(ip-ADMM){ 575 (ak —vk) +0g(

Tk = wg + ()\k + S)(Apk — qu)

AN 4

T = n .

bl Mets E TN+ stk
Ak n s
= v

Yk+1 Mo+ 5 k e + SQk
Ak s

Zk+1 =

YL e

The crucial point is to show that taking one step of this inner loop instead of performing the whole loop
induces an error which does not affect the convergence process. It is a difficult and open question.

6 Conclusion, Perspectives

Obtaining fast convergent alternating direction methods of multipliers is an active research subject due to
its numerous applications, either as a numerical method or for modeling purposes in decision sciences. In
this article, we propose an algorithm that involves both inertial and relaxation aspects. We have proven
that it generates convergent iterates with fast convergence properties. By comparison with other related
approaches, it it is based on the recent improved versions of the accelerated gradient method of Nesterov,
and is therefore optimal in the case without constraint. It opens the door to new directions of research. We
have listed a few below.

1. Besides the many questions that have been raised throughout the paper, the main problem that re-
mains to be solved is to show that the completely splitted algorithm (ip-ADMM) inherits the con-
vergence properties of the Proximal Inertial Method of Multiplier (PIMM).

2. According to the dynamical interpretation of the inertial optimization algorithms, their convergence

properties come from the damping term. Much progress has been made recently to explore this
aspect, and choose a damping term with favorable properties. In this article, we used the asymptotic
vanishing viscous damping with the coefficient ¢ which is naturally attached to the acceleration
of Nesterov, see Su-Boyd-Candés [72]. Following Attouch-Chbani-Fadili-Riahi [14], it would be
interesting to combine this damping with the Hessian damping which takes account of the geometry
of the functions which enter the constrained minimization problem (P). In the case without linear
constraint, there is theoretical and numerical evidence that the introduction of the corresponding
correcting terms notably improves the convergence properties of the algorithms, especially in the
case of poorly conditioned problems. In this direction, in the case of general monotone inclusions,
see the recent contribution of Kim [49].
Other types of damping are also of great numerical interest, such as the dry friction combined with
the Hessian damping considered by Adly-Attouch [1]: in this case, we can expect to obtain a geo-
metric convergence rate, and that, generically, there is finite convergence of the sequences generated
by the algorithms to approximate equilibria.
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3. A classical alternative approach to the Lagrangian method is the penalization method. A major
advantage of the penalization methods is that they can handle nonlinear problems. Indeed, when we
consider the penalized formulation of problem (P)

- 2
(Pr)  amin {f(z)+g(y) +rllde —Byl°},
it has been proven by Attouch-Bolte-Redont-Soubeyran [6] that, when f and g are semialgebraic
functions, then the proximal alternating minimization algorithm (applied to (P,)) generates se-
quences which converge towards equilibria. Moreover, by a diagonal argument, we can combine
this type of algorithm with the penalization method obtained by letting r — 400, so as to solve
(P), see Attouch-Czarnecki-Peypouquet [18]. It is therefore natural to conjecture that similar con-
vergence properties hold for the Lagrangian approach when f and g are nonconvex tame functions,
see Magnusson-Weeraddana-Rabbat [56] for some first results in this direction.

4. As already mentioned, various approaches have recently been proposed to accelerate the (ADMM)
algorithm. It would be interesting to compare them from a theoretical and numerical point of view,
as well as with the inertial primal-dual methods.

5. In Theorem 3.5, the abstract convergence theorem which supports our analysis was considered with
the presence of perturbations, or errors. It is natural to consider the corresponding results for the
associated inertial proximal (ADMM) algorithms. Besides taking into account noise and errors, it is
a central question to obtain completely splitted algorithms.

A Auxiliary results

A.1 Yosida regularization of an operator )/

Given a maximally monotone operator M acting on a Hilbert space H, and given A a positive parameter,
the resolvent of M with index A and the Yosida regularization of M with parameter )\ are defined by

1

I =T +AM)""  and M, X

(I =),

respectively. The operator Jyys : H — H is nonexpansive and eveywhere defined (indeed it is firmly
non-expansive). Moreover, M), is A-cocoercive: for all =,y € ‘H we have

(Myy — Myz,y — z) > M[Myy — Myz|?.

This property immediately implies that M) : H — H is %—Lipschitz continuous. Also note that for any
x € H,and any A > 0
My(x) € M(Ja(x)) = M(z — A\Mj(x).

Moreover, for any A > 0, M and M) have the same solution set S := M, '(0) = M ~*(0).
Another property that proves useful is the resolvent equation (see, for example, [37, Proposition 2.6] or
[26, Proposition 23.6]): for any A, > 0

(My) = M()\+;¢)~ (A.1)
This property allows to compute simply the resolvent of M): for any A, i > 0 we have

A %
J, = I
M TN T +/\+u

SOty
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As a consequence of the resolvent equation we have the following continuity property of the resolvents
with respect to the proximal parameter. This property plays a key role in the proof of the convergence of
the iterates in Theorem 3.1.

Lemma A.1 Let~,0 > 0, and x,y € H. Then, for each z € S = M*I(O), we have

Iy My — Myl < 2| — ]| + 2z — (A2)

For a detailed presentation of the properties of the maximally monotone operators and the Yosida approx-
imation, the reader can consult [26] or [37].
A.2 Opial’s lemma
Lemma A.2 (Opial) Let S be a nonempty subset of H and let x : [to, +00[— H. Assume that
(i) forevery z € S, limy_,oo ||(t) — 2|| exists;
(ii) every weak sequential limit point of x(t), as t — oo, belongs to S.

Then x(t) converges weakly as t — oo to a point in S.
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