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In a Hilbert space setting, we analyze the convergence properties of a new class of proximal ADMM algorithms with inertial features. They aim to quickly solve convex structured minimization problems with linear constraint. As a basic ingredient, we use the maximally monotone operator M which is associated with the Lagrangian formulation of the problem. We specialize to this operator the inertial proximal algorithm recently introduced by Attouch and Peypouquet (Math. Prog. 2019) to resolve general monotone inclusions. This gives an inertial proximal ADMM algorithm where the extrapolation step takes into account recent advances concerning the accelerated gradient method of Nesterov. Based on an appropriate adjustment of the viscosity and proximal parameters, we analyze the fast convergence properties of the algorithm, as well as the convergence of the iterates to saddle points of the Lagrangian function. Among the perspectives, we outline a new direction of research, linked to the introduction of the Hessian damping in the algorithms.

Introduction

Our study concerns the resolution by accelerated (ADMM) algorithms of the convex structured minimization problem with linear constraint We set x 2 = x, x , y 2 = y, y , z 2 = z, z for x ∈ X, y ∈ Y, z ∈ Z. 11.1 Lagrangian function and maximally monotone operator attached to (P)

Classically, we can reformulate (P) as a saddle value problem min (x,y)∈X×Y max z∈Z {f (x) + g(y) + z, Ax -By } .

(1.1)

The Lagrangian L : X × Y × Z → R ∪ {+∞} associated to (1.1) is the extended-real-valued function L(x, y, z) = f (x) + g(y) + z, Ax -By .

It is convex with respect to (x, y), and affine (and hence concave) with respect to z. A pair (x, y) is optimal for (P), and z is a corresponding Lagrange multiplier if and only if (x, y, z) is a saddle point of the Lagrangian function L. We denote by S the set of saddle points of L. Equivalently

(x, y, z) ∈ S ⇐⇒        ∂f (x) + A t (z) 0;
∂g(y) -B t (z) 0;

B(y) -A(x) = 0,
where we use the classical notions and notations of the linear and convex analysis: ∂f is the subdifferential of f , ∂g is the subdifferential of g, A t : Z → X is the transposed operator of A, and B t : Z → Y is the transposed operator of B. The above system can be written equivalently as the monotone inclusion

M P (x, y, z) 0 (1.2) 
where M P : X × Y × Z → 2 X×Y ×Z is the set-valued mapping defined by M P (x, y, z) = (∂ x,y L, -∂ z L) (x, y, z) = ∂f (x) + A t z, ∂g(y) -B t z, By -Ax .

(1.

3)

The crucial point is that the operator M P is maximally monotone on X × Y × Z. Indeed, this follows simply from the following observation. The operator M P can be splitted as

M P = M 1 + M 2 (1.4)
where M 1 (x, y, z) = (∂f (x), ∂g(y), 0), and M 2 (x, y, z) = A t z, -B t z, By -Ax . Thanks to the classical rules of the subdifferential calculus, it can be observed that M 1 = ∂Φ is the subdifferential of the convex lower semicontinuous proper function Φ(x, y, z) = f (x) + g(y), and therefore is maximally monotone. The operator M 2 is linear continuous and skew symmetric, and therefore it is also maximally monotone. This immediately implies that M P is maximally monotone as the sum of two maximally monotone operators, one of them being Lipschitz continuous ([37, Lemma 2.4, page 34]). 2 This can also be achieved as a consequence of the general properties relying convexity and monotonicity, see Rockafellar [START_REF] Rockafellar | Monotone operators associated with saddle-functions and mini-max problems[END_REF]. Thus, S can be interpreted as the set of zeros of a maximally monotone operator. As such, it is a closed convex subset of X ×Y ×Z. The application of the proximal algorithm to the maximally monotone operator M P gives the proximal (ADMM) algorithm. This will be the guiding idea of our approach, with a non-trivial adaptation for the inertial versions.

Examples of problems (P)

The optimization problem (P) intervenes in the modeling of a wide range of situations possibly involving spaces of infinite dimension. Let's briefly describe some of them:

• In the case of the finite dimension, the Regularized Least Squares method (RLS) is the composite optimisation problem on R n ,

min y∈R n 1 2 By -b 2 + g(y) (RLS)
where B is a linear operator from R n to R m , m ≤ n, g : R n → R ∪ {+∞} is a proper lsc. convex function which acts as a regularizer. Problem (RLS) falls within the setting of (P) by taking f (x) =1 2 x2 , and the affine coupling equation x -By = -b (the operator A is the identity of R m ). 3 Problem (RLS) is used intensively in a variety of fields ranging from inverse problems in signal/image processing, to machine learning and statistics. Typical examples of function g include the 1 norm (Lasso), the 1 -2 norm (group Lasso), the total variation, or the nuclear norm (the • For optimal control of linear systems, Ax-By = 0 is the state equation which links the state variable

x to the control variable y. The functions f and g are respectively the criteria to be minimized and the cost of the control. Note that the convex constraints on x and y can be integrated respectively in the function f and g via their indicator functions. Recall that f and g are authorized to take extended real values. In this context, the variable z is often called the adjoint state. It plays a central role in the numerical solution of the problem, and in the study of its properties of sensitivity and stability. One can consult Allaire [START_REF] Allaire | Optimal design of structures; Optimization of distributed systems: Computing a gradient by the adjoint method[END_REF] for an in-depth presentation of the optimal control of distributed systems and PDE's in mechanics, and the use of the adjoint state.

• Potential games give rise to the slightly more general form of the problem (P)

min {f (x) + g(y) + Q(x, y) : Ax -By = 0}
where Q is a coupling function between the respective actions x and y of the two players, and Ax -By = 0 takes account of the limitation of ressources. In this setting, the proximal (ADMM) algorithm has a natural interpretation as a best response dynamic with cost to change (to move), see Attouch-Redont-Soubeyran [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs-to-move[END_REF].

• Domain decomposition for PDE's. One of the main objectives of domain decomposition is to solve partial differential equations and the associated boundary value problems on complex geometries by partitioning the original domain Ω in smaller and simpler subdomains. Let us consider the case of two subdomains, i.e. Ω = Ω 1 ∪ Ω 2 ∪ Σ where Ω 1 and Ω 2 are two open sets which do not intersect, and Σ is the interface bewteen the two subdomains. This leads to consider the problem (P) where f and g are the respective energy functions on the two subdomains and A and B are the respective trace operators relative to the interface Σ. The condition Ax -By = 0 reflects the continuity of the solution at the interface of the two subdomains. This approach was developped by Attouch-Briceno-Combettes in [START_REF] Attouch | A strongly convergent primal-dual method for nonoverlapping domain decomposition[END_REF] to provide a full splitting primal-dual algorithm.

Presentation of the results

To guide our study, we use the close link between continuous evolution equations governed by maximally monotone operators and the proximal algorithms which result from their implicit temporal discretization, see Peypouquet-Sorin [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF] for first order evolution systems. Indeed, continuous inertial systems are very useful in our context: they provide a deep mechanical intuition and suggest Lyapunov functions of energy type. More precisely, we rely on the second order evolution equations with inertial features and the associated relaxed proximal algorithms recently introduced by Attouch-Peypouquet [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF] for the resolution of inclusions governed by maximally monotone operators. As a main feature, these algorithms involve an extrapolation term in the line of the Nesterov method, and an appropriate tuning of the proximal and relaxation parameters. Before introducing them, we need some preparatory results. In section 2 we review the classical results concerning the convergence properties of the proximal (ADMM) algorithm (without inertia). In section 3 we present the abstract results of [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF] concerning the convergence properties of a relaxed inertial proximal algorithm for general monotone inclusions. Then in section 4 we specialize these results to the maximally monotone operator M P which is attached to problem (P), and present our main results concerning the convergence properties of a new class of inertial proximal (ADMM) algorithms. Section 5 concerns a variant of the inertial proximal algorithm which is completely splitted. The last section presents some new research directions, notably the introduction into these algorithms of correcting terms associated with the Hessian driven damping.

Our work is part of an active research trend. Each of the following recent articles follows a specific approach. In [START_REF] Bot | An inertial alternating direction method of multipliers[END_REF] Bot-Csetnek develop an inertial alternating direction method of multipliers which is based on the abstract inertial Douglas-Rachford algorithm which was previously developed in [START_REF] Bot | Inertial Douglas-Rachford splitting for monotone inclusion problems[END_REF]. But the extrapolation coefficient is not allowed to go to zero, as is the case in the accelerated gradient method of Nesterov. A closely related approach has been developed by Marques Alves-Eckstein-Geremia-De Melo who consider an inexact variant of the Douglas-Rachford splitting method for maximally monotone operators, thus allowing to cover a large class of algorithms. In [START_REF] Kim | Accelerated proximal point method for maximally monotone operators[END_REF], Kim develops an accelerated proximal point method for maximally monotone operators based on the performance estimation problem (PEP) approach of Drori-Teboulle [START_REF] Drori | Performance of first-order methods for smooth convex minimization: A novel approach[END_REF]. The convergence rate of the method is evaluated in terms of the fixedpoint residual. But no convergence of the iterates is obtained. Another approach by Combettes-Glaudin [START_REF] Combettes | Quasi-nonexpansive iterations on the affine hull of orbits: from Mann's mean value algorithm to inertial methods[END_REF] uses a new iterative scheme in which the update is obtained by applying a composition of quasinonexpansive operators to a point in the affine hull of the orbit generated up to the current iterate. In [START_REF] Chen | Inertial proximal ADMM for linearly constrained separable convex optimization[END_REF], Chen-Chan-Ma-Yang analyze the convergence properies of an inertial proximal (ADMM) algorithm where the proximal terms are calculated relative to general weighting matrices which can be positive semidefinite, thus unifying many existing results. But the damping parameter is fixed, which does not take into account the Nesterov acceleration. In [START_REF] Goldstein | Fast Alternating Direction Optimization Methods[END_REF] Goldstein-O'Donoghue-Setzer-Baraniuk develop fast alternating direction optimization methods based on the Nesterov accelerated method, and obtain fast convergence rates using strong convexity assumptions and/or restarting methods. A similar approach was followed by Goldfarb-Ma-Scheinberg in [START_REF] Goldfarb | Fast alternating linearization methods for minimizing the sum of two convex functions[END_REF].

In our approach, we will get rid of some of the limitations present in the above articles, by considering an inertial proximal algorithm (ADMM) which takes advantage of recent advances in the accelerated gradient method of Nesterov (see [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF], [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF], [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF], [START_REF] Chambolle | On the convergence of the iterates of the Fast Iterative Shrinkage Thresholding Algorithm[END_REF], [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF] and the references contained therein). In general Hilbert spaces, we get both the convergence of the iterates and fast convergence rates.

The (prox-ADMM) algorithm

Let us review some classical facts concerning the maximally monotone approach to the proximal (ADMM) algorithm. Let us recall that the operator M P : X × Y × Z → 2 X×Y ×Z which is defined by

M P (x, y, z) = (∂ x,y L, -∂ z L) (x, y, z) = ∂f (x) + A t z, ∂g(y) -B t z, By -Ax
is maximally monotone on X ×Y ×Z. When the proximal algorithm is applied to the maximally monotone operator M P , one obtains the so-called proximal method of multipliers. This method was initiated by Rockafellar [67, 68, 69] (1976). A comprehensive presentation on the subject can be found in Chen-Teboulle [START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF] (1994). This approach is described below: By applying the proximal algorithm to M P with positive proximal parameter λ, we obtain the iteration (x k , y k , z k ) -→ (x k+1 , y k+1 , z k+1 ) where (x k+1 , y k+1 , z k+1 ) = (I + λM P ) -1 (x k , y k , z k ) is the solution of the following system

       1 λ (x k+1 -x k ) + ∂f (x k+1 ) + A t (z k+1 ) 0; 1 λ (y k+1 -y k ) + ∂g(y k+1 ) -B t (z k+1 ) 0; 1 λ (z k+1 -z k ) + B(y k+1 ) -A(x k+1 ) = 0. (2.1) Equivalently          1 λ (x k+1 -x k ) + ∂f (x k+1 ) + A t z k + λ(A(x k+1 ) -B(y k+1 )) 0; 1 λ (y k+1 -y k ) + ∂g(y k+1 ) -B t z k + λ(A(x k+1 ) -B(y k+1 )) 0; 1 λ (z k+1 -z k ) + B(y k+1 ) -A(x k+1 ) = 0.
(2.

2)

The two first equations can be interpreted as the optimality conditions of the convex optimization problem

(x k+1 , y k+1 ) = argmin (ξ,η)∈X×Y {f (ξ) + g(η) + z k , Aξ -Bη + λ 2 Aξ -Bη 2 + 1 2λ ξ -x k 2 + 1 2λ η -y k 2 }. (2.3) 
Thus, the proximal method of multipliers can be naturally interpreted with the help of the augmented Lagrangian function

L λ (x, y, z) := f (x) + g(y) + z, Ax -By + λ 2 Ax -By 2
in the following way: at each iteration of the algorithm, given (x k , y k , z k ), one performs a proximal minimization step of the augmented Lagrangian L λ with respect to (x, y) to obtain the next iterate (x k+1 , y k+1 ).

Then, one updates the multiplier by the iteration z k+1 = z k + λ(Ax k+1 -By k+1 ), which is nothing but a proximal maximization step of the augmented Lagrangian with respect to z. Note that the Lagrangian function is a convex-concave function. In this convex setting, the Lagrangian formulation is equivalent to the augmented Lagrangian formulation. As a consequence of the convergence properties of the proximal algorithm for general maximally monotone operators, this algorithm generates sequences that always (weakly) converges to a saddle point of L, and hence an optimal solution of (P). One just needs to assume that the set of saddle points of L is non empty. The main disadvantage of this method is that, when performing the proximal minimization step to find (x k+1 , y k+1 ), one is faced with the minimization problem (2.3) which is not separable, because of the presence of the quadratic coupling term Ax -By 2 . Indeed, by combining this method with the alternating proximal algorithms for weakly coupled minimization problems, see Attouch-Bolte-Redont-Soubeyran ( [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF], 2008), a fully split method is obtained. This approach, developed by Attouch-Soueycatt in [START_REF] Attouch | Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE's and control[END_REF], is described below. Starting with an initial arbitrary triple

(x 0 , y 0 , z 0 ) ∈ X × Y × Z, the sequence (x k , y k , z k ) ∈ X × Y × Z is generated by the iterative scheme: (x k , y k , z k ) → (x k+1 , y k+1 , z k+1 ) k = 0, 1, 2, ...        x k+1 = argmin f (ξ) + z k , Aξ + λ 2 Aξ -By k 2 Z + 1 2λ ξ -x k 2 X : ξ ∈ X y k+1 = argmin g(η) -z k , Bη + λ 2 Bη -Ax k+1 2 Z + 1 2λ η -y k 2 Y : η ∈ Y z k+1 = z k + (Ax k+1 -By k+1 ).
(2.4) Because of the proximal quadratic terms, the two above convex minimization problems have unique respective solutions, x k+1 and y k+1 . The above algorithm can be seen as performing alternate proximal minimization (consecutive) steps on the augmented Lagrangian. It is called the "proximal Alternating Direction Method of Multipliers" (prox-ADMM) in short. Writing optimality conditions gives the equivalent form of the algorithm:

(prox -ADMM)        1 λ (x k+1 -x k ) + ∂f (x k+1 ) + A t [z k + λ(Ax k+1 -By k )] 0; 1 λ (y k+1 -y k ) + ∂g(y k+1 ) + B t [-z k + λ(By k+1 -Ax k+1 )] 0; z k+1 = z k + (Ax k+1 -By k+1 ).
(2.5)

Convergence properties of (prox-ADMM)

The following result has been obtained in [START_REF] Attouch | Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE's and control[END_REF]Theorem 2.1]. It extends the seminal convergence result obtained by Eckstein [START_REF] Eckstein | Some saddle-function splitting methods for convex programming[END_REF] for this algorithm. 4Recall that the set of equilibria S = M -1

P (0) is a closed convex subset of X × Y × Z.
Theorem 2.1 Assume that the set S of equilibria is non empty. Let us start from an arbitrary point (x 0 , y 0 , z 0 ) ∈ X × Y × Z, and consider the corresponding sequence (x k , y k , z k ) ∈ X × Y × Z generated by the "proximal alternating direction method of multipliers" algorithm (prox-ADMM). Then, the following properties are satisfied:

i) (x k , y k , z k ) converges weakly in X × Y × Z to an equilibrium (x ∞ , y ∞ , z ∞ ) ∈ S as k → +∞.
ii) (x k , y k ) is a minimizing sequence for problem (P).

iii) Ax k -By k converges strongly to zero in Z as k → +∞.

iv) x k+1 -x k → 0, y k+1 -y k → 0, z k+1 -z k → 0 as k → +∞.
Let us now introduce some dynamical aspects of this algorithm.

Dynamical system attached to (prox-ADMM)

It is known for long that the proximal method is obtained by the implicit discretization of the evolution system governed by the maximally monotone operator. Thus, in our setting we are led to consider the evolution system in the product space X × Y × Z governed by the maximally monotone operator M P : X × Y × Z → 2 X×Y ×Z . We obtain the system of first-order differential inclusions

       ẋ(t) + ∂f (x(t)) + A t (z(t)) 0; ẏ(t) + ∂g(y(t)) -B t (z(t)) 0; ż(t) + B(y(t)) -A(x(t)) = 0.
(2.6)

The general theory for semi-groups of contractions generated by maximally monotone operators applies to this system. Following Brezis [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF], the Cauchy problem for (2.6) is well posed. Precisely, for any initial data (x 0 , y 0 , z 0 ) ∈ domM P , there exists a unique strong solution (x, y, z) : [0, +∞[→ X ×Y ×Z of (2.6) that satisfies x(0) = x 0 , y(0) = y 0 , z(0) = z 0 . The solution trajectories of (2.6) converge weakly in an ergodic sense to equilibria, which are the zeros of the operator M P . The implicit temporal discretization of the above evolution equation with step size λ > 0 gives the (prox-ADMM) algorithm. Note that taking a fixed positive step makes an important difference between the continuous and the discrete dynamic. For the continuous dynamic there is only ergodic convergence, while for the discrete one (algorithm) there is convergence of the iterates. The close link between proximal algorithms and continuous dynamics generated by maximally monotone operators will serve us as a guideline for introducing the corresponding inertial systems and algorithms. 5 This is analyzed in the next section.

Inertial dynamics and algorithms for solving monotone inclusions

In this section, we consider the case of a general maximally monotone operator M . In this abstract setting, we will describe the inertial dynamics and the algorithms that support our approach. Then, in the next section, we will particularize these results to the operator M P which is attached to the problem (P).

Inertial dynamics for solving monotone inclusions

The cocoercive case

The starting point of our approach is the work of Álvarez-Attouch [START_REF] Álvarez | An inertial proximal method for maximally monotone operators via discretization of a nonlinear oscillator with damping[END_REF] and Attouch-Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with non-potential effects[END_REF] who studied the second-order evolution equation ( ẋ(•) and ẍ(•) stand respectively for the velocity and acceleration)

ẍ(t) + γ ẋ(t) + M (x(t)) = 0, (3.1) 
where M is a maximally monotone operator which is supposed to be λ-cocoercive, for some positive parameter λ. The positive parameter γ is a (viscous) damping coefficient. Recall that M :

H → H is λ-cocoercive (λ > 0) if it satisfies ∀x, y ∈ H M y -M x, y -x ≥ λ M y -M x 2 .
M : H → H λ-cocoercive implies that M is maximally monotone, and Lipschitz continuous with Lipschitz constant 1 λ . Assuming that the cocoercivity parameter λ and the damping coefficient γ satisfy λγ 2 > 1, it is shown in [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with non-potential effects[END_REF] that each trajectory of (3.1) converges weakly to an element of S.

Moreover, the condition λγ 2 > 1 is sharp, as shown by the following example: Take C endowed with the standard real Hilbert structure u, v = Re(ūv). Consider the Heavy Ball with Friction equation

(HBF) γ z(t) + γ ż(t) + M (z(t)) = 0, t ≥ 0, (3.2) 
where γ is a positive damping parameter, and M : C → C is given by

M z := (w 2 -iγw)z with w > 0.
The operator M is λ-cocoercive with λ = 1 w 2 +γ 2 . A solution of (HBF) γ is given by the harmonic oscillator z(t) = e iwt . We can observe that z(•) is bounded but not convergent for any w > 0. By letting w → 0 + we get λγ 2 → 1 -. Consequently, λγ 2 < 1 is not a sufficient condition for the convergence of (HBF) γ for a general λ-cocercive operator.

The general maximally monotone case

Let now suppose that M is a general maximally monotone operator acting on a real Hilbert space H. The development of fast inertial methods to solve the inclusion governed by a general maximally monotone operator M allows us to consider in a unifying way different classes of problems. To cite some of the most important cases:

• M = ∂Φ : convex minimization.

• M = (∂ x L, -∂ y L) : convex-concave saddle value problem, (augmented) Lagrangian methods.

• , M = I -T : fixed point of nonexpansive operator. Consider a maximally monotone operator M which is not supposed to be cocoercive (for example, a skew symmetric linear operator). To reduce ourselves to the cocoercive case, we use the Yosida approximation of M . Recall that, for each λ > 0, the resolvent of index λ of M , J λM : H → H, is given by J λM = (I + λM ) -1 , where I is the identity operator. We will use indifferently the two notations J λM and (I + λM ) -1 in the case of a general maximally monotone operator M6 , and the proximal notation prox λΦ in the case of the subdifferential of a convex function M = ∂Φ. The resolvent is everywhere defined (that's Minty theorem), and firmly nonexpansive. The Yosida approximation of index λ of M is the operator M λ : H → H defined by

M λ = 1 λ (I -J λM ) .
The following properties of the Yosida approximation play a central role in our analysis (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert spaces[END_REF], [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF]):

(i) M λ is 1 λ -Lipschitz continuous. (ii) M -1 λ (0) = M -1 (0) (preservation of the solution set). (iii) M λ is λ-cocoercive. (iv) (M λ ) µ = M λ+µ
for all λ, µ > 0 (resolvent equation).

(v) M λ (x) ∈ M (J λM (x)) for all x ∈ H, for all λ > 0.

Based on the convergence results in the cocoercive case [START_REF] Álvarez | An inertial proximal method for maximally monotone operators via discretization of a nonlinear oscillator with damping[END_REF], [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with non-potential effects[END_REF], and property (iii) of the Yosida approximation, we immediately deduce that, under the condition λγ 2 > 1, each trajectory of

ẍ(t) + γ ẋ(t) + M λ (x(t)) = 0 (3.3)
converges weakly to a zero of M . It turns out that taking a fixed damping coefficient γ induces too much friction, which prevents the inertial effect to be fully effective. In the quest for a faster convergence, we follow the dynamic intepretation given by Su-Boyd-Candès in [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF] of the Nesterov acceleration method. This leads us to replace in (3.3) the fixed damping coefficient γ by the vanishing damping coefficient α t , where α is a positive parameter (Nesterov method corresponds to α = 3). To preserve the condition λγ 2 > 1 which links the damping and the cocoercive parameters, we are led to introduce a time-dependent regularization parameter λ(•) satisfying the condition

λ(t) × α 2 t 2 > 1.
This leads us to introduce the continuous non-autonomous evolution equation

(FIRST) ẍ(t) + α t ẋ(t) + M λ(t) (x(t)) = 0, t > t 0 > 0.
We call it the Fast Inertial Regularized SysTem, (FIRST) for short. One can show that the corresponding Cauchy problem is well posed (see [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF]Appendix]). In accordance with the above approach, the following convergence result for the trajectories of (FIRST) has been obtained in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF].

Theorem 3.1 Let M : H → 2 H be a maximally monotone operator such that S = M -1 (0) = ∅. Let us suppose that the parameters entering the evolution equation (FIRST) satisfy the conditions α > 2 and

λ(t) = (1 + ) t 2 α 2 for some > 2 α -2 .
Then, for each solution trajectory x : [t 0 , +∞[→ H of (FIRST), we have that x(t) converges weakly to an element of S, as t → +∞. Moreover lim t→+∞ ẋ(t) = lim t→+∞ ẍ(t) = 0.

Proof. We just sketch the beginning of the proof, which shows the role played by the tuning of the proximal parameter λ(t). The proof is based on the Opial lemma A.2 (see the Appendix). Let us show that for all z ∈ S = M -1 (0), the limit of the anchoring function h z (t) := 1 2 x(t) -z 2 exists when t → +∞. According to the classical derivation chain rule, we have

ḣz (t) = x(t) -z, ẋ(t) , ḧz (t) = x(t) -z, ẍ(t) + ẋ(t) 2 .
Using the constitutive equation (RIMS) α,λ , we deduce that

ḧz (t) + α t ḣz (t) + M λ(t) (x(t)), x(t) -z = ẋ(t) 2 .
Since M λ(t) is λ(t)-cocoercive and z ∈ S, we have

M λ(t) (x(t)), x(t) -z ≥ λ(t) M λ(t) (x(t)) 2 .
Combining this inequality with the above equation, we obtain

ḧz (t) + α t ḣz (t) + λ(t) M λ(t) (x(t)) 2 ≤ ẋ(t) 2 . (3.4) 
According to (RIMS) α,λ , we have M λ(t) (x(t)) = -ẍ(t) -α t ẋ(t). By replacing M λ(t) (x(t)) with this expression in (3.4) In the subdifferential case M = ∂Φ, the rate of convergence of the Nesterov accelerated method is achieved by the above dynamic, which justifies the "fast" terminology for (FIRST). Precisely, the following result has been obtained by Attouch-Cabot in [START_REF] Attouch | Convergence of damped inertial dynamics governed by regularized maximally monotone operators[END_REF]: Theorem 3.2 Suppose that M = ∂Φ, where Φ : H → R ∪ {+∞} is a convex lower semicontinuous proper function, and λ(•) is a nondecreasing function of class C 1 such that λ(t) ≤ Ct 2 for some positive constant C. Then, for each solution trajectory x : [t 0 , +∞[→ H of (FIRST), we have

i) Case α ≥ 3: Φ(p(t)) -min H Φ = O( 1 t 2 )
, where p(t) = prox λ(t)Φ x(t). ii) Case α > 3: x(t) converges weakly to an element of S , and lim t→+∞ x(t) -p(t) = 0.

Inertial algorithms for solving monotone inclusions

Let us introduce the inertial proximal algorithms resulting from the temporal discretization of the continuous dynamic (FIRST). We choose to discretize it implicitely in order to follow closely the continuous-time trajectories. Moreover, the implicit scheme does not imply more complicated computation than the explicit one: they have the same iteration complexity (they each need a computation of resolvent per iteration). Taking a fixed time step h > 0, and setting t k = kh, x k = x(t k ), λ k = λ(t k ), an implicit finite-difference scheme for (FIRST) with centered second-order variation gives

1 h 2 (x k+1 -2x k + x k-1 ) + α kh 2 (x k -x k-1 ) + M λ k (x k+1 ) = 0. (3.6)
After developing (3.6), we obtain

x k+1 + h 2 M λ k (x k+1 ) = x k + 1 - α k (x k -x k-1 ). (3.7)
Setting s = h 2 , we equivalently have

x k+1 = (I + sM λ k ) -1 x k + 1 - α k (x k -x k-1 ) , (3.8) 
where (I + sM λ k ) -1 is the resolvent of index s > 0 of the maximally monotone operator M λ k . This gives the algorithm

y k = x k + 1 -α k (x k -x k-1 ) x k+1 = (I + sM λ k ) -1 (y k ) . (3.9) 
As a key property, the resolvents of the Yosida approximation M λ can be expressed simply in terms of the resolvents of M . Using the resolvent equation (M λ ) s = M λ+s , we obtain the two following equivalent formulations for (I + sM λ ) -1

(I + sM λ ) -1 = λ λ + s I + s λ + s (I + (λ + s)M ) -1 (3.10) = I -sM λ+s . (3.11)
Using (3.10), we can reformulate (3.9) as follows (RIPA)

     y k = x k + 1 - α k (x k -x k-1 ) x k+1 = λ k λ k + s y k + s λ k + s J (λ k +s)M (y k ),
where (RIPA) stands for the Regularized Inertial Proximal Algorithm. Convergence of (RIPA) algorithm has been established by Attouch-Peypouquet in [22, Theorem 3.4], see Attouch-Cabot [START_REF] Attouch | Convergence of a relaxed inertial proximal algorithm for maximally monotone operators[END_REF] for the extension to general extrapolation coefficients. We recall it below.

Theorem 3.3 Let M : H → 2 H be a maximally monotone operator such that S = M -1 (0) = ∅. Let (x k ) be a sequence generated by the Regularized Inertial Proximal Algorithm (RIPA) where α > 2 and

λ k = (1 + ) s α 2 k 2 for some > 2 α -2
and all k ≥ 1.

Then, i)

The speed tends to zero. More precisely, x k+1 -

x k = O( 1 k ) and k k x k -x k-1 2 < +∞.
ii) The sequences (x k ) and (y k ) converge weakly to the same limit x ∈ S, as k → +∞.

This is illustrated in the following picture:

(RIPA) algorithm

y k = x k + 1 -α k (x k -x k-1 ) • x k • x k-1 • • J (λ k +s)M (y k ) x k+1 = y k + s λ k +s J (λ k +s)M (y k ) -y k • S = M -1 (0)
As k → +∞, let us observe that λ k = (1 + ) s α 2 k 2 → +∞, and s λ k +s → 0. Therefore, J (λ k +s)M (y k ) ∼ proj S (y k ) which is an excellent direction. But we can only take a small step in this direction.

Let us make the link with the classical inertial proximal algorithm which corresponds to a discrete version of the heavy ball method. Remark 3.1 Letting λ k → 0 in (RIPA) gives the classical form of the inertial proximal algorithm (Inertial-Prox)

y k = x k + α k (x k -x k-1 )
x k+1 = J sM (y k ).

The case 0 ≤ α k ≤ ᾱ < 1 was considered by Álvarez-Attouch in [START_REF] Álvarez | An inertial proximal method for maximally monotone operators via discretization of a nonlinear oscillator with damping[END_REF], who proved that, under the summability assumption

k α k x k+1 -x k 2 < +∞, (3.12) 
then, for any sequence (x k ) generated by (Inertial-Prox), (x k ) converges weakly to some x ∈ S, as k → +∞. The assumption (3.12) can be enforced by applying an appropriate on-line rule, for example

α k ∈ [0, ᾱk ] with ᾱk = min ᾱ, 1 k x k -x k-1 2 .
But the hypothesis 0 ≤ α k ≤ ᾱ < 1 is rather restrictive. In the line of the Nesterov accelerated gradient method, the case α k → 1 is the most interesting for obtening fast methods, see the rich literature on the subject in the case of convex minimization [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity[END_REF], [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF], [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF], [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF], [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], [START_REF] Chambolle | On the convergence of the iterates of the Fast Iterative Shrinkage Thresholding Algorithm[END_REF], [START_REF] Kim | Optimized first-order methods for smooth convex minimization[END_REF][START_REF] Kim | Another look at the Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)[END_REF], [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF]. Our approach, which relies on the Yosida approximation of the operator M , will allow us to get rid of this restrictive hypothesis.

In the subdifferential case M = ∂Φ, the rate of convergence of the Nesterov accelerated method (which is optimal for first order methods in the general convex case) is achieved by the above algorithm. Precisely, the following result has been obtained by Attouch-Cabot [START_REF] Attouch | Convergence rate of a relaxed inertial proximal algorithm for convex minimization[END_REF] and Attouch-Peypouquet [START_REF] Attouch | Convergence rate of proximal inertial algorithms associated with Moreau envelopes of convex functions[END_REF].

Theorem 3.4 Suppose that M = ∂Φ, where Φ : H → R ∪ {+∞} is a convex lower semicontinuous proper function with S = argmin Φ = ∅. Suppose that (λ k ) is a nondecreasing sequence, and s > 0 is a positive parameter. Let (x k ) be a sequence generated by algorithm

(RIPA)      y k = x k + 1 - α k (x k -x k-1 ) x k+1 = λ k λ k + s y k + s λ k + s prox (λ k +s)Φ (y k ).
Then, the following properties are satisfied:

• Case α ≥ 3: Φ λ k +s (x k ) -min H Φ = O(k -2 ).
As a consequence, setting p k = prox (λ k +s)Φ (x k ), we have

Φ(p k ) -min H Φ = O(k -2 ), and x k -p k 2 = O λ k k 2 . • Case α > 3: Suppose moreover that sup k λ k k 2 < +∞. Then x k x ∈ S, Φ(p k ) -min H Φ = o(k -2 ), lim k→+∞ p k -x k = 0.

Perturbation, errors, Tikhonov regularization

The following variant of the (RIPA) algorithm has been introduced in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF]. It involves additive errors (e k ):

(RIPA-pert)      y k = x k + 1 - α k (x k -x k-1 ) x k+1 = λ k λ k + s (y k + se k ) + s λ k + s J (λ k +s)M (y k + se k ).
The convergence of (RIPA-pert) algorithm is analyzed in the following theorem.

Theorem 3.5 Let M : H → 2 H be a maximally monotone operator such that S = M -1 (0) = ∅. Let (x k ) be a sequence generated by the algorithm (RIPA-pert) where α > 2 and

λ k = (1 + s 2 + ) 2s α 2 k 2
for some > 2+s α-2 and all k ≥ 1. Suppose that k k e k < +∞ and k k 3 e k 2 < +∞. Then, i) The speed tends to zero. More precisely, x k+1 -

x k = O( 1 k ) and k k x k -x k-1 2 < +∞.
ii) The sequences (x k ) and (y k ) converge weakly to the same element x ∈ S, as k → +∞.

Remark 3.2 In connection with theorem 3.5, there is the case where e k comes from a Tikhonov regularization with vanishing coefficient k . As a general rule, when the Tikhnonov coefficient k does not tend to zero to quickly, we asymptotically obtain the solution of minimum norm. This result was proven in the case of the accelerated gradient method of Nesterov by Attouch-Chbani-Riahi in [START_REF] Attouch | Combining fast inertial dynamics for convex optimization with Tikhonov regularization[END_REF]. It is probable that such a phenomenon occurs within the framework of theorem 3.5. This is an interesting subject to explore.

An inertial (ADMM) algorithm

Our program will consist in applying the convergence results obtained for the regularized inertial proximal algorithm (RIPA) to the specific operator M P described in the sections 1 and 2. The next step will be to completely decompose the method, and thus obtain an inertial proximal ADMM algorithm. According to (2.1), the resolvent of the operator M P , which is a basic ingredient of (RIPA), is given by the following formula: for any (u, v, w) ∈ X × Y × Z, J λM P (u, v, w) = (x, y, z) is the unique solution of the system

       1 λ (x -u) + ∂f (x) + A t (w + λ(Ax -By)) 0; 1 λ (y -v) + ∂g(y) -B t (w + λ(Ax -By)) 0; 1 λ (z -w) + By -Ax = 0. ( 4 
.1) Hence (RIPA) writes as follows: Starting with an initial arbitrary triple (x 0 , y 0 , z 0 ) ∈ X × Y × Z, the sequence (x k , y k , z k ) ∈ X × Y × Z is generated by the iterative scheme (Proximal Inertial Method of Multiplier):

(PIMM)                                                    u k = x k + 1 - α k (x k -x k-1 ) v k = y k + 1 - α k (y k -y k-1 )
w k = z k + 1 - α k (z k -z k-1 ) 1 λ k +s (p k -u k ) + ∂f (p k ) + A t (w k + (λ k + s)(Ap k -Bq k )) 0 1 λ k +s (q k -v k ) + ∂g(q k ) -B t (w k + (λ k + s)(Ap k -Bq k )) 0 1 λ k +s (r k -w k ) + Bq k -Ap k = 0 x k+1 = λ k λ k + s u k + s λ k + s p k y k+1 = λ k λ k + s v k + s λ k + s q k z k+1 = λ k λ k + s w k + s λ k + s r k
A direct application of Theorem 3.3 gives the following convergence properties of (PIMM).

Theorem 4.1 Let make assumption (H) and assume that the set S of equilibria is non empty. Let's consider the Proximal Inertial Method of Multiplier (PIMM) where α > 2 and

λ k = (1 + ) s α 2 k 2
for some > 2 α-2 and all k ≥ 1. Then, starting from an arbitrary point (x 0 , y 0 , z 0 ) ∈ X × Y × Z, the corresponding sequence (x k , y k , z k ) ∈ X ×Y ×Z generated by (PIMM) satisfies the following properties:

i) The speed tends to zero. More precisely, x k+1 -

x k = O( 1 k ) and k k x k -x k-1 2 < +∞.
ii) The sequences (x k ) and (y k ) converge weakly to the same element x ∈ S, as k → +∞.

Yet, as for the proximal method of multipliers, (PIMM) is not completely decomposed. This appears clearly when writing the equivalent variational formulation

                                                   u k = x k + 1 - α k (x k -x k-1 ) v k = y k + 1 - α k (y k -y k-1 )
w k = z k + 1 - α k (z k -z k-1 ) (p k , q k ) = argmin (ξ,η)∈X×Y {f (ξ) + g(η) + w k , Aξ -Bη + λ k +s 2 Aξ -Bη 2 + 1 2(λ k +s) ( ξ -u k 2 + η -v k 2 )} r k = w k + (λ k + s)(Ap k -Bq k ) x k+1 = λ k λ k + s u k + s λ k + s p k . y k+1 = λ k λ k + s v k + s λ k + s q k . z k+1 = λ k λ k + s w k + s λ k + s r k .
Remark 4.1 Take into account the fact that the operator M P is associated with an optimization problem, it would be interesting to study the convergence rate of the values f (x k ) + g(y k ) -inf P as k → +∞.

Remark 4.2 In the general approach developed in [START_REF] Attouch | Convergence of a relaxed inertial proximal algorithm for maximally monotone operators[END_REF] and [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than 1 k 2[END_REF], it is considered the case where the operator M satisfies a a quadratic growth property (it contains the strongly monotone case). Adapting this result to (PIMM) is also an interesting question.

A full splitting algorithm

Let us follow the strategy which has been developed in [START_REF] Attouch | Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE's and control[END_REF] in order to completely decompose the problem.

It consists in applying one step of the alternating proximal minimization algorithms for weakly coupled minimization problems, see [START_REF] Attouch | Alternating proximal algorithms for weakly coupled convex minimization problems. Applications to dynamical games and PDE's[END_REF], [START_REF] Attouch | A new class of alternating proximal minimization algorithms with costs-to-move[END_REF]. Other strategies can be developed, for example based on the forwardbackward splitting method, see [START_REF] Attouch | A strongly convergent primal-dual method for nonoverlapping domain decomposition[END_REF]. We obtain the following algorithm called the inertial proximal ADMM algorithm, (ip-ADMM) for short.

(ip-ADMM)

                                                               u k = x k + 1 - α k (x k -x k-1 ) v k = y k + 1 - α k (y k -y k-1 ) w k = z k + 1 - α k (z k -z k-1 ) p k = argmin ξ∈X {f (ξ) + w k , Aξ -Bv k + λ k +s 2 Aξ -Bv k 2 + 1 2(λ k +s) ξ -u k 2 } q k = argmin η∈Y {g(η) + w k , Ap k -Bη + λ k +s 2 Ap k -Bη 2 + 1 2(λ k +s) η -v k 2 } r k = w k + (λ k + s)(Ap k -Bq k ) x k+1 = λ k λ k + s u k + s λ k + s p k . y k+1 = λ k λ k + s v k + s λ k + s q k . z k+1 = λ k λ k + s w k + s λ k + s r k . Equivalently (ip-ADMM)                                                    u k = x k + 1 - α k (x k -x k-1 ) v k = y k + 1 - α k (y k -y k-1 ) w k = z k + 1 - α k (z k -z k-1 ) 1 λ k +s (p k -u k ) + ∂f (p k ) + A t (w k + (λ k + s)(Ap k -Bv k )) 0 1 λ k +s (q k -v k ) + ∂g(q k ) -B t (w k + (λ k + s)(Ap k -Bq k )) 0 r k = w k + (λ k + s)(Ap k -Bq k ) x k+1 = λ k λ k + s u k + s λ k + s p k . y k+1 = λ k λ k + s v k + s λ k + s q k . z k+1 = λ k λ k + s w k + s λ k + s r k .
The crucial point is to show that taking one step of this inner loop instead of performing the whole loop induces an error which does not affect the convergence process. It is a difficult and open question.

Conclusion, Perspectives

Obtaining fast convergent alternating direction methods of multipliers is an active research subject due to its numerous applications, either as a numerical method or for modeling purposes in decision sciences. In this article, we propose an algorithm that involves both inertial and relaxation aspects. We have proven that it generates convergent iterates with fast convergence properties. By comparison with other related approaches, it it is based on the recent improved versions of the accelerated gradient method of Nesterov, and is therefore optimal in the case without constraint. It opens the door to new directions of research. We have listed a few below.

1. Besides the many questions that have been raised throughout the paper, the main problem that remains to be solved is to show that the completely splitted algorithm (ip-ADMM) inherits the convergence properties of the Proximal Inertial Method of Multiplier (PIMM).

2. According to the dynamical interpretation of the inertial optimization algorithms, their convergence properties come from the damping term. Much progress has been made recently to explore this aspect, and choose a damping term with favorable properties. In this article, we used the asymptotic vanishing viscous damping with the coefficient α t which is naturally attached to the acceleration of Nesterov, see Su-Boyd-Candés [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF]. Following Attouch-Chbani-Fadili-Riahi [START_REF] Attouch | First-order algorithms via inertial systems with Hessian driven damping[END_REF], it would be interesting to combine this damping with the Hessian damping which takes account of the geometry of the functions which enter the constrained minimization problem (P). In the case without linear constraint, there is theoretical and numerical evidence that the introduction of the corresponding correcting terms notably improves the convergence properties of the algorithms, especially in the case of poorly conditioned problems. In this direction, in the case of general monotone inclusions, see the recent contribution of Kim [START_REF] Kim | Accelerated proximal point method for maximally monotone operators[END_REF]. Other types of damping are also of great numerical interest, such as the dry friction combined with the Hessian damping considered by Adly-Attouch [START_REF] Adly | Finite convergence of proximal-gradient inertial algorithms combining dry friction with Hessian-driven damping[END_REF]: in this case, we can expect to obtain a geometric convergence rate, and that, generically, there is finite convergence of the sequences generated by the algorithms to approximate equilibria.

3. A classical alternative approach to the Lagrangian method is the penalization method. A major advantage of the penalization methods is that they can handle nonlinear problems. Indeed, when we consider the penalized formulation of problem (P) (P r ) min x∈X, y∈Y f (x) + g(y) + r Ax -By 2 , it has been proven by Attouch-Bolte-Redont-Soubeyran [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka-Lojasiewicz inequality[END_REF] that, when f and g are semialgebraic functions, then the proximal alternating minimization algorithm (applied to (P r )) generates sequences which converge towards equilibria. Moreover, by a diagonal argument, we can combine this type of algorithm with the penalization method obtained by letting r → +∞, so as to solve (P), see Attouch-Czarnecki-Peypouquet [START_REF] Attouch | Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities[END_REF]. It is therefore natural to conjecture that similar convergence properties hold for the Lagrangian approach when f and g are nonconvex tame functions, see Magnusson-Weeraddana-Rabbat [START_REF] Magnusson | On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems[END_REF] for some first results in this direction.

4. As already mentioned, various approaches have recently been proposed to accelerate the (ADMM) algorithm. It would be interesting to compare them from a theoretical and numerical point of view, as well as with the inertial primal-dual methods.

5. In Theorem 3.5, the abstract convergence theorem which supports our analysis was considered with the presence of perturbations, or errors. It is natural to consider the corresponding results for the associated inertial proximal (ADMM) algorithms. Besides taking into account noise and errors, it is a central question to obtain completely splitted algorithms.

A Auxiliary results

A.1 Yosida regularization of an operator M Given a maximally monotone operator M acting on a Hilbert space H, and given λ a positive parameter, the resolvent of M with index λ and the Yosida regularization of M with parameter λ are defined by J λM = (I + λM ) -1 and M λ = 1 λ (I -J λM ) , respectively. The operator J λM : H → H is nonexpansive and eveywhere defined (indeed it is firmly non-expansive). Moreover, M λ is λ-cocoercive: for all x, y ∈ H we have

M λ y -M λ x, y -x ≥ λ M λ y -M λ x 2 .
This property immediately implies that M λ : H → H is 1 λ -Lipschitz continuous. Also note that for any x ∈ H, and any λ > 0 M λ (x) ∈ M (J λM (x)) = M (x -λM λ (x)).

Moreover, for any λ > 0, M and M λ have the same solution set S := M -1 λ (0) = M -1 (0). Another property that proves useful is the resolvent equation (see, for example, [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF]Proposition 2.6] or [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert spaces[END_REF]Proposition 23.6]): for any λ, µ > 0 (M λ ) µ = M (λ+µ) .

(A.1)

This property allows to compute simply the resolvent of M λ : for any λ, µ > 0 we have

J µM λ = λ λ + µ I + µ λ + µ J (λ+µ)M .
As a consequence of the resolvent equation we have the following continuity property of the resolvents with respect to the proximal parameter. This property plays a key role in the proof of the convergence of the iterates in Theorem 3.1.

Lemma A.1 Let γ, δ > 0, and x, y ∈ H. Then, for each z ∈ S = M -1 (0), we have

γM γ x -δM δ y ≤ 2 x -y + 2 x -z |γ -δ| γ . (A.2)
For a detailed presentation of the properties of the maximally monotone operators and the Yosida approximation, the reader can consult [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert spaces[END_REF] or [START_REF] Brézis | Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution[END_REF].

  {f (x) + g(y) : Ax -By = 0} , where the following standing assumptions are made on the data of (P): , Z are real Hilbert spaces; f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are convex lower semicontinuous and proper; A : X → Z and B : Y → Z are linear continuous operators.

Without ambiguity, we don't use indexes to specify which space, scalar product or norm is considered.

The above structure was used by Briceno-Combettes[START_REF] Briceño-Arias | A monotone+skew splitting model for composite monotone inclusions in duality[END_REF] to develop a primal-dual splitting method based on the forwardbackward-forward algorithm.

norm of the singular values of x ∈ R N ×N identified with a vector in R n with n = N

). These examples induce a sparsity property of the solution. For a recent account of these methods and an extended bibliography, see Liang-Fadili-Peyré[START_REF] Liang | Local linear convergence of forward-backward under partial smoothness[END_REF].

The approach developed by Eckstein in[START_REF] Eckstein | Some saddle-function splitting methods for convex programming[END_REF] is different from ours. It relies on the application of the Douglas-Rachford algorithm to the dual formulation of (P).

In the case of first order evolution equations, a detailed study can be found in Peypouquet-Sorin[START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF] 

Indeed the notation (I + λM ) -1 is sometimes more clear when there are several varying parameters in the formula

A.2 Opial's lemma

Lemma A.2 (Opial) Let S be a nonempty subset of H and let x : [t 0 , +∞[→ H. Assume that (i) for every z ∈ S, lim t→∞ x(t) -z exists;

(ii) every weak sequential limit point of x(t), as t → ∞, belongs to S.

Then x(t) converges weakly as t → ∞ to a point in S.