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Abstract

In this paper, we propose an uncertainty quantification analysis, which is the continuation of a recent
work performed in a deterministic framework. The fluid-structure system under consideration is the one
experimentally studied in the sixties by Abramson, Kana, and Lindholm from the Southwest Research
Institute under NASA contract. This coupled system is constituted of a linear acoustic liquid contained
in an elastic tank that undergoes finite dynamical displacements, inducing geometrical nonlinear effects in
the structure. The liquid has a free surface on which sloshing and capillarity effects are taken into account.
The problem is expressed in terms of the acoustic pressure field in the fluid, of the displacement field of the
elastic structure, and of the normal elevation field of the free surface. The nonlinear reduced-order model
constructed in the recent work evoked above is reused for implementing the nonparametric probabilistic
approach of uncertainties. The objective of this paper is to present a sensitivity analysis of this coupled
fluid-structure system with respect to uncertainties and to use a classical statistical inverse problem for
carrying out the experimental identification of the hyperparameter of the stochastic model. The analysis
show a significant sensitivity of the displacement of the structure, of the acoustic pressure in the liquid, and
of the free-surface elevation to uncertainties in both linear and geometrically nonlinear simulations.

Keywords: Uncertainty quantification, Fluid-structure interactions, Nonlinear dynamics, Reduced-order
model, Sloshing, Capillarity

1. Introduction

This paper is the continuation of the work published in (Akkaoui et al., 2019) in order to propose an
uncertainty quantification analysis. This previous work consists in a deterministic computational analysis of
a linear acoustic liquid contained in an elastic tank that undergoes finite dynamical displacements, inducing
geometrical nonlinear effects in the structure (Morand and Ohayon, 1995; Ohayon and Soize, 2016). The
fluid-structure system, which has been analyzed, is the one experimentally studied by (Lindholm et al.,
1962; Abramson et al., 1966). These experiments have been used for updating the nonlinear dynamical
computational model proposed in (Akkaoui et al., 2019) and for analyzing the unexpected phenomenon of
very low-frequency sloshing resonance of an internal liquid during a high frequency excitation of the tank. It
should be noted that experimental studies for large amplitude vibrations with sloshing liquids have also been
performed in the past in other works such as, for instance, in (Abramson et al., 1966; Chiba, 1992; Carra
et al., 2013). It should be noted that, in the deterministic context, the case of elastic structure coupling
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with liquids with geometric nonlinearities for the structure has been intensively studied using shell theories
(see par Amabili (2018)). In this paper, as in the previous paper Akkaoui et al. (2019), we use the general
theory of three-dimensional elasticity in finite displacements to model the structure and consequently, its
3D-finite element discretization.

Concerning uncertainty quantification, there are many methodologies and works published, see for in-
stance (Ghanem and Spanos, 1991; Schueller, 2007; Ghanem et al., 2017; Soize, 2017). The objective of
this paper is to present a sensitivity analysis of the computational model presented in (Akkaoui et al.,
2019) with respect to uncertainties, using the classical nonparametric probabilistic approach of model un-
certainties (Soize, 2000, 2017), and is not devoted to the development of novel methodology in uncertainty
quantification. It should be noted that the nonparametric probabilistic approach of uncertainties must be
implemented on a reduced-order computational model. This is the reason why, the approach proposed in
(Mignolet and Soize, 2008; Capiez-Lernout and Soize, 2017) is used for this fluid-structure system. On the
other hand, the construction of the reduced-order model can be done using several approaches such as the
modal approach, the proper orthogonal decomposition (POD) (Amabili et al., 2003; Amabili and Touzé,
2007; Ballarin and Rozza, 2016), and more advanced approaches such as those reviewed in (Amabili and
Paıdoussis, 2003; Mignolet et al., 2013). In this paper, we do not reconsider this question and we reuse the
reduced-order model, introduced and validated in (Ohayon and Soize, 2016; Akkaoui et al., 2018, 2019), in
order to perform the uncertainty quantification analysis. The reason why an uncertainty quantification of
such complex dynamical system has to be carried out is the following: the sensitivity of the unexpected
experimental phenomenon, which appears at very low-frequency, has to be quantified in order to analyze
the robustness of the sloshing resonances with respect to structural uncertainties.

The paper is organized as follows. Section 2 briefly presents the fluid-structure system that has been
experimentally studied by (Lindholm et al., 1962; Abramson et al., 1966), that has been used in (Akkaoui
et al., 2019) and that is reused in this paper. The construction of the nonlinear stochastic reduced-order
model (SROM) using the nonparametric probabilistic approach is summarized in Section 3 in order to facil-
itate the reading of this paper. Section 4 is devoted to an uncertainty sensitivity analysis of the dynamical
responses of the fluid-structure system with respect to structural uncertainties. Note that the results will be
presented for the linearized system and for the nonlinear one. In particular, the sensitivity analysis is carried
out for the responses of the structure, of the acoustic liquid, and of the free-surface sloshing. Section 5 deals
with the statistical inverse problem that allows for identifying the hyperparameter of structural uncertainties
within the context of a given target dataset. In the framework of the uncertainty quantification analysis,
since no experimental data were available, we have constructed a dataset of simulated experiments. In the
last section, conclusions and discussions are presented.

Notations: In this paper, the following notations are used. Let “a” be a mathematical quantity. Related
to such a quantity, a deterministic scalar is denoted by a and its random counterpart by A; a deterministic
vector is denoted by a and its random counterpart by A; a deterministic matrix is denoted by [A] and
its random counterpart by [A]. R denotes the set of real numbers, Rp denotes the Euclidian space of
dimension p, Mm,n denotes the set of real (m × n) matrices, Mn denotes the set of real square matrices
of size n, M+

n denotes the set of positive-definite real square matrices of size n. The summation over
repeated Greek and Latin indices is used in the following. For a given function g sufficiently regular, the
partial derivative ∂g(x)/∂xj is denoted as g,j(x). The first- and second-time derivatives of g are defined by
ġ(x, t) = ∂g(x, t)/∂t, and g̈(x, t) = ∂2g(x, t)/∂t2. The gradient ∇x g(x, t) of function g with respect to x is
defined by (∇x g(x, t))ij = gi,j . The Fourier transform of the function t 7→ g(x, t), with respect to time, is
denoted by ĝ(x, ω) and is defined by

ĝ(x, ω) =

∫ +∞

−∞
e−iωt g(x, t) dt . (1)
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2. Simulating the experimental results with the nonlinear reduced-order computational model

As explained in Section 1, this section largely reuses the developments presented in (Akkaoui et al., 2019)
for which the notations have been adapted.

Figure 1: Images of the experimental setup. Figure from (Abramson et al., 1966).

2.1. Finite element modeling of the experimental setup

The fluid-structure system is the one described in (Lindholm et al., 1962; Abramson et al., 1966) for
which the retained dimensions are those given in (Abramson et al., 1966). The structure, occupying a
bounded domain Ωu is a steel tank constituted of a thin circular cylinder closed at both ends by circular
steel plates. Its isotropic material properties are detailed in (Akkaoui et al., 2019). This tank is partially
filled with 30% water. The capillary parameters used for computing the equilibrium position of the free
surface (using software Surface Evolver: www.se-fit.com (Brakke, 1992)) are the ones given in (Akkaoui
et al., 2019) which correspond to classical water-steel contact. The dimensions of the fluid-structure system

Figure 2: Dimensions of the fluid-structure system (left) and representation of the numerical boundary conditions applied on
the system (right). Figure from (Akkaoui et al., 2019).
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are given in Figure 2 (left). The origin O of the Cartesian coordinate system (O, e1, e2, e3) is located at
the center of the bottom of the cylindrical tank. Axis e3 coincides with the revolution axis of the system.
The numerical boundary conditions applied to the system are the ones displayed in Figure 2 (right). These
boundary conditions have been designed in order to match the available experimental data. For more details
regarding the computational implementation of the boundary conditions we refer the reader to (Akkaoui
et al., 2019). The finite element model of the fluid-structure system displayed in Figure 3 is constructed
using 3D tetrahedral quadratic finite elements with 10 nodes for the structure and for the acoustic fluid.
The free surface of the liquid is meshed using 2D quadratic finite elements with 6 nodes and the triple line
(intersection between the structure and the free surface, which is common to the structure, to the free surface,
and to the internal liquid) is meshed using 1D quadratic finite elements with 3 nodes. Table 1 sums up the
characteristics of the finite element mesh. In the following, np, nh, and nu denote respectively the number
of degrees of freedom (dof) related to the pressure in the acoustic liquid, to the normal elevation of the
free surface, and to the displacement of the elastic structure. The total number of dof of the fluid-structure
system is denoted as nphu = np + nh + nu.

Figure 3: Slice view of the finite element mesh of the structure containing the acoustic liquid (in transparent blue) (left figure).
Detailed view of the finite element mesh of the acoustic liquid and of its free surface (right figure).

Nodes Dof Elements

Fluid 431 354 431 354 296 459
Free surface 11 566 11 566 5 684
Structure 660 385 1 981 155 334 784

Table 1: Table of the finite element mesh properties.

2.2. Nominal nonlinear reduced-order computational model

The nonlinear reduced-order model (ROM), constructed in (Akkaoui et al., 2019), which is used for
simulating the experimental setup, is briefly summarized hereinafter. The solution of the coupled problem is
expressed in terms of the Rnp -vector p of the pressure in the internal acoustic liquid, of the Rnh-vector h of
the free-surface normal elevation, and of the Rnu -vector u of the structural displacement. The construction
of this ROM consists in projecting the equations of the fluid-structure system on the reduced-order basis
[Ψ] constituted of the vector bases related to each subset of the coupled system described below. The
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(nphu ×Nphu) projection basis [Ψ] is constructed by blocks and is constituted of the (nu ×Nu) projection
basis [Φu] related to the Nu elastic eigenmodes of the structure with added mass effect (simply called the
wet elastic modes), of the (np × Np) projection basis [Φp] related to the Np acoustic eigenmodes of the
internal liquid with zero pressure condition on the free surface for an undeformable structure (simply called
the acoustic modes), and of the ((np +nh)×Nh) projection basis [Ψh] related to the Nh sloshing-capillarity
eigenmodes (simply called the sloshing modes) of the liquid free-surface in presence of the internal liquid for

an undeformable structure. The reduced-order basis [Ψh] is expressed by blocks as [Ψh] =
[
[Φph]T [Φh]T

]T
,

where [Φh] is the (nh × Nh) matrix constituted of the trace of the sloshing modes on the free surface and
[Φph] is the (np×Nh) matrix of the pressure in the internal acoustic liquid of these sloshing modes. A time
t, the vectors p(t), h(t), and u(t) are written asp(t)

h(t)
u(t)

 =

[Φp] [Φph] 0
0 [Φh] 0
0 0 [Φu]

qp(t)
qh(t)
qu(t)

 = [Ψ] q(t) , (2)

in which q(t) = (qp(t), qh(t), qu(t)) is the RNphu-vector of the generalized coordinates, with Nphu = Np +
Nh +Nu, which satisfies the following reduced nonlinear differential equation

[MFSI] q̈(t) + [DFSI] q̇(t) + [KFSI] q(t) + fNL(q(t)) = f(t) , (3)

in which the (Nphu ×Nphu) matrices [MFSI], [DFSI], [KFSI], and the RNphu vector f(t) are defined as

[MFSI] = [Ψ]T

[M ] −[Cph]T −[Cpu]T

0 0 0
0 0 [Mu]

 [Ψ] , (4)

[DFSI] = [Ψ]T

[D] 0 0
0 0 0
0 0 [Du]

 [Ψ] , (5)

[KFSI] = [Ψ]T

 [K] 0 0
[Cph] [Kgc] [Chu]
[Cpu] [Chu]T [Ku]

 [Ψ] , (6)

f(t) = [Ψ]T

 0
0

fu(t)

 . (7)

In Eq. (3), fNL(q) denotes the nonlinear conservative contribution of the geometrical nonlinearities of the
structure that is computationally directly constructed in the reduced form without explicitly assembling the
finite elements (see (Mignolet and Soize, 2008; Capiez-Lernout et al., 2012)). The generalized conservative
internal nonlinear forces are written as

fNL(q)α = K
(2)
αβγ q

u
β q

u
γ +K

(3)
αβγδ q

u
β q

u
γ q

u
δ , (8)

where the quadratic and cubic stiffnesses K
(2)
αβγ and K

(3)
αβγδ are such that

K
(2)
αβγ =

1

2

(
K̂

(2)
αβγ + K̂

(2)
βγα + K̂

(2)
γαβ

)
, (9)

K̂
(2)
αβγ =

∫
Ωu

Cijk` ϕ
α
i,j ϕ

β
m,k ϕ

γ
m,` dx , (10)

K
(3)
αβγδ =

1

2

∫
Ωu

Cijk` ϕ
α
s,i ϕ

β
s,j ϕ

γ
m,k ϕ

δ
m,` dx , (11)

in which C denotes the fourth-order elasticity tensor.
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2.3. Validation of the computational model and eigenfrequency characterization

The validation of the computational model of the experimental setup has been carried out by comparing
the experimental and the computational eigenfrequencies of the structure in vacuo, that is to say, the
eigenfrequencies of the dry elastic modes (Akkaoui et al., 2019). On the other hand, the eigenfrequency
characterization of the fluid-structure system is summarized in Figure 4. One can see that the first wet
elastic mode has an eigenfrequency νu1 = 657Hz and that the first acoustic mode has an eigenfrequency
νp1 = 5 194Hz. Note that the modal density of the sloshing modes is important since νh500 = 57.78Hz.
It should be noted that, in the reduced-order model, all the wet elastic modes (see the meaning at the

Figure 4: Table of the eigenfrequency characterization (in Hz) of the fluid-structure system: eigenfrequencies of acoustic modes,
sloshing modes, and wet elastic modes.

beginning of Section 2.2) have been taken into account in the frequency band for this axisymmetric system:
the wet elastic modes having a circumferential wave number n = 0 and all the wet elastic modes having
a circumferential wave number n ≥ 1. It should be noted that the rank of the first n = 0 dry elastic
mode (without the added mass effect) is 89 and its associated eigenfrequency is 4 509Hz. The rank of the
corresponding wet elastic mode is 32 and its associated eigenfrequency is 1 852Hz (important shift due to
the added mass). The convergence analysis that was performed has shown that the optimal values of the
reduced-order model is obtained fo Nu = 60, Np = 40, and Nh = 1, 500.

2.4. Dynamical excitation for the deterministic simulations

The dynamical excitation of the system is a time-dependent force chosen such that its Fourier trans-
form is a constant in the frequency band of excitation Be = [νmin , νmax]Hz with νmin = 500Hz and
νmax = 2 500Hz in order to excite only the wet elastic modes. There are sloshing modes in the frequency
band of excitation Be but their contributions in this band are negligible. Only the sloshing modes whose
eigenfrequencies are below 500Hz are kept for constructing the ROM. It can be seen that the first n = 0
elastic mode (νu = 1 852Hz) belongs to the frequency band of excitation. There is no other n = 0 wet
elastic eigenmode whose rank is less than or equal to 100. The time-dependent external load vector fu(t)
(see Eqs. (3) and (7)) is written as

fu(t) = α g(t)F , (12)

in which α is the intensity coefficient taken as α = 4, g(t) is the time function of the dynamical excitation,
and F is the normalized vector representing the spatial distribution of the external time load. The excitation
is radially oriented and located on a small rectangular patch (see the red patch in Figure 2 (left)). In Eq. (12),
the time signal g(t) is chosen such that its Fourier transform ĝ(2πν) is written as

ĝ(2πν) = 1 for ν ∈ Be ∪ Be and = 0 otherwise , (13)

in which Be = [−νmax , −νmin]. The computation is carried out the time domain [tini, tini + T ] such
that tini = −1.28 s and T = 21 s. The sampling frequency and the number of time steps are chosen as
νe = 25 000Hz and Nt = 524 288. The frequency response of the system in the band Ba = [0, 6 000]Hz is
deduced by a Fourier transform.
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2.5. Recall of the explanation concerning the unexpected sloshing phenomenon at very low frequency

The numerical results presented in (Akkaoui et al., 2019) have allowed for concluding that the high-
amplitude motion of the free surface in the very low frequency band (outside the frequency band of excita-
tion) could be explained by the couplings illustrated in Figure 5 and recalled hereinafter. The geometrical
nonlinearities of the structure induce a transfer of the vibrational energy from the high-frequency band of
excitation in the very low- and low-frequency band (outside the frequency band of excitation). As the first
acoustic modes of the liquid is greater than the upper bound of the high-frequency band of excitation, the
acoustic fluid has a quasistatic behavior in the low-frequency band. Therefore, the energy transferred by
the structure in the very low-frequency band is transmitted through the acoustic liquid to the first very
low-frequency sloshing modes. This means that the observed phenomenon appears to be an indirect trans-
fer of energy from the structure to the free surface through the acoustic liquid, due to the geometrical
nonlinearities of the elastic tank.

Figure 5: Scheme of the energy transfers between the nonlinear structure, the linear acoustic liquid, and the linear free surface,
which explain the excitation of the first sloshing modes in the very low frequency band (outside the frequency band of the
external excitations).Figure from (Akkaoui et al., 2019).
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3. Nonparametric stochastic model of uncertainties in the nonlinear dynamical computational
model

The main source of uncertainty is due to the elastic structure for which geometrical nonlinearities are
taken into account. For such a slender and thin-wall structure, the model uncertainties on the stiffness can
be significant. Especially when geometrical nonlinearities are taken into account due to the sensitivity of the
quadratic and cubic terms in the nonlinear restoring forces. This is why, in the following, we are interested
in constructing a stochastic reduced-order model (SROM) in which the linear and nonlinear stiffness forces
are uncertain and for which the nonparametric probabilistic approach is used according to the explanation
given in Section 1.

3.1. Nonparametric stochastic computational model

In this section, we extend the construction of the SROM proposed in (Mignolet and Soize, 2008; Capiez-
Lernout and Soize, 2017) for a structure, to the case of the fluid-structure system considered in this paper.
The stochastic nonlinear reduced-order computational model is constructed using the ROM and is written
as P(t)

H(t)
U(t)

 =

[Φp] [Φph] 0
0 [Φh] 0
0 0 [Φu]

Qp(t)

Qh(t)
Qu(t)

 = [Ψ] Q(t) , (14)

in which, for all time t, the random vector Q(t) satisfies the following stochastic nonlinear differential
equation

[MFSI] Q̈(t) + [DFSI] Q̇(t) + [KFSI] Q(t) + FNL(Q(t)) = f(t) . (15)

In Eq. (15) [KFSI] and FNL(Q) denote respectively the (Nphu × Nphu) random linear stiffness matrix and

the RNphu random vector of nonlinear restoring forces. The random linear fluid-structure stiffness matrix
[KFSI] can be expressed by blocks as

[KFSI] =

[K11] [K12] [0]
[K21] [K22] [K23]
[K31] [K32] [K33]

 , (16)

in which [K33] is the random counterpart of matrix [K33], which belongs to the set SE+
ε defined in Appendix

A. The random vector FNL is expressed as a function of the random quadratic and cubic stiffness tensors,
K(2) and K(3), such that

{FNL(q)}α = K
(2)
αβγ q

u
β q

u
γ + K

(3)
αβγδ q

u
β q

u
γ q

u
δ . (17)

The random variables [K33], K(2) , and K(3) are statistically dependent. The construction of these random
variables is detailed in (Mignolet and Soize, 2008) and is summarized below. Let us introduce the following
deterministic (NK ×NK) matrix, with NK = Nu(1 +Nu),

[K] =

[
[K33] [K̂(2)]

[K̂(2)]T 2[K(3)]

]
, (18)

in which [K̂(2)] and [K(3)] denote respectively the matrices issued from the following reshaping:

[K̂(2)]αB = K̂
(2)
αβγ , with B = (β − 1)Nu + γ , (19)

[K(3)]AB = K
(3)
αβγδ, with A = (α− 1)Nu + β and B = (γ − 1)Nu + δ . (20)

It is shown in (Mignolet and Soize, 2008) that matrix [K] is positive definite and can consequently be written
as [K] = [LK ]T [LK ]. Thus, the nonparametric probabilistic approach can be applied in the geometrically
nonlinear context on matrix [K], which ensures the statistical dependency of each linear and nonlinear
stiffness matrices. The construction of the random matrix [K], which is the random counterpart of [K], is
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chosen in ensemble SE+
ε . However, from a numerical point of view, SE+

ε ∼ SE+
0 for ε = 10−6. In order to

simplify the following algebraic developments, we choose [K] in SE+
0 ,

[K] = [LK ]T [G0(δ)] [LK ] , (21)

in which the random matrix germ [G0(δ)] belongs in the ensemble SG+
0 , defined in Appendix A. The

expressions of random variables [K33], K̂
(2)

, and K(3) are deduced from an extraction of [K]. The random

variable K(2) is then reconstructed from K̂
(2)

similarly to Eq. (9). However, it has been shown in (Capiez-
Lernout and Soize, 2017) that some difficulties can be encountered with this construction, due to the
dimension (NK × NK) of random matrix [K], for which the number of entries is N2

u(1 + Nu)2 ∼ N4
u that

can be very large (for Nu = 60, there are 12, 960, 000 random variables). Such a large number of random
variables is not necessary for the probabilistic model and penalizes the computational cost. The modification
of the stochastic model for [K], proposed in (Capiez-Lernout and Soize, 2017) is used. This formulation

uses another factorization of matrix [K] by introducing a matrix of size (ÑK ×NK) with ÑK � NK based
on the following eigenvalue problem

[K] [ΦK ] = [ΦK ] [ΛK ] , [ΦK ]T [ΦK ] = [INK
] , (22)

in which the entries of the diagonal matrix [ΛK ] are the eigenvalues λα, and where the associated columns

of [ΦK ] are the eigenvectors ϕαK . Matrix [K] can then be approximated by the (NK ×NK) matrix [K̃] such
that

[K̃] = [L̃]T [L̃] , (23)

in which [L̃] is the full (ÑK ×NK) matrix defined by

[L̃] = [ΛÑK

K ]
1
2 [ΦÑK

K ]T , (24)

where [ΛÑK

K ] is the (ÑK×ÑK) diagonal eigenvalue matrix such that [ΛÑK

K ]αα = λα sorted by decreasing order

(λ1 ≥ λ2 ≥ . . . ≥ λÑK
), and where [ΦÑK

K ] is the matrix containing the ÑK eigenvectors {ϕαK}α=1,...,ÑK
asso-

ciated with eigenvalues λα. In order to find the optimal value of ÑK , the error fuction ÑK 7→ ConvK(ÑK)is
introduced such that

ConvK(ÑK) =

√
‖ [K̃]− [K] ‖2F
‖ [K] ‖2F

(25)

in which || [K] ||F denotes the Frobenius norm of matrix [K]. The order ÑK of the truncature is determined

for a given relative error εK such that ConvK(ÑK) ≤ εK . The random matrix [K] is then replaced by the

random matrix [K̃] such that

[K̃] = [L̃]T [G̃0(δ)] [L̃] + ([K]− [K̃]) . (26)

in which [G̃0(δ)] is the (ÑK × ÑK) random matrix that belongs to SG+
0 . It should be noted that Eq. (26)

ensures that matrix [K̃] is almost surely positive-definite and, in addition, for δ = 0, [K̃] = [K].

3.2. Observations and quantities of interest

The dynamical response of the fluid-structure system is analyzed for different observation nodes of the
finite element mesh. These observations nodes, and their associated coordinates are given in Table 2. A
node, denoted xp, is chosen for the observation of the pressure in the acoustic liquid. A node, common to
both the structure and the free surface is chosen on the triple line. This common node is denoted xh1 for
observing the normal elevation of the free surface and is denoted xu for observing the structural displace-
ment. Finally, a sloshing observation node xh2 is chosen at the center of the free surface. The quantities of
interest are therefore explicited at these observation nodes. In order to quantify the influence of the geomet-
rical nonlinearities on the uncertainty propagation in the fluid-structure system, linear computations (i.e.
considering FNL(Q(t)) = 0) and nonlinear computations are performed. In the following, the superscripts
L and NL denote respectively the quantities calculated for the linear case and for the nonlinear case.
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Location Name x1-coordinate x2-coordinate x3-coordinate

Liquid xp 0.0187 0 0.0076
Free surface xh1 −0.0144 −0.0347 0.1248

xh2 0 0 0.1245
Structure xu −0.0144 −0.0347 0.1248

Table 2: Coordinates of the observation nodes for the fluid, the free surface, and the structure.

• For the structural displacement, the quantity of interest dBU , calculated with both the linear and the
nonlinear SROM, is defined as the displacement at the node xu (see Table 2 for its coordinates) and
is written as

dBU
L/NL

= 20 log10

(
‖Û

L/NL

xu (2πν)‖C3

)
. (27)

• For the pressure in the acoustic liquid, the quantity of interest dBP , calculated with both the linear
and the nonlinear SROM, is defined as the pressure at the observation node xp (see Table 2 for its
coordinates) and written as

dBP
L/NL

(2πν) = 20 log10( |P̂L/NL
xp (2πν)| ) , (28)

• For the free surface elevation, the quantity of interest dBH , calculated with both the linear and the
nonlinear SROM, is defined as the normal elevation at the observation nodes xhk , k = 1, 2 (see Table 2
for their coordinates) and written as

dBH
L/NL

k (2πν) = 20 log10( |ĤL/NL

xh
k

, (2πν)| ) , (29)

For each quantity of interest, a confidence region with 95% confidence is estimated using a stochastic solver
based on the Monte-Carlo numerical method for generating the Nr realizations of the nonlinear random
responses.

4. Uncertainty sensitivity analysis on the dynamical responses of the fluid-structure system

The uncertainty sensitivity of the model is analyzed for each part of the system, namely the structure, the
internal liquid, and the free surface. In the following sections, we are interested in quantifying the influence of
the hyperparameter δ (controlling the level of uncertainties) on the 95% confidence region of the dynamical
responses at the observation nodes. A convergence analysis with respect to Nr is performed in order to
ensure the convergence of the confidence region computed for each quantity of interest. This convergence
analysis yields an optimal value Nr = 256 of Monte Carlo realizations. The results are presented for both
the linear and nonlinear stochastic ROM. The nominal dynamical response of the quantity of interest,
which corresponds to the deterministic computation of the fluid-structure system, is superimposed with the
confidence region of the stochastic responses.

4.1. Sensitivity of the structural responses to uncertainties

The sensitivity of the structural responses to uncertainties is shown in Figure 6, which displays the linear
and the nonlinear nominal frequency responses dBU

L

and dBU
NL

, and the associated confidence region, for
three values of hyperparameter δ ∈ {0.05, 0.15, 0.30}. It can be seen that uncertainty tends to spread in the
low- and high- frequency domains due to energy transfer induced by the geometrical nonlinearities of the
structure. The results show a significant, if not a great, sensitivity of the displacements of the structure to
structural uncertainties.
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Figure 6: Nominal dynamical responses and confidence regions at 95% of the linear (top figures) and nonlinear (bottom figures)
structural displacement at the observation point xu for δ = 0.05 (left), for δ = 0.15 (middle), and for δ = 0.30 (right).

4.2. Sensitivity of the acoustic liquid to structural uncertainties

The sensitivity of the acoustic liquid to structural uncertainties is presented in Figure 7. It can be
seen that the uncertainty propagation in the acoustic liquid is very important both in the linear and in
the nonlinear cases. The results of the linear simulations show that the width of the confidence region is
significant for a low dispersion rate δ = 0.05. In addition, it can be seen that the nominal dynamic response
of the system in the excitation band Be tends to exit this confidence region when δ increases. The same
phenomenon is visible for nonlinear responses.

4.3. Sensitivity of the free-surface sloshing to structural uncertainties

The sensitivity of the free-surface sloshing to structural uncertainties is presented in Figures 8 and 9 for
the observation nodes xh1 and xh2 . The first observation node xh1 , located on the triple line, is less sensitive
to uncertainties (both in the linear and in the nonlinear cases) than the node xh2 located at the center of
the free surface. These results suggest that the sloshing dynamical responses of the free surface show an
increasing uncertainty sensitivity as one moves further from the shell wall. The influence of uncertainties
on the indirect coupling mechanism (detailed in Section 2.5) is then analyzed. Figures 10 and 11 display
the frequency responses at nodes xh1 and xh2 in the frequency band [0 , 130]Hz. It can be seen that the
sloshing resonances, excited by the indirect transfer of energy from the structural nonlinearities, are robust
to structural uncertainties.

5. Statistical inverse problem for uncertainty quantification

This section is devoted to the statistical inverse problem introduced for identifying the hyperparameter
δ. For illustrating such an identification methodology, a dataset of simulated experiments in constructed,
as explained in Section 1. It consists in generating a dataset of simulated experiments using the SROM for
which the hyperparameter of the stochastic model, denoted by δexp, is given. The validation of the statistical
inverse problem consists in comparing the identified optimal value δopt with δexp. The statistical inverse
problem is formulated as an optimization problem for which the cost function corresponds to a least-square
formulation.
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Figure 7: Nominal dynamical responses and confidence regions at 95% of the linear (top figures) and nonlinear (bottom figures)
acoustic pressure at the observation point xp for δ = 0.05 (left), for δ = 0.15 (middle), and for δ = 0.30 (right).

Figure 8: Nominal dynamical responses and confidence regions at 95% of the linear (top figures) and nonlinear (bottom figures)
free-surface elevation at the observation point xh

1 for δ = 0.05 (left), for δ = 0.15 (middle), and for δ = 0.30 (right).

5.1. Generating the dataset of simulated experiments

As explained above, this target dataset is constituted of N exp
r independent realizations computed using

the SROM. The simulated frequency response functions are observed at experimental points defined in
Figure 12. These observation points have been chosen in order to potentially reproduce experimental setup
conditions. For this reason, the inverse identification of hyperparameter δ does not take into account
experimental data on the free-surface. There are nobs

p = 30 observations for the acoustic pressure (blue dots

12



Figure 9: Nominal dynamical responses and confidence regions at 95% of the linear (top figures) and nonlinear (bottom figures)
free-surface elevation at the observation point xh

2 for δ = 0.05 (left), for δ = 0.15 (middle), and for δ = 0.30 (right).

Figure 10: Nominal dynamical responses and confidence regions at 95% of the linear (top figures) and nonlinear (bottom
figures) free-surface elevation at the observation point xh

1 for δ = 0.05 (left), for δ = 0.15 (middle), and for δ = 0.30 (right),
displayed over [0, 130]Hz.

Figure 11: Nominal dynamical responses and confidence regions at 95% of the linear (top figures) and nonlinear (bottom
figures) free-surface elevation at the observation point xh

2 for δ = 0.05 (left), for δ = 0.15 (middle), and for δ = 0.30 (right),
displayed over [0, 130]Hz.

in Figure 12) and nobs
u = 30 observations for the structural displacement (red dots in Figure 12). For the
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Figure 12: Position of the observation points for the stochastic problem.

structural displacement of the elastic structure, the corresponding quantities of interest are defined by

dBU,exp
i (2πν) = 20 log10

(
‖Û

NL,exp

xu
i

(2πν)‖C3

)
, (30)

at the 30 observation points xui , i = 1, . . . , nobs
u . The quantities of interest related to the acoustic liquid are

defined by

dBP,exp
i (2πν) = 20 log10( |P̂

NL,exp

xp
i

(2πν)| ) , (31)

for the 30 observation points xpi , i = 1, . . . , nobs
p , in the internal liquid.

5.2. Definition of the cost function

For estimating the optimal value of hyperparameter δ, the cost function is defined in the framework of
the least-square method. This method consists in calculating the optimal value δopt of δ, such that

δopt = arg minJ(δ) , (32)

in which J(δ) is written as
J(δ) = J1(δ) + J2(δ) , (33)

in which J1(δ) is related to the mean value and J2(δ) to the standard deviation of the random responses.
The cost function J1(δ) is expressed as the sum of a cost function for the structure and a cost function for
the liquid as

J1(δ) = JU
1 (δ) + JP

1 (δ) , (34)

in which, for X ∈ {U,P},

JX
1 (δ) =

∫
Ba

nX
obs∑
k=1

(
E{ dBXk (2πν; δ) } − E{ dBX,exp

k (2πν) }
)2

dν

∫
Ba

nX
obs∑
k=1

(
E{ dBX,exp

k (2πν) }
)2

dν

. (35)
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Similarly, the cost function J2(δ) is expressed as the sum of a cost function for the structure and a cost
function for the liquid as

J2(δ) = JU
2 (δ) + JP

2 (δ) , (36)

in which, for X ∈ {U,P},

JX
2 (δ) =

∫
Ba

(
∆X(2πν, δ)−∆X,exp(2πν)

)2
dω∫

Ba

∆X,exp(2πν) dω

. (37)

In Eq. (37), the quantity ∆X(2πν, δ) is written as

∆X(2πν, δ) =


E


nX
obs∑
k=1

dBXk (2πν, δ)2

−
nX
obs∑
k=1

{
E(dBXk (2πν, δ))

}2

nX
obs∑
k=1

{
E(dBXk (2πν, δ))

}2



1
2

, (38)

and the quantity ∆X,exp(2πν) is defined by Eq. (38) in which dBX is replaced by dBX,exp.

5.3. Identification of the optimal hyperparameter δopt

A numerical illustration is presented hereinafter in which the optimal parameter δopt is evaluated using
the inverse problem methodology, and is compared to the dispersion parameter δexp = 0.3 used for generating
the dataset of N exp

r simulated experiments. Figure 13 displays the graphs of 6 cost functions J(δ) estimated
for 6 different values N exp

r ∈ {5, 10, 20, 60, 120, 200}. In Figure 13, it can be seen that the estimated optimal
hyperparameter δopt converges to δexp = 0.3 with respect to N exp

r .

Figure 13: Graphs of δ 7→ J(δ) displaying the cost function J(δ) with respect to the hyperparameter δ for 6 values of
Nexp

r ∈ {5, 10, 20, 60, 120, 200}.
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6. Conclusions and discussions

In this paper, we have presented an uncertainty quantification analysis of the fluid-structure system
experimentally studied in the sixties by Abramson, Kana, and Lindholm. The dynamical behavior of this
nonlinear complex fluid-structure system has been analyzed in a previous work. Nevertheless, due to the
unexpected experimental sloshing phenomenon, which appears at very low-frequency and which has been
explained by a very small amount of energy that is transferred from the structure to the free surface via
the acoustic liquid, it was necessary to analyze the sensitivity of this phenomenon with respect to structural
uncertainties.

The sensitivity analysis with respect to structural uncertainties has been carried out by varying the
uncertainty levels controlled by the hyperparameter of the probabilistic model. The results show a significant,
if not a great, sensitivity of the displacement of the structure, of the acoustic pressure in the liquid, and
of the free-surface elevation to uncertainties in both linear and geometrically nonlinear simulations. Note
that the sloshing dynamical responses of the free surface show an increasing uncertainty sensitivity as one
moves further from the shell wall. Indeed, the points on the free surface, which are the most distant from
the structure, show a higher level of sensitivity to uncertainty than those on the triple line. However, a
robustness (with respect to structural uncertainties) of the very low frequency sloshing resonances has been
noticed. Finally, the feasability has been demonstrated for solving the inverse statistical problem concerning
the identification of the hyperparameter of the stochastic model of structural uncertainties. Consequently if
experiments were available for similar complex fluid-structure systems, such an approach could be reused.
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Appendix A. Brief recall on the nonparametric probabilistic approach of uncertainties

In the nonparametric probabilistic approach of uncertainties, the uncertainties are taken in account by
substituting deterministic matrices of the ROM by random matrices yielding a stochastic reduced-order
model (SROM). The probability distributions and the generators of independent realizations of random ma-
trices that are used are constructed using the ensembles of random matrices introduced in (Soize, 2000, 2017).

(i) - Ensemble SG+
0 and its generator

An element of ensemble SG+
0 is the random matrix [G0] with values in M+

m for which its probability density
function is defined by

p[G0]([G]) = 1M+

m

([G]) c0(det[G])c1 exp{−c2 Tr([G])} , (A.1)

in which c0 the positive constant of normalization, where c1 = (m + 1)(1 − δ2)/(2δ2), and where c2 =
(m+ 1)/(2δ2) depend on dimension m and on a hyperparameter δ ∈ [0 , δmax[. Such a random matrix [G0]
admits the following algebraic representation that can be used as a generator of independent realizations,

[G0] = [L]T [L] , (A.2)

in which [L] is an upper triangular (m×m) random matrix such that:

• random variables {[L]jj′ , j ≤ j′} are independent.

• For j < j′, the real-valued random variable [L]jj′ is written as [L]jj′ = σmAjj′ in which σm =
δ(m+ 1)−1/2 and where Ajj′ is a real-valued Gaussian random variable with zero mean and variance
equal to 1.

• For j = j′, the positive-valued random variable [L]jj is written as [L]jj = σm
√

2Bj , in which Bj is
a positive-valued Gamma random variable with probability density function Γ(aj , 1), in which aj =
m+1
2δ2 + 1−j

2 .

The positive parameter δ is the hyperparameter of the probability distribution of random matrix [G0], which
is such that

δ =

{
1

m
E{‖ [G0]− [Im] ‖2F }

} 1
2

, (A.3)

and which allows the dispersion of matrix [G0] to be controlled. The hyperparameter δ must be such that

0 ≤ δ ≤ δmax = (m+ 1)
1
2 (m+ 5)−

1
2 .

(ii) - Ensemble SE+
0 of random matrices
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Let [A] be a deterministic positive-definite matrix representing the given mean value. SE+
0 is the ensemble

of positive-definite random matrices such that any positive-definite random matrix [A0] in SE+
0 satisfies

E{[A0]} = [A] , E{Log(det([A0]))} = ν[A0] , ν[A0] < +∞ . (A.4)

Random matrix [A] can then be written as

[A0] = [LA]T [G0] [LA] , [G0] ∈ SG+
0 , (A.5)

in which [A] = [LA]T [LA] is the Cholesky factorization of [A].

(iii) - Ensemble SE+
ε of random matrices

For fixed ε > 0, any random matrix [A] in SE+
ε is a random matrix with values in M+

m, which is written as

[A]− [A`] =
1

1 + ε
[A0] > 0 a.s. with [A0] ∈ SE+

0 , (A.6)

where [A`] ∈M+
m is the positive-definite lower bound that is presently defined by

[A`] = cε [A] with cε =
ε

1 + ε
. (A.7)

Consequently, E{[A]} = [A]. If ε = 0, then ensemble SE+
ε coincides with SE+

0 . For ε > 0, this ensemble
allows for introducing a positive-definite lower bound [A`] that is arbitrarily constructed for the case where
it is known that a lower bound exists but for which there are no available information for identifying it. That
is the case considered here and ε will be chosen as 10−6 in the application. The generator of independent
realization of [A] in SE+

ε is then deduced from the one presented for SG+
0 .
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