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For every prime number p n , we define the sequence X n = ∏ q|Nn q q-1 e γ ×log log N n , where N n = ∏ n k=1 p k is the primorial number of order n and γ ≈ 0.57721 is the Euler-Mascheroni constant. The Nicolas theorem states that the Riemann hypothesis is true if and only if the X n > 1 holds for all prime p n > 2. For every prime number p k , X k > 1 is called the Nicolas inequality. We show if the sequence X n is strictly decreasing for n big enough, then the Riemann hypothesis should be true. Moreover, we demonstrate that the sequence X n is indeed strictly decreasing when n → ∞. Notice that, Choie, Planat and Solé in the preprint paper arXiv:1012.3613 have a proof that the Cramér conjecture is false when X n is strictly decreasing for n big enough. This paper is an extension of their result.

Introduction

Let N n = 2 × 3 × 5 × 7 × 11 × • • • × p n denotes a primorial. For every prime p n , we define the sequence X n = ∏ q|N n q q-1 e γ × log log N n .

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and q | N n means the prime q divides to N n . The importance of this property is:

F. Vega CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France ORCiD: 0000-0001-8210-4126 E-mail: vega.frank@gmail.com Theorem 1.1 [START_REF] Nicolas | Petites valeurs de la fonction d'Euler et hypothese de Riemann[END_REF], [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. X n > 1 holds for all prime p n > 2 if and only if the Riemann hypothesis is true. Moreover, the Riemann hypothesis is false if and only if there are infinitely many prime numbers q i for which X i ≤ 1 and infinitely many prime numbers r j for which X j > 1.

In mathematics, the Chebyshev function θ (x) is given by

θ (x) = ∑ p≤x log p
with the sum extending over all prime numbers p that are less than or equal to x. We use the following property of the Chebyshev function:

Theorem 1.2 [START_REF] Grönwall | Some asymptotic expressions in the theory of numbers[END_REF].

lim x→∞ θ (x) x = 1.
We use the Mertens' second theorem which states:

Theorem 1.3 [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF].

lim x→∞ ( ∑ q≤x 1 q -log log x -B) = 0,
where B ≈ 0.2614972128 is the Meissel-Mertens constant.

We use the following property of the Meissel-Mertens constant:

Theorem 1.4 [1]. B = γ + log( ∏ q q -1 q ) + ∑ q 1 q .
Besides, we use the following inequality, Theorem 1.5 [START_REF] Kozma | Useful Inequalities[END_REF]. For 0 > x > -1:

x > log(1 + x).
Choie, Planat and Solé showed that if the sequence X n is strictly decreasing for n big enough, then the Nicolas inequality is satisfied for a prime big enough [START_REF] Choie | On Nicolas criterion for the Riemann hypothesis[END_REF]. They have confirmed that X n is strictly decreasing with a numerical computations up to 2 < p n ≤ 104729 (that is 1 < n ≤ 10000) [START_REF] Choie | On Nicolas criterion for the Riemann hypothesis[END_REF]. In addition, these authors in the same paper arXiv:1012.3613 have shown that the Cramér conjecture is false under the assumption that the sequence X n is strictly decreasing for n big enough [START_REF] Choie | On Nicolas criterion for the Riemann hypothesis[END_REF]. We make a very similar approach showing the same result: that is, if the sequence X n is strictly decreasing for n big enough, then the Riemann hypothesis is true. Using the properties of the Chebyshev function, we prove that the sequence X n is strictly decreasing when n → ∞.

2 On Sequence X n Theorem 2.1 lim n→∞ X n = 1.

Proof By the theorem 1.3,

lim n→∞ ( ∑ q≤p n 1 q -log log p n -B) = 0,
and by the theorem 1.4,

B = γ + log( ∏ q q -1 q ) + ∑ q 1 q .
Putting all this together yields the result,

lim n→∞ ( ∑ q≤p n 1 q -log log p n -γ -log( ∏ q≤p n q -1 q ) -∑ q≤p n 1 q ) = 0, that is equivalent to lim n→∞ (log( ∏ q≤p n q q -1 ) -γ -log log p n ) = 0.
We use that theorem 1.2:

lim n→∞ (log( ∏ q|N n q q -1 ) -γ -log log log N n ) = 0.
Finally, we can apply the exponentiation to show:

lim n→∞ ( ∏ q|N n q q-1 e γ × log log N n ) = 1.
Theorem 2.2 If X n is strictly decreasing for n big enough, then the Riemann hypothesis is true.

Proof Suppose that N n > 2 is the smallest primorial number such that the Nicolas inequality is false under the assumption that X i is strictly decreasing (that is X i > X i+1 ). In this way, we have

X n ≤ 1 and thus X n+1 < X n ≤ 1. This implies lim sup n→∞ X n < 1
which is a contradiction with the theorem 2.1. By contraposition, the Nicolas inequality could be satisfied for all prime p n big enough. Consequently, there would be no infinitely many prime numbers for which the Nicolas inequality is unsatisfied. Using the theorem 1.1, we can conclude that the Riemann hypothesis is true when X n is strictly decreasing for n big enough.

Theorem 2.3 The inequality X n > X n+1 is equivalent to log θ (p n+1 ) log θ (p n ) > p n+1 p n+1 -1 .
Proof The inequality X n > X n+1 can be written as

∏ q|N n q q-1 e γ × log log N n > ∏ q|N n+1 q q-1 e γ × log log N n+1
which is the same as

∏ q|N n q q-1 log log N n > ∏ q|N n+1 q q-1 log log N n+1
.

However, we know that

∏ q|N n+1 q q -1 = p n+1 p n+1 -1 × ∏ q|N n q q -1 .
In this way, we have that

1 log log N n > p n+1 p n+1 -1 log log N n+1 which is equivalent to log log N n+1 log log N n > p n+1 p n+1 -1 that is equal to log θ (p n+1 ) log θ (p n ) > p n+1 p n+1 -1 .
3 Main Theorem Theorem 3.1 When n → ∞:

log θ (p n+1 ) log θ (p n ) > p n+1 p n+1 -1 . Proof We know that log θ (p n ) = log log N n = log log N n+1 p n+1 = log (log N n+1 -log(p n+1 )) = log log N n+1 × (1 - log(p n+1 ) log N n+1 ) = log log N n+1 + log(1 - log(p n+1 ) log N n+1 ) = log θ (p n+1 ) + log(1 - log(p n+1 ) θ (p n+1 ) ).
In this way, we have that

log θ (p n+1 ) log θ (p n ) = log θ (p n+1 ) log θ (p n+1 ) + log(1 - log(p n+1 ) θ (p n+1 ) ) log θ (p n+1 ) - log(p n+1 ) θ (p n+1 ) ≥ p n+1 p n+1 -1 .
However, due to the theorem 1. 

p n+1 = 1 1 -1 p n+1 = p n+1 p n+1 × 1 1 -1 p n+1 = p n+1 p n+1 -1 .
Therefore, the proof is complete.