Vincent Cheval

Steve Kremer

Itsaka Rakotonirina

The hitchhiker's guide to decidability and complexity of equivalence properties in security protocols (technical report 1)

Privacy-preserving security properties in cryptographic protocols are typically modelled by observational equivalences in process calculi such as the applied pi-calulus. We survey decidability and complexity results for the automated veri cation of such equivalences, casting existing results in a common framework which allows for a precise comparison. This uni ed view, beyond providing a clearer insight on the current state of the art, allowed us to identify some variations in the statements of the decision problemssometimes resulting in di erent complexity results. Additionally, we prove a couple of novel or strengthened results.

INTRODUCTION

Symbolic veri cation techniques for security protocols can be traced back to the seminal work of Dolev and Yao [START_REF] Dolev | On the security of public key protocols[END_REF]. Today, after more than 30 years of active research in this eld, e cient and mature tools exist, e.g. P V [START_REF] Blanchet | Modeling and verifying security protocols with the applied pi calculus and proverif[END_REF] and T [START_REF] Schmidt | The TAMARIN prover for the symbolic analysis of security protocols[END_REF] to only name the most prominent ones. These tools are able to automatically verify full edged models of widely deployed protocols and standards, such as TLS [BBK17, CHH + 17], Signal [KBB17, CGCG + 18], the upcoming 5G standard [BDH + 18], or deployed multi-factor authentication protocols [START_REF] Jacomme | An extensive formal analysis of multi-factor authentication protocols[END_REF]. We argue that the development of such e cient tools has been possible due to a large amount of more theoretical work that focuses on understanding the precise limits of decidability and the computational complexity of particular protocol classes [DEK82, DLMS99, RT03, DLM04, CC05, KKNS14].

The abovementioned results extensively cover veri cation for the class of reachability properties. Such properties are indeed su cient to verify authentication properties and various avors of con dentiality, even in complex scenarios with di erent kinds of compromise [START_REF] Basin | Know your enemy: Compromising adversaries in protocol analysis[END_REF]. Another class of properties are indistinguishability properties. These properties express that an adversary cannot distinguish two situations and are conveniently modelled as observational equivalences in a cryptographic process calculus, such as the applied pi calculus. Such equivalences can indeed be used to model strong avors of secrecy, in terms of noninterference or as a "real-or-random" experiment. Equivalences are also the tool of choice to model many other privacy-preserving properties. Such properties include anonymity [START_REF] Abadi | Private authentication[END_REF], unlinkability properties [START_REF] Arapinis | Analysing unlinkability and anonymity using the applied pi calculus[END_REF][START_REF] Filimonov | Breaking unlinkability of the ICAO 9303 standard for epassports using bisimilarity[END_REF], as well as vote privacy [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF] to give a few examples. Equivalence properties are inherently more complex than reachability properties, and both the theoreti-cal understanding and tool support are more recent and more brittle. This state of a airs triggered a large amount of recent works to increase our theoretical understanding and improve tool support.

In this paper we give an extensive overview of decidability and complexity results for several process equivalences. In particular, in this survey we give a uni ed view, allowing us to highlight subtle di erences in the de nitions of the decision problems across the literature (such as whether the term theory is part of the input or not) as well as the protocol models. Typically, models may vary in whether they allow for a bounded or unbounded number of sessions, the support of cryptographic primitives, whether they support else branches (i.e. disequality tests, rather than only equality tests), and various restrictions on non-determinism. All the results are summarised in Table 1 and we identify open questions. Note that Delaune and Hirschi [START_REF] Delaune | A survey of symbolic methods for establishing equivalence-based properties in cryptographic protocols[END_REF] also survey symbolic methods for verifying equivalence properties. However, they mainly discuss tool support whereas we focus on computational complexity.

MODEL

In this section we present the symbolic model of security protocols we consider, the applied pi-calculus [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF], rooted in the seminal work of Dolev and Yao [START_REF] Dolev | On the security of public key protocols[END_REF]. Since the models used by the works we survey often di er in their presentation, we use a middleground, custom model allowing for expressing the cited theorems with minimal tweaking of their original statements. We assume the reader familiar with the theory of rewriting.

Cryptographic primitives As usual in symbolic protocol analysis we take an abstract view of cryptography and model the messages exchanged during the protocol as terms built over a set of function symbols each with a given arity called a signature. Terms are then either atomic values or function symbols applied to other terms, respecting the function's arity. Atomic values are either constants, names, or variables. Constants, sometimes referred as public names, model public values such as agent identities or protocol tags. Names, sometimes explicitly called private names, model fresh secret values, such as keys or nonces, and are a priori unknown to the adversary. As usual variables express bound values and serve as domain for substitutions. We assume an in nite set of constants Σ 0 , names N and variables X and write T (Σ, A) the set of terms built from the signature Σ and atomic values of A.

Example 2.1. A signature Σ for symmetric encryption and pairs is usually written as follows Σ = {senc/2, sdec/2, , /2, fst/1, snd/1} . For example, the encryption of a plaintext m with a key k would be modelled by the term senc(m, k). To include a randomness nonce r , we can encrypt a pair which gives the term senc(m, r , k). We also often use the common condensed notation u 1 , . . . , u n to refer to tuples of n nested pairs u 1 , u 2 , . . . , u n .

The functional properties of the symbols are modelled by an equational theory. In this work we restrict ourselves to equational theories that can be oriented into a convergent rewriting system. This also implies that any term t has a unique normal from t↓.

Example 2.2. The rewrite rules sdec(senc(x,),) → x fst(x,) → x snd(x,) → de ne the behaviour of the pairs and the encryption scheme. Typically one can decrypt (apply sdec) a ciphertext senc(x,) with the corresponding key to recover the plaintext x. This behaviour is idealised by the absence of other rules for senc and sdec, modelling an assumption that no information can be extracted from a ciphertext except by possessing the decryption key.

In this survey we call a theory the set of non-constant function symbols together with a rewriting system. They can express a broad range of other cryptograhic primitives, like the following ones that will be used in this survey: symmetric encryption and pairs as de ned in the example above. randomised symmetric encryption, adding an explicit argument for a randomness nonce. It is de ned by Σ = {rsenc/3, rsdec/2} and rsdec(rsenc(m, r, k), k) → m. Note however that, in some sense, this can be simulatued using the non-randomised primitive senc and pairs by encrypting m, r where m is the plaintext and r the randomness nonce. randomised asymmetric encryption, which is its analogue with public-key mechanisms: Σ = {pk/1, raenc/3, radec/2} and radec(raenc(m, r, pk(k)), k) → m. It is naturally possible to dene a non-randomised variant aenc, however no results surveyed in this paper refer to this particular primitive. digital signature, with a veri cation mechanism that recovers the signed message: Σ = {pk/1, sign/3, verify/2} and verify(sign(m, r, k), pk(k)) → m. one-way hash, simply using a function symbol of positive arity, e.g. Σ = {h/1}. One-wayness is modelled by an absence of rewrite rules involving h, in which case we say that h is free. Two classes of theories are particularly important for our results. The rst is the class of subterm convergent theories [AC06, Bau07, BAF08, CKR18a, CDK09, CBC11], de ned by a syntactic criterion on rewriting rules → r requiring that r is either a strict subterm of or a ground term in normal form. The second is the class of constructor-destructor theories [BAF08, [START_REF] Cheval | Trace equivalence decision: Negative tests and nondeterminism[END_REF][START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF], partitioning function symbols into constructor (used to build terms) and destructors (only used in rewrite rules). In constructor-destructor theories any rewrite rule → r is such that = d(t 1 , . . . , t n) where d is a destructor and t 1 , . . . , t n , r do not contain any destructor. Moreover, we assume a message predicate msg(t) which holds if u↓ does not contain any destructor symbol for all subterms u of t, i.e., all destructor applications in t succeeded yielding a valid message. This predicate is used to restrict to protocols that only send and accept such well-formed messages. All theories above are subterm convergent and constructor-destructor.

Protocols Protocols are de ned using processes in the applied pi calculus. Their syntax is de ned by the following grammar: P, Q ::= 0 (null process)

if u = then P else Q (conditional) u(x).P (input) u .P (output)

P | Q (parallel)
where u, are terms and x a variable. Intuitively the 0 models a terminated process, a conditional if u = then P else Q executes either P or Q depending on whether the terms u↓ and ↓ are equal, and P | Q models two processes executed concurrently. The constructs c(x).P and c u .P model, respectively, inputs and outputs on a communication channel c. When the channel c is known to the attacker, e.g. when it is a constant, executing an output on c adds it to the adversary's knowledge and inputs on c are fetched from the adversary possibly forwarding a previously stored message, or computing a new message from previous outputs. Otherwise the communication is performed silently without adversarial interferences. To model an unbounded number of protocol sessions we also add the two constructs

P, Q ::= new k.P (new name) !P (replication)
The replication !P models an unbounded number of parallel copies of P, and new k.P creates a fresh name k unknown to the attacker; in particular !new k.P models an unbounded number of sessions, each with a di erent fresh key. The fragment of the calculus without replication is referred as nite or bounded. Another notable subclass is the original pi-calculus [START_REF] Milner | A calculus of mobile processes[END_REF], referred as the pure fragment, that can be retrieved with the empty theory (only names, constants and an empty rewrite system).

A acker's knowledge

We model the attacker's observations recorded when spying on the communication network by a frame.

A frame is a substitution of the form

Φ = {ax 1 → t 1 , . . . , ax n → t n }
where t i are the outputs performed during the execution of the protocol and ax i ∈ AX, with AX a set of special variables called axioms that serve as handles to the adversary for building new terms. These terms t i enable adversarial deductions as they aggregate: for example after observing a ciphertext and the decryption key, the attacker can also obtain the plaintext by decrypting. Formally we say that one can deduce all terms ξ Φ ↓ where ξ ∈ T (Σ, Σ 0 ∪ dom(Φ)) is called a recipe. A recipe models a computation of the adversary: the fact that it cannot contain names models that they are assumed unknown to her. They naturally only remain unknwon while they are not revealed in the frame themselves; for example in

Φ = {ax 1 → senc(t, k), ax 2 → k }
even if deducing the term t requires to decrypt ax 1 Φ with the key k (which is not allowed to occur directly in the recipe), this is possible by using ξ = sdec(ax 1 , ax 2). We refer to the following decision problem as D : I : a theory, a frame Φ, a term t : Does there exist a recipe ξ such that ξ Φ↓= t↓?

Semantics in an adversarial environment The behaviour of processes is formalised by an operational semantics. The detailed presentation di ers from one work to another [CCD13, ABF17, CKR18a, CKR19] and we choose a formalism that permits to state all theorems with minimal changes in the proofs. The semantics operates on extended processes (P, Φ) where P is a multiset of processes modelling the state of the processes currently executed in parallel, and Φ is the frame indicating the outputs the attacker has recorded during the execution. It takes the form of a labelled transition relation α -→ whose label α is called an action, which is either a public input action ξ c (ξ t) where ξ c (resp. ξ t) is a recipe for the input's channel (resp. of the term to be input); a public output action ξ c ax i where ξ c is a recipe for the output's channel, and the underlying output term is added to the frame under axiom ax i ; an unobservable action τ which represents an internal action, such as the evaluation of a conditional or a communication on a private channel. This is formalised in Figure 1. Let us give illustrate it through the following example. Suppose that an agent S wants to send a nonce N to a recipient R. Assuming S and R already share a secret k s , S encrypts N and k s with the public key of R, i.e. pk(k R), and sends it on the network. When receiving a message, R acknowledges the nonce only if the plaintext contains the shared secret. This is modelled by the following process:

P = S | R with S = c M where M = aenc(N , k s , pk(k R))
and R = c(x). if snd(adec(x, k R)) = k s then c ack with k s , k R , N ∈ N and c ∈ Σ 0 . The 0 and "else 0" instructions are omitted. The fact that the public key should be known to the attacker is modelled by the frame Φ 0 = {ax 0 → pk(k R)}. A "normal" execution of this process is:

({{P }}, Φ 0) τ -→ ({{S, R}}, Φ 0) c ax 1 -----→ ({{0, R}}, Φ 1) with Φ 1 = Φ 0 ∪ {ax 1 → M } c(ax 1) -----→ ({{0, if snd(adec(M, k R)) = k s then c ack }}, Φ 1) τ -→ ({{0, c ack }}, Φ 1) c ax 2 -----→ ({{0, 0}}, Φ 1 ∪ {ax 2 → ack})
Here the attacker is passive and only forward messages. More precisely in the second transition, S sends M which is added to the frame as reference ax 1 . This models the fact the attacker spies on the communication network and gets access to all messages sent on public channels like c. In the third transition the attacker forwards M to R, i.e. inputs ax 1 . The fourth transition is an internal test of R which leads to the nal acknowledgement output. An active attacker would also have the capability of forging new messages and inserting them in the execution ow. For example the third transition can be replaced by the input c(aenc(a,b ,ax 0))

---------------→ with a, b ∈ Σ 0 : the attacker encrypts the pair of constants a, b with the public key of R (using reference ax 0) and sends it to R. In this modi ed execution the subsequent test would however fail.

When de ning security against an active attacker we quantify over all such transitions which means we consider all possible executions in an active adversarial environment. Thus even the bounded fragment yields an in nite transition system if the theory contains a non-constant function symbol (as this allows to build an unbounded number of messages).

Variations across the literature There are several modelling variations of this semantics. The most important one is when the theory is constructor-destructor. For this class of theories, in this survey, we always refer to an altered semantics that intuitively requires that all destructor operations succeed for a transition to be applied [START_REF] Chrétien | From security protocols to pushdown automata[END_REF][START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF][START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF]. Formally: the communication rules (I), (O), (C) are only applicable when all terms ξ c Φ, ξ t Φ, u, u , verify the predicate msg. For instance no transitions are possible from c sdec(a, b) .P with a, b, c constants because sdec(a, b) is not a message. the rule (T) executes the negative branch when a destructor fails, i.e. with the notations of Figure 1, R = P if msg(u), msg() and u↓= ↓. In particular, as this may seem counterintuitive:

({{if sdec(a, b) = sdec(a, b) then P else Q }}, Φ) τ -→ ({{Q }}, Φ)
In the examples above with sdec, this constructor-destructor semantics models an assumption that the encryption scheme has enough structure to detect decryption failure, and that the protocol only proceeds with valid messages.

Besides, as noted in [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF], synchronous communications between parallel processes (Rule (C

)) is also managed di erently from one work to another. In the original semantics [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF] of the applied pi-calculus, called the classical semantics in [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF], communications on a same public channel between parallel processes can either be executed silently without adversarial interference (i.e. using (C

)) or be routed through the attacker (i.e. using a sequence of (O) and (I)). This is also the semantics used in the popular P V tool [START_REF] Blanchet | Automated veri cation of selected equivalences for security protocols[END_REF]. On the contrary, the semantics de ned in Figure 1 only allows applications of Rule (C) when the channel is unknown to the adversary, modelling an attacker that continuously eavesdrops on the network (rather than an attacker that solely has the capability to do so). This is called the private semantics in [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF]. The private semantics is actually used in tools such as T [START_REF] Schmidt | The TAMARIN prover for the symbolic analysis of security protocols[END_REF] and A [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF] and also in a few other works we survey [START_REF] Chrétien | From security protocols to pushdown automata[END_REF][START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF][START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF].

While both semantics are equivalent when it comes to reachability properties, they surprisingly happen to be incomparable for equivalence properties [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF]. All the complexity results of this paper are with respect to the private semantics. Although we did not expand on studying all the variations of complexity induced by using di erent semantics, most of the analyses presented in this survey are robust to these changes. Indeed, all complexity results for the bounded fragment hold for both semantics. In the unbounded case, only the private semantics has been considered in the underlying models [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF][START_REF] Chrétien | From security protocols to pushdown automata[END_REF].

({{u(x).P }} ∪ P, Φ)

ξ c (ξ t) -----→ ({{P {x → ξ t Φ↓}}} ∪ P, Φ) if ξ c Φ↓= u↓ (I) ({{u .P }} ∪ P, Φ) ξ c ax ------→ ({{P }} ∪ P, Φ ∪ {ax → ↓}) if ξ c Φ↓= u↓ and ax ∈ AX dom(Φ) (O) ({{u .P, u (x).Q }} ∪ P, Φ) τ -→ ({{P, Q {x → }}} ∪ P, Φ) if u↓= u ↓ and u not deducible from Φ (C) ({{if u = then P else Q }} ∪ P, Φ) τ -→ ({{R}} ∪ P, Φ) where R = P if u↓= ↓ and R = Q otherwise (T) ({{new k.P }} ∪ P, Φ) τ -→ ({{P {k → k }}} ∪ P, Φ) if k is a fresh name (N) ({{P | Q }} ∪ P, Φ) τ -→ ({{P, Q }} ∪ P, Φ) (P) ({{!P }} ∪ P, Φ) τ -→ ({{!P, P }} ∪ P, Φ) (R)
Figure 1: Operational semantics of the applied pi-calculus

COMPLEXITY FOR A PASSIVE ATTACKER 3.1 Static equivalence

Some security properties against a passive attacker, i.e. a simple eavesdropper, can then be modelled as an observational equivalence of two frames: intuitively no equality test can be used to distinguish them. For example, in a protocol that outputs a sequence of messages t 1 , . . . , t n , the "real-or-random" con dentiality of a key k can be modelled as the equivalence of

Φ = {ax 1 → t 1 , . . . , ax n → t n , ax → k} Ψ = {ax 1 → t 1 , . . . , ax n → t n , ax → k }
where k is a fresh name. More formally, two frames Φ, Ψ with same domain are statically equivalent when for all recipes ξ 1 , ξ 2 ,

ξ 1 Φ↓= ξ 2 Φ↓ ⇐⇒ ξ 1 Ψ↓= ξ 2 Ψ↓ .
In constructor-destructor theories we also require that msg(ξ 1 Φ) i msg(ξ 1 Ψ), modelling an assumption that the adversary can observe destructor failures.

Example 3.1. If k, k are names, Φ = {ax → k } and Ψ = {ax → k } are statically equivalent, capturing the intuition that random keys cannot be distinguished. Similarly, the frames Φ = {ax → k } and Ψ = {ax → senc(t, k)} are statically equivalent for any term t, modelling that encryption is indistinguishable from a random string. However, for the constant 0,

Φ = {ax 1 → senc(0, k), ax 2 → k} Ψ = {ax 1 → senc(0, k), ax 2 → k }
are not statically equivalent since ξ 1 = sdec(ax 1 , ax 2) and ξ 2 = 0 are equal in Φ but not in Ψ.

Complexity results

We survey the decidability and complexity of the following decision problem referred as S E : I : A theory, two frames of same domain.

: Are the frames statically equivalent for this theory?

General case. As rewriting is Turing-complete, unsurprisingly static equivalence is undecidable in general for convergent rewrit-ing systems [START_REF] Abadi | Deciding knowledge in security protocols under equational theories[END_REF]. It is also proved in [START_REF] Abadi | Deciding knowledge in security protocols under equational theories[END_REF] that D reduces to S E . As a consequence, the results of [START_REF] Siva Anantharaman | Intruders with caps[END_REF] imply that static equivalence is also undecidable for so-called optimallyreducing rewrite systems, a subclass of rewrite systems that have the nite-variant property [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF].

Subterm convergent theories. Historically, the complexity of static equivalence has only been considered for xed theories [START_REF] Abadi | Deciding knowledge in security protocols under equational theories[END_REF][START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF], that is, the theory was not part of the input of the problem and its size was seen as a constant in the complexity analysis. This was consistent with most formalisms and veri cation tools at the time, which would not allow for user-de ned theories and only consider a xed set of cryptographic primitives, such as in the spi-calculus for example [START_REF] Abadi | A calculus for cryptographic protocols: The spi calculus[END_REF]. In particular xed theories are considered in the following result:

T 3.1 ([AC06]
) . For all xed subterm convergent theories S E is PTIME.

However a generic PTIME-completeness result does not make sense when the theory is not part of the input, since the complexity may then depend of the choice of the theory. This is typically illustrated by the following result: [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF]) . In the pure pi-calculus (i.e. with an empty theory) S E is LOGSPACE.

T 3.2 ([
However the PTIME bound is optimal in the following sense: T 3.3 . For all xed theories containing symmetric encryption, S E is PTIME-hard.

Proof sketch. We proceed by reduction from H SAT. Let X be the set of variables of a Horn formula φ = C 1 ∧ . . . ∧ C n , and k x be names for all x ∈ X ∪ {⊥}. Then to each clause C i = x 1 , . . . , x n ⇒ x, x ∈ X ∪ {⊥} we associate the term

t C i = senc(. . . senc(senc(k x , k x 1), k x 2), . . . , k x n) .
Putting k x under several layers of encryption ensures that k x is deducible if all the keys k x 1 , . . . , k x n are deducible as well. In particular k ⊥ is deducible from the terms t C 1 , . . . , t C n i the formula φ is unsatis able. Therefore given two constants 0,1, and Φ = {ax 1 → t C 1 , . . . , ax n → t C n }, then the frames

Φ ∪ {ax → senc(0, k ⊥)} and Φ ∪ {ax → senc(1, k ⊥)}
are statically equivalent i φ is satis able. However automated tools have improved since then and some provers like K [START_REF] Ciobâcă | Computing knowledge in security protocols under convergent equational theories[END_REF], Y [START_REF] Baudet | YAPA: A generic tool for computing intruder knowledge[END_REF] or F [START_REF] Conchinha | Fast: an e cient decision procedure for deduction and static equivalence[END_REF] are able to handle user-de ned theories. It is therefore interesting today to account for the size of the theory in the complexity analysis:

T 3.4 ([CKR18a]
) . S E is coNP-complete for subterm convergent theories.

Proof sketch. We sketch the reduction from SAT presented in [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF]. We consider two constants 0 and 1, function symbols f , of arity 2, and the two frames

Φ = {ax 0 → f (0, k), ax 1 → f (1, k)} Ψ = {ax 0 → (0, k), ax 1 → (1, k)}
for some name k. Interpreting 0 and 1 as the booleans false and true, Φ and Ψ point to terms that can be seen as booleans but that can only be accessed by reference through the axioms ax 0 , ax 1 . For example, since k is a name the only recipe permitting to deduce f (0, k) is ax 0 in Φ. Given a SAT formula φ of variables x 1 , . . . , x n , we then add an other symbol eval of arity n and rewrite rules so that the following points are equivalent for all valuations : {x 1 , . . . , x n } → {0, 1} of φ:

(1) falsi es φ (2) eval(((x 1), k), . . . , ((x n), k)) → 0 Details can be found in [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF]. If we add the rule eval(f (1 , z), . . . , f (n , z)) → 0 we eventually have that φ is satis able i there exists a valuation such that t Ψ 0 where t = eval(ax (x 1) , . . . , ax (x n)), i Φ and Ψ are not statically equivalent.

Beyond subterm convergence Although we are not aware of complexity results for the decision of static equivalence for classes larger than subterm theories, there exist decidability results. Some of the abovementioned tools, like K and Y , can actually handle most convergent rewriting system; but they naturally fail to terminate in general by undecidability of the problem. However it is proved for example in [START_REF] Ciobâcă | Computing knowledge in security protocols under convergent equational theories[END_REF] that the termination of K is guaranteed for theories modelling blind signatures or trapdoor commitment schemes (that are typically not subterm).

COMPLEXITY FOR AN ACTIVE ATTACKER

In this section we survey the decidability and complexity of equivalence relations characterising security against active attackers.

Equivalences

We expect security protocols to provide privacy-type guarantees against attackers that actively engage with the protocol. This can be modelled by behavioural equivalences, de ning security as the indistinguishability of two instances of the protocol that di er on a privacy-sensitive attribute such as a secret key, an identity, or the agent executing a given session. There exist several candidate equivalences for modelling this notion of indistinguishability. We study two of them in this survey and refer to [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF] for a more detailed overview and comparison with other equivalences. Trace equivalence One classical example of such behavioural equivalence is trace equivalence. Referring to the operational semantics mentioned in Figure 1, we call a trace of a process P a sequence of transition steps from P in this semantics, i.e.

({{P }},) = A 0 α 1 --→ A 1 α 2 --→ • • • α n --→ A n written A 0 α 1 •••α n = ===== ⇒ A n
for extended processes A 1 , . . . , A n . Given such a trace t, we write actions(t) = α 1 • • • α n the sequence of actions taken by the trace, and Φ(t) the frame of A n , that is, the knowledge of the attacker at the end of the trace. In particular t and t are said equivalent, written t ∼ t here, when actions(t) and actions(t) are identical after erasure of τ actions and Φ(t) and Φ(t) are statically equivalent.

Two processes P 0 and P 1 are said trace equivalent when for all traces t of P i , i ∈ {0, 1}, there exists a trace t of P 1-i such that t ∼ t . Trace equivalence has been studied intensively for the automation of security proofs [CCLD11, CCD13, ACK16, CKR18a] and has received a strong tool support [Che14, CCCK16, CGLM17, CKR18b, CDD18]. We refer to its decision problem as T E : I : A theory, two processes.

: Are the two processes trace equivalent?

Labelled bisimilarity Some other automated tools aim at proving more ne-grained equivalence, like observational equivalence for P V [BAF08, CB13] for example. There exist several avours of more operational bisimulation-based properties but the one that is usually considered in security-protocol analysis is labelled bisimilarity because it coincides with observational equivalence in the applied pi-calculus [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF]. Formally it is an early, weak bisimulation that additionally requires static equivalence at each step; that is, it is the largest symmetric binary relation ≈ on processes such that A ≈ B implies the frames of A and B are statically equivalent for all actions α and all transitions A α -→ A , there exists

B τ •••τ •α •τ •••τ = ========== ⇒ B such that A ≈ B .
We refer to the following problem as B : I : A theory, two processes.

: Are the two processes labelled bisimilar?

Classical fragments of the calculus

In addition to the assumptions on the rewriting system (e.g. subterm convergence as in Section 3), there are several common restrictions made on the processes to obtain decidability.

Conditionals and pa erns A typical restriction on conditionals is the class of positive processes that only contain trivial else branches [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF][START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF]. For succinctness we write

[u =] P instead of if u = then P else 0 .
When the rewrite system is constructor-destructor, some conditionals may also be encoded within inputs [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF][START_REF] Chrétien | From security protocols to pushdown automata[END_REF].

For that the syntax for inputs is generalised as u().P where is a term without destructors (but may contain variables) that is called a pattern in this survey. In terms of semantics, the transition rule (I) is generalised to:

({{u().P }} ∪ P, Φ)

ξ u (ξ) ------→ ({{Pσ }} ∪ P, Φ) (P I)
if ξ Φ↓= σ ↓, as well as the usual conditions msg(u), msg(ξ u Φ), msg(ξ Φ), ξ u Φ↓= u↓. For example a process c(senc(x, k)).P only reads inputs that are terms t encrypted with the key k, and x will then be bound to t in P. In this paper, to ensure that protocols can be e ectively implemented we require that It is possible to test with a sequence of positive conditionals that a term t matches the pattern .

That is, there exist terms t 1 , . . . , t n , t 1 , . . . , t n (possibly containing a variable x) such that for all ground terms t, t is an instance of i for all i ∈ 1, n , t i {x → t }↓= t i {x → t }↓. This excludes patterns like rsenc(x, , z), rsenc(x , , z) that would accept any pair of ciphertexts encrypted using the same randomness.

All free variables of e ectively appearing in the rest of the process can be extracted by applying destructors to .

That is, for all variables x of that are free (i.e. are not bound by a previous input) and appear in P, there exists a term context C without free variables such that C[] ↓= x. This excludes for example patterns h(x) where h is a free function symbol: given an input term h(t), the one-wayness of h prevents from retrieving t.

The assumption that C does not contain free variables excludes, for example, patterns senc(0,) that would accept the constant 0 encrypted by any key. On the contrary, a pattern = rsenc(x, , k) is valid if k ∈ N and the variable does not appear in P.

All in all, we de ne the patterned fragment to be the class of processes without conditionals but using pattern inputs, and where outputs do not contain destructor symbols; it is a subset of the positive fragment.

Ping pong protocols These protocols [CCD15b, DY81, HS03] consist of an unbounded number of parallel processes receiving one message and sending a reply. Although the precise formalisms may di er from one work to another, the mechanisms at stake are essentially captured by processes P = !P 1 | • • • |!P n where each P i can be written under the form

P i = c i (x). [u i 1 = i 1] • • • [u i n i = i n i]new k 1 • • • new k r i . c i w i
In particular ping-pong protocols are positive. Simple processes. A common middleground in terms of expressivity and decidability is the class of simple processes, for example studied in [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF]. Intuitively, they consist of a sequence of parallel processes that operate each on a distinct, public channel-including replicated processes that generate dynamically a fresh channel for each copy. Formally they are of the form

P 1 | • • • | P m | ! ch P m+1 | • • • | ! ch P n ! ch P = ! new c P . c P c P . P
where each P i does not contain parallel operators nor replications and uses a unique, distinct communication channel c P i , and

! ch P = ! new c P . c P c P . P .
Unlike ping pong protocols, each parallel process may input several messages and output messages that depend on several previous inputs. There exists a generalisation of simple processes called determinate processes, mentioned later in Section 6.

Complexity results: bounded fragment

The bounded fragment is a common restriction to study decidability, as removing replication bounds the length of traces. However, as the attacker still has an unbounded number of possibilities for generating inputs, the transition system still has in nite branching in general. Besides additional restrictions are necessary on the cryptographic primitives (at least because static equivalence is undecidable in general). For example:

T 4.1 ([CKR18a]
) . T E and B are decidable in coNEXP for subterm convergent constructor-destructor theories and bounded processes.

In a nutshell, the decision procedures use a dedicated constraint solving approach to show that, whenever trace equivalence is violated, there exists an attack trace whose attacker-input terms are at most of exponential size; in particular this shows non-equivalence to be decidable in NEXP. As before, we may also study the problem for xed theories to investigate their in uence on the complexity; typically with the empty theory: [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF]) . In the pure pi-calculus, T E (resp.

T 4.2 ([

B

) is Π 2 -complete (resp. PSPACE-complete) for bounded processes, and for bounded positive processes. However, unlike static equivalence, xing the theory does not make it possible to obtain a better bound than the general one: T

([CKR18a]

) . There exists a xed subterm convergent constructor-destructor theory such that T E and B are coNEXP-hard for bounded positive processes.

The theory in question [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF] encodes binary trees and a couple of ad hoc functionalities. We show in Appendix A that, provided we discard the positivity requirement, it is possible to manage the proof with a theory limited to symmetric encryption and pairs. This shows that the problem remains theoretically hard even with a minimal theory. Besides, in the case of trace equivalence, we also show that all abovementioned reductions can be done with only constants as channels (whereas [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF] heavily relies on private communications, which may give the false intuition that they are necessary to obtain this high complexity).

Complexity results: unbounded fragment

Equivalence is undecidable in general since the calculus is Turingcomplete even for simple theories. For example, Hüttel [START_REF] Hüttel | Deciding framed bisimilarity[END_REF] shows that Minsky's two counter machines can be simulated within the spi-calculus (and hence the applied pi-calculus with symmetric encryption only). It is not di cult to adapt the proof to a simulation using only a free symbol, i.e., a function symbol h of positive arity and an empty rewrite system. These two encodings can be performed within the nite-control fragment, typically not Turing-complete in the pure pi-calculus (i.e. without this free function symbol) [START_REF] Dam | On the decidability of process equivalences for the π -calculus[END_REF].

Ping pong protocols. While equivalence is undecidable for ping-pong protocols [CCD15b, HS03] some decidability results exist under additional assumptions. For example [START_REF] Hüttel | Recursive ping-pong protocols[END_REF] studies a problem that can be described in our model essentially as B for ping-pong protocols with 2 participants or less (i.e. n ≤ 2 in the de nition). This is proved decidable under some model-speci c assumptions that we do not detail here. We also mention a result for patterned ping-pong protocols (cf Section 4.2) without a limit on the number of participants [START_REF] Chrétien | From security protocols to pushdown automata[END_REF]. Given a constructordestructor theory, a ping-pong protocol P is deterministic when each P i (using the same notations as the de nition) can be written under the form

P i = c i (u i). new k 1 • • • new k r i .c i i
with c i a constant and u 1 , . . . , u n a family of patterns verifying the following properties:

(1) binding uniqueness: for all i, u i does not contain two di erent variables;

(2) pattern determinism: for all i j, if u i and u j are uni able then c i c j . There is an additional syntactic restriction on the structures of u i and i that is speci c to the xed theory considered in [START_REF] Chrétien | From security protocols to pushdown automata[END_REF], containing randomised symmetric and asymmetric encryption and digital signature. The two terms u i , i are de ned by grammars essentially imposing that the subterms that serve as randomness (resp. keys) are indeed fresh nonces (resp. long-term keys), that is, they are names among k 1 , . . . , k r i (resp. are of the form k or pk(k) for some name k {k 1 , . . . , k r i }). We refer to [START_REF] Chrétien | From security protocols to pushdown automata[END_REF] for details about this last assumption.

T 4.4 ([CCD15b]

) . For a theory limited to randomised symmetric and asymmetric encryption as well as digital signature, T E is decidable in primitive recursive time for deterministic ping-pong protocols.

Decidability is obtained by a reduction of the problem to the language equivalence of deterministic pushdown automata, which is decidable in primitive recursive time. A complexity lower bound for this problem is open (beyond the PTIME-hardness inherited from static equivalence, recall Theorem 3.3).

For simple processes We now study a decidability result for patterned simple processes [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF]. In this work the theory is limited to symmetric encryption and pairs, and the processes must be type compliant and acyclic (formalised in Appendix B). We give an intuition of the de nition of acyclicity, a property of the dependency graph of the process. Its vertices are the instructions of the process. There is an edge a → a when it may be necessary to execute a before a to perform some attacker actions.

Example 4.1. There are three kind of edges in a dependency graph. Sequential dependency is for actions following each other, for example in β .α .P there is an edge α → β. Pattern and deduction dependencies are for actions that allow the attacker to produce a term of a given pattern or deduce a subterm of an output message, respectively. For example in α .

P | β .Q | γ .R with α = c senc(u, k) β = d(senc(x, k)) γ = e k
there is an edge α → β because the term senc(u, k) could be used as an input term for the pattern senc(x, k). Also γ → α because the term k output in γ can be used to deduce u from senc(u, k) in α. Similarly note that there is a cyclic dependency in

! ch β .α with α = c senc(u, k) β = c(senc(x, k)) .
We have α → β by sequential dependency, but also β → α by pattern dependency across the di erent copies of β .α.

There is also a restriction to atomic keys, i.e. for all encryptions senc(u,) appearing in the process, ∈ Σ 0 ∪ N ∪ X. This restriction is also applied to attacker's recipes in the semantics by strenghtening the msg predicate (which therefore also impacts the de nition of static equivalence).) . For a theory limited to pairs and symmetric encryption, T E is coNEXP for patterned, simple, typecompliant, acyclic processes with atomic keys.

Proof. Given a trace we consider its so-called execution graph: its vertices are the actions of the trace and its edges mirror those of the dependency graph of the process. It is proved in [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF] that when two patterned, simple, type-compliant, acyclic processes P and Q are not trace equivalent, there exists an attack trace, say, in P, whose execution graph D has these properties:

(1) D is acyclic and depth(D) (maximal length of a path of D) is polynomial in the size of P.

(2) width(D) (maximal number of outgoing edges from a vertex of D) is exponential in the size of P and of the type system. (3) nbroots(D) (number of vertices of D that have no ingoing edges) is exponential in the size of P and of the type system. From each root of D, the number of reachable vertices is at most the size of a tree of width width(D) and of depth depth(D), i.e. width(D) depth(D)+1 -1. Hence the number of vertices of D is bounded by nbroots(D) • width(D) depth(D)+1 which is exponential in the size of P. Since the number of vertices of D is an upper bound on the number of sessions needed to execute the underlying trace, it su ces to prove the equivalence of P and Q for an exponential number number of sessions. This leads to an overall coNEXP procedure since trace equivalence of bounded, positive, simple processes is coNP for subterm theories (see Section 5).

Complexity was not the focus of [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF] and the authors only claimed a triple exponential complexity for their procedure. Besides no lower bounds were investigated, but we proved that the problem was coNEXP-complete. T 4.6 . For the theory of pairs and symmetric encryption, T E is coNEXP-hard for patterned, simple, type-compliant, acyclic processes with atomic keys.

The reduction shares some similarities with the proof of coNEXP hardness for trace equivalence of bounded processes (see Theorem 4.3), compensating the more deterministic structure of simple processes by the use of replication. We give below an intuition of our construction, detailed in Appendix B.

Proof sketch. We proceed by reduction from S 3SAT. This is a common NEXP-complete problem that, intuitively, is the equivalent of 3SAT for formulas of exponential size represented succinctly by boolean circuits. Formally a formula φ with 2 m clauses and 2 n variables x 0 , . . . ,

x 2 n -1 is encoded by a circuit Γ : {0, 1} m+2 → {0, 1} n+1 in the following way. If φ = 2 m -1 i=0 1 i ∨ 2 i ∨ 3
i and 0 ≤ i ≤ 2 m -1 and 0 ≤ j ≤ 2, we let x k be the variable of the literal j+1 i and b its negation bit; then Γ(ī j) = b k where ī, j, k are the respective binary representations of i, j, k. S 3SAT is the problem of deciding, given a circuit Γ, whether the formula φ it encodes is satis able.

Let φ be a formula with 2 m clauses and variables x 0 , . . . , x 2 n -1 and Γ be a circuit encoding this formula. We construct two simple, type-compliant, acyclic processes that are trace equivalent i φ is unsatis able. Using pairs u, we encode binary trees: a leaf is a non-pair value and, if u and encode binary trees, u, encodes the tree whose root has u and as children. Given a term t, we build a process P(t) behaving as follows:

(1) P(t) rst waits for an input x from the attacker. This term

x is expected to be a binary tree of depth n with boolean leaves, modelling a valuation of φ (the i th leaf of x being the valuation of x i).

(2) The goal is to make P(t) verify that this valuation satis es φ;

if the veri cation succeeds the process outputs t. Given two constants 0 and 1, P(0) and P(1) will thus be trace equivalent i φ is unsatis able.

(3) However it is not possible to hardcode within a process of polynomial size the veri cation that the valuation encoded by x satis es the 2 m clauses of φ. Hence we replicate a process that, given x, veri es one clause at a time. Intuitively, the attacker will guide the veri cation of the 2 m clauses of φ, and whenever the i th clause has been successfully veri ed, the process reveals the binary representation of i (encrypted using a key unknown to the attacker). (4) In particular, the attacker gets the encryption of all integers of 0, 2 m -1 only if she has successfully veri ed that the initial input x indeed encodes a valuation satisfying all clauses of φ. It then su ces to design a process that outputs t if the attacker is able to provide all such ciphertexts. This can be encoded by a replicated process that, upon receiving the encryption of two integers that di er only by their least signi cant bit, reveals the encryption of these integers with the least signi cant bit truncated. The veri cation ends when revealing the empty binary representation.

COMPARISON WITH OTHER MODELS

In this section we discuss some other notions of indistinguishability and compare them in terms of expressivity and complexity.

Structure-guided equivalence proofs

The most well-known variant of equivalence properties in security protocols is di -equivalence, variants of which are proved by the state-of-the-art P V and T . Intuitively, it can be seen as an analogue of trace equivalence where two equivalent traces are also required to follow the exact same execution ow. For example to prove

P 1 | • • • | P n and Q 1 | • • • | Q n equivalent
, all actions originated from each subprocess P i should be matched with actions from Q i . Equivalence by session is similar in spirit but impose less restrictions on equivalent traces: rather than sharing the exact same execution ow, they should be organised similarly in terms of parallel sessions. To prove

P 1 | • • • | P n and Q 1 | • • • | Q n equivalent,
there should exist a permutation π of 1, n such that all actions originated from each P i should be matched with actions from Q π (i) . This equivalence has been used in the D S tool as a structure-guided heuristic for trace equivalence [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF].

Process matchings To formalise this we rst de ne simpli cation rules (Figure 2) that get rid of the deterministic parts of the transition system. They are convergent up to renaming of new names, and we write P one arbitrary -normal form of P. A process in -normal form can be uniquely decomposed into

P = P 1 | • • • | P n = n i=1 P i (implicit right-associativity)
where each P i starts with an input, an output or a replication.

To compare the execution ow of traces, we extend the semantics of the calculus to pairs of processes: (P) is replaced by a rule pairing parallel subprocesses, and the rules (I), (O), (C) can only be triggered when they are applicable to the two components of the pair. Formally this semantics operate on extended twin processes (P 2 , Φ 0 , Φ 1) where P 2 is a multiset of pairs of processes in -normal form, and Φ 0 and Φ 1 are frames. There is also a restriction in [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] that in pairs (P, Q) ∈ P 2 , P and Q have the same type of action at toplevel. The semantics of such processes is de ned in Figure 3 and assumes that channels are static1 and we use the private semantics (i.e. with no internal communications on public channels). Although one could design a de nition making without these two assumptions, they are actively used by the optimisations developed in [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF].

The semantics of Figure 3 only handles the bounded fragment, consistently with the presentation of equivalence by session of [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF]. However, to avoid being arti cally limited in our comparisons, we can naively extend Figure 3 with

({{!P, !Q }} ∪ P 2 , Φ 0 , Φ 1) τ -→ ({{(!P, !Q), (P , Q)}} ∪ P 2 , Φ 0 , Φ 1)
A similar rule can be de ned for replication operator if simple processes (! ch) to bypass the restriction to static channels. This is a natural extension of the semantics, although rather limited too. For example P |!P and !P will not be equivalent by session although, intuitively, there exists a natural bijection between all copies of P in P |!P and !P. We leave open the design of a semantics better adapted to the expected mechanisms of equivalence by session of unbounded processes, and stick to this simplistic model here.

Equivalence by session Two processes P 0 and P 1 are equivalent by session when for all traces of P i , i ∈ {0, 1}, there exists a

P | 0 P 0 | P P (P | Q) | R P | (Q | R) P | Q P | Q Q | P Q | P if P P new k.P P {k → k } k fresh name if u = then P else Q P if u = E Q otherwise
Figure 2: Simpli cation rules for processes

({{(P, Q)}} ∪ P 2 , Φ 0 , Φ 1) α -→ ({{(P , Q)}} ∪ P 2 , Φ 0 , Φ 1) if ({{P }}, Φ 0) α -→ ({{P }}, Φ 0), ({{Q }}, Φ 1) α -→ ({{Q }}, Φ 1) (IO 2)
by rules (I) or (O)

({{(c 1 u 1 .P 1 , c 2 u 2 .P 2), (c 1 (x 1).Q 1 , c 2 (x 2).Q 2)}} ∪ P 2 , Φ 0 , Φ 1) τ -→ ({{(P 1 , P 2), (Q 1 {x 1 → u 1 } , Q 2 {x 2 → u 2 })}} ∪ P 2 , Φ 0 , Φ 1) if c 1 and c 2 are private channels (C 2) ({{(n i=1 P i , n i=1 Q i)}} ∪ P 2 , Φ 0 , Φ 1) τ -→ ({{(P i , Q π (i))}} n i=1 ∪ P 2 , Φ 0 , Φ 1) if π is a permutation of 1, n (M)
Figure 3: Semantics on pairs of processes (in -normal form) trace t of P 1-i such that t ∼ t and t and t are the rst and second projections, respectively, of a twin trace of (P i , P 1-i). In particular equivalence by session re nes trace equivalence:

T 5.1 ([CKR19]
) . If two processes are equivalent by session then they are also trace equivalent.

The converse is not true in general, consider e.g. the processes c(x).c() and c(x) | c(). Besides: T

([CKR19]

) . Labelled bisimilarity and equivalence by session are incomparable.

We discuss in Section 6 some assumptions under which trace equivalence and labelled bisimilarity coincide with equivalence by session. We refer to the following problem as S E : I : A theory, two processes : Are the two processes equivalent by session?

Di equivalence. We formalise di -equivalence with the same de nition as equivalence by session, except that the rule (M) of Figure 3 is restricted to only consider the identity matching:

({{(n i=1 P i , n i=1 Q i)}}∪P 2 , Φ 0 , Φ 1) τ -→ ({{(P i , Q i)}} n i=1 ∪P 2 , Φ 0 , Φ 1) (M)
Although the original de nition of di -equivalence [START_REF] Blanchet | Automated veri cation of selected equivalences for security protocols[END_REF] was stricter by imposing control-ow restrictions on conditionals as well, our formalisation capture a notion similar to the morerelaxed, later-introduced de nition of [START_REF] Cheval | Proving more observational equivalences with proverif[END_REF]. All in all the definition of di -equivalence, more restrictive than equivalence by session, makes it a sound heuristic all other equivalences:]) . If two processes are di equivalent then they are also labelled bisimilar, equivalent by session and therefore trace equivalent.

T 5.3 ([BAF08, CKR19
The converse does not hold in general, leading to so-called false attacks (non-di -equivalent processes that are, for example, trace equivalent). They are naturally more frequent than those induced by equivalence by session. Note also that in the extreme case of simple processes, D E and S E are essentially the same decision problem, up to a simple associative-commutative preprocessing of parallel operators. We call the following problem D E : I : A theory, two processes.

: Are the two processes di equivalent?

A tool for decidability: constraint solving

In the bounded fragment it is common to abstract the in nitelybranching transition relation by a nite variant with symbolic constraints [Bau07, CCD13, CKR18a], reducing the study of equivalences to various avours of constraint-solving problems. We detail one of them [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF] in this section as it is used in most of the results surveyed in the remaining of the paper.

Constraint systems In a symbolic approach, all recipes are replaced by placeholder variables and constraints are used instead in order to specify how these variables may be instanciated in practice. We do not formalise the symbolic semantics used in [Bau07, CCD13, CKR18a] since this is not needed in any proof provided in this paper; still, to give an intuition of how they operate, consider the symbolic execution below:

A = ({{c(x).if sdec(x, k) = u then c x else c h(x) }},) Y (X) ----→ ({{if sdec(x, k) = u then c x else c h(x) }},) τ -→ ({{c h(x) }},) Z ax -----→ ({{0}}, Φ) with Φ = {ax → h(x)}
The three recipes required by the usual semantics are not speci ed, and three so-called second-order variables X, Y , Z are used instead.

They may be instanciated by any recipes ξ X , ξ Y , ξ Z that satisfy here the following constraints:

ξ X , ξ Y , ξ Z do not use the axiom of Φ, ξ Y Φ = E c, ξ Z Φ = E c and sdec(ξ X , k)Φ E u.
The set S of these six constraints is usually written S = {X ? x, Y ? , Z ? z, sdec(x, k) ? u, = ? c, z = ? c} .

The constraint X ? x is called a deduction fact and intuitively indicates that x is deducible by the attacker, using the recipe ξ X . This recipe may use the rst axioms of the frame up to the arity of X , written ar(X). Hence here ar(X) = ar(Y) = ar(Z) = 0. The constraints u = ? (equations) and u ? (disequations) express comparisons between terms modulo theory.

Formally, a constraint system is a pair C = (S, Φ) with Φ a frame and S a set of equations, disequations and deduction facts with no second-order variables appearing twice nor having an arity greater than |dom(Φ)|. We always assume that they verify the origination property which intuitively means that they correspond to actual symbolic traces, i.e. that all free variables appearing in the frame should have been determined by a prior recipe. That is, if

Φ = {ax 1 → t 1 , . . . , ax n → t n }
then the origination property requires that for all i ∈ 1, n and all variables x appearing in t i , there exists a deduction fact X ? x in C such that ar(X) < i.

Then a solution of a constraint system C = (S, Φ), substitutes second-order variables by actual recipes that satisfy the equations and disequations of S. Formally a second-order substitution is a mapping Σ from second-order variables X to recipes using at most the ar(X) rst axioms of Φ. In particular Σ induces a valuation of the free variables of C, which is the substitution σ such that X Σ = xσ for all deduction facts X ? x of S (σ is well-de ned and unique under the origination property). We thus say that Σ is a solution of C if uσ↓= σ↓ for all equations u = ? of S, and uσ↓ σ↓ for all disequations u ? of S. In the constructor-destructor semantics, we additionally require that msg(uσ) and msg(σ) for an equation to be satis ed, and disequations are satis ed when either msg(uσ) or msg(σ) does not hold, or uσ↓ σ↓.

Similarly to processes, we say that a constraint system is positive when it does not contain disequations.

Constraint solving As we show in the next sections, several equivalence problems are reducible to an analysis of constraint systems, and understanding the complexity of the latter is often key to solve the former. Although its applications are mostly for reachability properties-not surveyed in this paper-we mention the most basic decision problem that we call CS SAT:

I

: a theory, a constraint system.

: does the constraint system admit a solution?

This is a generalisation of D since, by de nition, a term t is deducible from a frame Φ i the constraint system

({X ? x, x = ? t }, Φ) with ar(X) = |dom(Φ)|
is satis able. More generally, the weak-secrecy problem (given a process P and a term t, does there exists a trace of P such that t is deducible from its frame?) can be decided in non-deterministic polynomial time with oracle to CS SAT, intuitively as follows:

(1) guess non-deterministically one (among the polynomiallymany) symbolic execution of P and collect the corresponding constraints into a constraint system C = (S, Φ)

(2) answer yes if the following constraint system has a solution:

(S ∪ {X ? x, x = ? t }, Φ) X, x fresh, ar(X) = |dom(Φ)| .
Regarding equivalence properties, the problem is essentially to decide whether two constraint systems admit the same set of solutions, and that their frames are statically equivalent for all of these solutions. In general the decision of trace equivalence involves more complex variants of this decision problem [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF][START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF], but this simple one is already useful to decide di -equivalence, as well as other equivalences in some fragments [Bau07, CCD13, CKR19]. We call this problem CS E : I : A theory, two constraint systems (S 1 , Φ 1) and (S 2 , Φ 2) with the same second-order variables and dom(Φ 1) = dom(Φ 2).

: Do the two constraint systems (S 1 ∪ D, Φ 1) and (S 2 ∪ D, Φ 2) have the same set of solutions, where

D = {X ? x, Y ? , x = ? } with X, Y, x, fresh such that ar(X) = ar(Y) = |dom(Φ 1)|?
This problem is called S-equivalence in [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF]. Note that we retrieve the S E problem when S 1 and S 2 are empty.

Complexity We now present some decidability and complexity results for CS SAT and CS E ; they will be at the core of the results presented in the next sections. These two problems have been studied in majority in [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF] for the decidability of reachability properties and di equivalence, in the case of xed subterm theories in the positive bounded fragment. T

([Bau07]

) . For all xed subterm convergent theories, CS SAT (resp. CS E) is NP (resp. coNP for positive constraint systems).

As far as we know the complexity of this problem has only been studied for xed theories. However the result of [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF] above can be adapted to parametric theories; inspecting the proof we observe that (1) in the complexity bounds, the dependencies in the theory are polynomial and (2) the proof uses the fact that static equivalence is PTIME for xed theories (Theorem 3.1) but the arguments still hold if we only assume static equivalence to be coNP. Since it has also been proved in [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF] that CS SAT was NP-hard if the theory includes at least a free binary function symbol, we obtain the more general complexity result: T 5.5 . CS SAT (resp. CS E) is NP-complete (resp. coNPcomplete) for subterm convergent theories and positive constraint systems. In the case of CS SAT, the NP-completeness also holds without the positivity assumption. Proof. It su ces to prove that CS E is LOGSPACE. We let two constraint systems C 1 = (S 1 , Φ 1) and C 2 = (S 2 , Φ 2), where the deduction facts of S 1 and S 2 are, respectively,

X 1 ? x 1 , . . . , X n ? x n and X 1 ? 1 , . . . , X n ? n
and where dom(Φ 1) = dom(Φ 2) = {ax 1 , . . . , ax p }. In the empty theory, there are nitely-many second-order substitutions Σ for C 1 and C 2 up to bijective renaming of fresh constants (which does not a ect whether Σ is a solution of C 1 or C 2). Indeed for all i ∈ 1, n , the recipe X i Σ is either a constant appearing either in Φ 1 , Φ 2 , in an equation of S 1 or S 2 or in some X j Σ, j < i a fresh constant (i.e. not captured by the previous case) an axiom ax j such that j < ar(X i). Given a second-order substitution Σ, we can verify that it is a solution of C 1 and C 2 in LOGSPACE since the constraint systems only contain equations and disequations between constants, names and variables. The problem can thus be solved in LOGSPACE by bruteforce, using three nested loops:

the rst two loops are of size in n and p and are used to enumerate all second-order substitutions Σ up to bijective renaming of fresh constants the third loop of size polynomially-bounded by

|C 1 | + |C 2 | verifying that Σ is a solution of C 1 i it is a solution of C 2 .
Since CS E is a generalisation of S E it can also be interesting to compare their complexity. Regarding xed theories, S E is PTIME (Theorem 3.1) and this is optimal in the sense that the problem is PTIME-hard for all theories containing symmetric encryption (Theorem 3.3). The coNP bound is optimal for CS E in the same sense: T 5.7 . CS SAT (resp. CS E) is NP-hard (resp. coNP-hard) for positive constraint systems if the theory contains at least symmetric encryption.

Proof. It su ces to prove that CS SAT is NP-hard. By reduction from SAT we let φ = p i=1 C i a SAT formula with variables x 1 , . . . , x n . Given a family of distinct names k 1 , . . . , k n , we rst consider the following frame with n free variables

Φ val = {ax 1 → senc(x 1 , k 1), . . . , ax n → senc(x n , k n)} . Given a clause C of φ, we let x i 1 , x i 2 , x i 3 its variables, b i 1 , b i 2 , b i 3 its negation
bits, and a fresh name k c . We de ne a frame Φ c such that, for all valuations σ of x 1 , . . . , x n , the name k c is deducible from Φ val σ ∪ Φ c i σ satis es C (i.e. i there exists j ∈ 1, 3 such that x i j σ = b i j):

Φ c =        ax c 1 → senc(k c , senc(b i 1 , k i 1)) ax c 2 → senc(k c , senc(b i 2 , k i 2)) ax c 3 → senc(k c , senc(b i 3 , k i 3))       
All in all the following constraint system (S, Φ) is satis able i φ is satis able:

S =        X 1 ? x 1 , . . . , X n ? x n , Y 1 ? 1 , . . . , Y p ? p , 1 = ? k c 1 , . . . , p = ? k c p        Φ = Φ val ∪ Φ c 1 ∪ • • • ∪ Φ c p with ar(X 1) = • • • = ar(X n) = 0, ar(Y 1) = • • • = ar(Y p) = |Φ|.
The complexity of the general problem (that is, with disequations) is open. However it is easily seen less general than trace equivalence and thus inherits its complexity upper bounds. T 5.8 . CS E is reducible to T E of bounded processes. This reduction is LOGSPACE and preserves the theory.

Proof. Consider a constraint system C = (S, Φ). We let the notations Φ = {ax 1 → t 1 , . . . , ax n → t n } and S = D ∪ E with

D = {X 1 ? x 1 , . . . , X p ? x p } E = {u 1 ∼ 1 1 , . . . , u q ∼ q q }
where for all i ∈ 1, q , ∼ i ∈ {= ? , ? }. Assuming that the secondorder variables X i are sorted by increasing arity, we let

1 = i 0 i 1 • • • i n i n+1 = p + 1 the sequence of integers such that ar(X i) = i i i < i +1 .
We then let a constant c and de ne the following process given another process R:

P(C, R) = c(x i 0). • • • c(x i 1 -1). c t 1 .c(x i 1). • • • c(x i 2 -1). . . . c t n .c(x i n). • • • c(x i n+1 -1). [u 1 ∼ 1 1] • • • [u q ∼ q q] R
where [u ∼]P is a shortcut for either "if u = then P else 0" (when ∼ is = ?) or "if u = then 0 else P" (when ∼ is ?). The process P(C, R) is well-de ned (i.e. does not contain variables that are not bound by a prior input) if C veri es the origination property. In P(C, R), the subprocess R can be executed i x 1 , . . . , x n are instanciated by recipes that de ne a solution of C. In particular given a constant d and two constraint systems C 0 , C 1 verifying the hypotheses of the problem CS E , C 0 and C 1 are equivalent i for all traces t of P(C i , d d) containing an output on d, i ∈ {0, 1}, there exists a trace t of P(C 1-i , d d) such that t ∼ t . In particular C 0 and C 1 are equivalent i

P(C 0 , d d) + P(C 1 , 0) and P(C 0 , 0) + P(C 1 , d d)
are trace equivalent where, for k, k ∈ N and e ∈ Σ 0 fresh:

A + B = e k | e k | e(x). ([x = k] A | [x = k] B)
C 5.9 . CS E is decidable in coNEXP for subterm convergent constructor-destructor theories.

Decidability and complexity

Di equivalence Although undecidable in general, di equivalence is decidable in the bounded positive fragment [Bau07]: T 5.10 ([Bau07]) . In the bounded (resp. bounded positive) fragment, given a non-deterministic algorithm A for non-CS E (resp. for non-CS E of positive constraint systems), non-D E is NP, where a call to A is seen as an elementary instruction.

Proof sketch. The decision procedure of [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF] for non equivalence consists of (1) guessing a symbolic trace t, (2) consider the unique (if it exists) candidate equivalent trace t in the other process, and (3) conclude that the processes are not di -equivalent if the constraint systems corresponding to t and t are not equivalent. In the case of the positive fragment, an additional argument is required to prove that it is not necessary to consider symbolic traces that produce disequation constraints.

In particular when composing this with the di erent complexity results for CS E mentioned in Section 5.2: C 5.11 . D E is (1) coNEXP for bounded processes and constructor-destructor subterm convergent theories, (2) coNP for bounded positive processes and subterm convergent theories.

The problem is also known coNP-hard even in the positive fragment for a theory containing only a free binary symbol h [START_REF] Baudet | Sécurité des protocoles cryptographiques: aspects logiques et calculatoires[END_REF]. However a simple proof justi es that D E is actually coNP-hard even for the empty theory and, hence, for any xed theory: T 5.12 . In the pure pi-calculus, D E is coNP-complete for positive bounded processes.

Proof. By reduction from SAT let a formula φ = m i=1 C i in CNF and ì

x = x 1 , . . . , x n its variables. For each clause C i , let k i be a fresh name and de ne

CheckSat i (ì x) = [x i 1 = b i 1]c k i | • • • | [x i p = b i p]c k i
where x i 1 , . . . , x i p are the variables of C i and b i 1 , . . . , b i p their negation bits. That is, at least one output of k i is reachable in CheckSat

i (ì x) if ì
x is a valuation of φ that satis es C i . Hence if

CheckSat = c(x 1). . . . c(x n).(CheckSat 1 (ì x) | • • • | CheckSat m (ì x)) Final(t) = c(1).[1 = k 1] . . . c(m).[m = k m] c t
then for two distinct constants 0, 1, CheckSat | Final(0) and CheckSat | Final(1) are di -equivalent i φ is unsatis able.

In particular this gives the exact complexity of D E in the bounded positive fragment. As far as we know the question remains open without the positivity assumption. C 5.13 . For subterm convergent theories (xed or not) and bounded positive processes, D E is coNP-complete.

Finally we also note that, up to a reordering of parallel operators at toplevel, equivalence by session and di -equivalence are the same decision problem for simple processes. In particular their complexity coincide in most subfragments of simple processes. T 5.14 . D E and S E are LOGSPACE-reducible to each other for simple processes.

Equivalence by session Equivalence by session has been designed as a heuristic to prove trace equivalence by exploiting the structural symmetries that often arise in practical veri cation. Surprisingly, despite practical improvements by order of magnitudes of the veri cation time [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF], this performance gap is not reected in the theoretical, worst-case complexity (Appendix A):

T 5.15 . There exists a subterm convergent constructordestructor theory for which S E is coNEXP-hard for bounded positive processes. Without the positivity requirement, this theory can be limited to symmetric encryption and pairs. It is discussed in [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] that equivalence by session may also be seen as a standalone security notion in some cases. Intuitively if P, Q are processes operating on a unique channel, proving equivalence by session of !P and !Q means proving trace equivalence of ! ch P and ! ch Q, i.e. the attacker has the capability of distinguishing actions originated from di erent copies of P or Q. This may be realistic in scenarios where each session of a protocol is dynamically attributed with a port that is observable by the attacker. From a theoretical point of view, it gives the intuition that the decision of S E can be encoded as an instance of T E in many cases: in particular the worst-case complexity of the former should not exceed that of the latter. We do not formalise such a reduction but mention several fragments where the two problems are known decidable with the same complexity and close-to-identical decision procedures. They cover most of the fragments investigated in this survey. For example in the bounded fragment, as discussed in [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF], the same constraint-solving approach used in [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF] for T E (Theorem 4.1) can be used to decide S E .

T 5.16 . S E is coNEXP for bounded processes and subterm convergent constructor-destructor theories.

It is also proved in the next section that the two equivalences coincide for simple processes, among others. Finally, regarding the pure pi-calulus, equivalence by session can be decided along the same lines as for trace equivalence [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF] up to minor changes. T 5.17 . In the pure pi-calculus, S E is Π 2 -complete for bounded processes (resp. bounded positive processes).

THE CASE OF DETERMINACY

We now mention the fragment of determinate processes, a generalisation of simple processes. In this fragment, most of the studied equivalences coincide and their complexity drops exponentially.

Definition(s)

This class has been investigated signi cantly in the literature [BDH15, CCCK16, CCD13, CKR19] although several variants coexist, as discussed in [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF]. For example the results of [START_REF] Baelde | Partial order reduction for security protocols[END_REF][START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] hold for action-determinate processes, meaning that they never reach an intermediary state where two inputs (resp. outputs) on the same communication channel are executable in parallel. More formally, given a process P whose channels are all constants, we say that P is action-determinate there exist no traces of either of the following forms: On the other hand a more permissive de nition is used in [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF] (not detailed in this survey). There also exists a notion that is stricter than all of these, referred as strong determinacy [START_REF] Babel | On the semantics of communications when verifying equivalence properties[END_REF]. A process is strongly determinate when it veri es all of the following properties:

P tr = ⇒ ({{c(x).Q, c().R}}) or P tr = ⇒ ({{c u .Q, c .R}}) .
(1) it does not contain private channels, (2) it is bounded, (3) all its syntactic subprocesses are strongly determinate, (4) in case the process is of the form P | Q there exist no channels c such that both P and Q contain an input (resp. output) on c. For example this process is action-determinate but not stronglydeterminate:

if a = b then c(x) else 0 | if a = b then 0 else c(x) . T 6.1 ([CCD13]
) . Simple processes are action determinate, and bounded simple processes are strongly determinate.

E ects on the decision of equivalences

As mentioned above, the main implication of determinacy is that most equivalence coincide in this fragment:]) . Two labelled bisimilar (resp. equivalent by session) processes are trace equivalent. The converse is true when the processes are action-determinate.

T 6.2 ([CCD13, CKR19
We recall that, since the model of [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] does not include replication, this theorem is only formally proven in the bounded fragment as far as equivalence by session is concerned. Still, all arguments of [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] carry to our simple extension of equivalence by session to unbounded processes. Regarding complexity, it is shown in [START_REF] Cheval | Deciding equivalence-based properties using constraint solving[END_REF] that, for bounded simple positive processes, the equivalence problem can be reduced to CS E similarly to Theorem 5.10 for di -equivalence. Their arguments can be generalised from simple to strongly-determinate processes in a straightforward manner; however it is not clear whether this would also be true for action-determinate processes or for processes with else branches. In particular we obtain the same complexity as diequivalence for this fragment:

T 6.3 ([CCD13]) . T E , B
and S E are coNPcomplete for subterm convergent theories and positive stronglydeterminate processes. The coNP completeness also holds for all xed subterm convergent theories.

SUMMARY AND OPEN PROBLEMS

Table 1 summarises the main results of and highlights remaining open questions. Cells for which the complexity results are not tight are colored in grey. For instance, for subterm-convergent constructor-destructor theories and bounded processes, D E is known coNEXP and coNP-hard, but the precise complexity remains unknown. Consistently with the results of the paper we also include some complexity results with the theory seen as a constant of the problem (denoted as " xed" in the theory columns). The corresponding cells contain bounds applying to all theories of the class; e.g. for B of bounded processes, with xed subtermconvergent constructor-destructor theories, the problem is decidable in coNEXP and PSPACE-hard. Despite the gap between the two bounds, they are optimal since there exist theories for which the problem is PSPACE-complete and others for which it is coNEXPcomplete. Therefore this cell is not highlighted in grey. In our opinion the most interesting open questions are:

Can upper bounds on constructor-destructor theories be lifted to more general subterm convergent theories? Without the positivity assumption, can we tighten the complexity for di equivalence, and strongly determinate processes? This last question might allow to better understand why strongly determinate processes bene t from optimisations that improve veri cation performance that much. Finally, as witnessed by the contrast between the high complexity of equivalence by session and its practical e ciency, worst-case complexity may not always be an adequate measure.

Definition of Extract Then we de ne the process performing branch extraction from a binary tree modelled by nested pairs.

Extract = 4n i=1 E i | E dummy i with E i = c(senc(x 0 , x 1 , z , r i)). 1 j=0 [z = b j] c senc(x j , a i) E dummy i = c(senc(x, s i)). c senc(x, a i)
That is, Extract is able to answer to 4n pair-extraction requests, potentially including some dummy requests where the argument is returned unchanged. In the other processes, if t, t 1 , . . . , t n are terms and 1 i 3n + 1, the branch extractions are written

u n ← Extr i (t, t 1 , . . . , t n). P instead of: c senc(t, t 1 , r i) . c(senc(u 1 , a i)). c senc(u 1 , t 2 , r i+1) . c(senc(u 2 , a i+1)). . . . c senc(u n-1 , t n , r i+n-1) . c(senc(u n , a i+n-1)). P
On the other hand, the dummy extractions are written

DummyExtr n i . P instead of c senc(b 0 , s i) . c(senc(_ , a i)). . . . c senc(b 0 , s i+n-1) . c(senc(_ , a i+n-1)). P
Definition of Eval Moving on to the process Eval, a gate of a circuit is seen as a tuple (e 1 , e 2 , f , e 3 , e 4) where e 1 , e 2 are the input edges, e 3 , e 4 are the output edges, and f : B 2 → B is the boolean function computed by the gate where B = {b 0 , b 1 } models the set of booleans. Given a circuit C we let G(C) the set of its gates and, for each edge e of C, we associate a fresh name k e . We thus de ne

C = ∈G(C) (e 1 , e 2 , f , e 3 , e 4) = c(senc(x, k e 1)). c(senc(, k e 2)). b,b ∈B [x = b][= b] c o 3 . c o 4 with o i = senc(f (b, b), k e i). We then let Eval = Γ 1 | Γ 2 | Γ 3 | Γ
where Γ 1 , Γ 2 , Γ 3 are three fresh copies of Γ (with fresh edges) and Γ a circuit computing the boolean function

B 6 → B (x 1 , x 1 , x 2 , x 2 , x 3 , x 3) → (x 1 = x 1 ∨ x 2 = x 2 ∨ x 3 = x 3)
For the sake of succinctness, when an other processes interacts with Eval to, say, compute the a circuit C whose input edges (resp. output edges) are e 1 , . . . , e p (resp. f 1 , . . . , f q), we write x 1 , . . . , x q ← C(t 1 , . . . , t p). P instead of: c senc(t 1 , e 1) . . . c senc(t p , e p) . c(senc(x 1 , f 1)) . . . c(senc(x q , f q)). P Process CheckTree i We now move on to the process verifying that the initial input x provided by the attacker is indeed a binary tree of height n.

CheckTree i (x) = c(senc(1 , k 1)) . . . c(senc(i , k i)). c(senc(_ , k i+1)) . . . c(senc(_ , k n+m)). x i ← Extr 1 (x, 1 , . . . , i). DummyExtr n-i i+1 . _ ← Γ 1 (b 0 , . . . , b 0). _ ← Γ 2 (b 0 , . . . , b 0). _ ← Γ 3 (b 0 , . . . , b 0). DummyExtr n n+1 . DummyExtr n 2n+1 . DummyExtr n 3n+1 . _ ← Γ (b 0 , . . . , b 0). R i (x i)
where the process R i (t) is de ned by

if i < n, R i (t) = if fst(t) = fst(t) then c α . c β . c β else c α . c β . c γ R n (t) = c senc(t, α) . c senc(b 0 , α) . c senc(b 1 , α)
The process CheckTree i selects non-deterministically a position p ∈ {0, 1} i in the tree (modelled by the variables 1 , . . . , i) and extracts the corresponding node x i of x by interacting with Extract. Then the process R i , i < n (resp i = n), outputs three messages that are indistinguishable from three fresh nonces i x i is ill-formed, i.e. if x i is not a pair (resp. not in B). The rest of the process only consists of dummy operations so that CheckTree i performs the same number of actions than Print and Eval.

Definition of CheckSat Next, assuming that the initial input x passes the test of all CheckTree i , we de ne the process verifying that x encodes a valuation that satis es the formula φ.

CheckSat(x) = c(senc(_ , k 1)) . . . c(senc(_ , k n)). c(senc(1 , k n+1)) . . . c(senc(m , k n+m)). DummyExtr n 1 . ω 1 , x 1 , . . . , x n ← Γ 1 (1 , . . . , m , b 0 , b 0). ω 2 , 1 , . . . , n ← Γ 2 (1 , . . . , m , b 0 , b 1). ω 3 , z 1 , . . . , z n ← Γ 3 (1 , . . . , m , b 1 , b 0). ω 1 ← Extr n+1 (x, x 1 , . . . , x n). ω 2 ← Extr 2n+1 (x, 1 , . . . , n). ω 3 ← Extr 3n+1 (x, z 1 , . . . , z n). ω ← Γ (ω 1 , ω 1 , ω 2 , ω 2 , ω 3 , ω 3). c senc(ω, α) . c senc(b 1 , α) . c β
The process CheckSat selects non-deterministically one of the 2 m clauses of φ (which modelled by the variables 1 , . . . , m) and then computes ω ∈ B the valuation of this clause w.r.t. the valuation encoded by x. For that it evaluates the three copies of Γ to retrieve the three variables and negation bits of the clause, and performs branch extractions to retrive the valuations ω 1 , ω 2 , ω 3 of the three variables. Then the nal three outputs are statically equivalent to three fresh nonces i the clause has been falsi ed, i.e. ω = b 0 .

Definition of Print

We nally de ne a process that serves as a baseline for comparison in the equivalence proof: it only performs dummy operations and eventually output three fresh nonces.

where π i are permutations of {0, 1} such that π i id i n + 1 i n + m and m i ↓ p i .

Proof of (ii) =⇒ (iii).

This follows from the soundness of equivalence by session w.r.t. trace equivalence, i.e. Theorem 5.1.

Proof of (iii) =⇒ (ii).

Let : {x 0 , . . . , x 2 n -1 } → B a valuation of φ and prove that falsi es a clause of φ. We let ξ 0 the complete binary tree of height n whose i th leaf (ordered w.r.t. a leftmost depth-rst search in the binary tree) is (x i). Consider then the trace of P that inputs ξ 0 , executes all outputs of Choice and proceeds onto executing the last three outputs of Print. This trace cannot be matched by any trace of Q executing any CheckTree i , 0 i n, because ξ 0 is a complete binary tree with boolean leaves. Hence there exists a matching trace in Q executing CheckSat: let us write ξ 1 , . . . , ξ n+m the n + m rst inputs of Print and Φ the frame at the start of the execution of Print in Q. We also let m i = sdec(ξ i Φ, k i), which veri es msg(m i) and m i ↓∈ B. Then if p is the integer whose binary representation is m n+1 ↓, . . . , m n+m ↓, the p th clause of φ is falsi ed by .

A.2 Enforcing positivity

A.2.1 Trace and session equivalence

In this section we study to which extent the lower bound above can be obtained in the positive fragment. There is actually only one else branch in the process, precisely in the process R i (t), i < n:

R i (t) = if fst(t) = fst(t) then c α . c β . c β else c α . c β . c γ
for reminder, the role of this process is to output three messages that are indistinguishable from three fresh nonces i t is not a pair. In particular there are ways to get rid of the else branch:

slightly extending the theory: we add a binary constructor symbol h, a unary destructor TestPair and the rewrite rule

TestPair(h(x, , z)) → ok
for some constant ok. Then we replace R i (t) by the process

R i (t) = c h(t, α) . c β . c γ
getting rid o the constructor-destructor semantics: the reduction of the previous section holds in the altered semantics we use in the constructor-destructor semantics, in particular where a conditional if u = then P else Q executes its negative branch when a destruction failure occurs in u or . Without conditions on destruction failures we can replace R i (t) by

R i (t) = c senc(t, α) . c senc(fst(t), snd(t) , α) . c γ T A.4 .
There exists a constructor-destructor theory for which T E and S E are coNEXP-hard for bounded positive processes whose channels are constants.

A.2.2 Labelled bisimilarity

Now we study the case of B by proving Theorem A.2. This shows that we can get rid of the else branch of R i (t); however internal communications on private channels are needed to make the overall reduction work (in particular because the encoding of nondeterministic choice by encrypted public communications does not work for B

). Formally we build on the results of [CKR18a] that de nes two extensions of the calculus and encodes them into the original one. The grammar of processes is extended with the constructs P, Q ::= x 1 , . . . , x n ← Γ(t 1 , . . . , t m).P P 1 + . . . + P n Choose(x).P where x, x 1 , . . . , x n are variables, t 1 , . . . , t m are terms and Γ : B m → B n is a circuit. The semantics is extended as follows P 1 + . . .

+ P n τ -→ R if R ∈ {P 1 , . . . , P n } Choose(x).P τ -→ P {x → b} if b ∈ B
and if for all i, msg(t i) and t i ↓∈ B, then writing ì t = t 1 , . . . , t m and Γ(t 1 ↓, . . . , t m ↓) = ì u:

ì x ← Γ(ì t).P τ -→ P { ì x → ì u}
The following theorem justi es that these three construct do not increase the complexity of B for bounded positive processes:

T A.

([CKR18a]

) . There exists a transformation • from processes to processes such that for any theory (1) P is computable in polynomial time in the size of P (2) • preserves positivity and boundedness (but introduces private channels) (3) P and P are labelled bisimilar Let us now prove Theorem A.2 by reduction from S 3SAT in this extended calculus. We consider Γ : B m+2 → B n+1 a circuit encoding a formula φ with 2 m clauses and 2 n variables x 0 , . . . , x 2 n -1 . We de ne two processes P and Q that are labelled bisimilar i φ is unsatis able. They have the following form

P = c(x). ! 3n Extract | CheckSat(x) + n i=0 CheckTree i (x) + Print Q = c(x). ! 3n Extract | CheckSat(x) + n
i=0 CheckTree i (x) where ! a P = P | • • • | P (a parallel copies). The intuition is very similar to the reduction for trace equivalence and equivalence by session:

Print serves as a baseline for comparison Extract performs tree extractions upon request CheckTree i (x) is equivalent to Print i x is not a complete binary tree of height in i, n with boolean leaves assuming x is a complete binary tree of height n with boolean leaves, writing the valuation it thus encodes, CheckSat(x) is equivalent to Print i satis es all clauses of φ. In the construction we let a constant c (that will serve as a public channel), a fresh name d (that will serve as a private channel to communicate with Extract) and three fresh names α, β, γ for the nal three outputs of the processes.

Definition of Extract

The process simply receives a pair and a boolean on d and outputs back the corresponding component:

Extract = d(x, , b). ([b = b 0] d x | [b = b 1] d)
In the other processes, we will then use the following shortcut for interacting with Extract:

x k ← Extr(x 0 , a 0 , . . . , a k -1). P d x 0 , a 0 . d(x 1) . . . d x k-1 , a k -1 . d(x k).P

Definition of Print

The process simply performs the following dummy operations, mimicking the control ow of the processes de ned below:

Print = c(_). c(_). c α . c β . c γ
Definition of CheckTree i The process is de ned as follows for all terms x 0 :

CheckTree i (x 0) = Choose(a 0). d x 0 , a 0 .d(x 1). . . . Choose(a i-1). d x i-1 , a i-1 .d(x i). R i (x i)
where the process R i (t) is de ned as follows

if i < n: R i (t) = c(x). c(). c senc(t, α) . c senc(x, , α) . c β R n (t) = c(_). c(_). c senc(t, α) . c senc(b 0 , α) . c senc(t, α)
The de nition of R i (t) is di erent from the previous reduction (Appendix A.2.1), adding an interaction with the attacker with two public inputs. This is the only argument in the proof that significantly di ers from the previous reduction, making it possible to test that the term t is a pair without extending the theory. L A.6 . Let i ∈ 1, n -1 (resp i = n), a term t ∈ T (Σ, Σ 0). Then the processes Print and R i (t) are not labelled bisimilar i there exists t 0 , t 1 ∈ T (Σ, Σ 0) such that t = t 0 , t 1 (resp. t ∈ B).

Proof. The proof for i = n essentially follows from the fact that the two frames

Φ 1 = {ax 1 → senc(t, α), ax 2 → senc(b 0 , α), ax 3 → senc(b 1 , α)} Φ 2 = {ax 1 → α, ax 2 → β, ax 3 → γ }
are statically equivalent i t, b 0 , b 1 are pairwise disjoint terms, i.e. i t B. Similarly the frames

Φ 1 = {ax 1 → senc(t, α), ax 2 → senc(t 0 , t 1 , α), ax 3 → β } Φ 2 = {ax 1 → α, ax 2 → β, ax 3 → γ } are statically equivalent i t
x, . In particular it easily follows that, if i < n and t ∈ T (Σ, Σ 0), then A and B are labelled bisimilar i there exists two terms t 0 , t 1 ∈ T (Σ, Σ 0) such that t 0 , t 1 = t.

Definition of CheckSat The process CheckSat(x) operates in the same way as its counterpart in Appendix A.2.1: it guesses a clause of φ, recovers its variables and negation bits by evaluating Γ, computes its valuation ω by three tree extractions from x, and outputs three terms that are statically equivalent to fresh names i ω b 1 .

CheckSat(x) = Choose(a 1) . . . Choose(a m).

ω 1 , x 1 , . . . , x n ← Γ(a 1 , . . . , a m , b 0 , b 0). ω 2 , 1 , . . . , n ← Γ(a 1 , . . . , a m , b 0 , b 1). ω 3 , 1 , . . . , n ← Γ(a 1 , . . . , a m , b 1 , b 0). ω 1 ← Extr(x, x 1 , . . . , x n). ω 2 ← Extr(x, 1 , . . . , n). ω 3 ← Extr(x, z 1 , . . . , z n). ω ← Γ (ω 1 , ω 1 , ω 2 , ω 2 , ω 3 , ω 3). R(ω)
where Γ : B 6 → B is a circuit computing the boolean formula Γ (x, x , , , z, z) = (x = x ∨ = ∨ z = z) and for all terms t:

R(t) = c senc(t, α) c senc(b 1 , α) c β
Following a similar argument as in the construction of CheckTree n , we have the following property: L A.7 . For all terms t, the processes Print and R(t) are labelled bisimilar i t b 1 .

Correctness of the construction Now we prove that the following two points are equivalent (i) φ is unsatis able (ii) P and Q are labelled bisimilar Proof of (i) =⇒ (ii)

To prove (ii) it su ces to construct a symmetric relation R on extended processes such that P RQ and, for all extended processes A, B, ARB implies the frames of A and B are statically equivalent for all transitions A α -→ A , there exists

B τ •••τ α τ •••τ
= ========= ⇒ B such that A RB or A and B are labelled bisimilar. We de ne R as the smallest symmetric relation verifying the following properties:

(1) ({{P }},) R ({{Q }},) (2) ({{! 3n Extract | P (t)}},) R ({{! 3n Extract | Q (t)}},) for all terms t ∈ T (Σ, Σ 0) and We now make a case analysis on the term t.

P (t) = CheckSat(t) + n i=0 CheckTree i (t) + Print Q (t) = CheckSat(t) + n i=0 CheckTree i (t) (3) ({{! 3n Extract, P (t)}},) R ({{! 3n Extract, Q (t)
case c.1: t is not a complete binary tree of height n or more. Given a sequence of booleans ì p, we say that ì p is a position of ξ 0 when ξ 0 = u 0 , u 1 for some terms u 0 , u 1 and either ì p is empty, or ì p = b i • ì p and ì p is a position of u i . In particular there exists a sequence ì p = p 1 , . . . , p a , 0 a < n, that is not a position of t. Without loss of generality we assume this position minimal, i.e. a = 0 or p 1 , . . . , p a-1 is a position of t. In particular by choosing ì p in the nondeterministic choices of CheckTree a (t), there exists a trace

B τ -→ ({{! 3n Extract, CheckTree i (t)}},) τ •••τ = === ⇒ ({{! 3n-a Extract, R i (t)}},) = B
where t is the node of t rooted at position ì p. By construction t is not a pair. In particular ({{R i (t)}},) and ({{Print}},) are labelled bisimilar by Lemma A.6. Since the private channel d does not appear in neither Print nor R i (t), A and B are therefore labelled bisimilar, hence the conclusion.

case c.2: t is a complete binary tree of height n or more, and one of the nodes at depth n is not a leaf, or is a leaf that is not a boolean. This is the same reasoning as in the previous case, except that a = n. case c.3: t is a complete binary tree of height n with boolean leaves. We let the valuation of φ such that for all i ∈ 0, 2 n -1 , (x i) is the i th leaf of t (ordered w.r.t. to a leftmost depthrst search in the tree t). Since φ is unsatis able by hypothesis, there exists p ∈ 0, 2 m -1 such that falsies the p th clause of φ. We let ì p the binary representation of p. In particular by choosing ì p in the non-deterministic choices of CheckSat(t), there exists a trace

B τ -→ ({{! 3n Extract, CheckSat(t)}},) τ •••τ = === ⇒ ({{R(b 0)}},) = B
and A and B are labelled bisimilar by Lemma A.7. case (3) + symmetry: there exists t ∈ T (Σ, Σ 0) such that A = ({{! 3n Extract, Q (t)}},) and B = ({{! 3n Extract, P (t)}},).

Then there exists a transition B τ -→ A , hence the conclusion by re exivity of labelled bisimilarity.

Proof of (ii) =⇒ (i) Let a valuation of φ and let us prove that falsi es a clause of φ. We also let t the complete binary tree of depth n whose i th leaf (ordered w.r.t. a leftmost depth-rst search in t) is (x i). Since P and Q are labelled bisimilar by hypothesis, they are also trace equivalent. In particular consider the following trace t of P:

P c(t)τ τ = ==== ⇒ ({{! 3n Extract, Print}},) c(c)c(c)c ax 1 c ax 2 c ax 3 = ====================== ⇒ ({{! 3n Extract}}, Φ)
where Φ = {ax 1 → α, ax 2 → β, ax 3 → γ }. We deduce that there exists a trace t of Q such that t ∼ t . Since t is a complete binary tree of depth n with boolean leaves, we deduce that t has the following form:

Q c(t)τ τ = ==== ⇒ ({{! 3n Extract, CheckSat(t)}},) τ •••τ = === ⇒ ({{R(ω)}},) c(c)c(c)c ax 1 c ax 2 c ax 3 = ====================== ⇒ ({{0}}, Φ)
where, if ì a = a 1 , . . . , a m are the non-deterministic choices performed in this execution of CheckSat(t) and p ∈ 0, 2 m -1 is the integer whose binary representation is ì a, ω ∈ B is the valuation of the p th clause of φ by . In particular the fact that Φ and Φ are statically equivalent implies that ω = b 0 , hence the conclusion.

B CO-NEXP HARDNESS FOR SIMPLE PAT-TERNED PROCESSES

In this section we prove the coNEXP-hardness of the problem studied in [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF], namely trace equivalence of patterned, simple, acyclic, type-compliant processes with a theory limited to symmetric encryption and pairs (Theorem 4.6). Due to Theorems 5.14, 6.1 and 6.2, all results for this fragment also apply for labelled bisimilarity and equivalence by session, and di equivalence.

B.1 Formalising the hypotheses

First of all we formalise the hypotheses of type compliance and acyclicity that were not detailed in the body of the paper.

B.1.1 Type compliance

A type system consists of a set of atomic types T 0 and a typing function δ mapping any term (that may contain variables) to types τ de ned by the following grammar

τ , τ ::= τ (∈ T 0) τ , τ senc(τ , τ)
There should be in nitely many constants, names and variables of any type. We say that a type system is structure preserving if it additionally veri es the following property for all constructors f (i.e. f is either symmetric encryption or pairing) and all terms u, :

δ (f (u,)) = f (δ (u), δ ()) .
In particular a structure-preserving type system is de ned by the image of δ on the set of atomic data, i.e. Σ 0 ∪ N ∪ X.

If P is a process we de ne St(P) the set of subterms of patterns or outputs appearing in P 2 , where P 2 is the process obtained after replacing all replicated subprocess !R of P by R | R. This duplication is used to materialise syntactically that !R implies several parallel copies of R. To avoid name and variable capture when studying the uni ability of terms of St(P), we assume that all new names and input variables of P 2 have been alpha-renamed in a type-preserving manner. We then de ne the set of encrypted subterms of P by:

ESt(P) = {u ∈ St(P) | u is of the form senc(, w)} .
We say that a process P is type-compliant w.r.t. a structure preserving type system if for all uni able terms t, t ∈ ESt(P), we have δ (t) = δ (t).

B.1.2 Acyclicity

A process P is said acyclic when its dependency graph is acyclic, where this dependency graph G is de ned in the rest of this section. Two de nitions of G are given in [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF]: a preliminary one su cient to obtain decidability and a re ned variant which allows more protocols to verify the acyclicity hypothesis. Here we only need the simple version, hence the lighter presentation compared to [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF].

First of all we assume a structure preserving type system (T 0 , δ) and de ne two important syntactic classes of types. Intuitively public types (resp. private types 2) correspond to values that are always (resp. never) deducible by the adversary. Naturally a type may be neither public nor private. Formally we say a type τ is public if there exist no names n occuring in P such that δ (n) is a syntactic subterm of the type τ . private if it is atomic, τ δ (a) for all variables and constants a appearing in P, and τ pp(u) for any term u occurring in P. Regarding the last item, the set pp(u) of types in plaintext position in a term u is de ned inductively as follows:

pp(u) = {δ (u)} if u ∈ Σ 0 ∪ N ∪ X pp(u) = {δ (u)} ∪ pp(u 0) ∪ pp(u 1) if u = u 0 , u 1 pp(u) = {δ (u)} ∪ pp(u 0) if u = senc(u 0 , u 1)
This covers all cases since, in the patterned fragment, no destructors appear explicitly in the process.

We then de ne a set ϱ io (τ) that characterises the types of the terms that can be deduced by the adversary from a term of type τ . More precisely ϱ io (τ) contains elements of the form τ #S τ type and S set of non-private types meaning that a term of type τ may be deducible provided prior deduction of terms of type in S. Formally ϱ io (τ) = ϱ io (τ) where

ϱ S io (τ) = {τ #S } if τ ∈ T 0 ϱ S io (τ 0 , τ 1) = ϱ S io (τ 0) ∪ ϱ S io (τ 1) ϱ S io (senc(τ 0 , τ 1)) = {senc(τ 0 , τ 1)#S } if τ 1 private ϱ S io (senc(τ 0 , τ 1)) = {senc(τ 0 , τ 1)#S } ∪ ϱ S ∪{τ 1 } io (τ 0) otherwise
Using this, we eventually de ne the dependency graph G. The 2 private types were called honest types in [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF].

node of this graph are the input and output instructions of the process P; for the sake of reference we tag each of them with a label with the following syntax : c(u).P : c u .P and the nodes of G should rather be seen as the labels themselves.

The edges of G are then de ned as follows; there is an edge → in the graph whenever sequential edges: : α .Q is a subprocess of P and : β is the rst input or output instruction appearing in Q (if any) pattern edges:

: c u and : d() are actions occurring in P and there exists τ #S ∈ ϱ io (δ (u)), τ non-public type, and τ #S ∈ ϱ io (δ ()) such that τ = τ or τ ∈ S . deduction edges:

: c u and : d are actions occurring in P and there exists τ #S ∈ ϱ io (δ (u)), τ non-public type, and τ #S ∈ ϱ io (δ ()) such that τ ∈ S . An edge → model that it may be necessary to execute the action labelled before the one labelled to be able to perform some attacker actions in a trace. Sequential edges model the dependencies between non-concurrent actions. Pattern edges model that it may be necessary to execute a given output u for the attacker to be able to produce a term complying to a given pattern : for example u = senc(m, k) and = senc(x, k) for some name k. Deduction edges model that an output u may be necessary to deduce a subterm of an output : for example u = k and = senc(m, k) for some name k.

B.2 Proof of coNEXP hardness

We now prove Theorem 4.6, by reduction from S 3SAT as annouced in the proof sketch in the body of the paper. We therefore let a circuit Γ : B m+2 → B n+1 encoding a formula φ whose variables are x 0 , . . . , x 2 n -1 , and the set of booleans B is modelled by two distinct constants 0, 1 for false and true, respectively. We then construct two patterned, simple, type-compliant, acyclic processes with atomic keys P 0 and P 1 that are trace equivalent i φ is unsatis able.

B.2.1 Construction of the processes

For simplicity we use a single channel c in the de nition of P 0 and P 1 which can easily be converted to simple processes by using a di erent channel for each parallel subprocess. More precisely P i = P(b i) where P(t) has the following form

P(t) = Extract | Eval | Init | CheckSat | Final(t)
Intuitively the processes operate as follows:

Similarly to the reduction presented in Appendix A.1, the processes Extract and Eval are utilitaries that perform tree extractions and circuit evaluations, respectively, upon request from other parallel processes.

Init is a non-replicated process that receives a input x from the attacker that is expected to be a valuation of φ, modelled by a complete binary tree of height n whose leaves are booleans. As in Appendix A.1, the nodes of this tree are modelled by pairs. After receiving x the process reveals its encryption under a dedicated secret key, forcing the attacker to commit once and for all on this valuation.

CheckSat is a replicated process whose instances can be used to verify, one clause at a time, that the valuation chosen by the attacker in Init satis es φ. Each time a clause is successfully veri ed this way, say the i th clause of φ, the encryption of the binary representation of i is revealed to the adversary. In particular, after verifying all clauses of φ the attacker obtains the encryption of all integers of 0, 2 m -1 . Hence the process Final(t) checks that the attacker knows them all (using a dichotomy-based procedure to avoid the process containing explicitly an exponential number of veri cation steps) and eventually outputs t.

The de nition will also use the following atomic data: for some names k, k . However there are several reasons why the situation requires a more complex construction. First, this process does not verify the acyclicity property: a process would need to perform several round-trip with Extract to extract a leaf from a binary tree, node by node, which highlights a circular dependency (more precisely a pattern dependency from the outputs to the inputs). Type-compliance would not be satis able neither. This problem can be solved by stratifying the construction: Extract is split into n replicated processes, each performing pair extractions for trees of a given height. The second problem is that, since all answers are encrypted with the same key, we need a form of marker to identify the di erent requests. A solution is to add a nonce to each request which is forwarded together with the answer. Altogether we have

Extract = Extract 1 | Extract 2 | Extract 3
where Extract i = n j=1 E j i where for all j ∈ 1, n : In the other processes, if t, t 1 , . . . , t n are terms, branch extractions are written u n ← Extr i (t, t 1 , . . . , t n). P, i ∈ 1, 3 , instead of: new r . c senc(t, r, t 1 , r i,1

Extr) . c(senc(u 1 , r , a i,1 Extr)). c senc(u 1 , r, t 2 , r i,2

Extr) . c(senc(u 2 , r , a i,2 Extr)). . . . c senc(u n-1 , r, t n , r i,n Extr) . c(senc(u n , r , a i,n Extr)). P Definition of Eval The de nition of Eval follows the same intuition as in Appendix A.1, but using nonces to mark messages as in the previous paragraph. As before the gates of a circuit are tuples (e 1 , e 2 , f , e 3 , e 4) where e 1 , e 2 are the input edges, e 3 , e 4 are the output edges, and f : B 2 → B is the gate boolean function Given G(C) is the set of gates of a circuit C and for each edge e we associate a fresh name k e . Such a circuit C is then translated as follows into a process: We then let Eval = Γ 1 | Γ 2 | Γ 3 | Γ where Γ 1 , Γ 2 , Γ 3 are three copies of Γ with fresh edges and Γ is a circuit computing the boolean function

C =
B 6 → B (x 1 , b 1 , x 2 , b 2 , x 3 , b 3) → (x 1 = b 1 ∨ x 2 = b 2 ∨ x 3 = b 3)
For the sake of succinctness, when an other processes interacts with Eval to, say, compute the a circuit C whose input edges (resp. output edges) are e 1 , . . . , e p (resp. f 1 , . . . , f q), we write x 1 , . . . , x q ← C(t 1 , . . . , t p). P instead of: new r . c senc(t 1 , r , e 1) . . . c senc(t p , r , e p) . c(senc(x 1 , r , f 1)) . . . c(senc(x q , r , f q)). P Definition of Init This process simply forces the attacker to commit on a value x that will allow to violate equivalence i it is a complete binary tree of height n with boolean leaves modelling a valuation satisfying φ. Formally Init = c(x).c senc(x, k) This is the only ciphertext encrypted by k produced by the process and the attacker thus cannot forge any others. All processes that use the commited value x will therefore rst receive an input encrypted by k, which can thus only be this one. Definition of Final The process Final(t) gathers integers sent by CheckSat and outputs t if when the whole set 0, 2 m -1 has been received, which is only possible if it has been veri ed that all clauses of φ were satis ed by the valuation committed in Init. For that Final(t) gathers pairs of integers that di er only by their least signi cant bits, and then reveals the encryption of these integers with this bit truncated. It then su ces to iterate this operation until the encryptions of 0 and 1 are eventually revealed. Formally

Definition of

Final(t) = Final 1 | • • • | Final m | F (t)
where F (t) = c(senc(nil, k 0 Final)).c t and for all i ∈ 1, m Final i = ! ch c(senc(0, x 2 , . . . , x i , nil , k i Final)). c(senc(1, x 2 , . . . , x i , nil , k i Final)). c senc(x 2 , . . . , x i , nil , k i-1 Final)

B.2.2 Proof of type compliance and acyclicity

Now we show that P(b), b ∈ B, indeed satis es the hypotheses of the theorem. That is, we de ne a structure-preserving type system (T 0 , δ) and show that P(b) is type-compliant and acyclic w.r.t. it.

On the size of the type system In terms of complexity, the type system is part of the input of the problem: as it can be observed in the proof of Theorem 4.5, the complexity of the decision procedure depends on its size. In particular for our reduction it should be ensured that (T 0 , δ) is of polynomial size.

Unfortunately we need a type for boolean trees of height n, which is a type of size 2 n . However when inspecting the details of the decision procedure in [START_REF] Chrétien | Decidability of trace equivalence for protocols with nonces[END_REF] we observe that:

The coNEXP complexity is obtained by applying a coNP decidability result in the bounded fragment (Theorem 6.3) to an exponential number of sessions of the process. This exponential number N of sessions is to be computed from the type system and the process. More precisely there exist two polynomials A, B such that

N = A(||io P ||) B(|P |)
where |P | is number of instructions of the process P and ||io P || is the maximal size (i.e. the maximal number of constructor symbols) of an input or an output in a trace where input variables x are only instanciated by terms t such that δ (x) = δ (t). In particular the complexity analysis is robust to ||io P || being exponential in the size of the parameters. Since ||io P || is polynomial in the size of the type system and P (in a classical tree representation of terms), this shows that the procedure would be coNEXP even if the types are represented in DAG form (i.e. the representation size of a type is only the number of its di erent subtypes, which is linear in n for the type of binary trees of height n).

To sum up, our coNEXP-completeness result holds for processes represented in any form (tree or DAG) but only with the type system represented in DAG form.

Construction of the type system The set of atomic types T 0 contains τ B , a type τ k for each name k used as an encryption key in the process, τ nil and τ new . The typing function δ is then de ned as follows on the atomic data of the process: δ (a) = τ B if a is one of the constants 0, 1 or a variable that expects a boolean in the description of the process (e.g. b i , x i , i , ω i in CheckSat). Note that τ B is public. δ (k) = τ k if k is a name used as an encryption key. Note that the types τ k are private. δ (nil) = τ nil δ (r) = τ new if r is declared in the process using a new binder. we write τ It is then straightforward to verify that P(0) and P(1) are typecompliant w.r.t. this type system. Regarding acyclicity a picture of the dependency graph of P(t) can be found in Figure 4. Each circle is a node of the process, an arrow is an edge of the graph and dotted arrows materialise a chain of linked nodes of non-constant length. We omitted some nodes in the picture, e.g. the subgraphs of the circuits Γ i since they are isomorphic to the circuits themselves.

T 5 . 6 .

 56 With the empty theory, CS SAT and CS E are LOGSPACE.

 }},) for all terms t ∈ T (Σ, Σ 0) Let us prove that R veri es the expected properties. The inclusion of R into static equivalence is immediate. Then let two extended processes A adn B such that ARB and let us perform a case analysis on the hypothesis ARB. case (1): A = ({{P }},) and B = ({{Q }},). Let a transition A α -→ A . Then α = ξ (ξ) where ξ , ξ ∈ T (Σ, Σ 0) and ξ↓= c, and A = ({{! 3n Extract | P (ξ)}},). Then it su ces to consider the transition B α -→ ({{! 3n Extract | Q (ξ)}},) . case (1) + symmetry: A = ({{Q }},) and B = ({{P }},). Symmetric to case (1). case (2): there exists t ∈ T (Σ, Σ 0) such that A = ({{! 3n Extract | P (t)}},) and B = ({{! 3n Extract | Q (t)}},). The conclusion is immediate by the clause (3).

 case (2) + symmetry: there exists t ∈ T (Σ, Σ 0) such that A = ({{! 3n Extract | Q (t)}},) and B = ({{! 3n Extract | P (t)}},). Symmetric to case (2). case (3): there is t ∈ T (Σ, Σ 0) s.t. A = ({{! 3n Extract, P (t)}},) and B = ({{! 3n Extract, Q (t)}},). Consider a transition A α -→ A . Then α = τ and we are in one of the following cases: case a: A = ({{! 3n Extract, CheckSat(t)}},)Then there exists a transition B τ -→ A , hence the conclusion by re exivity of labelled bisimilarity.case b: A = ({{! 3n Extract, CheckTree i (t)}},) for some iThen there exists a transition B τ -→ A , hence the conclusion by re exivity of labelled bisimilarity.case c: A = ({{! 3n Extract, Print}},)

 Extr , 1 i 3, 1 j n encr. keys for Extract k 0 Final , . . . , k m Final encr. keys for Final k encr. key for Init Definition of Extract Following the same intuition as in Appendix A.1, we could de ne Extract as a process ! ch c(senc(x, , 0 , k)).c senc(x, k) | ! ch c(senc(x, , 1 , k)).c senc(, k)

 ch c(senc(x, , z, 0 , r i,j Extr)).c senc(x, z , a i,j Extr) | ! ch c(senc(x, , z, 1 , r i,j Extr)).c senc(, z , a i,jExtr)

 , e 2 , f , e 3 , e 4) = b,b ∈B ! ch c(senc(b, z , k e 1)). c(senc(b , z , k e 2)). c senc(f (b, b), z , k e 3) . c senc(f (b, b), z , k e 4)

 CheckSat This replicates a process that rst retrieves the value x committed in Init, then receives an integer i chosen by the attacker, computes the valuation of the i th clause w.r.t. x by interacting with Eval and Extract, and nally output the i encrypted with the key of Final if the clause is satis ed by x. Integers are represented in binary, using a linked list b 1 , . . . , b m , nil .CheckSat = ! ch c(senc(x, k)). c(b 1 , . . . , b m , nil). ω 1 , x 1 , . . . , x n ← Γ 1 (b 1 , . . . , b m , 0, 0). ω 2 , 1 , . . . , n ← Γ 2 (b 1 , . . . , b m , 0, 1). ω 3 , z 1 , . . . , z n ← Γ 3 (b 1 , . . . , b m , 1, 0). ω 1 ← Extr 1 (x, x 1 , . . . , x n). ω 2 ← Extr 2 (x, 1 , . . . , n). ω 3 ← Extr 3 (x, z 1 , . . . , z n). 1 ← Γ (ω 1 , ω 1 , ω 2 , ω 2 , ω 3 , ω 3). c senc(b 1 , . . . , b m , nil , k m Final)

p

 BT the type of binary trees of height p, de ned byτ 0 BT = τ B τ p+1 BT = τ p BT , τ p BT Then δ (x) = τ nBT where x is the initial input variable of Init and CheckSat. We also have δ(x) = δ () = τ n-jBT where x and are the input variables at the start of E j i .

FinalFigure 4 :

 4 Figure 4: Dependency graph of P(t).

Table 1 :

 1 Summary of the results. Colored cells indicate con gurations with open problems. Naturally, in the case of S E and CS E , the non-applicable hypotheses on processes (e.g. boundedness) should be ignored when reading the table. All results for di -equivalence also coincide with the results for trace equivalence, labelled bisimilarity, and equivalence by session for strongly-determinate processes.

		S E	CS E	D E	B	S E	T	E
	theory	process					

This is the technical report of the survey[START_REF] Cheval | The hitchhiker's guide to decidability and complexity of equivalence properties in security protocols[END_REF]. It contains some proofs of claims that do not follow directly from the cited references, results that are considered folklore although not published, or are simply novel.

i.e., in[START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF], channels are either constants or names that are never used as parts of outputs. For the unbounded fragment, to capture the ! ch of simple processes, a more general assumption would be that all channels are either known to the adversary in all traces, or unknown in all traces.

Regarding the complexity lower bounds for xed theories, similarly to the problems we surveyed in the previous sections, the complexity may vary from one theory to the other. Typically:

Acknowledgments

The research leading to these result has received funding from the ERC under the EU's H2020 research and innovation program (grant agreements No 645865-SPOOC), as well as from the French ANR project TECAP (ANR-17-CE39-0004-01). Itsaka Rakotonirina bene ts from a Google PhD Fellowship.

A CO-NEXP HARDNESS OF EQUIVALENCES IN THE BOUNDED FRAGMENT

In this section we prove various statements of coNEXP-hardness (see Theorems 4.3 and 5.15). They can be seen as extensions of the results of [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF] (that studied the complexity of T E and B

). First we show that the reduction of [START_REF] Cheval | DEEPSEC: Deciding equivalence properties in security pro-tocols theory and practice[END_REF] can be performed without private channels and with a minimal theory, at least for trace equivalence and equivalence by session.

T

A.1 . For a theory limited to symmetric encryption and pairs, T E and S E are coNEXP-hard for bounded processes whose channels are constants.

We also show how this lower bound can be extended to the positive fragment by using a slightly larger theory. Regarding B our proof required private channels but no else branches: T A.2 . For a theory limited to symmetric encryption and pairs, B is coNEXP-hard for bounded positive processes.

We prove all these results by reduction from S 3SAT, a NEXP problem that we already described in the body of the paper (see the proof sketch of Theorem 4.6). We thus let φ a formula with 2 m clauses and 2 n variables x 0 , . . . , x 2 n -1 and Γ a boolean circuit encoding this formula. In each proof we construct two bounded processes P and Q that match the hypotheses of the theorem statement and such that P and Q are equivalent i φ is unsatis able.

A.1 Proof of Theorem A.1

A.1.1 Construction Intuitively the processes P and Q rst wait for an input x from the attacker which is expected to be a valuation of the 2 n variables of φ (in practice a binary tree of height n modelled using nested pairs). Then the processes non-deterministically chooses a branch of x (i.e. a sequence of {0, 1} n), a clause of φ (i.e. a sequence of {0, 1} m) and executes one of the following three actions (P can execute either of the three, and Q only the rst two):

(1) extract the selected branch from x, then simulate a dummy evaluation of the selected clause, and eventually output three messages that are statically-equivalent to three fresh nonces i the branch extraction failed.

(2) simulate a dummy extraction of the selected branch, then evaluate the selected clause w.r.t. the valuation encoded by x, and eventually output three messages that are statically-equivalent to three fresh nonces i the clause has been falsi ed.

(3) simulate a dummy extraction of the selected branch and a dummy evaluation of the selected clause, and eventually output three fresh nonces. In the end P and Q are equivalent i for all terms x ∈ T (Σ, Σ 0) either x is not a binary tree of height n, or it is one but the valuation it encodes falsi es a clause of φ. All in all P and Q are equivalent i φ is unsatis able. The processes P and Q to be proved equivalent are then of the following form

where

The processes P (x,) and Q (x,) execute one of their n + 3 branches (or none) depending on the input , expectedly forwarded from Choice. Referring to the intuition of the construction provided in the previous paragraph, the process Print corresponds to Item (3), CheckSat to Item (2), and the collection of processes CheckTree i to Item (1) (each CheckTree i is dedicated to the veri cation of the depth i of the branch). In particular the various branch extractions of the tree x (resp. the evaluations of Γ and of the clauses of φ) that need to be performed by the di erent processes are simulated by interactions with the process Extract (resp. with the process Eval).

Formally the processes are de ned as follows. For conceitness we use pattern notations in the de nitions of the other processes below, recall Section 4.2. All the patterns used below can easily be encoded within the positive fragment of the calculus. We recall in particular that, for any xed term k, it is possible to test that a term is of the form senc(, k) (in the constructor-destructor semantics, the conditional [sdec(x, k) = sdec(x, k)] succeeds i x is of the form senc(, k) for some term). We also use a wildcard notation (_) for input variables that will not be used afterwards.

Definition of Choice

We rst de ne a process Choice that will serve as an oracle for performing the n + m + 1 non-deterministic choices the executions of P and Q require.

Other processes select a boolean b non-deterministically by inputting senc(b, k i) for some i (and each k i should be used for only one such non-deterministic choice).

Correctness of the construction

The correctness of this reduction is summed up by the fact that the following three points are equivalent:

(i) φ is unsatis able (ii) P and Q are equivalent by session (iii) P and Q are trace equivalent Proof of (i) =⇒ (ii).

Partial-order reductions have been developed in [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] to make the veri cation of equivalence by session of bounded processes easier. Formally we let O the set of all traces t that have the following properties:

(1) t never applies the rules (I) and (C) when either the rules (P) and (O) are applicable.

(2) given an arbitrary xed total ordering on instances of rules (P) and (O), t never applies an instance of these rules when a lower instance (w.r.t. this total ordering) is applicable.

(3) given an application of (I) in t of the form ({{c(x).P }} ∪ P, Φ) c(ξ) ---→ ({{d().Q }} ∪ P, Φ) for d ∈ Σ 0 , then the next transition in t (if any) afternormalisation is an instance of rule (I) of the form ({{d().Q }} ∪ P, Φ)

We write P O Q when for all traces t of P that belong to O, there exists a trace t of Q such that t ∼ t and t and t are the two projections of a same twin trace of (P, Q).

T A.3 ([CKR19]

) . P and Q are equivalent by session i

In particular we will write O 0 the set of traces of P or Q that rst execute the initial input on c, then all the possible applications of rule (P), the output of all messages of Choice in this order:

eventually followed by an arbitrary su x trace of O. To conclude it then su ces to prove that Q O 0 P and P O 0 Q.

The rst inclusion holds independently of φ being unsatis able. Indeed let t is a maximal trace of Q belonging to O 0 and let ξ the recipe fetched to the input c() preceding Q and Φ the frame at the time of this input. We also let the term m = sdec(ξ Φ, k). If m is not a message, or if m is a message and m↓= b i for i n + 1 then the trace t can trivially be matched in Q. Otherwise m is a message and m↓= b n+2 . Then the trace can be matched in Q by executing the outputs of Choice in the following order:

Let us then prove that, if φ is unsatis able then P O 0 Q. Following the same reasoning as in the other inclusion, writing ξ the recipe fetched to the input c() preceding P , Φ the frame at the time of this input and m = sdec(ξ Φ, k), the only non-trivial case is when it holds that m is a message, m ↓= b n+2 , and P executes the three nal outputs of Print. We thus let ξ 1 , . . . , ξ n+m the initial n +m input recipes in this execution of Print and Φ the corresponding frame (it stays the same across all inputs since we consider a trace of O 0), as well as m 1 , . . . , m n+m with m i = sdec(ξ i Φ, k i). Note that in this case, all terms m i 's verify the predicate msg and m i ↓∈ B.

We then make a case analysis on ξ 0 ∈ T (Σ, Σ 0) the term fetched to the rst input of the trace.

case 1: ξ 0 is not a complete binary tree of height n or more.

Given a sequence of booleans ì p, we say that ì p is a position of ξ 0 when ξ 0 = u 0 , u 1 for some terms u 0 , u 1 and either ì p is empty, or ì p = b i • ì p and ì p is a position of u i . In particular there exists a sequence ì p = p 1 , . . . , p a , 0 a < n, that is not a position of ξ 0 . Without loss of generality we assume this position minimal, i.e. a = 0 or p 1 , . . . , p a-1 is a position of ξ 0 . Then the trace t can be matched in Q by executing CheckTree a and guessing ì p, i.e. we execute the outputs of Choice in the following order:

where π i are permutations of {0, 1} such that π i id i 1 i a and m i ↓ p i . case 2: ξ 0 is a complete binary tree of height n or more, and one of its nodes at depth n is not a leaf, or is a leaf that does not belong to B. The reasoning is analogous to the previous case, with a = n. case 3: ξ 0 is a complete binary tree of height n with boolean leaves. We let the valuation of φ encoded by ξ 0 , i.e. (x i), i ∈ 0, 2 n -1 , is the i th leaf of ξ 0 (ordered w.r.t. a leftmost depthrst search in the binary tree). Since φ is unsatis able by hypothesis, there exists a clause C p that is falsi es by . We write ì p = p 1 , . . . , p m the binary decomposition of the integer p ∈ 0, 2 m -1 . Then the trace t can be matched in Q by executing CheckSat and guessing ì p, i.e. we execute the outputs of Choice in the following order:

B.2.3 Correctness of the reduction

We now prove that the reduction is correct. More precisely we prove that it is even correct for reachability by showing that the following three points are equivalent:

(i) P(0) and P(1) are not trace equivalent (ii) There exists a trace P(0)

Under the assumption ¬(ii), the process P(t) is trace equivalent to the process obtained by replacing the last output of F (t) by the null process in the de nition of P(t). This process does not depends of t anymore, hence P(0) and P(1) are also trace equivalent.

Proof of (ii) =⇒ (i) Let t : P(0) tr = ⇒ (P, Φ) a trace such that there exists a recipe ξ such that msg(ξ Φ) and ξ Φ↓= senc(nil, k 0 Final). Without loss of generality we assume this trace of minimal size; in particular no instruction of F (t) has been executed in this trace. Then it su ces to consider the trace t extending t by executing the input and output of F (t):

The unique trace in P(1) with the same action word is

whose nal frame is not statically equivalent to that of t .

Proof of (ii) =⇒ (iii)

A quick induction on i shows that for any trace t of P(t) whose nal frame is Φ (where t is an arbitrary term), if the term senc(x 1 , . . . ,

are also deducible from Φ . In particular by hypothesis (ii), all terms senc(b

Final is of private type and the only output encrypted with k m Final is in CheckSat, all such messages need have been output by an instance of CheckSat during the trace. Therefore we deduce

x is a binary tree of height at least n (otherwise the process CheckSat could never be executed until the end). It contains all positions p 1 , . . . , p n such that the variable x i appears in a clause of φ, where p 1 , . . . , p n is the binary representation of i, and these positions are boolean leaves. Hence x encodes a valuation . For all i ∈ 0, 2 m -1 , the i th clause of φ is valued to 1 by . All in all satis es φ.

Proof of (iii) =⇒ (ii) Let a valuation that satis es φ and t the complete binary tree of height n whose i th leaf is the valuation (x i) of the i th variable of φ. Then we consider the trace consisting of the following actions:

Execute Init with input recipe ξ = t for x. The output senc(x, k) is referred through the axiom ax. Execute the 2 m instances of CheckSat each obtained for initial input recipes ξ 1 = ax and ξ 2 = p 1 , . . . , p m , nil for some booleans p 1 , . . . , p m . In particular, after interacting with Extract and Eval, the nal result of Γ is the valuation of the i th clause of φ w.r.t. , where i is the integer whose binary representation is p 1 , . . . , p m . Since satis es all clause of φ by hypothesis, this enables the execution of the nal output senc(p 1 , . . . , p m , nil , k m Final) of this instance of CheckSat. We refer to this output as ax p 1 ,...,p m . For each i ∈ 1, m in decreasing order, execute all instances of Final i obtained by inputting ax 0,p m-i +2 ,...,p m , ax 1,p m-i +2 ,...,p m , and outputting back an output referred through the axiom ax p m-i +2 ,...,p m . Eventually the axiom ax ε points to the term senc(nil, k 0 Final). In particular this gives the expected conclusion.