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The hitchhiker’s guide to decidability and complexity of
equivalence properties in security protocols (technical report1)

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina
Inria Nancy Grand-Est and LORIA

ABSTRACT
Privacy-preserving security properties in cryptographic protocols
are typically modelled by observational equivalences in process
calculi such as the applied pi-calulus. We survey decidability and
complexity results for the automated veri�cation of such equiv-
alences, casting existing results in a common framework which
allows for a precise comparison. This uni�ed view, beyond pro-
viding a clearer insight on the current state of the art, allowed
us to identify some variations in the statements of the decision
problems—sometimes resulting into di�erent complexity results.
Additionally, we prove a couple of novel or strengthened results.

Keywords. Formal veri�cation · cryptographic protocols · com-
plexity.

1 INTRODUCTION
Symbolic veri�cation techniques for security protocols can be
traced back to the seminal work of Dolev and Yao [DY81]. Today,
after more than 30 years of active research in this �eld, e�cient and
mature tools exist, e.g. ProVerif [Bla16] and Tamarin [SMCB13]
to only name the most prominent ones. These tools are able
to automatically verify full �edged models of widely deployed
protocols and standards, such as TLS [BBK17, CHH+17], Sig-
nal [KBB17, CGCG+18], the upcoming 5G standard [BDH+18], or
deployed multi-factor authentication protocols [JK18]. We argue
that the development of such e�cient tools has been possible due
to a large amount of more theoretical work that focuses on under-
standing the precise limits of decidability and the computational
complexity of particular protocol classes [DEK82, DLMS99, RT03,
DLM04, CC05, KKNS14].

The abovementioned results extensively cover veri�cation for
the class of reachability properties. Such properties are indeed
su�cient to verify authentication properties and various �avors
of con�dentiality, even in complex scenarios with di�erent kinds
of compromise [BC14]. Another class of properties are indistin-
guishability properties. These properties express that an adver-
sary cannot distinguish two situations and is conveniently mod-
elled as an observational equivalence in a cryptographic process
calculus, such as the applied pi calculus. Such equivalences can
indeed be used to model strong �avors of secrecy, in terms of non-
interference or as a “real-or-random” experiment. Equivalences
are also the tool of choice to model many other privacy-preserving
properties. Such properties include anonymity [AF04], unlinkabil-
ity properties [ACRR10, FHMS19], as well as vote privacy [DKR09]

1This is the technical report of the survey [CKR20a]. It contains some
proofs of claims that do not follow directly from the cited references, results
that are considered folklore although not published, or are simply novel.

to give a few examples. Equivalence properties are inherently
more complex than reachability properties, and both the theoreti-
cal understanding and tool support are more recent and more brit-
tle. This state of a�airs triggered a large amount of recent works to
increase our theoretical understanding and improve tool support.

In this paper we give an extensive overview of decidability and
complexity results for several process equivalences. In particular,
in this survey we give a uni�ed view, allowing us to highlight sub-
tle di�erences in the de�nitions of the decision problems across
the literature (such as whether the term theory is part of the input
or not) as well as the protocol models. Typically, models may vary
in whether they allow for a bounded or unbounded number of ses-
sions, the support of cryptographic primitives, whether they sup-
port else branches (i.e. disequality tests, rather than only equality
tests), and various restrictions on non-determinism. All the results
are summarised in Table 1, and we identify several open questions.

2 MODEL
In this section we present the symbolic model of security proto-
cols we consider, the applied pi-calculus [ABF17], rooted in the
seminal work of Dolev and Yao [DY81]. Since the models used
by the works we survey often di�er in their presentation, we use
a middleground, custom model allowing for expressing the cited
theorems with minimal tweaking of their original statements. We
assume the reader familiar with the theory of rewriting.

Cryptographic primitives As usual in symbolic protocol anal-
ysis we take an abstract view of cryptography and model the
messages exchanged during the protocol as terms built over a set
of function symbols each with a given arity called a signature.
Terms are then either atomic values or function symbols applied to
other terms, respecting the function’s arity. Atomic values are ei-
ther constants, names, or variables. Constants, sometimes referred
as public names, model public values such as agent identities or
protocol tags. Names, sometimes explicitly called private names,
model fresh secret values, such as keys or nonces, and are a priori
unknown to the adversary. As usual variables express bound val-
ues and serve as domain for substitutions. We assume an in�nite
set of constants Σ0, names N and variables X and write T(Σ,A)
the set of terms built from the signature Σ and atomic values of A.

Example 2.1. A signature Σ for symmetric encryption and pairs is
usually written as follows

Σ = {senc/2, sdec/2, 〈 , 〉/2, fst/1, snd/1} .

For example, the encryption of a plaintextm with a key k would be
modelled by the term senc(m,k). To include a randomness nonce
r , we can encrypt a pair which gives the term senc(〈m, r 〉,k). 4
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The functional properties of the symbols are modelled by an
equational theory. In this work we restrict ourselves to equational
theories that can be oriented into a convergent rewriting system.
This also implies that any term t has a unique normal from t↓.

Example 2.2. The rewrite rules

sdec(senc(x,y),y) → x fst(〈x,y〉) → x snd(〈x,y〉) → y

de�ne the behaviour of the pairs and the encryption scheme. Typ-
ically one can decrypt (apply sdec) a ciphertext senc(x,y)with the
corresponding key y to recover the plaintext x . This behaviour
is idealised by the absence of other rules for senc and sdec, mod-
elling an assumption that no information can be extracted from a
ciphertext except by possessing the decryption key. 4

In this survey we call a theory the set of non-constant func-
tion symbols together with a rewriting system. They can express
a broad range of other cryptograhic primitives, like the following
ones that will be used in this survey:

randomised symmetric encryption, adding an explicit argument
for a randomness nonce. It is de�ned by Σ = {rsenc/3, rsdec/2}
and rsdec(rsenc(m, r ,k),k) →m.
randomised asymmetric encryption, which is its analogue with
public-key mechanisms: Σ = {pk/1, raenc/3, radec/2} and
radec(raenc(m, r , pk(k)),k) →m.
digital signature, with a veri�cation mechanism that recov-
ers the signed message: Σ = {pk/1, sign/3, verify/2} and
verify(sign(m, r ,k), pk(k)) →m.
one-way hash, simply using a function symbol of positive arity,
e.g. Σ = {h/1}. One-wayness is modelled by an absence of
rewrite rules involving h, in which case we say that h is free.
Two classes of theories are particularly important for our re-

sults. The �rst is the class of subterm convergent theories [AC06,
Bau07, BAF08, CKR18a, CDK09, CBC11], de�ned by a syntactic
criterion on rewriting rules ` → r requiring that r is either a
strict subterm of ` or a ground term in normal form. The sec-
ond is the class of constructor-destructor theories [BAF08, CCLD11,
CKR18a], partitioning function symbols into constructor (used
to build terms) and destructors (only used in rewrite rules). In
constructor-destructor theories any rewrite rule ` → r is such that
` = d(t1, . . . , tn ) where d is a destructor and t1, . . . , tn, r do not
contain any destructor. Moreover, we assume a message predicate
msg(t) which holds if u↓ does not contain any destructor symbol
for all subtermsu of t , i.e., all destructor applications in t succeeded
yielding a valid message. This predicate is used to restrict to pro-
tocols that only send and accept such well-formed messages. All
theories above are subterm convergent and constructor destructor.

Protocols Protocols are de�ned using processes in the applied pi
calculus. Their syntax is de�ned by the following grammar:

P,Q ::= 0 (null process)
if u = v then P else Q (conditional)
u(x).P (input)
u〈v〉.P (output)
P | Q (parallel)

where u,v are terms and x a variable. Intuitively the 0 models a
terminated process, a conditional if u = v then P else Q executes
either P orQ depending on whether the termsu↓ andv↓ are equal,
and P | Q models two processes executed concurrently. The con-
structs c(x).P and c 〈u〉.P model, respectively, inputs and outputs
on a communication channel c . When the channel c is known to
the attacker, e.g. when it is a constant, executing an output on c
adds it to the adversary’s knowledge and inputs on c are fetched
from the adversary possibly forwarding a previously stored mes-
sage, or computing a new message from previous outputs. Other-
wise the communication is performed silently without adversarial
interferences. To model an unbounded number of a protocol ses-
sion we also add the two constructs

P,Q ::= new k .P (new name)
!P (replication)

The replication !P models an unbounded number of parallel copies
of P , and new k .P creates a fresh name k unknown to the attacker;
in particular !new k .P models an unbounded number of sessions,
each with a di�erent fresh key. The fragment of the calculus with-
out replication is referred as �nite or bounded. Another notable
subclass is the original pi-calculus [MPW92], referred as the pure
fragment, that can be retrieved with the empty theory (only names,
constants and an empty rewrite system).

A�acker’s knowledge We model the attacker’s observations
recorded when spying on the communication network by a frame.
A frame is a substitution of the form

Φ = {ax1 7→ t1, . . . , axn 7→ tn }

where ti are the outputs performed during the execution of the
protocol and axi ∈ AX, with AX a set of special variables called
axioms that serve as handles to the adversary for building new
terms. These terms ti enable adversarial deductions as they ag-
gregate: for example after observing a ciphertext and the decryp-
tion key, the attacker can also obtain the plaintext by decrypt-
ing. Formally we say that one can deduce all terms ξΦ ↓ where
ξ ∈ T (Σ, Σ0 ∪ dom(Φ)) is called a recipe. A recipe models a com-
putation of the adversary: the fact that it cannot contain names
models that they are assumed unknown to her. They naturally
only remain unknwon while they are not revealed in the frame
themselves; for example in

Φ = {ax1 7→ senc(t,k), ax2 7→ k}

even if deducing the term t requires to decrypt ax1Φ with the key k
(which is not allowed to occur directly in the recipe), this is possi-
ble by using ξ = sdec(ax1, ax2). We refer to the following decision
problem as Deducibility:

Input: a theory, a frame Φ, a term t

�estion: Does there exist a recipe ξ such that ξΦ↓= t↓?

Semantics in an adversarial environment The behaviour of
processes is formalised by an operational semantics. The detailed
presentation di�ers from one work to an other [CCD13, ABF17,
CKR18a, CKR19] and we choose a formalism that permits to state
all theorems with minimal changes in the proofs. The semantics
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operates on extended processes (P,Φ)where P is a multiset of pro-
cesses modelling the state of the processes currently executed in
parallel, and Φ is the frame indicating the outputs the attacker has
recorded during the execution. It takes the form of a labelled tran-
sition relation

α
−→ whose label α is called an action, which is either

a public input action ξc (ξt )where ξc (resp. ξt ) is a recipe for the
input’s channel (resp. of the term to be input);
a public output action ξc 〈axi 〉 where ξc is a recipe for the out-
put’s channel, and the underlying output term is added to the
frame under axiom axi ;
an unobservable action τ which represents an internal action,
such as the evaluation of a conditional or a communication on
a private channel.
This is formalised in Figure 1. When de�ning security against

an active attacker we quantify over all such transitions which
means we consider all possible executions in an active adversarial
environment. Thus even the bounded fragment yields an in�nite
transition system if the theory contains a non-constant function
symbol (as this allows to build an unbounded number of messages).

Variations across the literature There are several modelling
variations of this semantics. The most important one is when the
theory is constructor-destructor. For this class of theories, in this
survey, we always refer to an altered semantics that intuitively
requires that all destructor operations succeed for a transition to
be applied [CCD15b, CCD15a, CKR18a]. Formally:

the communication rules (In), (Out), (Comm) are only applica-
ble when all terms ξcΦ, ξtΦ,u,u ′,v verify the predicate msg.
For instance no transitions are possible from the process

c 〈sdec(a,b)〉.P

with a,b, c constants because sdec(a,b) is not a message.
the conditional rule (Test) executes its negative branch when
a destructor fails, i.e. with the notations of Figure 1, R = P if
msg(u), msg(v) and u↓= v ↓. In particular, although this may
seem counterintuitive at �rst sight, the process

if sdec(a,b) = sdec(a,b) then P else Q

reduces to Q by Rule (Test) in this semantics.
In the examples above with sdec, this constructor-destructor

semantics models an assumption that the encryption scheme has
enough structure to detect decryption failure, and that the protocol
only proceeds with valid messages.

Besides, as noted in [BCK20], synchronous communications be-
tween parallel processes (Rule (Comm)) is also managed di�erently
from one work to an other. In the original semantics [ABF17] of
the applied pi-calculus, called the classical semantics in [BCK20],
communications on a same public channel between parallel pro-
cesses can either be executed silently without adversarial interfer-
ence (i.e. using (Comm)) or be routed through the attacker (i.e. us-
ing a sequence of (Out) and (In)). This is also the semantics used in
the popular ProVerif tool [BAF08]. On the contrary, the seman-
tics de�ned in Figure 1 only allows applications of Rule (Comm)
when the channel is unknown to the adversary, modelling an at-
tacker that continuously eavesdrops on the network (rather than

an attacker that solely has the capability to do so). This is called
the private semantics in [BCK20]. The private semantics is actually
used in tools such as Tamarin [SMCB13] and Akiss [CCCK16] and
also in a few other works we survey [CCD15b, CCD15a, CKR19].

While both semantics are equivalent when it comes to reacha-
bility properties, they surprisingly happen to be incomparable for
equivalence properties [BCK20]. All the complexity results of this
paper are with respect to the private semantics. Although we did
not expand on studying all the variations of complexity induced
by using di�erent semantics, most of the analyses presented in
this survey are robust to these changes. Indeed, all complexity
results for the bounded fragment hold for both semantics. In the
unbounded case, only the private semantics has been considered
in the underlying models [CCD15a, CCD15b].

3 COMPLEXITY FOR A PASSIVE ATTACKER
3.1 Static equivalence
Some security properties against a passive attacker, i.e. a simple
eavesdropper, can then be modelled as an observational equiva-
lence of two frames: intuitively no equality test can be used to
distinguish them. For example, in a protocol that outputs a se-
quence of messages t1, . . . , tn , the “real-or-random” con�dentiality
of a key k can be modelled as the equivalence of

Φ = {ax1 7→ t1, . . . , axn 7→ tn, ax 7→ k}

Ψ = {ax1 7→ t1, . . . , axn 7→ tn, ax 7→ k ′}

where k ′ is a fresh name. More formally, two frames Φ,Ψ with
same domain are statically equivalent when for all recipes ξ1, ξ2,

ξ1Φ↓= ξ2Φ↓ ⇐⇒ ξ1Ψ↓= ξ2Ψ↓ .

In constructor destructor theories we also require that msg(ξ1Φ)
i� msg(ξ1Ψ), modelling an assumption that the adversary can ob-
serve destructor failures.
Example 3.1. If k,k ′ are names, Φ = {ax 7→ k} and Ψ = {ax 7→ k ′}
are statically equivalent, capturing the intuition that random keys
cannot be distinguished. Similarly, the frames Φ = {ax 7→ k}
and Ψ = {ax 7→ senc(t,k ′)} are statically equivalent for any term
t , modelling that encryption is indistinguishable from a random
string. However, for the constant 0,

Φ = {ax1 7→ senc(0,k), ax2 7→ k}

Ψ = {ax1 7→ senc(0,k), ax2 7→ k ′}

are not statically equivalent since ξ1 = sdec(ax1, ax2) and ξ2 = 0
are equal in Φ but not in Ψ. 4

3.2 Complexity results
We survey the decidability and complexity of the following deci-
sion problem referred as StatEq:

Input: A theory, two frames of same domain.

�estion: Are the frames statically equivalent for this theory?

General case. As rewriting is Turing-complete, unsurprisingly
static equivalence is undecidable in general for convergent rewrit-
ing systems [AC06]. It is also proved in [AC06] that Deducibility
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({{u(x).P}} ∪ P,Φ)
ξc (ξt )
−−−−−→ ({{P{x 7→ ξtΦ↓}}} ∪ P,Φ) if ξcΦ↓= u↓ (In)

({{u〈v〉.P}} ∪ P,Φ)
ξc 〈ax〉
−−−−−−→ ({{P}} ∪ P,Φ ∪ {ax 7→ v↓}) if ξcΦ↓= u↓ and ax ∈ AX r dom(Φ) (Out)

({{u〈v〉.P,u ′(x).Q}} ∪ P,Φ)
τ
−→ ({{P,Q{x 7→ v}}} ∪ P,Φ) if u↓= u ′↓ and u not deducible from Φ (Comm)

({{if u = v then P else Q}} ∪ P,Φ)
τ
−→ ({{R}} ∪ P,Φ) where R = P if u↓= v↓ and R = Q otherwise (Test)

({{new k .P}} ∪ P,Φ)
τ
−→ ({{P{k 7→ k ′}}} ∪ P,Φ) if k ′ is a fresh name (New)

({{P | Q}} ∪ P,Φ)
τ
−→ ({{P,Q}} ∪ P,Φ) (Par)

({{!P}} ∪ P,Φ)
τ
−→ ({{!P, P}} ∪ P,Φ) (Repl)

Figure 1: Operational semantics of the applied pi-calculus

reduces to StatEq. As a consequence, the results of [ANR07] imply
that static equivalence is also undecidable for so-called optimally-
reducing rewrite systems, a subclass of rewrite systems that have
the �nite-variant property [CCCK16].

Subterm convergent theories. Historically, the complexity of
static equivalence has only been considered for �xed theories
[AC06, Bau07], that is, the theory was not part of the input of the
problem and its size was seen as a constant in the complexity anal-
ysis. This was consistent with most formalisms and veri�cation
tools at the time, which would not allow for user-de�ned theories
and only consider a �xed set of cryptographic primitives, such as
in the spi-calculus for example [AG99]. For example:

Theorem 3.1 ([AC06]) . For all �xed subterm convergent theories
StatEq is PTIME.

A generic PTIME-completeness result would make no sense
when the theory is not part of the input, since the complexity may
depend of it. Typically:

Theorem 3.2 ([CKR18a]) . In the pure pi-calculus (i.e. with an
empty theory) StatEq is LOGSPACE.

However the PTIME bound is optimal in the following sense:

Theorem 3.3 . For all �xed theories containing symmetric encryp-
tion, StatEq is PTIME-hard.

Proof sketch. We proceed by reduction from HornSAT. Let X be
the set of variables of a Horn formula φ = C1 ∧ . . . ∧ Cn , and
kx be names for all x ∈ X ∪ {⊥}. Then to each clause Ci =
x1, . . . , xn ⇒ x , x ∈ X ∪ {⊥} we associate the term

tCi = senc(. . . senc(senc(kx ,kx1 ),kx2 ), . . . ,kxn ) .

Then k⊥ is deducible from terms tC1 , . . . , tCn i� the formula φ
is unsatis�able. In particular given two constants 0,1, and Φ =
{ax1 7→ tC1 , . . . , axn 7→ tCn }, then the frames

Φ ∪ {ax 7→ senc(0,k⊥)} and Φ ∪ {ax 7→ senc(1,k⊥)}

are statically equivalent i� φ is satis�able. �

However automated tools have improved since then and some
provers like Kiss [CDK09], Yapa [BCD13] or Fast [CBC11] are able
to handle user-de�ned theories. It is therefore interesting today to
account for the size of the theory in the complexity analysis:

Theorem 3.4 ([CKR18a]) . StatEq is coNP-complete for subterm
convergent theories.

Proof sketch. We sketch the reduction from SAT presented in
[CKR18a]. We consider two constants 0 and 1, function sym-
bols f ,д of arity 2, and the two frames

Φ = {ax0 7→ f (0,k), ax1 7→ f (1,k)}

Ψ = {ax0 7→ д(0,k), ax1 7→ д(1,k)}

for some name k . Interpreting 0 and 1 as the booleans false
and true, Φ and Ψ point to terms that can be seen as booleans
but that can only be accessed by reference through the axioms
ax0, ax1. For example, since k is a name the only recipe per-
mitting to deduce f (0,k) is ax0 in Φ. Given a SAT formula φ of
variables x1, . . . , xn , we then add an other symbol eval of arity
n and rewrite rules so that the following points are equivalent
for all valuations v : {x1, . . . , xn } → {0, 1} of φ:

(1) v falsi�es φ (2) eval(д(v(x1),k), . . . ,д(v(xn ),k)) → 0

Details can be found in [CKR18a]. If we add the rule

eval(f (y1, z), . . . , f (yn, z)) → 0

we eventually have that φ is satis�able i� there exists a valua-
tion v such that tvΨ , 0 where tv = eval(axv(x1), . . . , axv(xn )),
i� Φ and Ψ are not statically equivalent. �

Beyond subterm convergence Although we are not aware of
complexity results for the decision of static equivalence for classes
larger than subterm theories, there exist decidability results. Some
of the abovementioned tools, like Kiss and Yapa, can actually han-
dle most convergent rewriting system; but they naturally fail to
terminate in general by undecidability of the problem. However
it is proved for example in [CDK09] that the termination of Kiss
is guaranteed for theories modelling blind signatures or trapdoor
commitment schemes (that are typically not subterm).
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4 COMPLEXITY FOR AN ACTIVE ATTACKER
In this section we survey the decidability and complexity of equiv-
alence relations characterising security against active attackers.

4.1 Equivalences
We expect security protocols to provide privacy-type guarantees
against attackers that actively engage with the protocol. This can
be modelled by behavioural equivalences, de�ning security as the
indistinguishability of two instances of the protocol that di�er on
a privacy-sensitive attribute such as a secret key, an identity, or
the agent executing a given session. There exist several candidate
equivalences for modelling this notion of indistinguishability. We
study two of them in this survey and refer to [CCD13] for a more
detailed overview and comparison with other equivalences.

Trace equivalence One classical example of such behavioural
equivalence is trace equivalence. Referring to the operational se-
mantics mentioned in Figure 1, we call a trace of a process P a
sequence of transition steps from P in this semantics, i.e.

({{P}},�) = A0
α1
−−→ A1

α2
−−→ · · ·

αn
−−→ An written A0

α1 · · ·αn
======⇒ An

for extended processes A1, . . . ,An . Given such a trace t , we write
actions(t) = α1 · · ·αn the sequence of actions taken by the trace,
and Φ(t) the frame of An , that is, the knowledge of the attacker at
the end of the trace. In particular t and t ′ are said equivalent, writ-
ten t ∼ t ′ here, when actions(t) and actions(t ′) are identical after
erasure of τ actions and Φ(t) and Φ(t ′) are statically equivalent.

Two processes P0 and P1 are said trace equivalent when for all
traces t of Pi , i ∈ {0, 1}, there exists a trace t ′ of P1−i such that
t ∼ t ′. Trace equivalence has been studied intensively for the au-
tomation of security proofs [CCLD11, CCD13, ACK16, CKR18a]
and has received a strong tool support [Che14, CCCK16, CGLM17,
CKR18b, CDD18]. We refer to its decision problem as TraceEq:

Input: A theory, two processes.

�estion: Are the two processes trace equivalent?

Labelled bisimilarity Some other automated tools aim at prov-
ing more �ne-grained equivalence, like observational equivalence
for ProVerif [BAF08, CB13] for example. There exist several
�avours of more operational bisimulation-based properties but the
one that is usually considered in security-protocol analysis is la-
belled bisimilarity because it coincides with observational equiv-
alence in the applied pi-calculus [ABF17]. Formally it is an early,
weak bisimulation that additionally requires static equivalence at
each step; that is, it is the largest symmetric binary relation ≈ on
processes such that A ≈ B implies

the frames of A and B are statically equivalent

for all transitions A
α
−→ A′, there exists B

τ · · ·τ ·α ·τ · · ·τ
===========⇒ B′

such that A′ ≈ B′.
We refer to the following problem as Bisim:

Input: A theory, two processes.

�estion: Are the two processes labelled bisimilar?

4.2 Notorious fragments
In addition to the assumptions on the rewriting system (e.g. sub-
term convergence as in Section 3), there are several common re-
strictions made on the processes to obtain decidability.

Conditionals and pa�erns A typical restriction on condition-
als is the class of positive processes that only contain trivial else
branches [Bau07, CCD13, CKR18a]. For succinctness we write

[u = v] P instead of if u = v then P else 0 .

When the rewrite system is constructor-destructor, some con-
ditionals may also be encoded within inputs [CCD15a, CCD15b],
using a notation u(v).P wherev is a term without destructors (but
may contain variables) that is called a pattern in this survey. In
terms of semantics, the transition rule (In) is generalised to:

({{u(v).P}} ∪ P,Φ)
ξu (ξv )
−−−−−−→ ({{Pσ }} ∪ P,Φ) (P-In)

if ξvΦ↓= vσ↓, as well as the usual conditions msg(u), msg(ξuΦ),
msg(ξvΦ), ξuΦ↓= u↓. For example a process c(senc(x,k)).P only
reads inputs that are terms t encrypted with the key k , and x will
then be bound to t in P . In this paper, to ensure that protocols can
be e�ectively implemented we require that

. It is possible to test with a sequence of positive conditionals that a
term t matches the pattern v .

That is, there exist terms t1, . . . , tn, t ′1, . . . , t
′
n (possibly contain-

ing a variable x ) such that for all ground terms t , t is an instance
of v i� for all i ∈ n1,no, ti {x 7→ t}↓= t ′i {x 7→ t}↓. This excludes
patterns like 〈rsenc(x,y, z), rsenc(x ′,y, z′)〉 that would accept any
pair of ciphertexts encrypted using the same randomness.

. All free variables of v e�ectively appearing in the rest of the pro-
cess can be extracted by applying destructors to v .

That is, for all variables x of v that are free (i.e. are not bound
by a previous input) and appear in P , there exists a term context
C without free variables such that C[v] ↓= x . This excludes for
example patterns h(x) where h is a free function symbol: given an
input term h(t), the one-wayness of h prevents from retrieving t .
The assumption that C does not contain free variables excludes,
for example, patterns senc(0,y) that would accept the constant 0
encrypted by any key. On the contrary, a patternv = rsenc(x,y,k)
is valid if k ∈ N and the variable y does not appear in P .

All in all, we de�ne the patterned fragment to be the class of pro-
cesses without conditionals but using pattern inputs, and where
outputs do not contain destructor symbols; it is a subset of the
positive fragment.

Ping pong protocols These protocols [CCD15b, DY81, HS03]
consist of an unbounded number of parallel processes receiving
one message and sending a reply. Although the precise formalisms
may di�er from one work to an other, the mechanisms at stake are
essentially captured by processes P = !P1 | · · · |!Pn where each Pi
can be written under the form

Pi = ci (x). [u
i
1 = v

i
1] · · · [u

i
ni = v

i
ni ]new k1 · · · new kri . ci 〈wi 〉

In particular ping-pong protocols are positive.
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Simple processes. A common middleground in terms of expres-
sivity and decidability is the class of simple processes, for exam-
ple studied in [CCD13, CCD15a]. Intuitively, they consist of a se-
quence of parallel processes that operate each on a distinct, public
channel—including replicated processes that generate dynamically
a fresh channel for each copy. Formally they are of the form

P1 | · · · | Pm | !ch Pm+1 | · · · | !ch Pn !ch P = ! new cP . c
′
P 〈cP 〉. P

where each Pi does not contain parallel operators nor replications
and uses a unique, distinct communication channel cPi , and

!ch P = ! new cP . c
′
P 〈cP 〉. P .

Unlike ping pong protocols, each parallel process may input sev-
eral messages and output messages that depend on several previ-
ous inputs. There exists a generalisation of simple processes called
determinate processes, mentioned later in Section 6.

4.3 Complexity results: bounded fragment
The bounded fragment is a common restriction to study decidabil-
ity, as removing replication bounds the length of traces. However,
as the attacker still has an unbounded number of possibilities for
generating inputs, the transition system still has in�nite branch-
ing in general. Besides additional restrictions are necessary on the
cryptgraphic primitives (at least because static equivalence is un-
decidable in general). For example:

Theorem 4.1 ([CKR18a]) . TraceEq and Bisim are coNEXP for sub-
term convergent constructor destructor theories and bounded pro-
cesses.

In a nutshell, the decision procedures use a dedicated constraint
solving approach to show that, whenever trace equivalence is vio-
lated, there exists an attack trace whose attacker-input terms are at
most of exponential size; in particular this shows non-equivalence
to be decidable in NEXP. As before, we may also study the problem
for �xed theories to investigate their in�uence on the complexity;
typically with the empty theory:

Theorem 4.2 ([CKR18a]) . In the pure pi-calculus, TraceEq (resp.
Bisim) is Π2-complete (resp. PSPACE-complete) for bounded pro-
cesses, and for bounded positive processes.

However, unlike static equivalence, �xing the theory does not
make it possible to obtain a better bound than the general one:

Theorem 4.3 ([CKR18a]) . There exists a subterm convergent con-
structor destructor theory such that TraceEq and Bisim are coNEXP-
hard for bounded positive processes.

The theory in question [CKR18a] encodes binary trees and a
couple of ad hoc functionalities. We show in Appendix A that,
provided we discard the positivity requirement, it is possible to
manage to the proof with a theory limited to symmetric encryption
and pairs. This shows that the problem remains theoretically hard
even with a minimal theory. Besides, in the case of trace equiv-
alence, we also show that all abovementioned reductions can be
done with only constants as channels (whereas [CKR18a] heavily
relies on private communications, which may give the false intu-
ition that they are necessary to obtain this high complexity).

4.4 Complexity results: unbounded fragment
Equivalence is undecidable in general since the calculus is Turing-
complete even for simple theories. For example, Hüttel [Hüt03]
shows that Minsky’s two counter machines can be simulated
within the spi-calculus (and hence the applied pi-calculus with
symmetric encryption only). It is not di�cult to adapt the proof
to a simulation using only a free symbol, i.e., a function symbol h
of positive arity and an empty rewrite system. These two encod-
ings can be performed within the �nite-control fragment, typically
not Turing-complete in the pure pi-calculus (i.e. without this free
function symbol) [Dam97].

Ping pong protocols. While equivalence is undecidable for
ping-pong protocols [CCD15b, HS03] some results exist under ad-
ditional assumptions. For example [HS03] studies a problem that
can be described in our model essentially as Bisim for ping-pong
protocols with 2 participants or less (i.e. n ≤ 2 in the de�nition).
This is proved decidable under some model-speci�c assumptions
which we do not detail here. We also mention a result for patterned
ping-pong protocols (cf Section 4.2) without a limit on the number
of participants [CCD15b]. Given a constructor-destructor theory,
a ping-pong protocol P is said deterministic when each Pi (using
the same notations as in the de�nition) can be written

Pi = ci (ui ). new k1 · · · new kri .ci 〈vi 〉

with ci a constant and u1, . . . ,un a family of patterns verifying:
(1) binding uniqueness: for all i ,ui does not contain two di�erent

variables;
(2) pattern determinism: for all i , j, if ui and uj are uni�able

then ci , c j .
There is an additional syntactic restriction on the structures of ui
and vi that is speci�c to the �xed theory considered in [CCD15b],
containing randomised symmetric and asymmetric encryption and
digital signature. The two terms ui ,vi are de�ned by grammars
essentially imposing that the subterms that serve as randomness
(resp. keys) are indeed fresh nonces (resp. long-term keys), that is,
they are names among k1, . . . ,kri (resp. are of the form k or pk(k)
for some name k < {k1, . . . ,kri }). We refer to [CCD15b] for details
about this last assumption.

Theorem 4.4 ([CCD15b]) . For a theory limited to randomised
symmetric and asymmetric encryption as well as digitial signature,
TraceEq is decidable in primitive recursive time for deterministic
ping-pong protocols.

Decidability is obtained by a reduction of the problem to the lan-
guage equivalence of deterministic pushdown automata, which is
decidable in primitive recursive time. A complexity lower bound
for this problem is open (beyond the PTIME-hardness inherited
from static equivalence, recall Theorem 3.3).

For simple processes We now study a decidability result for
patterned simple processes [CCD15a]. It relies on three restric-
tions: the theory is limited to symmetric encryption and pairs,
and the processes must be type compliant and acyclic. We give
an intuition of the de�nition which is formalised in Appendix B.
Type compliance relies on a type system to ensure that, whenever
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two (subterms of) terms u,v appearing in the process are uni�able
then, once input variables are bound to adversary-chosen terms, u
and v have the same structure in terms of encryptions and pairs.
On the other hand, acyclicity is a property of the dependency graph
of the process. The vertices of this graph are the inputs and out-
puts of the process. There is an edge a → a′ when it is necessary
to execute a′ before a to be able to perform some attacker actions.

Example 4.1. There are three kind of edges in a dependency graph.
Sequential dependency is for actions following each other, for ex-
ample in β .α .P there is an edge α → β . Pattern and deduction
dependencies are for actions that allow the attacker to produce a
term of a given pattern or deduce a subterm of an output message,
respectively. For example in α .P | β .Q | γ .R with

α = c 〈senc(u,k)〉 β = d(senc(x,k)) γ = e 〈k〉

there is an edge α → β because the term senc(u,k) could be used
as an input term for the pattern senc(x,k). Also γ → α because
the term k output in γ can be used to deduce u from senc(u,k) in
α . Similarly note that there is a cyclic dependency in

!ch β .α with α = c 〈senc(u,k)〉 β = c(senc(x,k)) .

We have α → β by sequential dependency, but also β → α by
pattern dependency across the di�erent copies of β .α . 4

Theorem 4.5 ([CCD15a]) . For a theory limited to pairs and sym-
metric encryption, TraceEq is coNEXP for patterned, simple, type-
compliant, acyclic processes.

Proof. Given a trace we consider its so-called execution graph:
its vertices are the actions of the trace and its edges mirror those
of the dependency graph of the process. It is proved in [CCD15a]
that when two patterned, simple, type-compliant, acyclic pro-
cesses P and Q are not trace equivalent, there exists an attack
trace, say, in P , whose execution graph D has these properties:
(1) D is acyclic and depth(D) (maximal length of a path of D) is

polynomial in the size of P .
(2) width(D) (maximal number of outgoing edges from a vertex

of D) is exponential in the size of P and of the type system.
(3) nbroots(D) (number of vertices of D that have no ingoing

edges) is exponential in the size of P and of the type system.
From each root of D, the number of reachable vertices is at most
the size of a tree of width width(D) and of depth depth(D), i.e.
width(D)depth(D)+1 − 1. Hence the number of vertices of D is
bounded by nbroots(D) ·width(D)depth(D)+1 which is exponen-
tial in the size of P . Since the number of vertices of D is an upper
bound on the number of sessions needed to execute the under-
lying trace, it su�cies to prove the equivalence of P andQ for an
exponential number number of sessions. This leads to an overall
coNEXP procedure since trace equivalence of bounded, positive,
simple processes is coNP for subterm theories (see Section 5). �

Complexity was not the focus of [CCD15a] and the authors only
claimed a triple exponential complexity for their procedure. Be-
sides no lower bounds were investigated, but we proved that the
problem was coNEXP-complete.

Theorem 4.6 . For the theory of pairs and symmetric encryption,
TraceEq is coNEXP-hard for patterned, simple, type-compliant,
acyclic processes.

The reduction shares some similarities with the proof of coNEXP
hardness for trace equivalence of bounded processes (see Theo-
rem 4.3), compensating the more deterministic structure of simple
processes by the use of replication. We give below an intuition of
our construction, detailed in Appendix B.

Proof sketch. We proceed by reduction from Succint 3SAT. This
is a common NEXP-complete problem that, intuitively, is the
equivalent of 3SAT for formulas of exponential size represented
succinctly by boolean circuits. Formally a formula φ with 2m
clauses and 2n variables x0, . . . , x2n−1 is encoded by a circuit
Γ : {0, 1}m+2 → {0, 1}n+1 in the following way. If φ =∧2m−1
i=0 `1i ∨ `

2
i ∨ `

3
i and 0 ≤ i ≤ 2m − 1 and 0 ≤ j ≤ 2, we

let xk the variable of the litteral `ji and b its negation bit; then
Γ(ī j̄) = b k̄ where ī, j̄, k̄ are the respective binary representations
of i, j,k . Succint 3SAT is the problem of deciding, given a circuit
Γ, whether the formula φ it encodes is satis�able.

Let then φ be a formula with 2m clauses and 2n variables
x0, . . . , x2n−1 and Γ a boolean circuit encoding this formula. We
construct two simple, type-compliant, acyclic processes that are
trace equivalent i� φ is unsatis�able. Using pairs 〈u,v〉 we en-
code binary trees: a leaf is a non-pair value and, if u and v en-
code binary trees, 〈u,v〉 encodes the binary tree whose root has
u and v as child nodes. Given a term t , we build a process P(t)
behaving as follows:
(1) P(t) �rst waits for an input x from the attacker. This term

x is expected to be a binary tree of depth n with boolean
leaves, modelling a valuation of φ (the ith leaf of x being the
valuation of xi ).

(2) The goal is to make P(t) verify that this valuation satis�es
φ; if the veri�cation succeeds the process outputs t . Given
two constants ok and ko, P(ok) and P(ko) will thus be trace
equivalent i� φ is unsatis�able.

(3) However it is not possible to hardcode within a process of
polynomial size the veri�cation that the valuation encoded
by x satis�es the 2m clauses of φ. Hence we replicate a pro-
cess that, given x , veri�es one clause at a time. For that for
each 0 ≤ i ≤ 2m − 1 we consider the term

Ki = senc(〈b0, 〈b1, 〈. . .bm−1〉 . . .〉〉,k)

where b0 · · ·bm−1 is the binary representation of i and k
is a name. Intuitively, the attacker will guide the veri�ca-
tion of the 2m clauses of φ, and whenever the ith clause
has been successfully veri�ed, the process reveals the term
senc(Ki ,Ki−1). By convention, K−1 is a public constant.

(4) In particular, the attacker can deduce the term K2m−1 only
if she has successfully veri�ed that the initial input x indeed
encodes a valuation satisfying all clauses of φ. It therefore
su�cies to require, before the �nal output of t , that the at-
tacker inputs K2m−1. �

7



5 COMPARISON WITH OTHER MODELS
In this section we discuss some other notions of indistinguishabil-
ity and compare them in terms of expressivity and complexity.

5.1 Structure-guided equivalence proofs
We survey two equivalence notions that impose structural con-
straints to equivalence proofs that make the veri�cation easier.

The most well-known variant of equivalence properties in se-
curity protocols is di�-equivalence, di�erent variants of which
are proved by the state-of-the-art ProVerif and Tamarin. In-
tuitively, it can be seen as an analogue of trace equivalence
where two equivalent traces are also required to follow the ex-
act same execution �ow. For example to prove P1 | · · · | Pn
and Q1 | · · · | Qn equivalent, all actions originated from each
subprocess Pi should be matched with actions from Qi .
Equivalence by session is similar in spirit but impose less restric-
tions on equivalent traces: rather than sharing the exact same
execution �ow, they should be organised similarly in terms of
parallel sessions. To prove P1 | · · · | Pn and Q1 | · · · | Qn equiv-
alent, there should exist a permutation π of n1,no such that all
actions originated from each Pi should be matched with actions
fromQπ (i). This equivalence has been used in the DeepSec tool
as a structure-guided heuristic for trace equivalence [CKR19].

Process matchings To formalise this we �rst de�ne simpli�ca-
tion rules  (Figure 2) that get rid of the deterministic parts of
the transition system. They are convergent up to renaming of new
names, and we write P

 

one arbitrary  -normal form of P . A
process in -normal form can be uniquely decomposed into

P = P1 | · · · | Pn =
n∏
i=1

Pi (implicit right-associativity)

where each Pi starts with an input, an output or a replication.
In order to ensure that two traces verify the structural restric-

tions of di�-equivalence and equivalence by session, we extend
the semantics of the calculus to pair of processes: the rule (Par)
is replaced by a rule pairing parallel subprocesses together, and
the communication rules (In), (Out), (Comm) can only be trig-
gered when they are applicable to the two components of the
pair. Formally this semantics operate on extended twin processes
(P2,Φ0,Φ1) where P2 is a multiset of pairs of processes in  -
normal form, andΦ0 andΦ1 are frames. The semantics of such pro-
cesses is de�ned in Figure 3 and assumes that channels are static
(they are either constants or names that are never used as parts of
output messages) and we use the private semantics (i.e. with no
internal communications on public channels). Although one could
design a de�nition making without these two assumptions, they
are actively used by the optimisations developed in [CKR19].

The semantics of Figure 3 only handles the bounded fragment,
consistently with the presentation of equivalence by session of
[CKR19]. However, to avoid being arti�cally limited in our com-
parisons, we can naively extend Figure 3 with

({{!P, !Q}} ∪ P2,Φ0,Φ1)
τ
−→ ({{(!P, !Q), (P

 

,Q

 

)}} ∪ P2,Φ0,Φ1)

A similar rule can be de�ned for replication operator if simple pro-

cesses (!ch ) to bypass the restriction to static channels. This is a
natural extension of the semantics, although rather limited too. For
example P |!P and !P will not be equivalent by session although,
intuitively, there exists a natural bijection between all copies of P
in P |!P and !P . We leave open the design of a semantics better
adapted to the expected mechanisms of equivalence by session of
unbounded processes, and stick to this simplistic model here.

Equivalence by session Two processes P0 and P1 are equiva-
lent by session when for all traces of Pi , i ∈ {0, 1}, there exists a
trace t ′ of P1−i such that t ∼ t ′ and t and t ′ are the �rst and second
projections, respectively, of a twin trace of (Pi , P1−i ). In particular
equivalence by session re�nes trace equivalence:

Theorem 5.1 ([CKR19]) . If two processes are equivalent by ses-
sion then they are also trace equivalent.

The converse is not true in general, consider e.g. the processes
c(x).c(y) and c(x) | c(y). Besides:

Theorem 5.2 ([CKR19]) . Labelled bisimilarity and equivalence by
session are incomparable.

We discuss in Section 6 some assumptions under which trace
equivalence and labelled bisimilarity coincide with equivalence by
session. We refer to the following problem as SessEq:

Input: A theory, two processes

�estion: Are the two processes equivalent by session?

Di� equivalence. We formalise di�-equivalence with the same
de�nition as equivalence by session, except that the rule (Match)
of Figure 3 is restricted to only consider the identity matching:

({{(
∏n

i=1 Pi ,
∏n

i=1 Qi )}}∪P
2,Φ0,Φ1)

τ
−→ ({{(Pi ,Qi )}}

n
i=1∪P

2,Φ0,Φ1)
(Match-id)

Although the original de�nition of di�-equivalence [BAF08] was
stricter by imposing control-�ow restrictions on conditionals as
well, our formalisation capture a notion similar to the more-
relaxed, later-introduced de�nition of [CB13]. All in all the def-
inition of di�-equivalence, more restrictive than equivalence by
session, makes it a sound heuristic all other equivalences:

Theorem 5.3 ([BAF08, CKR19]) . If two processes are di� equiva-
lent then they are also labelled bisimilar, equivalent by session and
therefore trace equivalent.

The converse does not hold in general, leading to so-called false
attacks (non-di�-equivalent processes that are, for example, trace
equivalent). They are naturally more frequent than those induced
by equivalence by session. Note also that in the extreme case of
simple processes, DiffEq and SessEq are essentially the same deci-
sion problem, up to a simple associative-commutative preprocess-
ing of parallel operators. We call the following problem DiffEq:

Input: A theory, two processes.

�estion: Are the two processes di� equivalent?
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P | 0 P 0 | P  P (P | Q) | R P | (Q | R)
P | Q  P ′ | Q
Q | P  Q | P ′

}
if P  P ′

new k .P  P{k 7→ k ′} k ′ fresh name if u = v then P elseQ  
{

P if u =E v
Q otherwise

Figure 2: Simpli�cation rules for processes

({{(P,Q)}} ∪ P2,Φ0,Φ1)
α
−→ ({{(P ′

 

,Q ′

 

)}} ∪ P2,Φ′0,Φ
′
1) if ({{P}},Φ0)

α
−→ ({{P ′}},Φ′0), ({{Q}},Φ1)

α
−→ ({{Q ′}},Φ′1) (IO2)

by rules (In) or (Out)

({{(c1〈u1〉.P1, c2〈u2〉.P2), (c1(x1).Q1, c2(x2).Q2)}} ∪ P2,Φ0,Φ1)
τ
−→ ({{(P1

 

, P2

 

), (Q1{x1 7→ u1}

 

,Q2{x2 7→ u2}

 

)}} ∪ P2,Φ0,Φ1)
if c1 and c2 are private channels (Comm2)

({{(
∏n

i=1 Pi ,
∏n

i=1 Qi )}} ∪ P
2,Φ0,Φ1)

τ
−→ ({{(Pi ,Qπ (i))}}

n
i=1 ∪ P

2,Φ0,Φ1) if π is a permutation of n1,no (Match)

Figure 3: Semantics on pairs of processes (in -normal form)

5.2 A tool for decidability: constraint solving
In the bounded fragment it is common to abstract the in�nitely-
branching transition relation by a �nite variant with symbolic con-
straints [Bau07, CCD13, CKR18a], reducing the study of equiva-
lences to various �avours of constraint-solving problems. We de-
tail one of them [Bau07] in this section as it is used in most of the
results surveyed in the remaining of the paper.

Constraint systems In a symbolic approach, all recipes are re-
placed by placeholder variables and constraints are used instead in
order to specify how these variables may be instanciated in prac-
tice. Typically, see the informal example below:

A = ({{c(x).if sdec(x,k) = u then c 〈x〉 else c 〈h(x)〉}},�)

Y (X )
−−−−→ ({{if sdec(x,k) = u then c 〈x〉 else c 〈h(x)〉}},�)
τ
−→ ({{c 〈h(x)〉}},�)

Z 〈ax〉
−−−−−→ ({{0}},Φ) with Φ = {ax 7→ h(x)}

The three recipes required by the usual semantics are not speci�ed,
and three so-called second-order variables X ,Y ,Z are used instead
instead. They may be instanciated by any recipes ξX , ξY , ξZ that
satisfy here the following constraints: ξX , ξY , ξZ do not use the
axiom of Φ, ξYΦ =E c , sdec(ξX ,k)Φ ,E u, and ξZΦ =E c . The set
S of these six constraints is usually written

S = {X `? x, Y `? y, Z `? z, sdec(x,k) ,? u, y =? c, z =? c} .

The constraint X `? x is called a deduction fact and intuitively
indicates that x is deducible by the attacker, using the recipe ξX .
This recipe may use the �rst axioms of the frame up to the arity
of X , written ar(X ). Hence here ar(X ) = ar(Y ) = ar(Z ) = 0. The
constraints u =? v (equations) and u ,? v (disequations) express
comparisons between terms modulo theory.

Formally, a constraint system is a pair C = (S,Φ) with Φ a frame
and S a set of equations, disequations and deduction facts with no

second-order variables appearing twice nor having an arity greater
than |dom(Φ)|. We always assume that they verify the origination
property which intuitively means that they correspond to actual
symbolic traces, i.e. that all free variables appearing in the frame
should have been determined by a prior recipe. That is, if

Φ = {ax1 7→ t1, . . . , axn 7→ tn }

then the origination property requires that for all i ∈ n1,no and all
variables x appearing in ti , there exists a deduction fact X `? x in
C such that ar(X ) < i .

Then a solution of a constraint system C = (S,Φ), substitutes
second-order variables by actual recipes that satisfy the equations
and disequations of S . Formally a second-order substitution is a
mapping Σ from second-order variables X to recipes using at most
the ar(X ) �rst axioms of Φ. In particular Σ induces a valuation
of the free variables of C, which is the substitution σ such that
XΣ = xσ for all deduction facts X `? x of S (σ is well-de�ned and
unique under the origination property). We thus say that Σ is a so-
lution of C ifuσ↓= vσ↓ for all equationsu =? v of S , anduσ↓, vσ↓
for all disequations u ,? v of S . In the constructor-destructor se-
mantics, we additionally require that msg(uσ ) and msg(vσ ) for an
equation to be satis�ed, and disequations are satis�ed when either
msg(uσ ) or msg(vσ ) does not hold, or uσ↓, vσ↓.

Similarly to processes, we say that a constraint system is positive
when it does not contain disequations.

Constraint solving As we show in the next sections, several
equivalence problems are reducible to an analysis of constraint
systems, and understanding the complexity of the latter is often
key to solve the former. Although its applications are mostly for
reachability properties—not surveyed in this paper—we mention
the most basic decision problem that we call CSysSAT:

Input: a theory, a constraint system.

�estion: does the constraint system admit a solution?
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This is a generalisation of Deducibility since, by de�nition, a
term t is deducible from a frame Φ i� the constraint system

({X `? x, x =? t}, Φ) with ar(X ) = |dom(Φ)|

is satis�able. More generally, the weak-secrecy problem (given a
process P and a term t , does there exists a trace of P such that t
is deducible from its frame?) can be decided in non-deterministic
polynomial time with oracle to CSysSAT, intuitively as follows:
(1) guess non-deterministically one (among the polynomially-

many) symbolic execution of P and collect the corresponding
constraints into a constraint system C = (S,Φ)

(2) answer yes if the following constraint system has a solution:

(S ∪ {X `? x, x =? t}, Φ) X , x fresh, ar(X ) = |dom(Φ)| .

Regarding equivalence properties, the problem is essentially
to decide whether two constraint systems admit the same set
of solutions, and that their frames are statically equivalent for
all of these solutions. In general the decision of trace equiva-
lence involves more complex variants of this decision problem
[CCD13, CKR18a], but this simple one is already useful to decide
di�-equivalence, as well as other equivalences in some fragments
[Bau07, CCD13, CKR19]. We call this problem CSysEq and for-
malise it as follows:

Input: A theory, two constraint systems (S1,Φ1) and (S2,Φ2)
with the same second-order variables and dom(Φ1) = dom(Φ2).

�estion: Do the following two constraint systems have the
same set of solutions?

(S1 ∪ {X `
? x, Y `? y, x =? y}, Φ1)

(S2 ∪ {X `
? x, Y `? y, x =? y}, Φ2)

with X ,Y , x,y fresh variables and ar(X ) = ar(Y ) = |dom(Φ1)|.

This problem is called S-equivalence in [Bau07]. Note that we
retrieve the StatEq problem when S1 and S2 are empty.

Complexity We now present some decidability and complex-
ity results for CSysSAT and CSysEq; they will be at the core of the
results presented in the next sections. These two problems have
been studied in majority in [Bau07] for the decidability of reacha-
bility properties and di� equivalence, in the case of �xed subterm
theories in the positive bounded fragment.

Theorem 5.4 ([Bau07]) . For all �xed subterm convergent theories,
CSysSAT (resp. CSysEq) is NP (resp. coNP for positive constraint
systems).

As far as we know the complexity of this problem has only been
studied for �xed theories. However the result of [Bau07] above can
be adapted to parametric theories; inspecting the proof we observe
that (1) in the complexity bounds, the dependencies in the theory
are polynomial and (2) the proof uses the fact that static equiva-
lence is PTIME for �xed theories (Theorem 3.1) but the arguments
still hold if we only assume static equivalence to be coNP. Since it
has also been proved in [Bau07] that CSysSAT was NP-hard if the
theory includes at least a free binary function symbol, we obtain
the more general complexity result:

Theorem 5.5 . CSysSAT (resp. CSysEq) is NP-complete (resp. coNP-
complete) for subterm convergent theories and positive constraint
systems. In the case of CSysSAT, the NP-completeness also holds
without the positivity assumption.

Regarding the complexity lower bounds for �xed theories, sim-
ilarly to the problems we surveyed in the previous sections, the
complexity may vary from one theory to the other. Typically:

Theorem 5.6 . With the empty theory, CSysSAT and CSysEq are
LOGSPACE.

Proof. It su�cies to prove that CSysEq is LOGSPACE. We let two
constraint systems C1 = (S1,Φ1) and C2 = (S2,Φ2), where the
deduction facts of S1 and S2 are, respectively,

X1 `
? x1, . . . ,Xn `

? xn and X1 `
? y1, . . . ,Xn `

? yn

and where dom(Φ1) = dom(Φ2) = {ax1, . . . , axp }. In the empty
theory, there are �nitely-many second-order substitutions Σ for
C1 and C2 up to bijective renaming of fresh constants (which
does not a�ect whether Σ is a solution of C1 or C2). Indeed for
all i ∈ n1,no, the recipe XiΣ is either

a constant appearing either in Φ1, Φ2, in an equation of S1 or
S2 or in some X jΣ, j < i

a fresh constant (i.e. not captured by the previous case)
an axiom axj such that j < ar(Xi ).

Given a second-order substitution Σ, we can verify that it is a
solution of C1 and C2 in LOGSPACE since the constraint sys-
tems only contain equations and disequations between con-
stants, names and variables. The problem can thus be solved
in LOGSPACE by bruteforce, using three nested loops:

the �rst two loops are of size in n and p and are used to enu-
merate all second-order substitutions Σ up to bijective renam-
ing of fresh constants
the third loop of size polynomially-bounded by |C1 | + |C2 |
verifying that Σ is a solution of C1 i� it is a solution of C2. �

Since CSysEq is a generalisation of StatEq it can also be interest-
ing to compare their complexity. We already know that they are
both LOGSPACE when the empty theory (Theorems 3.2 and 5.6)
and that, in the positive fragment, they are both coNP-complete
for subterm convergent theories (Theorems 3.4 and 5.5). Regard-
ing �xed theories, StatEq is PTIME (Theorem 3.1) and this is op-
timal in the sense that the problem is PTIME-hard for all theories
containing symmetric encryption (Theorem 3.3). The coNP bound
is optimal for CSysEq in the same sense:

Theorem 5.7 . CSysSAT (resp. CSysEq) is NP-hard (resp. coNP-hard)
for positive constraint systems if the theory contains at least sym-
metric encryption.

Proof. It su�cies to prove that CSysSAT is NP-hard. By reduc-
tion from SAT we let φ =

∧p
i=1Ci a SAT formula with variables

x1, . . . , xn . Given a family of distinct names k1, . . . ,kn , we �rst
consider the following frame with n free variables

Φval = {ax1 7→ senc(x1,k1), . . . , axn 7→ senc(xn,kn )} .

10



Given a clause C of φ, we let xi1 , xi2 , xi3 its variables, bi1 ,bi2 ,bi3
its negation bits, and a fresh name kc . We de�ne a frameΦc such
that, for all valuations σ of x1, . . . , xn , the name kc is deducible
from Φvalσ ∪ Φc i� σ satis�es C (i.e. i� there exists j ∈ n1, 3o
such that xi jσ = bi j ):

Φc =


axc1 7→ senc(kc , senc(bi1 ,ki1 ))
axc2 7→ senc(kc , senc(bi2 ,ki2 ))
axc3 7→ senc(kc , senc(bi3 ,ki3 ))


All in all the following constraint system (S,Φ) is satis�able i�
φ is satis�able:

S =


X1 `? x1, . . . ,Xn `? xn,
Y1 `? y1, . . . ,Yp `? yp ,
y1 =? kc1 , . . . ,yp =

? kcp


Φ = Φval ∪ Φc1 ∪ · · · ∪ Φcp

with ar(X1) = · · · = ar(Xn ) = 0, ar(Y1) = · · · = ar(Yp ) = |Φ|. �

The complexity of the general problem (that is, with disequa-
tions) is open. However it is easily seen less general than trace
equivalence and thus inherits its complexity upper bounds.

Theorem 5.8 . CSysEq is reducible to TraceEq of bounded pro-
cesses. This reduction is LOGSPACE and preserves the theory.

Proof. Consider a constraint system C = (S,Φ). We let the no-
tations Φ = {ax1 7→ t1, . . . , axn 7→ tn } and S = D ∪ E with

D = {X1 `
? x1, . . . ,Xp `

? xp } E = {u1 ∼1 v1, . . . ,uq ∼q vq }

where for all i ∈ n1,qo,∼i∈ {=?,,?}. Assuming that the second-
order variables Xi are sorted by increasing arity, we let

1 = i0 6 i1 6 · · · 6 in 6 in+1 = p + 1

the sequence of integers such that ar(Xi ) = ` i� i` 6 i < i`+1.
We then let a constant c and de�ne the following process given
an other process R:

P(C,R) = c(xi0 ). · · · c(xi1−1).

c 〈t1〉.c(xi1 ). · · · c(xi2−1).

...

c 〈tn〉.c(xin ). · · · c(xin+1−1).

[u1 ∼1 v1] · · · [uq ∼q vq ]R

where [u ∼ v]P is a shortcut for either “if u = v then P else 0”
(when ∼ is =?) or “if u = v then 0 else P” (when ∼ is ,?). The
process P(C,R) is well-de�ned (i.e. does not contain variables
that are not bound by a prior input) if C veri�es the origina-
tion property. In P(C,R), the subprocess R can be executed i�
x1, . . . , xn are instanciated by recipes that de�ne a solution of
C. In particular given a constant d and two constraint systems
C0, C1 verifying the hypotheses of the problem CSysEq, C0 and
C1 are equivalent i� for all traces t of P(Ci ,d 〈d〉) containing an
output on d , i ∈ {0, 1}, there exists a trace t ′ of P(C1−i ,d 〈d〉)
such that t ∼ t ′. In particular C0 and C1 are equivalent i�

P(C0,d 〈d〉) + P(C1, 0) and P(C0, 0) + P(C1,d 〈d〉)

are trace equivalent where, for k,k ′ ∈ N and e ∈ Σ0 fresh:

A + B = e 〈k〉 | e 〈k ′〉 | e(x). ( [x = k]A | [x = k ′]B ) �

Corollary 5.9 . CSysEq is coNEXP for subterm convergent con-
structor destructor theories.

5.3 Decidability and complexity
Di� equivalence Although undecidable in general, di� equiv-
alence is decidable in the bounded positive fragment [Bau07]:

Theorem 5.10 ([Bau07]) . In the bounded (resp. bounded positive)
fragment, given a non-deterministic algorithm A for non-CSysEq
(resp. for non-CSysEq of positive constraint systems), non-DiffEq
is NP, where a call to A is seen as an elementary instruction.

Proof sketch. The decision procedure of [Bau07] for non equiva-
lence consists of (1) guessing a symbolic trace t in one of the pro-
cesses, (2) consider the unique (if it exists) candidate equivalent
trace t ′ in the other process, and (3) conclude that the processes
are not di�-equivalent if the constraint systems corresponding
to t and t ′ are not equivalent. In the case of the positive frag-
ment, an additional argument is required to prove that it is not
necessary to consider symbolic traces that produce disequation
constraints. �

In particular when composing this with the di�erent complexity
results for CSysEq mentioned in Section 5.2:

Corollary 5.11 . DiffEq is coNEXP (resp. coNP) for bounded pro-
cesses (resp. bounded positive processes) and subterm convergent
theories.

The problem is also known coNP-hard even in the positive frag-
ment for a theory containing only a free binary symbol h [Bau07].
However a simple proof justi�es that DiffEq is actually coNP-hard
even for the empty theory and, hence, for any �xed theory:

Theorem 5.12 . In the pure pi-calculus, DiffEq is coNP-complete
for positive bounded processes.

Proof. By reduction from SAT let a formula φ =
∧m
i=1Ci in CNF

and ®x = x1, . . . , xn its variables. For each clause Ci , let ki be a
fresh name and de�ne

CheckSati (®x) = [xi1 = bi1 ]c 〈ki 〉 | · · · | [xip = bip ]c 〈ki 〉

where xi1 , . . . , xip are the variables of Ci and bi1 , . . . ,bip their
negation bits. That is, at least one output of ki is reachable in
CheckSati (®x) if ®x is a valuation of φ that satis�es Ci . Hence if

CheckSat = c(x1). . . . c(xn ).(CheckSat1(®x) | · · · | CheckSatm (®x))

Final(t) = c(y1).[y1 = k1] . . . c(ym ).[ym = km ] c 〈t〉

then for two distinct constants 0, 1, CheckSat | Final(0) and
CheckSat | Final(1) are di�-equivalent i� φ is unsatis�able. �

In particular this gives the exact complexity of DiffEq in the
bounded positive fragment. As far as we know the question re-
mains open without the positivity assumption.

Corollary 5.13 . For subterm convergent theories (�xed or not)
and bounded positive processes, DiffEq is coNP-complete.
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Equivalence by session Equivalence by session has been de-
signed as a heuristic to prove trace equivalence by exploiting the
structural symmetries that often arise in practical veri�cation. Sur-
prisingly, despite practical improvements by order of magnitudes
of the veri�cation time [CKR19], this performance gap is not re-
�ected in the theoretical, worst-case complexity. The same reduc-
tion as trace equivalence can indeed be used to prove equivalence
by session coNEXP-hard (details in Appendix A).

Theorem 5.14 . There exists a subterm convergent constructor de-
structor theory for which SessEq is coNEXP-hard for bounded posi-
tive processes. Without the positivity requirement, this theory can
be limited to symmetric encryption and pairs.

It is discussed in [CKR19] that equivalence by session may also
be seen as a standalone security notion in some cases. Intuitively if
P,Q are processes operating on a unique channel, proving equiv-
alence by session of !P and !Q means proving trace equivalence of
!ch P and !chQ , i.e. the attacker has the capability of distinguishing
actions originated from di�erent copies of P or Q . This may be re-
alistic in scenarios where each session of a protocol is dynamically
attributed with a port that is observable by the attacker. It appears
that this intuition can be formalised, leading to the following result
(detailed proof in Appendix C):

Theorem 5.15 . SessEq is reducible to TraceEq. This reduction is
LOGSPACE and preserves subterm convergence, the constructor-
destructor property, boundedness and positiveness.

Proof sketch. Given a theory E and bounded processes P,Q , we
construct a theory E ′ and two bounded processes nPo , nQo that
are trace equivalent w.r.t. E ′ (in the private semantics) i� P and
Q are equivalent by session w.r.t. E.

The theory E ′ is E extended with pairs and randomised sym-
metric encryption. Intuitively each parallel subprocess P ′ of P
will start by a fresh renaming of all channels of P ′ (made pub-
lic on a paramteric channel s) to avoid confusion between the
actions of P ′ and those of other parallel processes. For example
a process of the form P = P1 | · · · | Pn using a unique public
channel c will be encoded as nPos = P ′1 | · · · | P

′
n where

P ′i = new c .new s ′. s 〈〈c, s ′〉〉. nPios ′ .
The encoding of private channels is more involved. We also sim-
ulate them using asynchronous public communications, which
requires additional modelling tricks to ensure that the output
message is not leaked to the adversary and is received by only
one parallel private input. For that we use the symmetric en-
cryption of E ′ to include a mutual-authentication protocol (here
the Needham-Schroeder-Lowe protocol) in the encoding of the
two communicating processes. �

In particular TraceEq and SessEq have the same complexity for
most fragments investigated in this survey. This reduction does
not cover the case of the pure pi-calulus, which can however be
treated by hand easily, essentially by using the same arguments as
for trace equivalence [CKR18a] up to minor changes.

Theorem 5.16 . In the pure pi-calculus, SessEq is Π2-complete for
bounded processes (resp. bounded positive processes).

6 THE CASE OF DETERMINACY
We now mention the fragment of determinate processes, a gener-
alisation of simple processes. In this fragment, most of the studied
equivalences coincide and their complexity drops exponentially.
Definition(s) This class has been investigated signi�cantly in
the literature [BDH15, CCCK16, CCD13, CKR19] although several
variants coexist, as discussed in [BCK20]. For example the results
of [BDH15, CKR19] hold for action-determinate processes, mean-
ing that they never reach an intermediary state where two inputs
(resp. outputs) on the same communication channel are executable
in parallel. More formally, given a process P whose channels are
all constants, we say that P is action-determinate there exist no
traces of either of the following forms:

P
tr
=⇒ ({{c(x).P, c(y).P}}) or P

tr
=⇒ ({{c 〈u〉.P, c 〈v〉.P}}) .

On the other hand a more permissive de�nition is used in [CCD13]
(not detailed in this survey). There also exists a notion that is
stricter than all of these, referred as strong determinacy [BCK20].
A process is strongly determinate when
(1) it does not contain private channels,
(2) it is bounded,
(3) all its syntactic subprocesses are strongly determinate,
(4) in case the process is of the form P | Q there exist no channels

c such that both P and Q contain an input (resp. output) on c .
For example this process is action-determinate but not strongly-
determinate:

if a = b then c(x) else 0 | if a = b then 0 else c(x) .

Theorem 6.1 ([CCD13]) . Simple processes are action determi-
nate, and bounded simple processes are strongly determinate.

E�ects on the decision of equivalences As mentioned above,
the main implication of determinacy is that most equivalences co-
incide in this fragment:

Theorem 6.2 ([CCD13, CKR19]) . Two labelled bisimilar (resp.
equivalent by session) processes are trace equivalent. The con-
verse is true for action-determinate processes.

We recall that, since the model of [CKR19] does not include
replication, this theorem is only formally proven in the bounded
fragment, regarding equivalence by session. Still, all arguments of
[CKR19] carry to our simple extension of equivalence by session
to unbounded processes.

Regarding complexity, it is shown in [CCD13] that, for bounded,
simple, positive processes, the equivalence problem could be re-
duced to CSysEq like Theorem 5.10 for di�-equivalence. Their ar-
guments can be generalised from simple to strongly-determinate
processes in a straightforward manner; however it is not clear
whether this would also be true for action-determinate processes
or processes with else branches. In particular we obtain the same
complexity as di�-equivalence for this fragment:

Theorem 6.3 ([CCD13]) . TraceEq, Bisim and SessEq are coNP-
complete for subterm convergent theories and bounded, strongly
determinate, positive processes. The coNP completeness also holds
for all �xed subterm convergent theories.
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7 SUMMARY AND OPEN PROBLEMS
Table 1 summarises the main results of and highlights remain-
ing open questions (including a few minor results not mentioned
in this survey for space reasons, but detailed in the technical re-
port [CKR20b]). Cells for which the complexity results are not
tight are colored in grey. For instance, for subterm-convergent
constructor-destructor theories and bounded processes, DiffEq is
known coNEXP and coNP-hard, but the precise complexity remains
unknown. Consistently with the results of the paper we also in-
clude some complexity results with the theory seen as a constant
of the problem (denoted as “�xed” in the theory columns). The
corresponding cells contain bounds applying to all theories of the
class; e.g. for Bisim of bounded processes, with �xed subterm-
convergent constructor-destructor theories, the problem is decid-
able in coNEXP and PSPACE-hard; despite the gap between the two
bounds, they are optimal since there exist theories for which the
problem is either PSPACE-complete or coNEXP-complete. There-
fore this cell is not highlighted in grey. In our opinion the most
interesting open questions are:

Can upper bounds on constructor destructor theories be lifted
to more general subterm convergent theories?
Without the positivity assumption, can we tighten the complex-
ity for di� equivalence, and strongly determinate processes?

This last question might allow to better understand why strongly
determinate processes bene�t from optimisations that improve
veri�cation performance that much. Finally, as witnessed by the
contrast between the high complexity of equivalence by session
and its practical e�ciency, worst-case complexity may not always
be an adequate measure.
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A CO-NEXP HARDNESS OF EQUIVALENCES
IN THE BOUNDED FRAGMENT

In this section we prove various statements of coNEXP-hardness of
trace equivalence, equivalence by session and labelled bisimilarity
(see e.g. Theorems 4.3 and 5.14). As discussed in Section 4.3 we
prove the following theorems, that can be seen as extensions of the
results of [CKR18a] (that studied the complexity of TraceEq and
Bisim). First of all we show that the reduction of [CKR18a] can be
performed without private channels, at least for trace equivalence
and equivalence by session.

Theorem A.1 . There exists a subterm convergent constructor de-
structor theory such that TraceEq and SessEq are coNEXP-hard for
bounded positive processes whose channels are constants.

Then we also show that this construction can be adapted for the
�xed theory of symmetric encryption and pairs, provided we use
else branches.

Theorem A.2 . For a theory limited to symmetric encryption and
pairs, TraceEq and SessEq are coNEXP-hard for bounded processes
whose channels are constants.

We also obtained the same result for Bisim but this required the
use of private channels.

Theorem A.3 . For a theory limited to symmetric encryption and
pairs, Bisim is coNEXP-hard for bounded processes.

We prove all these results by reduction from Succint 3SAT, a
NEXP problem that we already described in the body of the paper
(see the proof sketch of Theorem 4.6). We thus letφ a formula with
2m clauses and 2n variables x0, . . . , x2n−1 and Γ a boolean circuit
encoding this formula.
Proof. We construct two processes P,Q that are equivalent i�
φ is unsatis�able. We observe that circuit computations can be
simulated within the positive fragment; for example an Or-gate
with two input edges and two output edges would be encoded
by

d1(x1).d2(x2).
©«
[x1 = 0] [x1 = 0] (e1〈0〉 | e2〈0〉)
| [x1 = 0] [x2 = 1] (e1〈1〉 | e2〈1〉)
| [x1 = 1] [x2 = 0] (e1〈1〉 | e2〈1〉)
| [x1 = 1] [x2 = 1] (e1〈1〉 | e2〈1〉)

ª®®®¬
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where d1,d2, e1, e2 are private channels. Also non-deterministic
choice A + B, that is a process that is executed either as A or B,
can be encoded by:

d 〈0〉 | d(x).A | d(x).B

where d is a fresh private channel and x a fresh variable. Using
these two mechanisms the processes P and Q take the form

P = c(x).(CheckTree(x) + CheckSat(x))

Q = c(x).(CheckTree(x) + CheckSat(x) + Print())

The theory covers for a model of binary trees, among others.
Intuitively P andQ �rst receive an input x from the attacker that
is expected to be a valuation satisfying φ; concretely it should be
a binary tree of depth n whose leaves are booleans representing
the valuation of each variable xi . Then:

Print() outputs two messages that will serve as a baseline for
comparison with the branches CheckTree(x) and CheckSat(x).
CheckTree(x) veri�es that x is a binary tree of depth n with
boolean leaves. To do so it “guesses” an ill-formed branch
of x using a sequence of non-deterministic choices; if one is
found, CheckTree(x) reaches a state where it outputs mes-
sages statically-equivalent to those output by Print().
Assuming x passes the test of CheckTree, CheckSat(x) ver-
i�es that the valuation encoded by x satis�es φ. To do so
it “guesses” an index 0 ≤ i ≤ 2m − 1 by a sequence of
non-deterministic choices, recovers the ith clause of φ by
simulating the circuit Γ, and veri�es that the valuation en-
coded by x satis�es this clause. If one non-satis�ed clause is
found, CheckSat(x) reaches a state where it outputs messages
statically-equivalent to those of Print().

All in all, P and Q are equivalent i� there exist no valuations x
whose encoding by a binary tree passes the test of CheckSat(x),
i.e. i� φ is unsatis�able. �

B CO-NEXP HARDNESS FOR SIMPLE PAT-
TERNED PROCESSES

In this section we prove the coNEXP-hardness of the problem stud-
ied in [CCD15a], namely trace equivalence of patterned, simple,
acyclic, type-compliant processes with a theory limited to sym-
metric encryption and pairs (Theorem 4.6). Note that, due to Theo-
rems 6.1 and 6.2, all results for this fragment also apply for labelled
bisimilarity, equivalence by session, and therefore di� equivalence.
Proof. We proceed by reduction from Succint 3SAT (we refer to
the sketch of proof of Theorem 4.3 for details about this deci-
sion problem). We thus let φ a formula with 2m clauses and
2n variables x0, . . . , x2n−1 and Γ a boolean circuit encoding this
formula, and construct two patterned, simple, type-compliant,
acyclic processes that are trace equivalent i� φ is unsatis�able.

For succinctness, we use the following notation for tuples of
terms 〈u1, . . . ,un〉 = 〈u1, 〈u2, 〈. . .un〉 . . .〉〉 . Using pairs we can
encode binary trees; a leaf is a non-pair value and, if u and v
encode binary trees, 〈u,v〉 encodes the binary tree whose root
has u and v as successors. We can then build a process P(t),

where t is a term, that has the following behaviour
(1) P(t) �rst waits for an input x from the attacker, expectedly

a binary tree of depth n with boolean leaves, modelling a
valuation of φ (the ith leaf of x being the valuation of xi ).

(2) The goal is to make P(t) verify that this valuation satis�es φ;
if the veri�cation succeeds the process will then output m.
Given two constants ok and ko, P(ok) and P(ko)will thus be
trace equivalent i� φ is unsatis�able.

(3) However it is not possible to hardcode within a process of
polynomial size the veri�cation that the valuation encoded
by x satis�es the 2m clauses ofφ. For each 0 ≤ i ≤ 2m−1 we
thus consider a term Ki that depends on i and is unknown
to the attacker. For example

Ki = senc(〈b0, . . . ,bm−1〉,kreward )

where b0 · · ·bm−1 is the binary representation of i . Intu-
itively the attacker will guide the veri�cation of the 2m
clauses of φ, and the process will reward her by revealing
the term senc(Ki ,Ki−1) when the ith clause has been suc-
cessfully veri�ed. By convention K−1 is a public constant.

(4) In particular the attacker can deduce the term K2m−1 only if
she has successfully veri�ed that the initial input x indeed
encodes a valuation of φ that satis�es all clauses of φ. It
therefore su�cies to require, before the �nal output of m,
that the attacker inputs K2m−1.

More formally we let a family of names ka for various labels a,
for example kExtract , kDecr , ... The process P(t) then takes the
following form; for simplicity we use a single channel c but P(t)
can easily be converted to a simple process by using a channel
cR for each parallel subprocess R:

P(t) = Extract | Eval | Decr | Init | CheckSat | Final

Extract performs tree extraction requests: for extracting the
component b ∈ {0, 1} of x = 〈u0,u1〉, the attacker sends
a term senc(〈x,b〉,kExtract ) and the process outputs back
senc(〈x,b,ub 〉,kExtract ).
Eval performs circuit-evaluation requests: an input ®b =
b0, . . . ,bm+2 of Γ is submitted by outputting senc(〈®b〉,kEval)
and the process eventually outputs back senc(〈®b, ®c〉,kEval)
where ®c = Γ(®b).
Decr performs decrement requests: if the attacker sends a
term of the form senc(〈®b〉,kDecr ) where 〈®b〉 is the binary rep-
resentation of 1 ≤ i ≤ 2n − 1 the process will output back
senc(〈〈®b〉, 〈®b ′〉〉,kDecr ) where 〈®b ′〉 is the binary representa-
tion of i − 1.
Init = c(x).c 〈senc(x,kCheckSat )〉 reads a term x from the ad-
versary (supposedly a binary tree encoding a valuation satis-
fying φ) and locks it under an encryption layer.
CheckSat =!ch c(senc(t,kCheckSat )).c(〈®b〉).P receives the term
x chosen in Init as well as the binary representation 〈®b〉 of an
index 0 ≤ i ≤ 2m − 1. The process P then extract the three
litterals of the ith clause of φ by a sequence of three round-
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trip communications with Eval with inputs 〈®b, 0, 0〉, 〈®b, 0, 1〉
and 〈®b, 1, 0〉. Say, as a result Eval outputs back 〈b1 ®c1〉, 〈b2 ®c2〉
and 〈b3 ®c3〉. The process then attempts to extract from the
valuation x the valuation of the variables corresponding to ®c1,
®c2 and ®c3 which is done by 3n round trips with Extract. If this
is successful, resulting to the three booleans b ′1,b

′
2,b
′
3, the ith

clause is satis�ed if b1 = b ′1, b2 = b ′2 and b3 = b ′3. Under this
condition, the process performs a �nal round trip with Decr
to compute Ki−1, and eventually outputs senc(Ki ,Ki−1).
Final = c(Kn ).c 〈t〉 veri�es that the attacker is able to compute
Kn and then outputs t .

This sums up the intuition of the construction. Note that care
is needed in order to preserve type compliance and acyclicity.
Typically Decr has to strati�ed, that is, Decr = !ch Decr1 | · · · |
!ch Decrm where each Decri only operates on binary represen-
tations of size i . Each Decri , i > 1, includes a round trip with
Decri−1 in case the ith bit is null. A unique replicated process
Decr that would handle all binary-representation sizes, perform-
ing round trips with itself when encountering null bits, would
satisfy neither acyclicity nor type-compliance. The same remark
applies to Extract (one stratum for each tree depth should be de-
�ned) and Eval (one stratum for each gate of Γ). �

C REDUCTION OF EQUIVALENCE BY SES-
SION TO TRACE EQUIVALENCE

In this section we formalise the reduction of the decision of SessEq
to TraceEq (Theorem 5.15).
Proof. Given a theory E and bounded processes P,Q , we con-
struct in polynomial time a theory E ′ and two bounded pro-
cesses nPo , nQo that are trace equivalent w.r.t. E ′ (in the private
semantics) i� P and Q are equivalent by session w.r.t. E.

The theory E ′ is E extended with pairs and randomised sym-
metric encryption. Intuitively each parallel subprocess P ′ of P
will start by a fresh renaming of all channels of P ′ (made pub-
lic on a paramteric channel s) to avoid confusion between the
actions of P ′ and those of other parallel processes. For example
a process of the form P = P1 | · · · | Pn using a unique public
channel c will be encoded as nPos = P ′1 | · · · | P

′
n where

P ′i = new c .new s ′. s 〈〈c, s ′〉〉. nPios ′ .
The encoding of private channels is more involved. Just as public
channels they are dynamically replaced by fresh channels and
also revealed to the attacker; as such, internal communications
are routed asynchronously through the adversary as well. In
particular additional mechanisms are required to get around the
following issues:

Since communications are sent to the attacker, she can get
knowledge of their content. In the encoding, messages sent
on initially-private channels are therefore encrypted using
the fresh encryption function of E ′. Note the importance of
the encryption to be randomised: otherwise the same mes-
sage being sent in two internal communications would be re-
�ected as the equality between the ciphertexts observed by

the attacker (which would give her more power compared to
synchronous, unobservable communications).
A naive encoding of internal communications by encrypted
public outputs allows replay: the attacker could copy the en-
crypted message and forward it to several parallel inputs.
To avoid this, each private input instructions in the orig-
inal process is associated with a unique identi�er (a con-
stant for example). On the other end, outputs should non-
deterministically draw the identi�er of an eligible input and
initiate a communication protocol (for example the Needham-
Schroeder protocol) with it to send the message and ensure
that it is not replayed to other identi�ers.

The mechanics introduced in the second item prevent private
outputs to be received by inputs on di�erent channels, or inputs
that are sequentially dependent of the output as in c 〈u〉.c(x).P .�
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