List of Figures

In a less pedantic way, this report should be entitled Introduction to Formal Specication. As such it has been taught in Telecom Paris Tech for many years. Very briey the VALID methodology is presented via a few chapters.

• Chapter 1 is a summary of the VALID methodology. It introduces the aim and the underlying process.

• Chapter 2 is related to a brief presentation of very well known notations: Objectiver, UML and OCL. These used notations concern 3 main domains:

Objectiver for writing requirement documents, UML for designing a rst solution, OCL for specifying.

• Chapter 3 gives more details on the way these tools must be used within VALID.

It must be noticed that the used tools are free in a non prot context. In order to better justify their use a rather short example covering all the VALID aspects is introduced.

• Chapter 4 presents a large and (hopefully) convincing example.

• Chapter 5 is a concise conclusion on the underlying methodology supported by VALID.

• Annex 1 is relative to the system requirement document of the toy example presented at the end of chapter 3.

• Annex 2 details the large example of chapter 4.

Readers only interested in understanding what "rigorous specication" means will take advantage of chapter 1. Readers more interested in "formal specication" should take some more time to understand how very classical notations and associated tools may help writing such "rigorous and formal" specications. To some extent this short book is nothing more than the path from informal requirements to rigorous specication.

The author has supposed that the reader is familiar with UML notations and the logic of 1 st order predicate calculus.

The wise reader should remember that the author is French, and consequently his English, even helped by many software for translation, is rather poor: don't forget English is not his native language.

1 VALID in short 1.1 Purpose of VALID VALID is a methodology 1 allowing to develop rigorous specications from customer's needs. Who should develop rigorous specication? It is certainly not the customer 2 . Indeed he/she has needs and a budget. Clearly it is neither his/her work nor his/her ability to develop. Nor should it be the role of the Project Manager (PM). The PM should not be judge and party. He/she should develop the system once he/she has agreed with customers on objectives and budget! Ideally, involving an assistance to the PM is the best since that team can both master the client's problems and manage technology skills. This team must ask the customer to validate needs, and then must present to the PM a 1 st rigorous specication.

Principles on which VALID is based

The principles on which VALID is based come from two complementary sources:

• on the one hand, the traditional aspects of development advocated by Software Engineering (SE),

• on the other hand, the paradigm of J.R. Abrial and S. Schuman.

For SE, an interesting source is the SWEBOK [START_REF] Bourque | Guide to the Software Engineering Body of Knowledge Fundamental Algorithms[END_REF] , of the IEEE Computer Society. It introduces all the vocabulary mandatory for developing software. It also oers an overview of the potential problems and suggests consequent solutions, accompanied by an extensive bibliography. SE advocates the use of an ad hoc Software Life Cycle (SLC) to develop all systems based on software. Regardless of the chosen SLC, a number of sequential steps follow one another. Each step has one or more inputs and generates one or more outputs. The main weakness of SLCs is that the output documents are never guaranteed to conform to the input documents. It is the reason why since the early 1970s, J.R. Abrial [START_REF] Abrial | Data Semantics[END_REF] and S. Schuman proposed a paradigm that can be summarized as "Programming is proof". It must be shown that the output documents are in conformity with the incoming ones. In traditional mathematics, this paradigm is represented by the diagram of the gure 1.1. A formula becomes a theorem if you can prove it i.e. if the formula is deductible from axioms using inference rules. J.R. Abrial and S. Schuman proposed the following analogies:

• "Proof" vs. "Development".

• "Axioms" vs. "Requirements".

• "Theorem" vs. "Specication".

This paradigm has been widely put into practice through industrial methodologies such as the one proposed by RODIN 5 . Nonetheless there exists an important limitation: we start from a specication that is supposed to be correct. Don't forget that in SE, even using very proven methods, the initial specication remains a text in natural language, representing what the customer wants. And there is no guarantee that this text is right representative of the client's needs.

Our proposal for VALID is to ll this gap, i.e. the ability to develop a 1 st validated specication of the customer's needs. How to validate the client's needs? A well-accepted solution is to build a rigorous specication of the future system. Of course we do not claim that the transition from the client's textual needs to a rigorous specication of the future system is simple. Indeed the initial text in natural language is, by denition, very informal while a rigorous specication is very formal. This is the reason we introduce in VALID the means to add the semantics making the specication more and more rigorous, while allowing to check that each step is correct. The curious reader could ask the question: How to validate a rigorous, even formal specication?

We use the traditional method of reverse-engineering. This one consists in translating the formal text into an informal one, translated by the assistance to customer. As much as the transition from informal to formal requires a very rigorous method6 , the reverse transition is much more easy. Any error induced is immediately detected during a simple review7 by the customer and the PM.

The VALID process

How to move from textual needs to a rigorous specication of the system to be developed?

The process proposed by VALID is described in the gure 1.2. It shows 3 sequential treatments and 5 documents. The French reader must pay attention: "Validation and Verication" in English are opposed in French!

Goal Oriented Requirement Engineering (GORE)

The 1 st step of VALID refers to GORE technology which introduces goals, whether they are functional or non-functional. Many rigorous methodologies are GORE available. We have chosen KAOS8 for two main reasons:

• rst, the method has been introduced in the Axel Van Lamsweerde's remarkable book Requirements Engineering, From System Goals to UML Models to Software Specications, 2009, Wiley;

• secondly, the fact that KAOS as a method is supported by a commercial tool: Objectiver 9 .

The GORE input document is the initial specication (URD)10 provided by the client. It is supposed to contain the expression of his/her needs. If this specication does not exist from a textual point of view, it will have to be created in order to have an initial entry document to which it can be referred to. GORE's objective is to transform the input URD into an output document that we will call the revisited specication or system specication (SRD). The latter contains both a text and a series of models, constituting a 1 st formalization of the future system. It is important that the revisited specication text conforms to a standard for specications, such as IEEE 830 11 .

As for the rest of the models, it represents a semi-formal specication of the future system. GORE technology is particularly important because it allows you to start designing the future system. The output document SRD should ideally have 3 properties:

• it must be complete, i.e. it must explicitly contain all the needs (functional and nonfunctional) of the client,

• it must be consistent, i.e. there must be no contradiction between the user's needs,

• all needs must be satised, i.e. they can be implemented with the available technologies.

Obtaining these 3 properties is essential if we want to develop a VALID system. Indeed, the initial specications contain a lot of implicit information and are therefore particularly incomplete! Moreover, the client's needs are the concatenation of all the needs expressed by his/her various stakeholders. It is not thus surprising that needs contain many contradictions. Last but not least, the customer certainly wants to see his/her system implemented! To do this, he/she has a budget and it is therefore essential that the SRD can be implemented. When implementation can't be reach, it is mandatory to explain why certain functionalities (i.e goals) or non-functionalities (i.e. constraints) cannot be implemented.

UML diagrams

The 2 nd step of the VALID process is the one that takes us from a revisited specications (text and set of models) to a 1 st system architecture. After having clearly dened what the future system will have to satisfy, it is necessary to be able to model the future system in an exclusively functional form. Any computer, despite all the progress made since the beginning of computing, is mainly able to transform data into other data. This means that both the goals (functional aspects) and the constraints (non-functional aspects) of the URD must all be converted into functions. While this does not pose any major diculty for the functional aspects, there is a need to transform all non-functionalities (or constraints) into functionalities. How to do that? One well accepted solution is to build, through appropriate notations, a static and dynamic representation of the future system. The static representation must make it possible to identify which are the components of the system and their relationships. While the dynamic representation must make it possible to express the behavior of each component.

Having modeled in a very abstract way the static and dynamic aspects of a system, it is then possible to answer the question: is it what the customer expect? It is quite obvious that the UML notations oer right possibilities as far as we have restricted UML diagrams use.

We have chosen 2 types of diagrams: 1. the class diagram, 2. the state-transitions diagrams.

The 1 st is used for representing the system from a static point of view whereas the 2 nd is used for representing the behavioral aspect of each component. These 2 types of diagrams will allow us to have a static and dynamic vision of the business architecture 12 . As a result, the vocabulary used is still the client's vocabulary. Obviously, the development by the PM of the system will transform each of the business classes into computer classes.

How to move from the revised specications to the system architecture?

The revised specications contain, by denition and in text form, all the functionalities and constraints to be met. These functionalities and constraints are (theoretically) all translated in terms of processing (i.e. operations). We propose to group operations into classes, in the traditional sense of Object Orientation. In other words, the modeling of the revised specications makes it possible to identify operations that are grouped into classes, responsible for one or more operations (i.e. functionalities). Of course, the grouping is not random: it is guided by the method chosen to model the revised specications.

In particular, it is necessary to introduce into the system architecture the models of the entities on which the operations (requirements or expectations) act. We will simply say that we must not forget to represent the manipulated data. The resulting class diagram will therefore include on the one hand the system and environment agents, and on the other hand the data handled by these agents. The transition from static to dynamic aspects is done in the traditional way through the introduction of an automaton that allows to describe, for a given class, how its operations are linked to each other. The 2 types of UML diagrams created will in turn extend the properties of the revised specications. We therefore end up with more complete, coherent and implantable models.

OCL: Object Constraint Language

The 3 rd and last step recommended by VALID is the one that will give a semantics to the functionalities identied during the modeling of the revised specications. It should be remembered that both static and dynamic UML modeling reveals on the one hand the elements manipulated (here classes in the sense of Object Orientation) and on the other hand operation identiers 13 . The latter have no particular meaning, apart from the syntactic likelihood that the assistance to PM has kindly given it. The "Specication in OCL" step consists precisely in giving a 1 st meaning to each operation, i.e. specifying how the operations develop the handled elements. What technique can be used?

The one we propose was promoted a long time ago by C.A.R. Hoare (more often called Tony Hoare) with the notion of pre-conditions and post-conditions and invariants. These notions are found in high-level object-oriented programming languages such as Eiel 14 and JML 15 . The advantage of using such a style is that it expresses not only the "how" but much more important the "what". In other words, before developing an algorithm for any operation, it is highly recommended to identify the properties that this operation respects or confers on the system. And this is the ultimate goal of the specication of the future system. Indeed, any system has a number of properties. It is from the expression of these properties that we can express in "what" an operation respects the properties of the system. Above all, it should not be forgotten that some constraints, even if they have all been transformed into functionalities, represent system properties. In doing so, it will be possible to establish traceability between the initial constraints of the specications and the implantable functionalities.

A potential diculty is related to the identication of the properties of the system to be developed. Indeed, a system invariant is nothing more than a property, usually expressed in logic. Hence the main diculty inherent in the formal approach is: what are the properties of the system? It is clear that some of them are obvious when reading the URD or SRD. The diculty lies in identifying all the properties! The last diculty to solve is the notation to use. We have chosen OCL 16 because this formal language is deliberately simple to access and represents a balance between natural language and mathematical language. It thus makes it possible to limit ambiguities in the specication of software constraints. Its simple grammar allows it to be interpreted by software tools to program by contract and verify that a software meets its technical specications. In particular, OCL allows to manipulate invariants in a model, in the form of pseudo-code:

• pre and post-conditions for an operation,

• navigation expressions,

• Boolean expressions,

• etc.

Another reason for OCL's choice is that it is used in the denition of the UML metamodel.

VALID documents

As presented in the illustration 1.2, VALID takes as input a customer specications and allows to generate in the end a rigorous specication of the system to be developed. This specication is composed on the one hand of the text (in accordance with a certain standard) of the revised specications, and on the other hand of 3 types of diagrams:

1. a business class diagram representative of the static architecture of the future system, 2. a set of state-transition diagrams, one diagram per class, 3. and for each class, an OCL text containing (possibly) class invariants, and for each class operation its semantics in terms of pre-and post-conditions.

In practice, the level of detail of the specication thus constructed will be very strongly coupled to the text of the revised specications. The more detailed and complete and consistent the specication, the more detailed it will be. That means that the 1 st step of VALID is essential. Moreover, it is this step that species the constraints that the future system must respect! It is clear that the more we can transform the constraints in terms of functionality, the better the specication will be. However, it should not be assumed that this transformation will always be simple. There will be cases where we will not be able to do so! It will then be the role of the PM to ask the client or the client's assistance to better specify the constraints of his/her system. In particular, the non-functionalities identied in the initial URD should all be translated into functionalities (or properties). It is imperative to check that this will be the case and to show, through traceability, that any initial constraint is translated either by a functionality or by a property of the system to be implemented.

The notations used in VALID

The 2 nd chapter of VALID presents shortly the selected notations and for each gives an overview of the underlying method to be used to transform input documents into output documents.

KAOS -Objectiver

We introduce here a glossary summarizing the vocabulary used for GORE by Objectiver.

Identier Description Expectation

Terminal goal assigned to an agent of the environment.

Active agent

Object performing operations to achieve goals. Objectiver distinguishes between agents from system (only responsible for requirements) and agents from environment (only responsible for expectations). In no way an agent is a person! Expectations, goal, need Assertion prescriptive capturing an objective to be met through the cooperation of agents. Requirements and expectations are particular cases of goals. Functional goal A goal is qualied as functional when it corresponds to a processing that can be translated by an algorithm. Constraint, operational constraint A goal is considered non-functional when it describes a property of the system (such as security, performance,...) or when it describes a constraint to be met (imposed choice of programming language,...).

Conict

A conict between goals exists if under a certain condition, some goals cannot be achieved all together.

Requirement

Terminal goal assigned to a software agent. Obstacle Condition (other than goal) whose satisfaction may prevent some of the goals to be achieved. Any obstacle denes a set of unwanted behavior. Domain ownership Domain invariant or hypothesis. A domain invariant is a property that we know to be true in each state of the domain, as for instance a physical law. An hypothesis is a property on an element of the domain supposed to be true.

Renement

Relationship linking a goal to its subgoals. The conjunction (AND renement) of all subgoals is a necessary condition to guarantee the rened goal. The disjunction (OR renement) of subgoals stipulates that the satisfaction of a single subgoal is sucient to satisfy the above goal.

Responsibility

Relationship between an agent and a requirement or expectation.

Why KAOS and Objectiver have been chosen

As for the capture of needs, we have chosen the KAOS method supported by the industrial Objectiver environment. The reason for this choice is threefold:

• a simple notation,

• an eective underlying method,

• and above all the possibility of dening a revised specication with the required properties, namely completeness, consistency and satisfaction.

A few explanations

• In G. A. Miller's old article1 entitled "The magical number seven, plus or minus two: Some limits on our capacity for processing information" it has been shown that if we want to master a notation, the number of concepts considered must be small. 7(+/-2) is that famous magic number. As can be seen in the models for goals and responsibilities of KAOS/Objectiver presented below, the number of concepts is very limited. Expectations are also goals but their satisfaction is left outside the system [START_REF] Bourque | Guide to the Software Engineering Body of Knowledge Fundamental Algorithms[END_REF] . It is essential to understand that what will be implemented is the set of the tree leaves, not at all the intermediate goals and subgoals. The eciency of the KAOS method is linked to the fact that we stop rening as soon as the under considered sub-goals can be translated by an algorithm or functionality. Of course it is expected we can implement it very easily.

• Tree Properties. We have written that the revised specications must be complete (i.e. all needs have been considered), consistent (no contradiction between needs) and satised (we know how to implement). These 3 properties are achievable with KAOS/Objectiver. The completeness is obtained by renement AND or OR and by the notion of obstacles. This concept of obstacle is introduced by Axel Van Lamsweerde in his book. It consists in identifying if for each sub-goal there are conditions that make it impossible to reach the sub-goal. As the identication of these obstacles is in a logical form, it is easy to guarantee that all conditions can be identied. Thus the system will be complete. Direct consequence, the identication of these obstacles leads to the introduction of new subgoals to overcome, as much as possible, the obstacles! Consistency is more dicult to overcome. Indeed it depends on the identication, in the goal trees, of goals obviously in contradiction. This work can only be done by analyzing the semantics of the dierent purposes represented in the trees. As these trees can be very large, it is not always easy to discover potential contradictions. Fortunately, there is a rigorous way to demonstrate consistency. This method is based on formal methods that consist in modeling the complete system in the form of mathematical properties expressed using logic.

What logic? Various logics can be used. The most commonly used is the logic of rst-order predicate calculus. It is generally sucient.

Finally, satisability is simple to guarantee because the construction of trees assumes that the leaves are implementable. If this were not the case, it would mean that the tree structure is innite! 2.1.2 Notations for KAOS/Objectiver This gure exhibits 4 modelings:

• the Goal modeling,

• the Responsibility modeling,

• the Operation modeling,

• and the Object modeling. Because we are only concerned with specication, we restrict Objectiver to the 2 upper modelings: Goal modeling and Responsibility modeling. Consequently some more details explanations are mandatory.

• Goal: a goal expresses a functional or non-functional objective that the system must satisfy.

Expectation and Requirement are terminal goals, i.e. goals not rened by convention. An Expectation is a goal assigned to an environment agent. A Requirement is a goal assigned to a system agent.

• Domain Property A domain property represents a domain invariant or an hypothesis. A domain invariant is a true property for a certain element of the system while an hypothesis is a property that is always assumed to be true.

• Obstacle It is a condition other than a goal that may prevent certain goals from being achieved: they may also dene unwanted behavior. Obstacles are essential elements of a risk analysis of the future software.

• Conict (represented by a red zigzag) It is a relationship between 2 goals, a relationship that reects the fact that the 2 conicting goals cannot be achieved at the same time.

Pay attention not to confuse them with obstacles! A conict often reects the fact that some information is missing in the initial specications.

• Relation between goals: goal renement Any non-terminal goal is rened into a tree structure. The tree structure includes AND and/or OR renements.

Renement AND: only one sub-tree (only the renement AND is represented in the goals of gure 2.1 model). An AND tree structure reects the fact that the highest level goal (i.e. the goal father) is satised by the AND (sucient condition) of all its subgoals. Renement OR: from any goal can start several sub-trees. The OR renement reects the fact that the satisfaction of one of the sub-trees is sucient to satisfy the higher level goal.

• Relation between obstacle and goal: obstruction and resolution An obstruction (represented by a red end arrow) is a relationship that goes from an obstacle to a goal: an obstruction prevents the achievement of a goal. A resolution (represented by a green end arrow) is a relationship that goes from a goal to an obstacle: a resolution is the introduction of a (new) (sub)goal to annihilate/mitigate the eects of an obstacle.

• Agent It is an active element of the system achieving (i.e. satisfying) terminal goals (expectation or requirement].

System agent

It is an agent that the PM will have to set up to satisfy requirements.

Environment Agent

It is an external agent to the system BUT whose presence is essential in order to satisfy the expectations.

• Relation between agent and goals This is an assignment of responsibility between an agent of the system and a requirement, an environment agent and an expectation.

Process of building Objectiver diagrams

It should be noted that Objectiver provides a simple diagram of the process recommended by KAOS in the following picture.

Figure 2.2: Objectiver Process

The Objectiver process displays the documents in and out, and in a simplied way the modeling steps. From this illustration it is necessary to remember:

• that incoming documents are not limited to the customer specications alone. Stakeholder interviews and consideration of existing documents are relevant for analyzing the problem and deriving some models,

• that the output documents are on one hand and rst a Web model of the revised specications, and on the other hand and nally the revised textual specications;

As shown by the illustration 2.2 the consequence of the Web document is double: its ease of sharing between stakeholders, and therefore its informal validation by the stakeholders themselves.

The construction of models with the Objectiver support environment is done in 9 sequential steps.

1. Introduction of the URD in an Objectiver text diagram.

2. Text analysis and goal identication.

3. Structuring goals into one or more goal diagrams.

4. Identication of the system and environment agents and building of the responsibility diagrams.

5. Documenting all the concepts (goal diagrams, expectation and requirement, agent).

6. Validation or invalidation of models by stakeholders.

7. Models update.

8. Models strengthening.

SRD generation.

Of course any invalidation obliges to backtrack.

UML Used Notations

With regard to the construction of the class diagram and the state-transitions diagrams of each class, we make the following statement: all readers are familiar with these notations and have a good command of their semantics. We therefore refer to the website where the last version of UML is available. At the end of 2017 it is the version 2.5.1.

Rules to transform goal and responsibility diagrams into UML classes

VALID oers simple transformation rules to move from Objectiver models (limited to goals and responsibilities models) to UML classes. Indeed, by introducing the notion of system and environment agents, Objectiver explicitly assigns the responsibility for the lower-level functionalities (respectively the requirements and the expectations) to these agents. What are these agents in UML? Nothing more than classes as they are dened in Object Orientation. Let us remember that a class is an abstraction that oers, when it is instantiated, services, here terminal goals (requirement and expectation), which are a priori functional. The transformation rule proposed by VALID is therefore:

• any system agent is transformed into an internal class, whose operations are the requirements for which it is responsible,

• any environment agent is transformed into a external class (or utility class), whose operations are the expectations for which it is responsible! The distinction between system class and utility class (or external class) comes from the fact that in KAOS/Objectiver any environment agent is responsible for expectations or services that are/will be available (theoretically) outside the system. While the requirements correspond to elements which are developed inside the system. This rule now allows to consider a 1 st architecture of the system by introducing a client class diagram and state-transitions diagrams.

In other words it is therefore necessary to group the UML classes into a class diagram thus allowing to get the static line. Associating for each class a state-transition diagram allows to control the dynamics of the system4 .

A few semantic details on class diagrams and state-transition diagrams

Class diagram

It is usual when modeling with UML to distinguish between 3 types of classes: the main class, the external classes and the internal ones.

• The main class is the one which is responsible for the others. It is the only one that can be executed.

• The external ones are classes that are mandatory but are only imported. Their development is let to outside the system.

• The internal ones are the classes that the PM must develop. Let us notice that the PM is also concerned with the main task, which oers the main interface of the system.

State-Transitions Diagram

Any state-transitions diagram shows the services i.e. operations oered by the under-considered class. Statecharts have been been introduced by David Harel with his graphical language Statecharts5 . In other words, to describe any state-transition diagram we need 1, and only 1, initial state, and one or more nal states. The lack of nal state would mean that the automaton never stops! A more detailed examination of the state-transitions diagram shows that there exists the notion of guards! A guard is a simple logical expression (very often limited to a logic identier) which controls the transition: the transition is followed if, and only if, the logical guard is true.

Introducing guard allows to make the system complete. Indeed, the renement of goals reveals many subgoals, without being sure that all possible cases have been examined. The obstacles allow us to identify new ones, but once again the completeness is not fully guaranteed. With an automaton we will be able to ask the customer for a another kind of validation. Indeed because he/she regards the class dynamics, the reader is able to detect some missing transitions. It must be noted that introducing some new transitions introduces as well new information that could be totally absent from the initial specications.

Benet of static and dynamic modeling according to UML

In the context of VALID limiting the use of UML to static and dynamic modeling is enough because for specifying, the "what" is the most important point. The "what" clearly means expressing what are the logical properties of the system. The operations are as well expressed as "what" and not necessarily as "how" in an algoritmic way. This way of modeling allows to get the list of components that will have to be implemented and for each of them their behavior is represented in a logical way. Be careful to check that all components are taken into account, and in particular all data, also represented by classes. The identication of these data is relatively simple as most of them appear as parameters of the identied operations.

Modeling the class diagram and each class behavior allows both to correct certain errors and especially to validate the completeness of the document. In practice, completeness is invalidated because it is more likely to detect gaps or errors. This is a general remark not to be forgotten! We know more about invalidating than validating! The modeling step with UML allows us to give more semantics by specifying in a graphical form the behavior of any instance of each class. So the completeness aspects (or on the contrary the lack of completeness) are well highlighted.

Specication of the system with OCL

Why do you have to specify formally before programming a system? Short reminder: in the initial step of VALID we show how we can move from the needs of customer (URD) to a specication of the system (SRD). This step allows to be sure that have been clearly identied the client's needs. The 2 nd step then allows to go from the revised specications to an architecture of the system. This static and partially dynamic architecture is the initial condition to be satised before developing programs. But this architecture is insucient because we do not have any semantic content for the components of the system. The role of the 3 rd step of VALID is to specify the system, i.e. to formally describe what each component must do. For this description we need precise notations. Before switching to an algorithmic programming language, it is important to specify using traditional mathematical logic, possibly supplemented by algorithmic. And to do this, the Object Constraint Language (OCL6) (as well as other notations such as JML -Java Modeling Language) is a good rating. We will therefore be able to logically specify properties of the elements composing the system or simply specify operations.

For the interested reader we recall the OCL syntax in the form of a syntactic map. The VALID methodology oers a process and includes well consolidated ratings, and currently used. Any methodology requiring the presence of support, we have selected for each step industrial tools and, as far as possible, free of charge.

Tooling to support GORE

For the GORE step, we choose Objectiver for the reasons mentioned above. This industrial tool, in addition to its expressive power, is free for teaching and research. http://www.objectiver.com allows you to download an evaluation version of the supporting tool.

UML support tooling

For step 2, i. e. the UML modeling of the static system and state-transitions diagrams of classes, many tools are available.

• Papyrus in its integrated version at IDE Eclipse https://eclipse.org/papyrus/ is a very relevant tool. It should be noted that Papyrus includes an OCL editor directly linked to the dierent UML diagrams that we can build.

• StarUML is a very simple solution is down-loadable at http://staruml.io.

• ArgoUML is a free software that supports the following languages: Java, C++, PHP, C# and SQL. We have used it!

The list of UML editors is rather long. Regardless of the UML support chosen, our objective remains the manipulation (construction and especially verication) of OCL specications.

Outlet support tooling for OCL

For OCL specications we suggest rstly to use any text editor, and then to manipulate them with the USE environment. This environment is freely available at: https://sourceforge.net/projectsuseocl/.

USE is a very powerful environment for textual and graphical specications in OCL. It must be noted that the USE environment allows to visualize a posteriori any class diagram written in OCL. Before using the USE environment the interested reader should carefully read the User Manual, entitled USE: UML-based Specication Environment.

Illustrating VALID with a toy example

In this toy example we exemplify the best way to develop formal specications. Firstly, GORE, secondly class diagram and automaton of each class, and nally OCL specication of each class.

URD and SRD of a very small banking system

The very simple URD of our banking system refers to bank accounts and to their owners. The main objective is restricted to the banking operations any customer may perform. Thus the URD should be as follows.

In the context of a banking system, we have to consider banks and their customers. Only a bank may open an account for a customer. Opening an account obliges to credit it immediately. Very important constraint: each customer must have a positive balance of his/her account. The available operations on any account are: debit, credit, ask for the balance, and close an account.

Reusing the Objectiver methodology suggests the following gure.

Figure 3.1: Higher level diagram for the banking system

The "banking system" highest goal is rened into 2 subgoals: "managing accounts" and "managing customers".

The subgoal "managing accounts" is itself redened into 3 requirements. For the renement of "account management", we have created 3 requirements, allowing respectively to create an account, to delete an account and to associate an account with a customer. These 3 requirements are under the responsibility of the "bank" agent.

The reader must remember that requirements must be implemented while expectations are available outside the system. When we develop using Objectiver, giving right explanations (denitions, comments, ...) are particularly important within the "XXX.ob le". Indeed validation goes trough an intensive reading of explanations that are regarded as justications! The intermediate goal "managing customers" is related to people who have a bank account. Very surprisingly, the intermediate goal is "managing customers" and its renement is restricted to operations that end users (here the customer) may act. These operations are well known:

• credit, i.e. putting money on an account,

• debit, i.e. the reverse operation, without forgetting that the balance must always be positive,

• close, that will stop any future operations on an account,

• and ask for balance, i.e. display the balance of the account.

The agent responsible for the 4 requirements is "account". The curious reader may ask the question: why the "account" agent? There is a very simple reason. Don't forget that in VALID any agent is further transformed into a class. And as the reader knows, any class in Object Orientation oers usable operations (as far as they are "public").

Here the operations executed by a customer are the ones the "account" agents supports.

What you should not do with Objectiver is to build diagrams containing too many requirements and/or expectations. The diagram below is relatively unreadable.

Ideally, any sub-goal should only be rened by a single level of sub-goals, expectations and/or requirements.

Figure 3.4: Global diagram to avoid

The readability of any goal diagram is essential to the problem understanding and also to the proposed solution.

Dictionary of manipulated symbols It is mandatory to explicitly exhibit the dictionary of symbols as it is usually done when building UML diagrams. The wise reader could be surprised that the close operation is supporting by the class "account" and not by a class (not introduce here) "customer". It must be remembered that in Object Orientation there exists the notion of "actor" who is behind the operations. In other words an "actor" requires operations but in no way supports them. The 2 nd remark is relative to the lack of attributes in the 2 classes. This is quite normal since GORE is limited to identify classes and their operations.

Producing the SRD

According to the VALID process the rst step is responsible for transforming the URD into the SRD of the system. It is presented in the annex A.

Property identication

To be able to specify formally in OCL it is rst of all necessary to identify the properties that the system must preserve. Here we suggest 2 properties.

1. All bank accounts must have a positive balance.

2. When creating an account it is mandatory to immediately credit it.

The consideration of properties can be built either at the graphic level or at the OCL text level. With ArgoUML, the UML tool we have used, the 1 st property can be translated by a comment, as presented in the following gure. As it can be seen in the gure 3.7 after the "initialisation" state, a "credit" state appears. The reader familiar with UML state-transition diagrams will easily introduce "entry", "do" and "exit" operations in the states, and "guards" on the dierent transitions. This will be an interesting exercice. As we can read it:

• we have specied that any account must have a positive balance

• and that the debit operation preservers eectively it

Using the USE environment we get the following gure:

First conclusions

From this simple example we can conclude that we must proceed with extreme rigor if we want to obtain a result that oers the 3 expected properties of completeness, consistency and satisability. However, it should not be forgotten that what has been built is a set of models from a client URD. What about the validation of this modeling? What techniques to use and also who can conduct this evaluation?

4 Smartphone

This chapter deals with a more elaborate example, following the VALID process.

Requirements document (URD) of a secure smartphone

The initial URD could be limited to a very simple sentence: secure smartphone via the use of a ngerprint. Before going into detail, we remind all our readers (who certainly have a smartphone) what we envision as a denition. A today's mobile phone1 , much often called smartphone, oers many features: web browsers, games, cameras, video players and even navigational systems. Data entry is most often done using a touch screen or, more rarely, with a keyboard or stylus. As for computers, it can run various software/applications thanks to an operating system specially designed for mobile phones. Therefore some functionalities in addition to those of traditional phones are added. The most sophisticated devices also benet from voice recognition and voice synthesis. Some problems to be considered Given the wealth of services provided by a smartphone the amount of personal information is very large and should therefore be particularly protected. Hence a high level of security for accessing its content. In order to guarantee secure access to data, the user must systematically be identied when he/she wants to use his/her phone. In order to make the use of smartphones safer, (some) manufacturers have equipped them with digital ngerprint readers2 . It is then necessary to ensure that the digital ngerprint will be perfectly recognized, which raises many questions.

• How to create a rst ngerprint?

• How to ensure that the ngerprint recognition is correct?

• What should we consider doing if we want to sell the smartphone?

• what about a backup mode without using the ngerprint (this is the case if the smartphone owner can no longer use his/her nger).

• and so on.

We present here how Objectiver was used to model the revisited specications for a smartphone, intelligent and secure. It is essential to note that the models presented below reects a potential solution, and that many other models may be just as valid. In other words, it is necessary to be convinced that the models are complete, consistent and satisable, thus leading to an eective implementation. Only the discovery of an error invalidates and therefore, the reader must make a serious eort to understand the proposed solution.

Objectiver models

The presentation of the goal trees and their reading is done from left to right and in depth with one diagram per page. It should be noted that there is no priority between the dierent subgoals. We remind you that all subgoals must be satised during a renement AND, while for a renement OR only one satised subgoal guarantees the father goal. The models presented here mostly introduce the notion of obstacle. This concept makes it possible to take into account everything that prevents a functionality from succeeding. It corresponds to risk analysis, very traditional in Software Engineering. 1. "phone communication" allows dialog between a caller and a called party.

Initial level

2. "other features" covers all the other services oered by the smartphone.

3. "authentication" ensures security aspects.

4. "shared data" corresponds to all the information managed by the various applications.

5. "selling" concerns the actions to be taken when selling the phone.

It should be noted that points 4 and 5 above do not appear explicitly in the initial URD. However, they must be taken into account for greater completeness. Important: the "smartphone theft" aspect does not need to be considered since there is an authentication required to use the phone. As any smartphone is geolocatable nowadays, it could even have been considered to recover a stolen smartphone.

It is usual at the highest level not to identify obstacles! Obviously the "caller", "communication" and "called" requirements cannot give rise to an obstacle because in order to identify an obstacle it is necessary to take the negation of all (sub)goals and check whether this negation can in turn be rened. For the expectations considered ("caller", "communication" and "called"), their negation makes no sense. They should therefore not be considered.

Phone communication

On the other hand, the negation of the sub-goal "phone communication" is simply translated as "no telephone network". And this last sub-goal is solved by an OR of 2 requirements, "waiting for repair" and "looking for another network". The attentive reader notices that it is indeed an OR between the 2 resolutions, so that these 2 resolutions must be taken into account at the design level. The choice to take expectations is linked to the fact that it is the telephone hardware that provides these services. The considered obstacle is the fact of not having a phone network, represented by the "no phone network" obstacle. In this case, 2 resolutions are proposed:

• "waiting for repair" states that the telephone hardware does not do anything.

• "looking for a another network" states that the hardware searches for a new network.

It is important to remember that in Objectiver we must model all possible cases. It is at the implementation stage that a nal choice will be made, depending on the capabilities of the considered hardware. It should also be noted that in modeling, expectations just as requirements correspond to actions or treatments, translated by verbs or nouns.

The only considered obstacle is the lack of a telephone network. In this case, it is proposed either to wait for the network to be repaired or to search for a new network. These requirements are the responsibility of 2 dierent agents: "phone network" on one side, "services management" on the other. We have limited the only "other features" to the exchange of SMS, TV display, camera and agenda, without any particular specication since these features are expectations and not requirements to be developed. The environmental agent responsible is unique: we have chosen the "Master Card" because it contains all the hardware and software providing these services. The only obstacle considered is the fact that there are no features available. The model does not specify why there are no features available but takes for resolution the display of a message. To be even more complete, it would have been necessary to consider the fact that display is not possible! What to do in such a case? Potential solutions: turn o or block the smartphone. These solutions are not introduced in this diagram. In the case of a secure smartphone, authentication is provided via a ngerprint as written in the URD. In order to be more complete we have added the recognition of a code. The 2 possibilities are modeled without saying which one is used. Recall: the dierence between an AND renement and an OR renement is that all the subgoals of an AND are to be satised, whereas for an OR a single sub-purpose is sucient to satisfy the higher level goal. So here the system oers authentication either via a code, or via a ngerprint recognition, or even both.

Other features

Authentication

• "code storage", "code check", "ngerprint storage" and "ngerprint check" are expectations under the responsibility of hardware elements, here represented by "code management" and "ngerprint management".

• These 2 managements support the reading services, without specifying the details in any way.

Important note: In a specication phase, it is essential to specify, i.e. to consider, all possible renements. Nonetheless we have not introduced the way readings are done! Every smartphone contains a lot of data, some of which are user-related. Whatever the information, it must be possible to enter, delete and display it. That's why that an agent, "information management", is responsible for 3 requirements.

Management of shared data

• "introduction" allows to introduce shared information.

• "deletion" allows to delete shared information.

• "display" allows to view any shared data.

Again, what are the shared data? It is the role of the phone builder to inform the end user about what belongs to the user and what is inherent to the smartphone. No obstacles are suggested.

Step 3: Identication of class attributes

How to identify class attributes? The answer to this important question comes from the fact that the 1 st step of VALID has identied what the system should do, i.e. what are the functionalities and the constraints (i.e non-functionalities) to be satised. Functionality and non-functionality act on a data set that is transcribed as class attributes.

1. class phone-network: a single attribute of type "String". It represents the identier of the phone network.

2. class services-management: a list of "String", each one identifying a service.

3. class master-card: no need for a particular attribute.

4. class code-management: 2 attributes are considered. The 1 st one represents the code which is stored as reference ("storedCode"), the 2 nd one ("readCode") being the code which is read. "code" is a primitive type [START_REF] Bourque | Guide to the Software Engineering Body of Knowledge Fundamental Algorithms[END_REF] .

5. class ngerprint-management: similarly to "code management" 2 attributes are considered. The 1 st one represents the image of ngerprint which is stored ("storedFingerprint"), the 2 nd ("readFingerprint") being the ngerprint which is read. A ngerprint is of type "image", a primitive type no detailed.

6. information-management: a single attribute "SharedInformation" declared as a list of "String". It represents all the information shared between the dierent classes. Note that the nature of the information shared does not need to be explained.

Step 4: Identication of relationships

The master card of any smartphone is the equivalent of a conventional microcomputer. This master card ensures through its components the functionalities 2, 4, 5 and 6, identied above.

In UML we can represent this relationship by an aggregation [START_REF] Abrial | Data Semantics[END_REF] . What is the link between a phone-network and a master-card? Undoubtedly the only relevant link is the notion of communication. And any reader familiar with UMl will translate this relationship by a class association. Indeed the master-card is responsible of transforming voice into electric signals, and sends it to the network. In between there exists the communication.

Of course the conscientious reader will add a few operations to the communication class such as beginnig hour, ending hour, duration, cost, and so on.

Step 5: Graphical representation of the smartphone

In the following gure is the 1 st graphical representation the class diagram for the smartphone. • "phone-number" and "image" are predened classes.

• Any "phone-network" is connected to a non empty set of "master-card" via the class association "communication".

• Any "master-card is linked to 0 or 1 "phone-network".

• Any "master-card" is an aggregation of: 0 or 1 "ngerprint-management". 0 or 1 "code-management". 1 and only 1 "services-management".

1 and only 1 "information-management". "ngerprint-management, code-management, services-management, information-management" are the unique elements of a "master-card".

The identiers chosen for the operations are suciently explicit to understand what they represent as functionalities. Thus it is time to go further and to introduce the full code of the dierent classes.

4.4 Which properties for a an intelligent and secure smartphone?

Reading carefully the smartphone's URD introduces the notion of "security". Nonetheless, the noun "security" must not be taken into account. Indeed in the URD the means to ensure "security" are directly introduced. To guarantee "security" the URD recommends the use of a ngerprint. In order to be more complete we have as well introduced the use of a code when the end user's nger is not available! Is there any other property? The URD doens not provide some more! The conscientious reader should be convinced that in many cases, there are less properties than the 1 st URD's reading implies.

OCL specication of the smartphone

Specifying can be done in two dierent ways: on one hand a single text le in which all OCL specications are included or on the other hand as many OCL text les as there are classes.

We have chosen the second way because it is more readable i.e. understandable. It must be noted that all the OCL specications have been syntactically checked within the USE environment.

The wise reader should certainly ask himself the question: what about a semantical check? Unfortunately the only available answer is "a careful reading" of OCL texts! Before looking at the dierent OCL codes, an important remark is relative at the way specications are presented. Indeed, some readers could be surprised not to read complete specications.

As far as we do not know what is their semantics, some operations are to their signature, without any code.

A few comments

• The model above actually shows an additional class, the "Image" class, which is a type used for the declaration of the "storedFingerprint" and "readFingerprint" attributes.

• The operation code shows an unspecied operation: "readFingerprint" which returns an image as a result. This operation, although necessary and duly identied during the construction of models, is unspecied. Any reader understand of course what reading means, but OCL does not provide the possibility to do so. It is quite obvious that the passage to an implementation would require the possibility of reading!

• The "ngerprintStorage" operation species that the image "p" must be assigned to the attribute "footprintRead".

• Checking ngerprint results in two operations: "ngerprintCheckOK" and "ngerprintChec-kNotOK". This style of specication lists all possible cases.

Comments

• "storedCode" and "readCode" are 2 sets of integers whose number of elements is not specied.

• "readCode" represents the code which is read, while "storedCode" is the stored code which serves as a reference.

• At this stage of the specication it would be necessary to introduce a state-transition diagram introducing the dynamics of the "codeManagement" class in order to specify when the rst code is read and stored; the reader knowing UML and state-transition diagrams will have no diculty to do it!

• The "codeCheck" operation is specied only to indicate that the read code is or is not identical to the stored code.

• Ideally the "codeCheck" operation should including a display informing the user!

The attentive reader will have noticed how an operation is coded. To do this, insert the "=" symbol before its denition! Cf. section 2.3 located at page 20.

The 2 following OCL specications "servicesManagement" and "informationManagament" are introduced only by the signatures of their operations. This is justied because no information in the URD allows to do more! As written in the summary, the VALID methodology eectively makes it possible to move from any customer specications (the initial URD) to a rigorous specication of the future system, i.e. the system to be developed.

The 1 st step is the one that allows you to switch from the client's URD to the new client's URD accepted by the project management. This revised specication is an important element because it denes precisely what the customer expects and what the project management will achieve. Thus it is also the contractual basis between end's user and the project management.

The 2 nd step is a simple and systematic intermediate step. It allows to move from any text in natural language, text already presenting essential qualities (completeness, consistency and satisability), to a 1 st modeling of the future system via the UML notation, limited to class diagrams and state-transitions diagrams. The models products constitute a static and dynamic vision of the future system, limited to its behavior. In other words, how the future system reacts or what services it provides and how to access them.

Finally, the 3 rd step is the one that allows you to specify the future system. This specication makes it possible to give a semantics to the dierent services that have been dened and accepted in the system requirements document. It should be noted that the specication thus provided identies many attributes that were not previously identied.

It is during this 3 rd step the semantics of operations are introduced! And consequently validated or invalidated by end users.

Finally, for VALID to be really well implemented, it is necessary to harmoniously combine the Objectiver environment, and the useful Integrated Development Environment USE.

A Appendix 1 Introduction

Document Purpose

In the context of a G1 banking system, we have to consider banks and their customers. Only a bank may open an account for a customer. Opening an account obliges to credit it immediately. Very important constraint: each customer must have a positive balance of his/her account. The available operations on any account are: debit, credit, ask for the balance, and close an account.

System Scope

The scope is very general but a lot of classical information are missing, conducting to a quite limited scope.

Definitions, acronyms, and abbreviations

No specific reference.

Document Overview

The bank account management system has identied 2 main agents: bank and account. Very surpringly the customer does not appear as an agent!

General Requirements

This section aims at inventorying the user requirements by starting from the most strategic goals towards technical requirements needed to achieve them. Subsections are numbered G1, G2, ... Each section is structured as follows: there is first an introductory text presenting the section content and commenting the diagram which follows. The section continues with a list of notes. In this list, goals, the name of which end with an asterisk (*), are detailed in another section Gi of this document. The other descriptions are additional information on some goals appearing in the diagram. Each goal mentioned in the list is actually a clickable reference in the electronic version of this document. Finally the section ends with the list of the requirements attached to this section.

G1. banking system

The banking system is refined into 2 subgoals. One refers to managing accounts, the other one is relative to customer's management.

G2. managing accounts

Managing accounts is limited for any account 3 requirements: creation and deletion of accounts, and establishing a link between an account and a customer..

R-3 link with customer

Any account must be linked to a customer. bank

G3. managing customers

Very surprisingly, managing customers is relative to the actions any customer can do on his/her account. Thus, credit, debit, ask for balance, and close.

R-4 credit

Adding some money to an account. account

R-5 debit

Removing some money from an account with respect of the constraint that the balance must be positive.

account

R-6 close

The customer is responsible for asking the closure of his/her account.

account R-7 ask for balance Display of the account balance. account

Specific Requirements

This section of the SRS lists again all the requirements stated in the first part of the document. They are classified this time according to the agents who are responsible for them. The system agents are first listed, then the environment agents, and finally, if needed, the undefined category agents. Each requirement stated is associated with a page number referring to the first part of this document where this requirement appears for the first time. Additionally, this section can also contain conceptual descriptions regarding the application domain or the system.

E-4 credit

Adding some money to an account. 3

E-6 close

The customer is responsible for asking the closure of his/her account. 3

E-5 debit

Removing some money from an account with respect of the constraint that the balance must be positive.

List of Responsibilities

Requirement -Expectation Page

E-1 account creation

Creation of an account 2

E-2 account deletion

Deletion of an account 3

E-3 link with customer

Any account must be linked to a customer. 3

1 Introduction

Document Purpose

A reliable smartphone is a mobile phone with many functionalities: personal digital assistant, digital camera and even laptop. Data entry is most often done via a touch screen or, more rarely, a keyboard or stylus.

Based on the principle of a computer, it can run various software/applications using an operating system specially designed for mobile phones, and thus in particular provide functionalities in addition to those of traditional mobile phones such as: diary, television, calendar, web browsing, consulting and sending e-mail, localisation, dictaphone / tape recorder, calculator, compass, accelerometer, gyroscope, voice mail, digital cartography, etc. The most sophisticated devices also benefit from voice recognition and voice synthesis.

Given the wealth of services provided by a smartphone, the amount of personal information is very large and must therefore be particularly protected. Hence a very high level of safety and security with regard to access to its content. In order to do so, the user must systematically be identified when he/she wants to use his phone manually. In order to make the use of smartphones safe, manufacturers have equipped them with fingerprint readers, even if this system is not flawless. This raises a number of questions: How do you create a first fingerprint? How can we guarantee that the fingerprint recognition is correct? What should the end userdo if he/she wants to sell the smartphone? Many other questions will have to be considered! In particular, what about a backup mode without using the fingerprint (this is the case if the smartphone owner can no longer use his fingerprints).

System Scope

The scope is very large: from minimal smartphone to very sophisticated laptop. Of course the scope is directly dependent of the price the end user can pay!

Definitions, acronyms, and abbreviations code reader

Smartphone hardware able to read code. All the usual smartphones 'even the cheapest ones) offer such an hardware.

fingerprint reader

Smartphone hardware able to read fingerprint.

information manager

The "information manager" agent is responsible for the 4 services: introduction, deletion, display and initialisation of all data.

mother card

In current smartphones the mother card includes all the needed components for offering services.

phone network

The "phone network" is an environment agent allowing dialog (i.e. communication) between a "caller" and "a called".

No other consideration for the involved hardware.

services manager 1

It represents the agent which manages all the services not including vocal communication aspects. For instance after 3 sequential failures in recognition (code or fingerprint). In the latter case a dedicated procedure to recover is mandatory. The dedicated procedure is provided by the smartphone seller.

Each manufacturer produces so many different smartphones that references are impossible to be mentioned.

Document Overview

What is presented in the diagram is a reliable smartphone. Reliability is guaranteed via a fingerprint reader and a code reader. The URD mentions many points that all have been taken into account. One important point not covered by the diagram is regarding the performances. Indeed the first performance is of course the efficiency of communication. The other ones are not at all considered.

General Requirements

This section aims at inventorying the user requirements by starting from the most strategic goals towards technical requirements needed to achieve them. Subsections are numbered G1, G2, ... Each section is structured as follows: there is first an introductory text presenting the section content and commenting the diagram which follows. The section continues with a list of notes. In this list, goals, the name of which end with an asterisk (*), are detailed in another section Gi of this document. The other descriptions are additional information on some goals appearing in the diagram. Each goal mentioned in the list is actually a clickable reference in the electronic version of this document. Finally the section ends with the list of the requirements attached to this section.

G1. looking for another network

When no phone network is available "looking for another network" seems a right solution.

G3. smartphone

This top level diagram present 5 goals an intelligent and secure smartphone must provide: 1) "authentication" which the way how user is recognized 2) "phone communication" which allows a dialogue between a caller and a called person 3) "shared data" which described which data are shared by the smartphone and the end user 4) "selling" which introduces what to do when a smartphone is sold 5) and "other services" which is the list of other services supported by the smartphone It must be noticed that some of the above goals are not present in the initial URD. The new ones that have been introduced are part of larger wholeness. Notice: "theft" is not yet considered since "authentication" is required before any use of the smartphone.

G4. authentication

In the context of a secure smartphone authentication is realized either by a code reading or a fingerprint reading. Or by both. It must be noticed that in this diagram we represent an OR refinement, that translates the above sentence. More over an obstacle is introduced. This obstacle introduces the reading failure, without considering the reason of the failure. In case of failure the action consists in closing the smartphone. The services manager is the responsible agent.

G5. code introduction

"code introduction" is very similar to "fingerprint introduction". .

-"code storage" is what to be do after a first reading of a code (after buying the smartphone) -"code cehck" check wether a read code is conformant or not to the stored code. These 2 requirements are under the responsibility agent "code manager".

G6. phone communication

Usually a phone communication is an exchange between 2 phones: one is the caller, the other is the called. In this refinement diagram we have made a clear distinction between expectations responsible for the harware aspect, and requirements relative to what must be done for accessing a phone network. For the obstacle we have introduced 2 different resolutions: either "waiting for repairs" or "looking for another network". These 2 resolutions suppose that much more information, not here considered, is available.

R-5 call

The caller is the personn who initiates the communication through his smartphone. The call is dependent on the used hardware. phone network

R-6 be called

The called person is the one who has an operational smartphone and receives a signal (ring, vibration, ...). The called person may take into account the signal or not, which means "answer or not". phone network

R-7 exchange

The exchange bewteen a caller and a called is usually a conversation. The model does not take into account its content. phone network

G7. shared data

The diagram "shared data" does not explain which data are shared. Instead it presents what is done with the shared data. Here "introduction, deletion, display" are the only one which have been considered. No obstacle is considered.

R-9 deletion

Requirement allowing to delete some shared data. information manager

R-10 introduction

Requirement which allows to introduce some shared data. Implementation should describe which information is shared. information manager

G8. other services

In this diagram "other services" is limited to the usual smartphones offer. SMS, TV, diary, camera are more often present in sophisticated smartphone.

As the phone hardware manages such services, they are expectation and not requirements. The mother card is the responsible environment agent. The only obstacle is relative to "no available services". In this cas a simple message is displayed. without considering why no services

Specific Requirements

This section of the SRS lists again all the requirements stated in the first part of the document. They are classified this time according to the agents who are responsible for them. The system agents are first listed, then the environment agents, and finally, if needed, the undefined category agents. Each requirement stated is associated with a page number referring to the first part of this document where this requirement appears for the first time. Additionally, this section can also contain conceptual descriptions regarding the application domain or the system.

List of Responsibilities

Requirement -Expectation Page E-12 CAMERA Par caméra nous incluons la possibilité de faire des photos mais également de faire des films. Attention, ce service est extrêmement gourmand en ressource mémoire. 9 E-11 DIARY Depending on the smartphone, DIARY is simply the display of calendar, or, more interesting, recording things to do, and corresponding means (ring, vibration, others) of recall them. 9

E-13 TV

Displaying TV is allowed by some smartphones. It is very ressources (memory and CPU) consuming, reason that some weak smartphones do not offer it. 9

G2 message display

Simple message in charge of display. 2

E-14 SMS

Most smartphone allows direct exchange of SMS. 9

phone network

Description

The "phone network" is an environment agent allowing dialog (i.e. communication) between a "caller" and "a called". No other consideration for the involved hardware.

Responsibility Diagram

phone network exchange call be called waiting for repairs

List of Responsibilities

Requirement -Expectation Page

E-7 exchange

The exchange bewteen a caller and a called is usually a conversation. The model does not take into account its content.

E-5 call

The caller is the personn who initiates the communication through his smartphone.

The call is dependent on the used hardware.

E-6 be called

The called person is the one who has an operational smartphone and receives a signal (ring, vibration, ...). The called person may take into account the signal or not, which means "answer or not".

G10 waiting for repairs

When no phone network is available, we can wait for repairs if we know a network does exist. If we don't know the existence of a phone network, we may expect a future installation or moving to another area. The "information manager" agent is responsible for the 4 services: introduction, deletion, display and initialisation of all data.

Responsibility Diagram

information manager display deletion introduction

List of Responsibilities

Requirement -Expectation Page

E-8 display

Requirement that allows to display shared data.

Nothing is indicated regarding the way "display" is done.

E-9 deletion

Requirement allowing to delete some shared data. 8

E-10 introduction

Requirement which allows to introduce some shared data. Implementation should describe which information is shared. For instance after 3 sequential failures in recognition (code or fingerprint). In the latter case a dedicated procedure to recover is mandatory. The dedicated procedure is provided by the smartphone seller.

Responsibility Diagram

services manager looking for another network smartphone closure

List of Responsibilities

Requirement -Expectation Page

G1 looking for another network

When no phone network is available "looking for another network" seems a right solution.

2

G9 smartphone closure

When a smartphone is closed, no one can use it. 9

1. 1

 1 Abrial and Schuman's paradigm . 1.2 VALID process . 2.1 Global view of the Objectiver notations . 2.2 Objectiver Process . 3.1 Higher level diagram for the banking system . 3.2 Account management renement diagram. 3.3 Customer management renement diagram. 3.4 Global diagram to avoid . 3.5 Banking management . 3.6 Bank account must be positive . 3.7 State transition diagram for the class "account" 3.8 Bank account model with the USE environment 4.1 SmartPhone at the highest level . 4.2 Call or receive a call . 4.3 Call or receive a call . 4.4 Other features . 4.5 Authentication . 4.6 All about managing shared information . 4.7 Reset smartphone . 4.8 Class diagram for the smartphone . Foreword: The Art of Specifying is a direct tribute to the D. Knuth impressive books The Art of Programming.

Figure 1 . 1 :

 11 Figure 1.1: Abrial and Schuman's paradigm

Figure 1

 1 Figure 1.2: VALID process

Figure 2 . 1 :

 21 Figure 2.1: Global view of the Objectiver notations

 UML model: <umlmodel> ::= model <modelname> [<modelbody>] <modelname>::= <name> ___________________________________ Model body <modelbody>::= { <enumerationdefinition> } { <associationdefinition> | <associationclassdefinition> } <classdefinition> {<classdefinition> | <associationdefinition> | <associationclassdefinition>} [constraints { constraintdefinition> }] ___ Enumeration <enumerationdefinition> ::= enum <enumerationname> { <elementname> { , <elementnamei } <enumerationname> ::= <name> <elementname> ::= <name> ___ Class definition <classdefinition> ::= [abstract] class <classname> [< classname> { , <classname> }] [attributes { <attributename> : <type> }] [operations { <operationdeclaration> [= <oclexpression>] { <preconditiondefinition> | <postconditiondefinitioni } }] [constraints { <invariantdefinition> }] end <classname> ::= <name> <attributename> ::= <name> _________________________________ Association definition <associationdefinition> ::= (association | composition | aggregation) <associationname> between <classname> [<multiplicity>] [role <rolename>] [ordered] <classname> [<multiplicity>] [role <rolename>] [ordered] { <classname> [<multiplicity>] [role <rolename>] [ordered] } end <multiplicity> ::= (* | <digit> { <digit> } [.. (* | <digit> { <digit> })]) { , (* | <digit> { <digit> } [.. (* | <digit> { <digit> })]) } <associationname> ::= <name> <rolename> ::= <name> ________________________________ Associationclass definition <associationclassdefinition> ::= [abstract] associationclass <classname> [< <classname> { , <classname> }] between <classname> [<multiplicity>] [role <rolename>] [ordered] <classname> [<multiplicity>] [role <rolename>] [ordered] { <classname> [<multiplicity>] [role <rolename>] [ordered] } [attributes { <attributename> : <type> }] [operations { <operationdeclaration> [= <oclexpression>] {<preconditiondefinition> | <postconditiondefinition> } }] [constraints { <invariantdefinition> }] end __________________ Constraint <constraintdefinition> ::= <invariantcontext> | <operationcontext> <invariantcontext> ::= context [<variablename> :] <classname> { <invariantdefinition> <operationcontext> ::= context <classname> <operationconstraints> <invariantdefinition> ::= inv [<invariantname>] : <booleanoclexpression> <operationconstraints> ::= <operationdeclaration> (<preconditiondefinition> | <postconditiondefinition>) { <preconditiondefinition> | <postconditiondefinition> } <preconditiondefinition> ::= pre [<preconditionname>] : <booleanoclexpression> <postconditiondefinition> ::= post [<postconditionname>] : <booleanoclexpression>) <invariantname> :<operationdeclaration> ::= <operationname> ([<parameters>]) [: <type>] <parameters> ::= <parametername> : <type> { , <parametername> : <type> } <operationname> :<collectiontype> | <simpletype> | <enumerationname> <collectiontype> ::= (Set | Bag | Sequence) ({ <collectiontype> | <simpletype> | <enumerationname> }) <simpletype> ::= Integer | Real | Boolean | String | <classname> _____________________________ <name> ::= (<letter> |) { <letter> | <digit> | } <letter> ::= a | b | . . . | z | A | B | . . . | Z <digit> ::= 0 | 1 | . . . | 9 <oclexpression> ::= (* Replace this symbol by an ordinary OCL expression. <booleanoclexpression> ::= (* Replace this symbol by an ordinary OCLexpression which results in a boolean value. *

Figure 3 . 2 :

 32 Figure 3.2: Account management renement diagram.

Figure 3 . 3 :

 33 Figure 3.3: Customer management renement diagram.

 Figure 3.5: Banking management This gure 3.5 has been directly built from its denition: a bank manages accounts (1 or more), and an account is strictly owned by 1 and only 1 bank. It should be noticed that attributes are not yet introduced.The wise reader could be surprised that the close operation is supporting by the class "account" and not by a class (not introduce here) "customer". It must be remembered that in Object Orientation there exists the notion of "actor" who is behind the operations. In other words an "actor" requires operations but in no way supports them. The 2 nd remark is relative to the lack of attributes in the 2 classes. This is quite normal since GORE is limited to identify classes and their operations.

Figure 3 . 6 :

 36 Figure 3.6: Bank account must be positive As well, the 2 nd property can be introduced at the graphical level by introducing a statetransition diagram for the class "account".

Figure 3 . 7 :

 37 Figure 3.7: State transition diagram for the class "account"

Figure 3 . 8 :

 38 Figure 3.8: Bank account model with the USE environment

Figure 4 . 1 :

 41 Figure 4.1: SmartPhone at the highest level

Figure 4 . 2 :

 42 Figure 4.2: Call or receive a call

Figure 4 . 3 :

 43 Figure 4.3: Call or receive a call

Figure 4 . 4 :

 44 Figure 4.4: Other features

Figure 4 .

 4 Figure 4.5: Authentication

Figure 4 . 6 :

 46 Figure 4.6: All about managing shared information

Figure 4 . 8 :

 48 Figure 4.8: Class diagram for the smartphone

4.5. 3

 3 OCL specication of class "services-management"" class servicesManagement attributes services: Sequence(String) operations lookingForAnotherNetwork(p:String):Boolean end 4.5.4 OCL specication of class "information-management" class informationManagement attributes sharedData: Sequence(String) operations intialisation(p:Sequence(String)): Boolean introduction(p:Sequence(String)): Boolean deletion(p:Sequence(String)): Boolean display(): Boolean end 5 As a nal conclusion

account

 Traditional definition of a bank account. bank Traditional bank.

 for balance Display of the account balance.3

3 3

 3

 phone communication (page 6) shared data (page 7) other services (page 8)

 is indicated regarding the way "display" is done. information manager

 It represents the agent which manages all the services not including vocal communication aspects.

 For programming acionados, an "if ... then ... else ..." form is also possible. It is attached below.

	4.5.2 OCL specication for "code-Management"
	model CodeManagement
	model fingerprintManagement class codeManagement
	class Image attributes
	end storedCode: Set (Integer)
	class fingerprintManagement readCode: Set(Integer)
	attributes operations
	storedFingerprint: Image reading(a: Set(Integer)): Set(Integer)
		readFingerprint: Image post: readCode=a
	operations codeStorage(a: Set(Integer)): Boolean
	fingerprintReading(): Image post: storedCode=a
	fingerprintStorage(p: Image): Boolean codeCheck(a:Set(Integer)): Boolean
		post: readFingerprint=p =(if a=storedCode then true else false endif)
	end	fingerprintCheck(p:Image): Boolean
		=(if p=storedFingerprint then true else false endif)
	end	
	end	
	This last specication is rather short, but surely less explicit!

 Depending on the smartphone, DIARY is simply the display of calendar, or, more interesting, recording things to do, and corresponding means (ring, vibration, others) of recall them. Displaying TV is allowed by some smartphones. It is very ressources (memory and CPU) consuming, reason that some weak smartphones do not offer it.When a smartphone is closed, no one can use it.When no phone network is available, we can wait for repairs if we know a network does exist. If we don't know the existence of a phone network, we may expect a future installation or moving to another area.

	smartphone closure		(Goal) smartP hone	looking for another network
			see		
		other services			no available services
	S MS	TV	DIARY services manager	CAME RA smartphone closure	message display
	G10. waiting for repairs		
					call
			mother card	
					other services
	List of Expectations			
	Expectation					Agent	Page
	R-11 DIARY				
						mother card
	R-12 CAMERA				
	Par caméra nous incluons la possibilité de faire des photos mais également de faire des films.	mother card	waiting for repairs
	Attention, ce service est extrêmement gourmand en ressource mémoire. phone network
	R-13 TV be called					mother card
	R-14 SMS				
	Most smartphone allows direct exchange of SMS.	mother card
	G9. smartphone closure		
					exchange
					waiting for repairs

2.2 fingerprint reader 3.2.2.1 Description

 Expectation because the code reader includes such a service. Of course the read code value must be saved and/or compared to the referenced one. Expectation because the fingerprint reader includes such a service. Of course the fingerprint image must be saved and/or compared to the referenced one.

	fingerprint reading message display	S MS	
	3.1 System Responsibilities		
	fingerprint reader 3.2 Expectations on the environment 3.2.2.3 List of Responsibilities	
	3.2.1 code reader Requirement -Expectation 3.2.1.1 Description such an hardware. Smartphone hardware able to read code. All the usual smartphones 'even the cheapest ones) offer Page 5 E-1 fingerprint reading mother card
	3.2.1.2 Responsibility Diagram		
	code reading 3.2.3 mother card 3.2.3.1 Description		TV
	In current smartphones the mother card includes all the needed components for offering services. 3.2.3.2 Responsibility Diagram DIARY
	code reader		
	3.2.1.3 List of Responsibilities		
	Requirement -Expectation	CAME RA	Page
	E-2 code reading		
	Smartphone hardware able to read fingerprint.		
	3.2.2.2 Responsibility Diagram		

5

3.

http://rodin.cs.ncl.ac.uk/ -Rigorous Open Development Environment for Complex System

This is the purpose of VALID.

"simple" is interpretated as careful reading and translation!

KAOS stands for Knowledge Acquisition in automated specication or Keep All Objectives Satised.

http://objectiver.com

Unfortunately it is very common to use the word "specication" instead of "requirements".

http://www.math.uaa.alaska.edu/afkjm/cs401/IEEE830.pdf

We talk about the business architecture of the future system because it is not yet a question of implementing the system.

Psychological review, vol. 63, no.

2, 1956, p. 89-97 2 Program Development by Stepwise Renement. Commun. ACM 14(4): 221-227 (1971)[START_REF] Bourque | Guide to the Software Engineering Body of Knowledge Fundamental Algorithms[END_REF] This means that their implementation is given to an external party.

Beware, however, that any state diagram only refers to system classes, and certainly not the whole system. Indeed the system state diagram is too large to be considered.

Statecharts: a visual formalism for complex systems Science of computer Programming. David Harel in Science of Computer Programming, Vol. 8, Issu 3, June 1987.

https://www.omg.org/spec/OCL/

Sometimes known as cellular phone or simply cell phone.

Although it is not sure that this system is not awless

We don't want to consider how a code is represented. This is let to the implementation.

An aggregation translates the fact that there are subordinate elements, which can exist independently of the aggregation.

Last step to consider: what should be done when selling a smartphone?

Smartphone class diagram

The previous section identied the dierent agents and the services they oer. The 2 nd step of VALID is now to edit the smartphone class diagram. Ideally, to build the class diagram, it is necessary to have all the classes with their attributes and operations, and all their relationships.

Step 1: class identication

The list of classes is a priori made up of 6 elements that are the agents identied during the GORE step:

1. phone-network, 2. services-management, 3. master-card, 4. code-management, 5. ngerprint-management, 6. information-management.

The reader could be surprised to read "phone-network" instead of "phone network". The main reason is only that the used tool for UML does support "phone-network" and not "phone network".

Step 2: identication of class operations

As usual, the operations are the elements whose responsibility is linked to agents. Some agents appear in dierent gures, and each time with new operations. Consequently operations of these 6 classes are the union of all associated operations. As a result we get:

• phone-network: caller, called, waiting-for-repair, communication

• services-management: looking-for-another-network

• master card: SMS, TV-display, CAMERA, AGENDA, message-display

It should be noted that at this level, operations are simply identied by a short expression (1 to 4 nouns). For each operation no parameter is provided, nor the result type. batteyrMinVal: minimum value of the battery to be declared as operational. operational: true if the battey value is greater than "batteryMinVal".

• 3 operations "initialisation" that sets the attribute "operational" to false at the beginning. "start" which starts the system whether the battery is "operational". "stop" which stops the master card class.