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ABSTRACT

We study the problem of learning an optimal regression function subject to a fairness constraint. It re-
quires that, conditionally on the sensitive feature, the distribution of the function output remains the
same. This constraint naturally extends the notion of demographic parity, often used in classification,
to the regression setting. We tackle this problem by leveraging on a proxy-discretized version, for
which we derive an explicit expression of the optimal fair predictor. This result naturally suggests a
two stage approach, in which we first estimate the (unconstrained) regression function from a set of
labeled data and then we recalibrate it with another set of unlabeled data. The recalibration step can
be efficiently performed via a smooth optimization. We derive rates of convergence of the proposed
estimator to the optimal fair predictor both in terms of the risk and fairness constraint. Finally, we
present numerical experiments illustrating that the proposed method is often superior or competitive
with state-of-the-art methods.

1 Introduction

During the recent years algorithmic fairness has emerged as a fundamental area of machine learning, due to the poten-
tial risk that standard learning algorithms, when trained on sensitive datasets, may inherit or amplify bias present
in the data. This has raised the challenge to design novel algorithms that, while still optimizing prediction per-
formance, mitigate or remove unfairness of the learned predictor, see the papers and books Barocas et al. (2018);
Donini et al. (2018a); Dwork et al. (2018); Hardt et al. (2016); Zafar et al. (2017); Zemel et al. (2013); Kilbertus et al.
(2017); Kusner et al. (2017); Calmon et al. (2017); Joseph et al. (2016); Chierichetti et al. (2017); Jabbari et al. (2016);
Yao & Huang (2017); Lum & Johndrow (2016); Zliobaite (2015) and references therein. Until very recently, most
work has focused on classification problems, with regression receiving far less attention. However regression problems
are equally important for algorithmic fairness. For example, both the problems of predicting students’ performance
without discriminating based on the gender, or predicting the crime risk of a community without discriminating based
on the race, can be cast as regression.

In this paper we study the problem of designing computationally efficient and statistically principled learning methods
for fair regression. We define the optimal fair regression function as the one that minimizes the population square error
subject to a fairness constraint that asks that the function output is independent from the sensitive feature. This notion
of fairness is referred to as demographic parity and is more often used in classification. However, it naturally extends
to the regression setting.

The above definition of optimal fair regression function is not well suited to design an efficient algorithm. Therefore,
we first consider a proxy-discretized version of the fair regression problem, for which we derive an explicit expression
of the optimal fair predictor. Importantly, we show that this discretization scheme does not alter the quality of the
optimal rule: the optimal fair predictors for both problems (the discretized and the original one) have close risks,
controlled by the discretization parameter. Our expression for the discretized optimal predictor naturally suggests a
plug-in two stage approach, in which we first estimate the (unconstrained) regression function from a set of labeled
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data and then we recalibrate it with another set of unlabeled data. The latter step can be efficiently performed via a
smooth optimization.

A key feature of our approach is that it can be employed alongside any off-the-shelf regression learning method and,
provided this is consistent, our recalibration step transforms in a simple way the original (unconstrained) regression
estimator into one which consistently estimates the optimal fair regression function. This strategy is particularly
appealing in those applications where the cost of re-training an existing learning algorithm is high. Furthermore, we
derive rates of convergence of the proposed estimator to the optimal fair predictor both in terms of the risk and the
fairness constraint violation.

Finally, we present numerical experiments with the proposed method on five real datasets, indicating that our method
is often superior or competitive with state-of-the-art methods. In particular, when using random forest as the base
regression estimator, our approach results in substantial decrease in fairness violation, at the costs of only a moderate
increase in the prediction error rate.

1.1 Previous work

One of the first work on fair regression is (Calders et al., 2013), where the authors study the problem of linear re-
gression imposing constraints on the mean outcome or residuals of the models (fairness in expectation). More re-
cently, several authors Komiyama & Shimao (2017); Berk et al. (2017); Oneto et al. (2019b); Fitzsimons et al. (2018);
Raff et al. (2018); Komiyama et al. (2018); Pérez-Suay et al. (2017); Nabi et al. (2019); Agarwal et al. (2019) focused
on the fair regression problem all employing various fairness definitions. Similarly to Calders et al. (2013), the works
of Komiyama & Shimao (2017); Berk et al. (2017); Pérez-Suay et al. (2017) study linear regression setup by refin-
ing the definition of fairness. Raff et al. (2018) and Fitzsimons et al. (2018) examine the incorporation of fairness in
expectation constraints in tree based regression methods. Pérez-Suay et al. (2017) incorporate a penalty on the de-
pendence between the predictor and the sensitive attribute into the kernel ridge regression formulation. Unlike these
contributions, we do not assume neither linear nor linear in a kernel space relationships between the input and the
output.

More related to our work are the papers by Oneto et al. (2019b) and Agarwal et al. (2019). The former introduces
a framework for fair Empirical Risk Minimization (ERM) in the context of regression, providing general bounds in
the case of fair regression in RKHS, using a relaxed notion of linearized fairnes. The latter paper elegantly trans-
forms the problem of bounded fair regression to a classification problem and then employs the reduction approach
of Agarwal et al. (2018). They derive ERM-type generalization guarantees which are applicable to any class of predic-
tors with bounded pseudo-dimension. Two notions of fairness are used, closest to ours being the Kolmogorov-Smirnov
(KS) distance. In contrast to the above papers, we measure unfairness by the Total Variation (TV) distance, which is
a stronger notion than the KS distance. Furthermore, our guarantees do not require the optimal predictor to be in a
Glivenko–Cantelli or a bounded pseudo-dimension class. Yet, the price for such a guarantee is an extra mild assump-
tion on the distribution of the observations.

Our theoretical contribution is partly inspired by recent work of Chzhen et al. (2019b), where the authors study binary
classification using the Equal Opportunity constraint (see Hardt et al., 2016). While they also provide a two stage
plug-in approach, the setting considered here induces a non-trivial adaptation of their method of proof, involving a
discretization step to deal with the uncountable nature of the constraint. Moreover, contrary to them, we derive finite
sample bounds.

2 Fair Regression

In this section, we introduce the fair regression problem and describe a discretized version of it, for which we derive
an explicit form of the optimal regression function.

2.1 Learning Setting

We let (X,S, Y ) ∈ Rd×S×R be random tuple distributed according to a Borel probability measure P on Rd×S×R.
Here X ∈ Rd is a feature vector, S ∈ S := {−1, 1} is a binary sensitive feature (i.e., protected attribute), and Y ∈ R
is a real valued signal to be predicted. For all s ∈ S we denote by PX|S=s the conditional distribution of X|S = s,
by ps = P(S = s) the marginal distribution of S, and by η(X, s) = E[Y |X,S = s] the conditional expectation of Y .
Throughout the paper, we denote by F the set of all Borel measurable functions f : Rd × S → R. In this work we
study predictors which include s ∈ S in their functional form.
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We consider the standard mean squared risk of a predictor f defined as

R(f) := E(Y − f(X,S))2 .

We consider a natural extension of the Demographic Parity Calders et al. (2009) as the notion of fairness1.
Definition 2.1 (Fair predictor). We say that a predictor f ∈ F is fair with respect to the distribution P on Rd×S ×R
if for all Borel sets C ⊂ R it holds that

P (f(X,S) ∈ C |S = −1) = P (f(X,S) ∈ C |S = 1) .

For any Borel set C ⊂ R and any predictor f , we also introduce the shorthand notation

U(f, C) := |P (f(X, s) ∈ C |S = 1)− P (f(X, s) ∈ C |S = −1)| . (1)

This functional serves as a measure of unfairness of f on a set C, and Definition 2.1 requires a fair predictor f to
satisfy U(f, C) = 0 for all C ⊂ R. In other words, a function f is fair if the total variation distance between the two
conditional distributions of the function output associated to the two values of the sensitive feature is zero.

Finally, we define the fair optimal predictor as

f∗ ∈ arg min
f∈F

{
R(f) : sup

C⊂R
U(f, C) = 0

}
. (P)

Notice that the feasible set of the problem (P) is non-empty for any distribution P as it contains all constant predictors.
Remark 2.2. In this work the sensitive attribute s ∈ S enters explicitly in the functional form of the predictor. However,
in some applications (e.g. in the law domain) this may not be permitted. In Supplementary Material we show how to
modify our methodology to address the case when the predictors taking the form of f : Rd → R.

Let us also emphasize that, unlike previous theoretical investigations of fair regression Oneto et al. (2019b);
Agarwal et al. (2019), we do not restrict F . Throughout this work we pose the following boundedness assumption
on the signal Y ∈ R, which is also made in the above papers.
Assumption 2.3 (Bounded signal). There exists M > 0 such that |Y | ≤M almost surely.

The constant M or its upper bound is assumed known a-priori. This knowledge may naturally arise from the specific
application at hand, e.g., GPA of a student.

2.2 Reduction via Finite Discretization

The optimization problem (P) is challenging, since it involves an uncountable number of constraints. To address this
difficulty, a natural approach is to consider a proxy of problem (P), based on a finite discretization step.

To describe our observation, for any positive integer L, letQL be the uniform grid of 2L+ 1 points on [−M,M ], that
is, QL = {`M/L}L`=−L. Denote by GL the set of all measurable functions from Rd × S to QL. The fair optimal
discretized predictor g∗L : Rd × S → QL is defined as

g∗L ∈ arg min
g∈GL

{
R(g) : max

q∈QL

U (g, {q}) = 0

}
. (P ′L)

Note that unlike f∗, which takes values in the whole interval [−M,M ], the function g∗L only takes values in the
uniform grid QL.

The following lemma confirms the intuition that for large values of L, the risk of g∗L should be similar to that of f∗.
Lemma 2.4. For every positive integer L, all solutions g∗L of (P ′L) are fair in the sense of Definition 2.1. Moreover

R(g∗L) ≤ R(f∗) + 2σ
M

L
+
M2

L2
,

where σ2 = Var(Y ).

Interestingly, problem (P ′L) can be solved analytically under the following mild assumption.

1For simplicity, in what follows we only consider the case of a binary sensitive feature. However, our methodology extends to
non-binary case.
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Assumption 2.5. Assume, for all s ∈ S, that the mappings t 7→ P (η(X, s) ≤ t |S = s) are continuous.

For instance, Assumption 2.5 is satisfied if both PX|S=−1 and PX|S=−1 admit a density w.r.t. Lebesgue measure and
the random variables η(X, s), s ∈ S do not have atoms.

Proposition 2.6 (Optimal fair predictor). Under Assumption 2.5 for all positive integers L a solution g∗L of prob-
lem (P ′L) is given for all (x, s) ∈ Rd × S by

g∗L(x, s) = arg min
`∈{−L,...,L}

{−sλ∗` + Z`(x, s)} ×
M

L
, (2)

where, for every s ∈ S and ` ∈ {−L, . . . , L}, we have defined the quantity Z`(x, s) = ps
(
η(X, s)− `M

L

)2
and

λ∗−L, . . . , λ
∗
L are solutions of

min
λ∈R2L+1

∑
s∈S

EX|S=s max
`
{sλ` − Z`(X, s)} . (3)

Proof sketch. The proof of this result borrows ideas from Chzhen et al. (2019b); Chzhen (2019). In particular, we
first write problem (P ′L) in the minmax form. It appears that its dual maxmin version can be solved analytically and
Assumption 2.5 guarantees the strong duality.

The above result says that an optimal solution of the discretized fair regression problem (P ′L) is obtained by first
computing the standard regression function η and then transforming this function via problems (2) and (3). In virtue of
Proposition 2.4 a tempting approach to ultimately estimate the optimal fair regression function in problem (P), would
be to use an estimator of g∗L, by first estimating the regression function η and then implementing an empirical version
of problem (3). The next section describe in more details this estimator and, crucially, justify its choice by proving
non-asymptotic error bounds for its excess risk and fairness constraint.

3 Proposed approach

In the sequel we propose a data-driven procedure ĝ, which is based on two data samples: a labeled sample

Dn = (Xi, Si, Yi)
n
i=1

i.i.d.∼ P ,

of size n, and an independent unlabeled sample

D′N = (X ′i, S
′
i)
N
i=1

i.i.d.∼ P(X,S) ,

of size N , where P(X,S) is marginal distribution of (X,S) induced by P. That is, our algorithm is performed in a
semi-supervised manner. The principal goal of this work is to construct a procedure ĝ which meets two criteria:

(i) Fairness: E[supC∈R U(ĝ, C)] ≤ δn,N ,

(ii) Risk optimality: E[E(ĝ)] ≤ δ′n,N ,

where δn,N and δ′n,N are two decreasing sequences of n and N , the excess risk E(f) of a function f ∈ F is given by

E(f) := R(f)−R(f∗) , (4)

and E is the expectation taken w.r.t. the distribution of the observations Dn,D′N .

The proposed method is a plug-in approach which mimics the conditions imposed on g∗L from Proposition 2.6. We
require an off-the-shelf estimator η̂(X,S) of η(X,S) = E[Y |X,S] which is constructed using only the first la-
beled sample. This problem has been studied to a great extent and it is not of the main concern in this work. For
instance such estimators include locally polynomial methods Korostelëv & Tsybakov (1993); Tsybakov (2009), k-
nearest neighbours Stone (1977); Devroye (1978), random forests Breiman (2004); Scornet et al. (2015), ridge and
lasso regressions Arlot & Bach (2009); Bickel et al. (2009), and many more. We also require the following, rather
technical, assumption on the constructed estimator η̂.

Assumption 3.1. For each s ∈ S the mappings t 7→ P (η̂(X, s) ≤ t |S = s) are almost surely continuous on
[−M,M ].

4
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We refer to Chzhen et al. (2019a) for an in-depth discussion on this assumption and an ad-hoc method which allows
to satisfy this condition for any estimator η̂ and any distribution PX|S=s which admits a density w.r.t. the Lebesgue
measure. Yet, this assumption is of little or no concern for the practitioner as we demonstrate in our experimental
study in Section 4.

To proceed with our plug-in method, we first decompose the unlabeled sample D′N into three groups D′N−1
, D′N1

and
DSN of sizes N−1, N1, and N respectively so that N−1 + N1 = N , where DSN is obtained from D′N by removing
all features and for all s ∈ S the sample D′Ns

is obtained from D′N by removing all sensitive attributes S′i’s and all
features X ′i’s whose corresponding S′i 6= s.

Our next goal is to mimic the condition on λ∗−L, . . . , λ
∗
L imposed by Eq. (3), which requires the knowledge of Z`(X, s)

and PX|S=s for s ∈ S and ` ∈ {−L, . . . , L}. The estimator p̂1 of p1 = P(S = 1) is based on the empirical frequencies
onDSN and p̂−1 = 1− p̂1. For each s ∈ S, the conditional expectation EX|S=s is estimated using its empirical version
on D′Ns

as P̂X|S=s = 1
Ns

∑
X′∈D′Ns

δX′ . Based on the above we define the following estimator of the quantity Z`(·, ·)
appearing in Proposition 2.6,

Ẑ`(X, s) := p̂s

(
η̂(X, s)− `M

L

)2

, (5)

for all ` ∈ {−L, . . . , L} and all s ∈ S. The final estimator ĝL is then defined for all (x, s) ∈ Rd × S as

ĝL(x, s) = arg min
`∈{−L,...,L}

{
−sλ̂` + Ẑ`(x, s)

}
× M

L
, (6)

where λ̂−L, . . . , λ̂L are solutions of

min
λ∈R2L+1

∑
s∈S

ÊX|S=s max
`

{
sλ` − Ẑ`(X, s)

}
. (7)

Note that while in practice the set arg min`{−sλ̂` + Ẑ`(x, s)} is almost certainly a singleton, in theory there might
be several values of ` which deliver the minimum of the objective. If such a situation occurs, we use the convention
that the smallest value of ` is taken. Also notice that the minimization problem in Eq. (7) is convex. Therefore, it can
be efficiently solved. In Section 3.2 we address this point and propose an efficient iterative algorithm based on the
smoothing technique of Nesterov (2005).

In summary, the proposed procedure is composed of two steps. First, we estimate the regression function η by standard
methods using only labeled data, and then we estimate the thresholds λ∗−L, . . . , λ

∗
L using unlabeled data and the

estimator η̂ constructed on the first step. Notice that in many applications of fairness, an accurate initial estimator η̂
is already available. Thus, our work suggests that in order to transform η̂ into a fair predictor it is sufficient to gather
only unlabeled data and solve the minimization problem in Eq. (7), which may be much less costly than training a fair
predictor from scratch.

3.1 Rates of convergence

In this section we present the rates of convergence of the proposed algorithm for an arbitrary value of L ∈ N. These
bounds demonstrate a bias-variance trade-off and a way to select L which optimizes it. We begin with bound on the
violation of the fairness constraint of the proposed algorithm.

Theorem 3.2. Under Assumption 3.1, there exists a universal constant C > 0 such that for each L ∈ N the proposed
procedure ĝL satisfies

E

[
sup
C⊂R
U(ĝL, C)

]
≤ C

∑
s∈S

√
L

psN
.

Proof sketch. In order to prove this result we first derive the first order optimality condition for the problem in Eq. (7).
Since this problem is non-smooth (due to the max) the optimality condition involves a sub-gradient of the objective.
Using Assumption 3.1 we show that the non-smooth part of the objective has a little impact on the sub-gradient. On
the final step, we show that the quantity of interest is controlled by a properly chosen empirical process plus the impact
of the non-smooth part of the objective.

5
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The bound depends only on the size of the unlabeled dataset, and not on the quality of the initial estimator η̂. It
can be intuitively explained by the fact that the notion of fairness in Definition 2.1 depends only on the conditional
distribution of X given S and not on the regression function η. A consequence of our findings is that when a large
unlabeled dataset is available, achieving fairness becomes an easy task based only on the recalibration step we propose.

The next bound is on the excess-risk of the proposed algorithm. It establishes the trade-off introduced by the discretiza-
tion step.

Theorem 3.3. Let Assumptions 2.5 and 3.1 be satisfied. Then there exists a universal constant C > 0 such that for
all L ∈ N, the proposed procedure ĝL satisfies

E[E(ĝL)] ≤CM2
∑
s∈S

(√
L2

psN
+

1

2L

)
+ 8ME ‖η − η̂‖1 .

Proof sketch. The proof of this result goes in two steps. On the first step we leverage the form of the optimal predictor
g∗L and the constructed plug-in rule ĝL to show that R(ĝL) − R(g∗L) can be bounded by two terms. The first term
involves the violation of the fairness constraints and is controlled by Theorem 3.2. The second term can be controlled
by the estimation error of η̂ and p̂s. Finally, we combine Lemma 2.4 with the bound onR(ĝL)−R(g∗L) to obtain the
result on E(ĝL).

Unlike the bound on fairness, the excess-risk bound already depends on the quality of η̂. Importantly, the last term
in the above bound decreases with n instead of psn, that is, this term is not affected by the unbalanced distributions.
Finally, from the excess-risk bound we can observe that the parameter L should be chosen in an optimal way, balancing
the bias-variance trade-off. Setting L = N1/4 in the previous results we immediately get the following corollary.

Corollary 3.4. Let Assumptions 2.5 and 3.1 be satisfied and let L = N1/4. Then there exists a universal constant
C > 0 such that the proposed procedure ĝL satisfies

E

[
sup
C⊂R
U(ĝL, C)

]
≤ C

∑
s∈S

(p8/6
s N)−3/8 .

Moreover, there exists a universal constant C ′ > 0 such that

E[E(ĝL)] ≤C ′M2
∑
s∈S

(p2
sN)−

1
4 + 8ME ‖η − η̂‖1 .

Note that the choice of L is independent from the size of the labeled data n and it does not affect the second term on
the right hand side of the excess-risk guarantee. A careful analysis of our proof reveals that a data driven choice of
L that depends on p̂s would improve the above result. Namely, instead of p2

sN we could obtain psN . However, this
proof is much more technical and is thus omitted.

3.2 Optimization algorithm

Recall that the proposed estimator sets λ̂−L, . . . , λ̂L to be a solution of the minimization problem in Eq. (7). This prob-
lem is convex but non-smooth, thus subgradient methods can be used to numerically approximate a solution. While
being optimal in a black-box optimization paradigm Nesterov (2013), subgradient methods often can be significantly
accelerated if the structure of the non-smooth problem is “simple”. In our setting, we follow the smoothing technique
due to Nesterov (2005), which leads to Algorithm 1. The key insight in this approach is to approximate the inner
maximum in the objective function of Eq. (7) by a smooth convex function with Lipschitz gradient. This results in
the LogSumExp (also known as soft-max) instead of the “hard” max. Such smoothed problem is then solved using an
optimal method, such as the accelerated gradient descent Nesterov (1983).

To understand the proposed optimization algorithm, let us introduce some notation. For any vector λ ∈ R2L+1, the
soft argmax (also known as Gibbs distribution) of λ with the temperature parameter β is defined component-wise for
all ` ∈ {−L, . . . , L} as

σβ(λ)` := exp

(
1

β
λ`

)/ L∑
`=−L

exp

(
1

β
λ`

)
.

6
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Algorithm 1: Smoothed accelerated gradient descent
Input: temperature parameter β, number of iterations T
Initialize λ1 = z1 = τ0 = 0.
for t = 1 to T do
γt = 1−τt−1

τt
, τt =

1+
√

1+4τ2
t−1

2

zt+1 = λt − β
2

∑
s∈S

sÊX|S=s

[
σβ(sλt − Ẑ(X, s))

]
λt+1 = (1− γt)zt+1 + γtzt

end for
Output: λT

Moreover, for all (x, s) ∈ Rd×S let Ẑ(x, s) = (Ẑ−L(x, s), . . . , ẐL(x, s))> ∈ R2L+1, where each component of this
vector is defined in Eq. (5). Finally, denote by G : R2L+1 → R the objective function of the minimization in Eq. (7).
That is, the vector λ̂ = (λ̂−L, . . . , λ̂L)> is a solution of

min
λ∈R2L+1

G(λ) .

To find an ε-solution of this problem we run Algorithm 1, which takes as an input two parameters T ∈ N and β > 0.

Theorem 3.5. For every L > 0 and every ε > 0 the output λT of Algorithm 1 with2

β =
M2
√
2L+ 1

T log(2L+ 1)
, T =

256M2

ε

√
(2L+ 1) log(2L+ 1) ,

satisfies G(λT )−G(λ̂) ≤ ε.

Unlike subgradient methods that require T = O(ε−2) iterations to achieve ε-solution, smoothing technique allows to
achieve T of order ε−1 as stated in Theorem 3.5. More precisely, when we set L = N1/4 as suggested by Corollary 3.4,
T = O(ε−1N1/8log(N)). Following our statistical results a reasonable choice of the optimization accuracy is ε =
O(N−1/4), implying that the total amount of iterations T = O(N3/8 log(N)).
Remark 3.6. We did not attempt to improve the constant 256 present in the choice of T , as our main interest in this
result is the dependence on N and ε.

On each iteration Algorithm 1 computes the soft argmax function and averages it over the unlabeled dataset, which
can be done in time linear in N . Note that the averaging step only affects the vector Ẑ(x, s) for all x ∈ D′Ns

and
s ∈ S , which can be pre-computed before running the algorithm. Finally, to compute the estimator ĝL(x) at a new
point x (see Eq. (6)) we need to find the minimum over a finite set, which is performed in time linear in L = N1/4.

4 Empirical Study

In this section, we present numerical experiments with the proposed fair regression estimator in Eqs. (5)–(7).

4.1 Experimental Setting

In all experiments, we collect statistics on the test set. The empirical mean squared error (MSE) is defined as

MSE(f)=Ê(f(X,S)−Y )2 .

We also would like to measure the violation of fairness constraint imposed by Definition 2.1. It requires to evaluate
supremum over all Borel sets C, which is not feasible in practice. To alleviate this issue, we employ the notion of
difference of demographic parity (DDP), defined as

DDP(f)= max
K

1

2K

K−1∑
k=−K

Û
(
f,

[
k

K
,
k+1

K

))
,

2If T is not an integer, take T as the smallest integer greater than the proposed value.
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Figure 1: CRIME Dataset and RF (from left to right): MSE and the histogram of f(X, s) for RF when L = 6 and (i)
our constraint is not imposed, (ii) the constraint is imposed with β = .1, (iii) the constraint is imposed with β = .01,
and (iv) MSE and DDP with L = 6 varying β.

where Û is an empirical version of U (defined in Eq. (1)) computed over the test set and K ∈ {1, . . . , 24}. Before
computing the DDP, the predictor is transformed to the interval [−1, 1]. For all datasets we split the data in two parts
(70% train and 30% test), this procedure is repeated 30 times, and we report the average performance on the test set
alongside its standard deviation. We employ the 2-steps 10-fold CV procedure considered by Donini et al. (2018b) to
select the best hyperparameters with the training set. In the first step, we shortlist all the hyperparameters with accuracy
close to the best one (in our case, above 90% of the best accuracy). Then, from this list, we select the hyperparameters
with the lowest DDP.

4.2 Methods

We compare our method to different fair regression approaches (see Section 1.1) for both linear and non-linear regres-
sion.
In the case of linear models we consider the following methods: Linear RLS plus Berk et al. (2017) (RLS+Berk),
Linear RLS plus Oneto et al. (2019b) (RLS+Oneto), and Linear RLS plus Our Method (RLS+Ours), where RLS is the
abbreviation of Regularized Least Squares. In the case of non-linear models we compare to the following methods:
Kernel RLS (KRLS), Kernel RLS plus Oneto et al. (2019b) (KRLS+Oneto), Kernel RLS plus Pérez-Suay et al. (2017)
(KRLS+Perez), Kernel RLS plus Our Method (KRLS+Ours), Random Forests (RF), Random Forests plus Raff et al.
(2018) (RF+Raff), Random Forests plus Agarwal et al. (2019)3 (RF+Agar), and Random Forests plus Our Method
(RF+Ours).
The hyperparameters of the methods are set as follows. For our method we choose L ∈ {6, 12, 24} and β ∈
{0.1, 0.01}, for RLS we set the regularization hyperparameters λ ∈ 10{−4.5,−3.5,··· ,3} and for KRLS we set
λ ∈ 10{−4.5,−3.5,··· ,3} and γ ∈ 10{−4.5,−3.5,··· ,3}. Finally, for RF we set to 1000 the number of trees and for the
number of features to select during the tree creation we search in {d1/4, d

1/2, d
3/4}.

3We thank the authors for sharing a prototype of their code.
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Figure 2: CRIME Dataset and RF (from left to right): MSE and the histogram of f(X, s) for RF when β = .1 and (i)
the constraint is imposed with L = 6 and (ii) the constraint is imposed with L = 12.

4.3 Datasets

In order to analyze the performance of our methods and test it against the state-of-the-art alternatives, we consider five
benchmark datasets, CRIME, LAW, NLSY, STUD, and UNIV, which are briefly described below:
Communities&Crime (CRIME) contains socio-economic, law enforcement, and crime data about communities in the
US Redmond & Baveja (2002) with 1994 examples. The task is to predict the number of violent crimes per 100000
population (normalized to [0, 1]) with race as the protected attribute. Following Calders et al. (2013), we made a binary
sensitive attribute s as to the percentage of black population, which yielded 970 instances of s = 1 with a mean crime
rate 0.35 and 1024 instances of s = −1 with a mean crime rate 0.13.
Law School (LAW) refers to the Law School Admissions Councils National Longitudinal Bar Passage
Study Wightman & Ramsey (1998) and has 20649 examples. The task is to predict a students GPA (normalized
to [0, 1]) with race as the protected attribute (white versus non-white).
National Longitudinal Survey of Youth (NLSY) involves survey results by the U.S. Bureau of Labor Statis-
tics that is intended to gather information on the labor market activities and other life events of several
groups Bureau of Labor Statistics (2019). Analogously to Komiyama & Shimao (2018) we model a virtual company’s
hiring decision assuming that the company does not have access to the applicants’ academic scores. We set as target
the person’s GPA (normalized to [0, 1]), with race as sensitive attribute
Student Performance (STUD), approaches 649 students achievement (final grade) in secondary education of two Por-
tuguese schools using 33 attributes Cortez & Silva (2008), with gender as the protected attribute.
University Anonymous (UNIV) is a proprietary and highly sensitive dataset containing all the data about the past and
present students enrolled at the University of Anonymous. In this study we take into consideration students who en-
rolled, in the academic year 2017-2018. The dataset contains 5000 instances, each one described by 35 attributes
(both numeric and categorical) about ethnicity, gender, financial status, and previous school experience. The scope is
to predict the average grades at the end of the first semester, with gender as the protected attribute.

4.4 Results on CRIME

In this section we show the effectiveness of our method on the CRIME dataset, using RF as the base estimator of the
regression function.
Figure 1 reports the MSE and the histogram of f(X, s) when L = 6 and (i) fairness constraint is not imposed, (ii)
Algorithm 1 is used with β = .1, (iii) Algorithm 1 is used with β = .01, and (iv) MSE and DDP with L = 6 varying β.
We note that the employed fairness constraint is effective at enforcing a similarity between the conditional distributions
of the function output across the two groups. Of course this benefit induces a loss in accuracy, as expected from the
theory. In particular, the smaller the parameter β the fairer and less accurate is the methods.
Next, in Figure 2, we display the histogram of f(X, s) when β = .1 and (i) the constraint is imposed with L = 6
and (ii) the constraint is imposed with L = 12. Interestingly, this empirical evidence might suggest that our bounds
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CRIME LAW NLSY STUD UNIV
Method MSE DDP MSE DDP MSE DDP MSE DDP MSE DDP
RLS .033±.003 .091±.008 .105±.010 .151±.014 .151±.016 .123±.012 4.78±.52 .298±.028 2.23±.20 .141±.013
RLS+Berk .037±.004 .027±.003 .121±.011 .102±.010 .188±.017 .081±.007 5.42±.53 .160±.015 2.47±.24 .051±.005
RLS+Oneto .036±.004 .024±.002 .112±.011 .071±.007 .157±.016 .083±.009 5.07±.48 .118±.012 2.43±.25 .055±.006
RLS+Ours .035±.004 .037±.004 .117±.013 .037±.004 .179±.018 .027±.003 5.13±.55 .058±.006 2.63±.27 .039±.004
KRLS .024±.003 .085±.008 .041±.004 .097±.009 .061±.006 .097±.009 3.82±.35 .239±.026 1.41±.15 .102±.009
KRLS+Oneto .028±.003 .032±.003 .046±.005 .053±.006 .066±.006 .010±.001 3.98±.38 .092±.009 1.45±.16 .044±.004
KRLS+Perez .033±.003 .041±.004 .048±.005 .042±.005 .065±.006 .014±.001 4.01±.41 .072±.008 1.51±.14 .061±.006
KRLS+Ours .032±.003 .019±.002 .051±.005 .021±.002 .071±.007 .009±.001 4.10±.41 .031±.003 1.52±.14 .025±.002
RF .020±.002 .076±.008 .045±.005 .112±.011 .055±.006 .092±.010 3.62±.39 .223±.021 1.29±.14 .097±.009
RF+Raff .030±.003 .034±.003 .059±.006 .063±.006 .065±.007 .013±.001 4.26±.42 .045±.004 1.39±.13 .025±.003
RF+Agar .030±.003 .022±.002 .051±.005 .044±.004 .065±.006 .012±.001 3.91±.36 .035±.004 1.40±.15 .021±.002
RF+Ours .031±.003 .016±.002 .060±.007 .031±.003 .064±.006 .009±.001 3.95±.42 .027±.003 1.42±.13 .019±.002

Table 1: Results for all the datasets and all the methods concerning MSE and DDP when the sensitive feature is
exploited in the functional form of the model.

Figure 3: Results of Table 1 when the MSE and the DDP are normalized in [0, 1] column-wise. In the figure, different
colors and symbols refer to different datasets and methods, respectively. The closer a point is to the origin, the better
the result is.

in Theorems 3.2 and 3.3 could be further strengthened w.r.t. the dependence on L, since both MSE and DDP are
decreased with the growth of L.

4.5 Comparison w.r.t. State-Of-The-Art

In this section we present, in Table 1, a comparison among the different methods described in Section 4.2, on the five
datasets summarized in Section 4.3, using the performance metrics described in Section 4.1. To ease the comparison
between the different methods, Figure 3 visualizes the same results of Table 1 when both MSE and DDP are normalized
in [0, 1] column-wise; this follows the setting also considered in Chzhen et al. (2019b). In the figure, different colors
and symbols refer to different datasets and methods, respectively. Our findings indicate that the proposed method
is generally superior or competitive with state-of-the-art methods. In particular, our method is extremely good in
enforcing fairness, even though, often, this comes at the cost of a slight increase in the MSE. Overall, RF+Ours tends
to be the most effective method, and the one we would recommend to use in practice.

Notice that the theoretical results presented in Section 3 require two independent labeled and unlabeled samples. Since
the above benchmark datasets are not provided with additional unlabeled data, we used the labeled sample to both
estimate the regression function and recalibrate. Our experimental results indicate that the method remains effective.
In the Supplementary Material, we show the impact of unlabeled data on the performance of the estimator.

5 Discussion and Conclusion

We proposed a new method to fair regression, which is able to estimate the optimal fair regression function, when the
demographic parity constraint is imposed. This approach is very general and can be employed on top of any standard
estimator, by means of the recalibration step which only involves an additional independent unlabeled dataset. This
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step can be efficiently implemented by solving a small-scale convex optimization problem. We derived non-asymptotic
error rates for this estimator, relative to both the squared risk and a fairness violation based on the total variation
distance. Numerical experiments demonstrated that the proposed method is effective and often superior to previous
fair regression methods.
In the future it would be valuable to study relaxed versions of the fair regression problem, in which the demographic
parity constraint only needs to be approximately satisfied, as it was studied in Oneto et al. (2019a); Agarwal et al.
(2019). Another direction of future research would be to study tightness of our error bounds and the issue of optimality
of fair regression estimators in the setting presented in this paper. Finally, an important open problem is whether an
estimator having the same guarantees as the proposed one, could be constructed on the basis of a single dataset, used
both to estimate the regression function and recalibration.
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Supplementary Material
Below we give an overview of the structure of the supplementary material and highlight the main novel results of this
work.

• Appendix A is mainly devoted to the derivation of the expression for the optimal predictor g∗L. The proof of
Lemma 2.4 is also placed in this section.

• Appendix B states general preparation results which are used for the proof of fairness rates. Appendix B.1 is
devoted to the proof of Theorem 3.2, which establishes fairness guarantees of the proposed procedure.

• Similarly, Appendix C starts by stating supporting results, whose proofs are postponed to Section C.2. Ap-
pendix C.1 is devoted to the proof of Theorem 3.3, which establishes guarantees on the excess-risk of the
proposed procedure.

• Appendix D is devoted to the optimization part of our contribution and establishes guarantees on Algorithm 1.
• Appendix F shows the impact of unlabeled data on the performance of the estimator.

Let us also mention that in the supplementary material we omit the underscript L, when no confusion can rise. That is,
instead of g∗L and ĝL we write g∗ and ĝ respectively. Finally, before proceeding further, let us point out one technical
subtlety: in what follows it is assumed that the estimator |η̂(·, s)| ≤M , this assumption is never restrictive in practice
as long asM is known. Indeed, if η̂(·, s) take values outside of [−M,M ], then its truncationn on this interval is strictly
better in terms of the `1 error, since the true |η(·, s)| ≤M .

A Derivation of the optimal predictor and its properties

First we state a rather intuitive statement. Informally, if the signal Y is almost surely bounded on the interval [−M,M ],
then the fair optimal predictor f∗ is also bounded almost surely on the interval [−M,M ]. This result allows to consider
only those predictors f , which take value in [−M,M ].
Lemma A.1. Assume that |Y | ≤M almost surely, then |f∗(X,S)| ≤M almost surely.

Proof. Let f∗ be the minimizer of problem P . Denote by f 7→ Πf the projection defined as

Πf (x, s) = f(x, s)1{|f(x,s)|≤M} +M sign(f(x, s))1{|f(x,s)|>M} .

Now our goal is to show that Πf∗ is fair in the sense of Definition 2.1 and that its risk is upper bounded by the risk
of f∗. This would imply that Πf∗ = f∗ almost surely. The fairness of Πf∗ follows directly from the fairness of f∗.
Moreover, we can write

E(Y −Πf∗(X,S))2 = E(Y − f∗(X,S) + f∗(X,S)−Πf∗(X,S))2

= E(Y − f∗(X,S))2

+ 2E(Y − f∗(X,S))(f∗(X,S)−Πf∗(X,S)) + E(f∗(X,S)−Πf∗(X,S))2 .

Let us introduce the following notation

Z = 2(Y − f∗(X,S))(f∗(X,S)−Πf∗(X,S)) + (f∗(X,S)−Πf∗(X,S))2 .

Notice that

Z = (2Y − f∗(X,S)−Πf∗(X,S))(f∗(X,S)−Πf∗(X,S)) .

If we can show that Z ≤ 0 almost surely, the proof is finished. To see this, we first notice that

f∗(X,S)−Πf∗(X,S) = (|f∗(X,S)| −M) sign(f∗(X,S))1{|f∗(X,S)|>M} ,

f∗(X,S) + Πf∗(X,S) = 2f∗(X,S)1{|f∗(x,s)|≤M} + (M + |f∗(X,S)|) sign(f∗(X,S))1{|f∗(X,S)|>M} .

After simple algebraic manipulations Z can be expressed as

Z = (2Y sign(f∗(X,S))−M − |f∗(X,S)|) (|f∗(X,S)| −M)1{|f∗(X,S)|>M}

≤ 2 (Y sign(f∗(X,S))−M) (|f∗(X,S)| −M)1{|f∗(X,S)|>M}

≤ 2 (|Y | −M) (|f∗(X,S)| −M)1{|f∗(X,S)|>M} .

Finally, since |Y | ≤M we conclude.
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Now, we prove Lemma 2.4, which gives a theoretical justification to the reduction scheme and the introduction of g∗L.
Let us recall the statement of this result first.
Lemma (Lemma 2.4). For every positive integer L, all solutions g∗L of (P ′L) are fair in the sense of Definition 2.1.
Moreover

R(g∗L) ≤ R(f∗) + 2σ
M

L
+
M2

L2
,

where σ2 = Var(Y ).

Proof of Lemma 2.4. First we show that g∗L is fair. Fix arbitrary C ∈ [−M,M ], thus for any s ∈ S we can write

P (g∗L(X,S) ∈ C |S = s) = P (g∗L(X,S) ∈ C ∩QL,M |S = s) =
∑

y∈C∩QL,M

P (g∗L(X,S) = y |S = s) .

Every y ∈ C ∩QL,M can be expressed as `M/L for some ` ∈ {−L, . . . , L} and for every ` ∈ {−L, . . . , L}

P (g∗L(X,S) = `M/L |S = −1) = P (g∗L(X,S) = `M/L |S = 1) ,

we conclude that g∗L is fair.

Finally, to demonstrate the inequality in this result we first construct an operator TL : F → GL,M defined point-wise
for all (x, s) ∈ Rd × S as

(TL(f))(x, s) = bLf(x, s)/McM/L ,

where for x ∈ R, bxc stands for the closest integer smaller or equal to x. Now, we show that TL(f∗) is feasible for
problem (P ′L). Indeed, for any ` ∈ {−L, . . . , L− 1} and any (x, s) ∈ Rd × S , by construction of TL, we have

(TL(f∗))(x, s) = `M/L ⇔ f∗(x, s) ∈
[
`M

L
,

(`+ 1)M

L

)
.

Therefore, since f∗ is fair and the set [`M/L, (`+ 1)M/L) is Borel we have for all ` ∈ {−L, . . . , L− 1}

P ((TL(f∗))(X,S) = `M/L |S = −1) = P ((TL(f∗))(X,S) = `M/L |S = 1) .

Moreover, we also have for all (x, s) ∈ Rd × S

TL(f∗)(x, s) = M ⇔ f∗(x, s) = M ,

which implies that for ` = L we have

P ((TL(f∗))(X,S) = `M/L |S = −1) = P ((TL(f∗))(X,S) = `M/L |S = 1) .

Thus, TL(f∗) is feasible for problem (P ′L) and we can write

E(Y − g∗L(X,S))2 ≤ E
(
Y − (TL(f∗))(X,S)

)2

= E(Y − f∗(X,S))2 + E
(
f∗(X,S)− (TL(f∗))(X,S)

)2

+ 2E(Y − f∗(X,S))(f∗(X,S)− (TL(f∗))(X,S)) .

Notice that for all (x, s) we have |f∗(x, s)− (TL(f∗))(x, s)| ≤M/L, and thus using the Cauchy-Schwartz inequality
we get

E(Y − g∗L(X,S))2 ≤ E(Y − f∗(X,S))2 + 2M

√
E(Y − f∗(X,S))2

L
+
M2

L2
.

Finally, since f(x, s) ≡ E[Y ] is a feasible function for problem (P), we have

E(Y − f∗(X,S))2 ≤ Var(Y ) ,

which concludes the proof.

The next proof is devoted to the derivation of the optimal predictor g∗L provided in Proposition 2.6. Below we recall
the statement of Proposition 2.6.
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Proposition (Proposition 2.6). Under Assumption 2.5 for all positive integers L a solution g∗L of problem (P ′L) is
given for all (x, s) ∈ Rd × S by

g∗L(x, s) = arg min
`∈{−L,...,L}

{−sλ∗` + Z`(x, s)} ×
M

L
,

where, for every s ∈ S and ` ∈ {−L, . . . , L}, we have defined the quantity Z`(x, s) = ps
(
η(X, s)− `M

L

)2
and

λ∗−L, . . . , λ
∗
L are solutions of

min
λ∈R2L+1

∑
s∈S

EX|S=s max
`
{sλ` − Z`(X, s)} .

Proof of Proposition 2.6. To simplify the notation, we set g(X, s) = g(X, s). Our goal is to solve the following
problem

min
g

max
λ∈R2L+1

E(Y − g(X,S))2 +

L∑
`=−L

λ` (P (g(X,−1) = `M/L |S = −1)− P (g(X, 1) = `M/L |S = 1)) .

First of all notice that the minimization of E(Y − g(X,S))2 is equivalent to the minimization of E(X,S)(η(X,S) −
g(X,S))2, where η(X,S) = E[Y |X,S]. Therefore, instead of the above saddle point problem we target a solution of

min
g

max
λ∈R2L+1

E(X,S)(η(X,S)− g(X,S))2 +

L∑
`=−L

λ` (P (g(X,−1) = `M/L |S = −1)− P (g(X, 1) = `M/L |S = 1)) .

The objective function of this saddle point problem can be rewritten as∑
s∈S

(
psEX|S=s(η(X, s)− g(X, s))2 − s

L∑
`=−L

λ`P (g(X, s) = `M/L |S = s)

)
,

where ps = P(S = s). Moreover, since
∑L
`=−L 1{g(X,s)=`M/L} ≡ 1 we can rewrite the original saddle point problem

as

min
g

max
λ∈R2L+1

∑
s∈S

EX|S=s

[
L∑

`=−L

(
ps(η(X, s)− `M/L)2 − sλ`

)
1{g(X,s)=`M/L}

]
.

Let us first solve the dual max min problem, that is, we would like to find a solution of

max
λ∈R2L+1

min
g

∑
s∈S

EX|S=s

[
L∑

`=−L

(
ps(η(X, s)− `M/L)2 − sλ`

)
1{g(X,s)=`M/L}

]
.

Clearly, for every fixed λ ∈ R2L+1 the solution of minimization problem inside is given by g̃λ defined point-wise as

g̃λ(x, s) = arg min
`

{
ps(η(X, s)− `M/L)2 − sλ`

}
M/L .

Therefore, the max min problem boils down to

max
λ∈R2L+1

∑
s∈S

EX|S=s

[
min
`

{
ps(η(X, s)− `M/L)2 − sλ`

}]
.

Which is equivalent to

− min
λ∈R2L+1

∑
s∈S

EX|S=s

[
max
`

{
sλ` − ps(η(X, s)− `M/L)2

}]
.

As we are only interested in the minimizer of the above problem and not in the value of the minimum, we can write
that the above problem is equivalent in this sense to

− min
λ∈R2L+1

∑
s∈S

EX|S=s

[
max
`

{
sλ` + 2ps

`M

L
η(X, s)− ps

l2M2

L2

}]
.
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The objective function of the above minimization problem is convex and is uniformly lower-bounded. The convexity
is obvious. Let us show that it is lower bounded. We have the following sequence∑

s∈S
EX|S=s

[
max
`

{
sλ` + 2ps

`M

L
η(X, s)− ps

l2M2

L2

}]
≥
∑
s∈S

max
`

{
EX|S=s

[
sλ` + 2ps

`M

L
η(X, s)− ps

l2M2

L2

]}
=
∑
s∈S

max
`

{
sλ` + 2ps

`M

L
EX|S=s[η(X, s)]− ps

l2M2

L2

}

≥ max
`

{∑
s∈S

(
sλ` + 2ps

`M

L
EX|S=s[η(X, s)]− ps

l2M2

L2

)}

= max
`

{
2
`M

L

∑
s∈S

psEX|S=s[η(X, s)]− l2M2

L2

∑
s∈S

ps

}

= max
`

{
2
`M

L
E[Y ]− l2M2

L2

}
= max

`

{(
E[Y ]− `M

L

)2
}
− E[Y ]2 ≥ 0 .

To conclude the proof notice that under Assumption 2.5, the first order optimality condition for the minimization over
λ reads for all ` ∈ {−L, . . . , L} as ∑

s∈S
sPX|S=s

(
g̃λ∗(X, s) =

`M

L

)
= 0 ,

where λ∗ is a minimizer. Which implies that g̃λ∗ is fair and thus is feasible for problem (P ′L). Using this argument, it
is easy to see thatR(g̃λ∗) = R(g∗) which concludes the proof.

The next proposition shows that the thresholds λ∗−L, . . . , λ
∗
L can be found in a compact region. Note that the same,

line by line, proof can be applied for λ̂−L, . . . , λ̂L, which is thus omitted.
Proposition A.2. The minimization problem in Eq. (3) admits a global minimizer λ∗−L, . . . , λ

∗
L which satisfies

min
`∈{−L,...,L}

{λ∗`} = 0, max
`∈{−L,...,L}

{λ∗`} ≤ 4M2 .

Proof. Before proceeding to the proof of this result let us first introduce some notation. We denote byH(λ−L, . . . , λL)
the objective function of the minimization problem in Eq. (3). That is,

H(λ−L, . . . , λL) =
∑
s∈S

EX|S=s

[
max

`∈{−L,...,L}

{
sλ` − ps

(
η(X, s)− `M

L

)2
}]

.

The proof of this result goes in two steps.

On the first step we show that there exists a minimizer (λ∗` )`=−L,...,L which satisfies

max
`∈{−L,...,L}

{λ∗`} − min
`∈{−L,...,L}

{λ∗`} < 4M2 .

On the second step we show that if (λ∗` )`=−L,...,L is a minimizer, then (λ̃`)`=−L,...,L defined for all ` as λ̃` = λ∗` + c
is also a minimizer for arbitrary c ∈ R.

The combination of the two steps yields the statement immediately by setting c = −min`∈{−L,...,L} {λ∗`}.
Step 1. We can write

H(0, . . . , 0) ≥ min
λ−L,...,λL

H(λ−L, . . . , λL) .
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Using the definition of H we have

H(0, . . . , 0) = −
∑
s∈S

psEX|S=s

[
min

`∈{−L,...,L}

(
η(X, s)− `M

L

)2
]

= −E(X,S)

[
min

`∈{−L,...,L}

(
η(X,S)− `M

L

)2
]
≤ 0 .

Moreover, we have for any λ−L, . . . , λL

H(λ−L, . . . , λL) =
∑
s∈S

EX|S=s

[
max

`∈{−L,...,L}

{
sλ` − ps

(
η(X, s)− `M

L

)2
}]

≥ max {λ`} −min {λ`} − 4M2 , (8)

where the inequality is obtained from the fact that for all s ∈ S it holds that

max
`∈{−L,...,L}

{
sλ` − ps

(
η(X, s)− `M

L

)2
}
≥ max
`∈{−L,...,L}

{sλ`} − ps4M2 .

Therefore we get

0 ≥ H(0, . . . , 0) ≥ min
λ−L,...,λL

H(λ−L, . . . , λL) ≥ max {λ∗`} −min {λ∗`} − 4M2 .

Taking the most left and the most right side of the above chain of inequalities we conclude that

4M2 ≥ max {λ∗`} −min {λ∗`} ,

which contradicts our assumption.

Step 2. Let (λ∗` )`=−L,...,L be any minimizer of the problem in Eq. (3). Then, for any c ∈ R we have

H(λ∗−L, . . . , λ
∗
L) = H(λ∗−L, . . . , λ

∗
L) +

∑
s∈S

sc

=
∑
s∈S

EX|S=s

[
max

`∈{−L,...,L}

{
s(λ∗` + c)− ps

(
η(X, s)− `M

L

)2
}]

= H(λ∗−L + c, . . . , λ∗L + c) ,

which implies that (λ∗` )`=−L,...,L + c is also a minimizer. We conclude combining both steps.

B Preparation for fairness rates

Before establishing the main theoretical results of this work, let us introduce some notation, which compacts the proofs.
We strongly suggest the reader to be familiar with this notation as it will greatly simplify the reading flow.

For all x ∈ Rd, s ∈ S and ` ∈ {−L, . . . , L} and all λ ∈ R we define

ĥs`(x, λ) := sλ− p̂s(η̂(x, s)− `M/L)2 .

Therefore, using this notation, the proposed procedure ĝL defined in Eq. (6) can be written as

ĝL(x, s) = min

{
arg min

`∈{−L,...,L}

{
−ĥs`(x, λ̂`)

}}
× M

L
, (9)

where λ̂−L, . . . , λ̂L is a solutions of Eq. (7) rewritten as

min
λ−L,...,λL

∑
s∈S

ÊX|S=s

[
max

`∈{−L,...,L}

{
ĥs`(X,λ`)

}]
. (10)

This notation is only going to be used in the section where we derive the fairness guarantees.
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In this part we also would like to introduce several standard results from empirical process theory and establish some
generic properties of the minimization algorithm for λ̂−L, . . . , λ̂L under the continuity Assumption 3.1.

Reminder on VC theory.

Here we remind some standard definitions of VC theory Vapnik & Chervonenkis (1968); Matoušek (2002) and already
classical results from the empirical process theory on VC classes Vershynin (2018); Koltchinskii (2011).
Definition B.1 (Projection). Consider a set system (X ,R) with element set X and a set of subsets R. Let Y ⊂ X we
define the projection ofR onto Y as

R|Y := {Y ∩R : R ∈ R} .

Definition B.2 (Shattering). Let (X ,R) be a set system with element set X and a set of subsets R. Let Y ⊂ X , we
say thatR shatters Y if

|R|Y | = 2|Y| ,

where |·| stands for the cardinality when we consider sets.
Definition B.3 (VC-dimension). Let (X ,R) be a set system. The VC-dimension of R, denoted by VC(R) is the size
of the largest subset of X which is shattered byR.
Definition B.4 (k-Unions of ranges). Let (X ,R) be a set system, for any integer k ≥ 2, define the k-fold union of R
as the set system induced on X by the ranges

Rk∪ := {R1 ∪ . . . ∪Rk : R1, . . . , Rk ∈ R} .

Notice that the k-fold union of a range setR are nested, that is

R ⊂ R2∪ ⊂ . . . ⊂ Rk∪ ,

in particular, for all K > 0 it holds that
K⋃
k=1

Rk∪ = RK∪ .

The next very simple result gives a bound on the VC-dimension of k-union of a particular range set. General treatment
of this type of questions can be found in Blumer et al. (1989); Eisenstat & Angluin (2007).
Lemma B.5. Let k ≥ 2 be a positive integer and f : Rd → R be a fixed function. Consider the following set system
(Rd,Rk∪), whereR is defined as

R =
{
Rw−,w+

: w−, w+ ∈ R
}
,

with Rw−,w+ =
{
x ∈ Rd : w− > f(x) > w+

}
. Then,

VC
(
Rk∪

)
≤ 2k .

Proof. Let Y = {x1, . . . , x2k, x2k+1} be any subset of Rd of cardinality 2k + 1. W.l.o.g suppose that

f(x1) ≥ . . . ≥ f(x2k) ≥ f(x2k+1) .

Clearly, the set {x1, x3, x5, . . . , x2k+1} cannot be obtained by intersecting Y with any R ∈ Rk∪, therefore Y is not
shattered byRk∪.

The next result is classical and is typically derived using the entropy integral Dudley (1967) combined with the Haus-
sler’s lemma Haussler (1995).
Theorem B.6 (Vershynin (2018)). Let X,X1, . . . , Xn be i.i.d. random variables distributed according to P on Rd
and (Rd,R) be a range system of VC-dimension V , then there exists a universal constant C > 0 such that

E sup
R∈R

∣∣∣(P− P̂)1{X∈R}

∣∣∣ ≤ C√V

n
,

where the expectation is taken w.r.t. the joint distribution of X1, . . . , Xn, and P̂ is the empirical distribution on
X1, . . . , Xn.
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Some properties of the minimization problem in Equation (7).

Let P be a finite set of points from Rd, we denote by Co(P ) its convex hull. The next lemma gives the first order
optimality condition for the minimization problem in Equation (7).

Lemma B.7. Any solution λ̂−L, . . . , λ̂L of the minimization problem in Equation (7) satisfies for each ` ∈
{−L, . . . , L}

0 ∈
∑
s∈S

sP̂X|S=s

(
∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)

)
+
∑
s∈S

Co ({0, s}) P̂X|S=s

(
∀j 6= ` ĥs`(X, λ̂`) ≥ ĥsj(X, λ̂j), ∃j 6= ` ĥ−1

` (X, λ̂`) = ĥsj(X, λ̂j)
)
.

Proof. Fix an arbitrary ` ∈ {−L, . . . , L}. For all j ∈ {−L, . . . , L}, x ∈ Rd, and s ∈ S it holds that

∂λ`
ĥsj(x, λj) = sδlj ,

where δlj is the Kronecker symbol. Thus, the subdifferential of maxj∈{−L,...,L}

{
ĥsj(X,λj)

}
w.r.t. λ` is given by

∂λ`

(
max

j∈{−L,...,L}

{
ĥsj(x, λj)

})
=s1{∀j 6=` ĥs

`(x,λ`)>ĥs
j(x,λj)}

+ Co ({0, s})1{∀j 6=` ĥs
`(x,λ̂`)≥ĥs

j(x,λ̂j), ∃j 6=` ĥs
`(x,λ̂`)=ĥs

j(x,λ̂j)} .

We conclude the proof using the linearity of the empirical expectation and applying the first order optimality condition
for convex non-differentiable problems.

The next Lemma is used to bound the second term on the right hand side of Lemma B.7. The proof of this result
heavily relies on Assumption 3.1.

Lemma B.8. Let Assumption 3.1 be satisfies, then for all ` ∈ {−L, . . . , L}, all λ−L, . . . , λL ∈ R, and all s ∈ S it
holds that

P̂X|S=s

(
∃j 6= ` ĥs`(X,λ`) = ĥsj(X,λj)

)
≤ 2L

Ns
,

almost surely.

Proof. We provide the proof for s = 1 and the proof for s = −1 follows the same arguments line by line. Fix an
arbitrary ` ∈ {−L, . . . , L} and λ−L, . . . , λL ∈ R. If 2L ≥ N1, then the bound is trivial, thus w.l.o.g., we can assume
that 2L+ 1 ≤ N1. Recall that by defintion we have

P̂X|S=1

(
∃j 6= ` ĥ1

`(X,λ`) = ĥ1
j (X,λj)

)
=

1

N1

∑
X∈D′N1

1{∃j 6=` ĥ1
`(X,λ`)=ĥ1

j (X,λj)} .

The proof goes by contradiction. Assume that

1

N1

∑
X∈D′N1

1{∃j 6=` ĥ1
`(X,λ`)=ĥ1

j (X,λj)} ≥
2L+ 1

N1
,

with non-zero probability. It implies that in the sum on the left hand side there are at least 2L + 1 terms, which
are exactly equal to one, while in the set {−L, . . . , L} \ {`} there are only 2L elements. Applying the pingeonhole
principle we can conclude that there exists j ∈ {−L, . . . , L} \ {`} and X,X ′ ∈ D′N1

such that simultaneously

ĥ1
`(X,λ`) = ĥ1

j (X,λj)

ĥ1
`(X

′, λ`) = ĥ1
j (X

′, λj) .

Recall that

ĥ1
j (x, λ) := λ− p̂s(η̂(x, 1)− jM/L)2 .
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Thus, the above two equations become:

λ` − p̂1(η̂(X, 1)− `M/L)2 = λj − p̂1(η̂(X, 1)− jM/L)2

λ` − p̂1(η̂(X ′, 1)− `M/L)2 = λj − p̂1(η̂(X ′, 1)− jM/L)2 .

Solving the above equalities for η̂(X, 1) and η̂(X ′, 1) implies that

η̂(X, 1) = η̂(X ′, 1) .

Since X and X ′ are sampled from PX|S=1, the above arguments imply that the following bound holds

0 < P

 1

N1

∑
X∈D′N1

1{∃j 6=` ĥ1
`(X,λ`)=ĥ1

j (X,λj)} ≥
2L+ 1

N1

 ≤ P
(
∃X,X ′ ∈ D′N1

η̂(X, 1) = η̂(X ′, 1)
)
.

Finally, notice that thanks to the continuity assumption, the random variable η̂(X, 1) almost surely does not have any
atoms w.r.t. the measure PX|S=1, which implies that

P
(
∃X,X ′ ∈ D′N1

η̂(X, 1) = η̂(X ′, 1)
)

= 0 ,

and we arrive to a contradiction.

B.1 Rates for fairness

We are now in position to prove Theorem 3.2, one of the main theoretical results of this work. Let us recall its statement
in a slightly more general form.

Theorem B.9. Under Assumption 3.1, there exists a universal constant C > 0 such that for each Borel set C ⊂ R it
holds that

E(Dn,D′N )

∣∣PX|S=1 (ĝ(X, 1) ∈ C)− PX|S=−1 (ĝ(X,−1) ∈ C)
∣∣︸ ︷︷ ︸

U(ĝ,C)

≤ C
∑
s∈S

(√
|M|
psN

+
|M|L
psN

)
,

where M = L
M ×

(
{−L,− (L−1)M

L , . . . , (L−1)M
L , L} ∩ C

)
, Moreover, under the same assumptions there exists a

universal constant C ′ such that

E(Dn,D′N ) sup
C⊂R

∣∣PX|S=1 (ĝ(X, 1) ∈ C)− PX|S=−1 (ĝ(X,−1) ∈ C)
∣∣︸ ︷︷ ︸

U(ĝ,C)

≤ C ′
∑
s∈S

(√
L

psN
+

L2

psN

)
.

Proof of Theorem 3.2. Fix some Borel subset C ⊂ R. First notice that thanks to the continuity assumption 3.1 it holds
for all s ∈ S and all ` ∈ {−L, . . . , L} that

PX|S=s

(
ĝ(X, s) =

`M

L

)
= PX|S=s

(
∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)

)
,

almost surely. Denote by M = L
M ×

(
{−M,− (L−1)M

L , . . . , (L−1)M
L ,M} ∩ C

)
, the scaling of those points in the

grid QL = {−M,− (L−1)M
L , . . . , (L−1)M

L ,M} which end up in C, thus we can write

PX|S=s (ĝ(X, s) ∈ C) = PX|S=s

( ⋃
`∈M

{
ĝ(X, s) =

`M

L

})
= PX|S=s

( ⋃
`∈M

{
∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)

})
.

Therefore, the unfairness U(ĝ, C) can be written as

U(ĝ, C) =

∣∣∣∣∣∑
s∈S

sPX|S=s

( ⋃
`∈M

{
∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)

})∣∣∣∣∣ ,
and first of all we are interested in a bound on U(ĝ, C) which holds almost surely.
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Using the first order optimality condition for the problem in Eq. (7), derived in Lemma B.7, we can conclude that for
each ` ∈ {−L. . . . , L} there exists ρ`1 ∈ [0, 1] and ρ`−1 ∈ [−1, 0] such that

0 =
∑
s∈S

sP̂X|S=s

(
∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)

)
+
∑
s∈S

ρ`sP̂X|S=s

(
∀j 6= ` ĥs`(X, λ̂`) ≥ ĥsj(X, λ̂j), ∃j 6= ` ĥs`(X, λ̂`) = ĥsj(X, λ̂j)

)
.

Note that for each ` ∈ {−L, . . . , L} the events {∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)} are disjoint. Therefore, summing
the above equality over ` ∈M we conclude that

0 =
∑
s∈S

sP̂X|S=s

( ⋃
`∈M

{
∀j 6= ` ĥs`(X, λ̂`) > ĥsj(X, λ̂j)

})
+
∑
`∈M

∑
s∈S

ρ`sP̂X|S=s

(
∀j 6= ` ĥs`(X, λ̂`) ≥ ĥsj(X, λ̂j), ∃j 6= ` ĥs`(X, λ̂`) = ĥsj(X, λ̂j)

)
.

The later implies that U(ĝ, C) can be bounded as

U(ĝ, C) ≤
∑
s∈S

∣∣∣(PX|S=s − P̂X|S=s

)
1{⋃`∈M{∀j 6=` ĥs

`(X,λ̂`)>ĥs
j(X,λ̂j)}}

∣∣∣
+
∑
`∈M

∑
s∈S

P̂X|S=s

(
∀j 6= ` ĥs`(X, λ̂`) ≥ ĥsj(X, λ̂j), ∃j 6= ` ĥs`(X, λ̂`) = ĥsj(X, λ̂j)

)
≤
∑
s∈S

∣∣∣(PX|S=s − P̂X|S=s

)
1{⋃`∈M{∀j 6=` ĥs

`(X,λ̂`)>ĥs
j(X,λ̂j)}}

∣∣∣
+
∑
`∈M

∑
s∈S

P̂X|S=s

(
∃j 6= ` ĥs`(X, λ̂`) = ĥsj(X, λ̂j)

)
.

Lemma B.8 allows to control the second term on the r.h.s. of the above inequality. Thus, applying the result of
Lemma B.8 and taking supremum over all λ−L, . . . , λL in the first term on the r.h.s. we arrive at

U(ĝ, C) ≤
∑
s∈S

sup
λ∈R2L+1

∣∣∣(PX|S=s − P̂X|S=s

)
1{⋃`∈M{∀j 6=` ĥs

`(X,λ`)>ĥs
j(X,λj)}}

∣∣∣+ 2 |M|L
(

1

N−1
+

1

N1

)
,

almost surely. Thus, to bound the expected value of U(ĝ, C) it remains to bound the expected deviation of the empirical
process above and E(Dn,D′N )[1/Ns] for all s ∈ S.

We start by bounding the empirical process. As before, we focus on s = 1 and the proof for s = −1 is identical. To
this end, for a fixed ` ∈ M, let us examine the event

{
∀j 6= ` ĥ1

`(X,λ`) > ĥ1
j (X,λj)

}
. Using the definition oh ĥ1

j

we can write{
∀j 6= ` ĥ1

`(X,λ`) > ĥ1
j (X,λj)

}
⇔
{
∀j 6= ` λ` − p̂1(η̂(X, 1)− `M/L)2 > λj − p̂1(η̂(X, 1)− jM/L)2

}
.

Rewriting the condition on the right hand side of the equivalence above we arrive at{
∀j 6= ` ĥ1

`(X,λ`) > ĥ1
j (X,λj)

}
⇔
{
∀j 6= `

(λ` − λj)L
2Mp̂1

− (`2 − j2)M

2L
> η̂(X, 1)(j − `)

}
.

Denote by θ`j = θ`j(λ−L, . . . , λL) :=
(λ`−λj)L

2Mp̂1
− (`2−j2)M

2L , thus we have{
∀j 6= ` ĥ1

`(X,λ`) > ĥ1
j (X,λj)

}
⇔
{
∀j 6= ` θ`j > η̂(X, 1)(j − `)

}
⇔

{
∀j > `

θ`j
j − `

> η̂(X, 1)

}
∩

{
∀j < `

θ`j
j − `

< η̂(X, 1)

}

⇔

{
min
j>`

θ`j
j − `

> η̂(X, 1) > max
j<`

θ`j
j − `

}
.
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Denoting by w`+ = w`+(λ−L, . . . , λL) = minj>`
θ`j
j−` and by w`− = w`−(λ−L, . . . , λL) = maxj<`

θ`j
j−` we get{

∀j 6= ` ĥ1
`(X,λ`) > ĥ1

j (X,λj)
}
⇔
{
w`+ > η̂(X, 1) > w`−

}
.

Thus, we have

sup
λ

∣∣∣(PX|S=1 − P̂X|S=1

)
1{⋃`∈M{∀j 6=` ĥ1

`(X,λ`)>ĥ1
j (X,λj)}}

∣∣∣
≤ sup

(w−L
+ ,w−L

− ),...,(wL
+,w

L
−)∈R2

∣∣∣(PX|S=1 − P̂X|S=1

)
1{⋃`∈M{w`

+>η̂(X,1)>w`
−}}

∣∣∣ .
This implies that for all C it holds that

U(ĝ, C) ≤
∑
s∈S

 sup
(w−L

+ ,w−L
− ),...,(wL

+,w
L
−)∈R2

∣∣∣(PX|S=1 − P̂X|S=1

)
1{⋃`∈M{w`

+>η̂(X,1)>w`
−}}

∣∣∣+ 2 |M|LN−1
s

 .

We are ready to prove the first claim of the result. Combining Lemma B.5 with Lemma B.6 we conclude that there
exists C > 0 such that

E

 sup
(w−L

+ ,w−L
− ),...,(wL

+,w
L
−)∈R2

∣∣∣(PX|S=1 − P̂X|S=1

)
1{⋃`∈M{w`

+>η̂(X,1)>w`
−}}

∣∣∣ ∣∣∣DSN ,Dn
 ≤ C√2 |M|

N1
.

Finally, repeating the same argument for s = −1 we obtain for some universal C > 0

E(Dn,D′N )[U(ĝ, C)] ≤ CE

√2 |M|
N−1

+

√
2 |M|
N1

+ 2E
(
|M|L
N−1

+
|M|L
N1

)
.

Note that N−1 and N1 are binomial random variables with parameters (p−1, N) and (p1, N) respectively. Applying
the bound on the moment of binomials random variables we conclude that for some universal C > 0 it holds that

E(Dn,D′N )[U(ĝ, C)] ≤ C
∑
s∈S

(√
|M|
psN

+
|M|L
psN

)
.

In order to prove the second claim of the result, we first notice that following the same argument we can write

sup
C⊂R
U(ĝ, C) ≤

∑
s∈S

(
sup
R∈Rs

∣∣∣(PX|S=s − P̂X|S=s

)
1{X∈R}

∣∣∣+
4L2

Ns

)
,

almost surely. Here, for all s ∈ S the range setRs is defined as

Rs =

2L+1⋃
`=1

R`∪η̂,s ,

where Rη̂,s =
{
Rsa,b : a, b ∈ R

}
and Rsa,b =

{
x ∈ Rd : a > η̂(x, s) > b

}
. In words, the ranges of Rs are induced

by 2L + 1-fold union of level sets of η̂(·, s), with η̂(·, s) being fixed conditionally on the labeled dataset. Note that
again thanks to Lemma B.5 and the inclusion of k-fold unions it holds that

VC(Rs) ≤ 2L+ 1 ,

for all s ∈ S. We conclude similarly to the previous case applying Lemma B.6, which formally replaces |M| by
2L+ 1.

C Preparation for risk rates

As in the previous part, we first present some preparation results which allow to establish the consistency of the
proposed procedure in terms of the risk measure. We suggest the reader to understand the statements the following
lemmas first and immediately proceed to the proof of the risk consistency result. After the proof of the main result,
the interested reader could proceed to the proofs of the lemmas of this section.

The next tautology is used to simplify the presentation.
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Lemma C.1. For any g it holds that

R(g) = E[Y 2]− E[η2(X,S)] +
∑
s∈S

psEX|S=s(η(X, s)− g(X, s))2 .

Let r(·) be defined as

r(g) :=
∑
s∈S

psEX|S=s(η(X, s)− g(X, s))2 = E(X,S)(η(X,S)− g(X,S))2 .

Notice that for any g, g′ it holds that

R(g)−R(g′) = r(g)− r(g′) ,

therefore, from now on we focus on r(ĝ)− r(g∗) instead ofR(ĝ)−R(g∗).

The next result provides an alternative expression for the risk of the oracle g∗.

Lemma C.2. Let the continuity Assumption 2.5 be satisfied, then

r(g∗) = max
λ∈R2L+1

∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ` + ps

(
η(X, s)− `M

L

)2
}

.

We also need a suitable upper bound on the risk of the proposed procedure ĝ, which is derived very similarly to
Lemma C.2.

Lemma C.3. The proposed estimator ĝ satisfies almost surely

r(ĝ) ≤
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + p̂s

(
η̂(X, s)− `M

L

)2
}

+

L∑
`=−L

λ̂`
∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)
+ 4M ‖η − η̂‖1 + 4M2

∑
s∈S
|ps − p̂s| ,

where ‖η − η̂‖1 = E(X,S) |η(X,S)− η̂(X,S)|.

There are four terms in the expression for r(ĝ): the first one is the risk of ĝ if the practitioner had access to the marginal
distribution of (X,S); the second term described the violation of the fairness constraints; the third is coming from the
fact that we use η̂ in place of η; the last term appears due to estimation of the marginal distribution of S. Equipped
with the two above results we deduce the following corollary on the excess risk of the proposed procedure.

Corollary C.4. Under Assumption 2.5 the proposed estimator ĝ satisfies almost surely

r(ĝ)− r(g∗) ≤ 8M ‖η − η̂‖1 + 8M2
∑
s∈S
|ps − p̂s|+

L∑
`=−L

λ̂`
∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)
.

Proof. Let us introduce some short-hand notation to save space

α =
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + p̂s

(
η̂(X, s)− `M

L

)2
}

β = max
λ

∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ` + ps

(
η(X, s)− `M

L

)2
}

.
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Using the above we can write

α− β ≤
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + p̂s

(
η̂(X, s)− `M

L

)2
}

−
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + ps

(
η(X, s)− `M

L

)2
}

≤
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + ps

(
η̂(X, s)− `M

L

)2
}

+ 4M2
∑
s∈S
|ps − p̂s|

−
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + ps

(
η(X, s)− `M

L

)2
}

≤
∑
s∈S

psEX|S=s max
`

∣∣∣∣∣
(
η̂(X, s)− `M

L

)2

−
(
η(X, s)− `M

L

)2
∣∣∣∣∣+ 4M2

∑
s∈S
|ps − p̂s|

≤4M
∑
s∈S

psEX|S=s |η̂(X, s)− η(X, s)|+ 4M2
∑
s∈S
|ps − p̂s|

=4M ‖η − η̂‖1 + 4M2
∑
s∈S
|ps − p̂s| .

Finally, combining Lemma C.2 with Lemma C.3 implies the statement of the corollary.

C.1 Rates for the excess risk

We are ready to present the proof of the rates of convergence of the excess risk of the proposed procedure stated in
Theorem 3.3. Recall that Lemma 2.4 gives a way to control R(g∗L) − R(f∗). Thus, to control the excess risk of g∗L
it only remains to bound R(ĝL) −R(g∗L). From now on we again omit the index L. We also recall4 the statement of
Theorem 3.3

Theorem C.5. Let Assumptions 2.5 and 3.1 be satisfied, then for the proposed estimator ĝ there exists a universal
constant C > 0 such that

E(Dn,D′N )[R(ĝ)]−R(g∗) ≤ 8ME(Dn,D′N ) ‖η − η̂‖1 + CM2
∑
s∈S

(
L

√
1

psN
+

L2

psN

)
.

Proof of Theorem C.5. As already discussed we have

E(Dn,D′N )[R(ĝ)]−R(g∗) = E(Dn,D′N )[r(ĝ)]− r(g∗) . (11)

Thanks to Corollary C.4 we have

E(Dn,D′N )[r(ĝ)]− r(g∗) ≤
L∑

`=−L

E(Dn,D′N )

[
λ̂`
∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)]
+ 8ME(Dn,D′N ) ‖η − η̂‖1 + 8M2

∑
s∈S

E(Dn,D′N ) |p̂s − ps| .

Let us bound the first term on the right hand side of the above inequality. Thanks to Proposition A.2 we know that
for all ` ∈ {−L, . . . , L} it holds that |λ̂`| ≤ 4M2. Note that Proposition A.2 is proven for λ∗, yet an identical proof
yields the same conclusion on λ̂. Using this we can write introducing the notation

(∗) =

L∑
`=−L

E(Dn,D′N )

[
λ̂`
∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)]
,

4Theorem 3.3 provides a bound on E(ĝ) = R(ĝ) − R(f∗), while Theorem C.5 is stated on R(ĝ) − R(g∗). The result of
Theorem 3.3 is recovered immediately from Lemma 2.4 and Theorem C.5.
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that

(∗) ≤ 4M2
L∑

`=−L

E(Dn,D′N )

∣∣∣∣∣∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)∣∣∣∣∣ .
For each ` ∈ {−L, . . . , L} we can use Theorem B.9 with |M| = 1 which implies that for some universal constant
C > 0 we have

(∗) ≤ CM2
∑
s∈S

(
L

√
1

psN
+

L2

psN

)
.

Finally, we can write for some universal C > 0 that∑
s∈S

E(Dn,D′N ) |p̂s − ps| = 2E(Dn,D′N ) |p1 − p̂1| ≤ C
√

1

N
.

Combining all of the above we conclude.

The proof of Theorem 3.3 ends if we combine Theorem C.5 with Lemma 2.4..

C.2 Proofs of preparation results

Proof of Lemma C.2. We have the following chain of equalities

r(g∗) =
∑
s∈S

psEX|S=s(η(X, s)− g∗(X, s))2

=

L∑
`=−L

∑
s∈S

psEX|S=s

(
η(X, s)− `M

L

)2

1{g∗(X,s)= `M
L }

=

L∑
`=−L

∑
s∈S

EX|S=s

(
−sλ∗` + ps

(
η(X, s)− `M

L

)2
)
1{g∗(X,s)= `M

L }

+

L∑
`=−L

λ∗`
∑
s∈S

sPX|S=s

(
g∗(X, s) =

`M

L

)
.

Since g∗ is fair it holds that ∑
s∈S

sPX|S=s

(
g∗(X, s) =

`M

L

)
= 0 ,

for all ` ∈ {−L, . . . , L}. Thus we have

r(g∗) =
L∑

`=−L

∑
s∈S

EX|S=s

(
−sλ∗` + ps

(
η(X, s)− `M

L

)2
)
1{g∗(X,s)= `M

L } .

Recall that for every (x, s) ∈ Rd × S the oracle g∗ is defined as

g∗(x, s) = arg min
`

{
−sλ∗` + ps

(
η(x, s)− `M

L

)2
}
× M

L
,

thus for r(g∗) we can write

r(g∗) =
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ∗` + ps

(
η(X, s)− `M

L

)2
}

.

Using the definition of λ∗−L, . . . , λ
∗
L we have

r(g∗) = max
λ

∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ` + ps

(
η(X, s)− `M

L

)2
}

.
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Proof of Lemma C.3. Conditionally on all data we can write

r(ĝ) = E(η̂(X,S)− ĝ(X,S))2 + E(η(X,S)− ĝ(X,S))2 − E(η̂(X,S)− ĝ(X,S))2 .

Note that the boundness of Y ∈ R, implies the boundness of η(X,S). Thus, we have

E(η(X,S)− ĝ(X,S))2 − E(η̂(X,S)− ĝ(X,S))2 ≤ 4M ‖η − η̂‖1 .

So far we showed that the following bound holds almost surely

r(ĝ) ≤ E(η̂(X,S)− ĝ(X,S))2 + 4M ‖η − η̂‖1 .

Now, let us work with E(η̂(X,S)− ĝ(X,S))2. We can write

E(η̂(X,S)− ĝ(X,S))2 =
∑
s∈S

psEX|S=s(η̂(X, s)− ĝ(X, s))2

=
∑
s∈S

p̂sEX|S=s(η̂(X, s)− ĝ(X, s))2 +
∑
s∈S

(ps − p̂s)EX|S=s(η̂(X, s)− ĝ(X, s))2

≤
∑
s∈S

p̂sEX|S=s(η̂(X, s)− ĝ(X, s))2 + 4M2
∑
s∈S
|ps − p̂s| .

Lastly, for the first term on the right hand side of the above inequality we can write∑
s∈S

p̂sEX|S=s(η̂(X, s)− ĝ(X, s))2 =

L∑
`=−L

∑
s∈S

EX|S=sp̂s

(
η̂(X, s)− `M

L

)2

1{ĝ(X,s)= `M
L }

=

L∑
`=−L

∑
s∈S

EX|S=s

(
−sλ̂` + p̂s

(
η̂(X, s)− `M

L

)2
)
1{ĝ(X,s)= `M

L }

+

L∑
`=−L

λ̂`
∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)
.

Recall that for each (x, s) ∈ Rd × S the estimator ĝ is defined as

ĝ(x, s) = min

{
arg min

`

{
−sλ̂` + p̂s

(
η̂(x, s)− `M

L

)2
}}
× M

L
,

thus we have∑
s∈S

p̂sEX|S=s(η̂(X, s)− ĝ(X, s))2 =
∑
s∈S

EX|S=s min
`∈{−L,...,L}

{
−sλ̂` + p̂s

(
η̂(X, s)− `M

L

)2
}

+

L∑
`=−L

λ̂`
∑
s∈S

sPX|S=s

(
ĝ(X, s) =

`M

L

)
.

Combining all of the above concludes the proof.

D Optimization algorithm to approximate the thresholds

The whole section is devoted to the proof of Theorem 3.5. We denote by ∆ the probability simplex in R2L+1. As
pointed out, in the main body of the paper, we set λ̂−L, . . . , λ̂L to be a solution of Eq. (7). Let us recall that the problem
in Eq. (7) is an example of non-smooth convex optimization, and subgradient methods can be used to find a solution
numerically. Yet, subgradient methods suffer from instability of the outcome and have slow rates of convergence. To
alleviate this issue we leverage the structure of problem (7) and apply the idea of smoothing, developed in the context
of optimization Nesterov (2005).

Thus, instead of building an iterative scheme for problem (7) we focus on its proxy-problem defined for all β > 0 as

min
λ−L,...,λL

∑
s∈S

ÊX|S=s max
w∈∆

{
L∑

`=−L

w`

(
sλ` − Ẑ`(X, s)

)
− βKL(w||π)

}
, (Pβ

λ̂
)
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where π = (1/(2L+ 1), . . . , 1/(2L+ 1))> ∈ R2L+1 and the KL-divergence is defined as

KL(w||π) =

L∑
`=−L

w` log
wl
πl

. (12)

Denote by G and Gβ the objective functions of the minimization problems in Eq. (7) and in (Pβ
λ̂

) respectively.

Therefore, λ̂ = (λ̂−L, . . . , λ̂L)> is defined as

λ̂ ∈ arg min
λ∈R2L+1

G(λ) .

Also, define λ̂β as

λ̂β ∈ arg min
λ∈R2L+1

Gβ(λ) .

The next result tells that Gβ is indeed an approximation of G as long as β is sufficiently small.

Lemma D.1. For all λ ∈ R2L+1 it holds that

Gβ(λ) ≤ G(λ) ≤ Gβ(λ) + 2β log(2L+ 1) .

Proof of Lemma D.1. For any probability vector w it holds that 0 ≤
∑L
`=−L w` log wl

πl
≤ log(2L+ 1). Applying this

fact concludes the proof.

We also need to derive an explicit expression for Gβ .

Lemma D.2. For any β > 0 it holds that

Gβ(λ) = β
∑
s∈S

ÊX|S=s log

(
L∑

`=−L

exp

(
1

β
sλ` −

1

β
Ẑ`(X, s)

))
− 2β log(2L+ 1) .

Proof of Lemma D.2. For a fixed s ∈ S and a fixed x ∈ Rd, let us first solve another problem, namely we would like
to find a maximizer of

max

{
L∑

`=−L

w`

(
sλ` − Ẑ`(x, s)− β log

w`
π`

)
:

L∑
`=−L

w` = 1

}
. (13)

To solve this problem analytically, we construct the Lagrangian function as

L(w, κ) =

L∑
`=−L

w`

(
sλ` − Ẑ`(x, s)− β log

w`
π`

)
+ κ

(
L∑

`=−L

w` − 1

)
.

The KKT conditions read as

∂w`
L(w, κ) = 0 ,

L∑
`=−L

w` = 1 ,

for all ` ∈ {−L, . . . , L}. Taking the partial derivatives we get

∂w`
L(p, κ) = sλ` − Ẑ`(x, s)− β log

w`
π`
− β + κ = 0 , (14)

L∑
`=−L

w` = 1 . (15)
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Solving Eq. (14) for wl we obtain

− β log
w`
π`

= −sλ` + Ẑ`(x, s) + β − κ ,

log
w`
π`

=
1

β
sλ` −

1

β
Ẑ`(x, s)− 1 +

1

β
κ ,

w` =
1

2L+ 1
exp

(
1

β
sλ` −

1

β
Ẑ`(x, s)

)
exp

(
−1 +

1

β
κ

)
.

Using the relation in Eq. (15), we find the value of the dual variable κ as

exp

(
−1 +

1

β
κ

)
=

(
1

2L+ 1

L∑
`=−L

exp

(
1

β
sλ` −

1

β
Ẑ`(x, s)

))−1

(16)

Plug-in the above into the expression for w` we arrive at

w` =
exp

(
1
β sλ` −

1
β Ẑ`(x, s)

)
∑L
`=−L exp

(
1
β sλ` −

1
β Ẑ`(x, s)

) .

Note that w` ∈ [0, 1] and
∑
` w` = 1, therefore it is a minimizer of

max
w∈∆

{
L∑

`=−L

w`

(
sλ` − Ẑ`(x, s)− β log

w`
π`

)}
.

Plug-in the expression for w` into the above objective function we conclude that

max
w∈∆

{
L∑

`=−L

w`

(
sλ` − Ẑ`(x, s)− β log

w`
π`

)}
=β log

(
L∑

`=−L

exp

(
1

β
sλ` −

1

β
Ẑ`(x, s)

))
− β log(2L+ 1) .

Thus the minimizer of problem (Pβ
λ̂

) is also the solution of

min
λ

{
β
∑
s∈S

ÊX|S=s log

(
L∑

`=−L

exp

(
1

β
sλ` −

1

β
Ẑ`(X, s)

))
− β log(2L+ 1)

}
.

Therefore,

Gβ(λ) = β
∑
s∈S

ÊX|S=s log

(
L∑

`=−L

exp

(
1

β
sλ` −

1

β
Ẑ`(X, s)

))
− 2β log(2L+ 1) . (17)

The function Gβ is appealing due to the fact that it is smooth and its gradient is Lipschitz.

Lemma D.3 (Gao & Pavel (2017)). The function Gβ has a continuous gradient with Lipschitz constant 2/β, that is,
for all λ, λ′ it holds that

‖∇Gβ(λ)−∇Gβ(λ′)‖2 ≤
2

β
‖λ− λ′‖2 .

Note that small values of β induce large Lipschitz constant and thus this function is harder to minimize.

Let us also derive the gradient of Gβ in order to apply iterative procedures.
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Lemma D.4. For every λ ∈ R2L+1, the following expression holds for the gradient of Gβ

(
∇Gβ(λ)

)
`

=
∑
s∈S

sÊX|S=s

exp
(
s
βλ` −

1
β Ẑ`(X, s)

)
∑L
`=−L exp

(
s
βλ` −

1
β Ẑ`(X, s)

) ,

for each ` ∈ {−L, . . . , L}.

Let us recall the accelerated gradient descent for convex (2/β) -smooth functions. The goal is to approximate

minGβ(λ) .

The iterations of the accelerated gradient descent are given by

λ1 = y1 = τ0 = 0 ,

yt+1 = λt −
β

2
∇Gβ(λt) ,

λt+1 = (1− γt)yt+1 + γtyt ,

τt =
1 +

√
1 + 4τ2

t−1

2
,

γt =
1− τt
τt+1 .

The next result is already classical in the optimization literature, its proof can be found in Nesterov (1983);
Beck & Teboulle (2009).

Theorem D.5 (Nesterov (1983)). The above iteration satisfies

Gβ(λT )−Gβ(λ̂β) ≤ 4‖λ1 − λ̂β‖22
βT 2

.

Combination of Theorem D.5 with Lemma D.1 immediately yields.

Corollary D.6. Let λT be the output Algorithm 1, therefore

G(λT )−G(λ̂) ≤ 4‖λ̂β‖22
βT 2

+ 2β log(2L+ 1) .

Proof. Thanks to Lemma D.1 we have

G(λT ) ≤ Gβ(λT ) + 2β log(2L+ 1) ,

G(λ̂) ≥ Gβ(λ̂) ≥ Gβ(λ̂β) .

Moreover, using Theorem D.5 we get

G(λT )−G(λ̂) ≤ 4‖λ̂β‖22
βT 2

+ 2β log(2L+ 1) .

Let us understand the order of magnitude of ‖λ̂β‖22.

Lemma D.7. For any positive β it holds that

‖λ̂β‖∞ ≤ 4M2 + 2β log(2L+ 1) .

Proof. Notice that

Gβ(0) ≤ G(0) ≤ 0 .
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Moreover, for any λ ∈ R2L+1 we have

Gβ(λ) = β
∑
s∈S

ÊX|S=s log

(
L∑

`=−L

exp

(
1

β
sλ` −

1

β
Ẑ`(X, s)

))
− 2β log(2L+ 1)

≥ G(λ)− 2β log(2L+ 1)

≥ max {λ`} −min {λ`} − 4M2 − 2β log(2L+ 1) .

And we conclude similarly to Proposition A.2.

Corollary D.8. For any positive β it holds that

G(λT )−G(λ̂) ≤ 128M4 2L+ 1

βT 2
+ 128β log2(2L+ 1) .

Proof. Recall that for any λ ∈ R2L+1 it holds

‖λ‖22 ≤ ‖λ‖
2
∞ (2L+ 1) .

Therefore thanks to Lemma D.7, for λ̂β we have∥∥∥λ̂β∥∥∥2

2
≤ (2L+ 1)

(
4M2 + 2β log(2L+ 1)

)2
≤ 32(2L+ 1)M4 + 8(2L+ 1)β2 log2(2L+ 1) .

Substituting this bound into the result of Corollary D.6 we get

G(λT )−G(λ̂) ≤ 128M4 2L+ 1

βT 2
+ 32β

(
(2L+ 1) log2(2L+ 1)

T 2
+ 2 log(2L+ 1)

)
.

Finally, notice that for all positive integer L > 0 it holds that log(2L+ 1) ≤ log2(2L+ 1) and if T ≥
√

2L+ 1 then
we have

G(λT )−G(λ̂) ≤ 128M4 2L+ 1

βT 2
+ 32β

(
log2(2L+ 1) + 2 log2(2L+ 1)

)
.

Finally, if we set β as

β = M2

√
2L+ 1

T log(2L+ 1)
,

the bound reads as

G(λT )−G(λ̂) ≤ 256M2

√
2L+ 1 log(2L+ 1)

T
.

Thus, in order to achieve an ε precision, we need to set T as

T =
256M2

ε

√
(2L+ 1) log(2L+ 1) .

Our statistical analysis summarized in Theorem 3.3 suggests that L ∼ N1/4 gives the best convergence rate in terms
of the excess risk. Therefore, in order to achieve and ε precision for the desired minimization it is sufficient to satisfy

T ∼ N1/8log(N)

ε
.

In order to match the rate of convergence for the excess risk an fairness, it is desirable to set ε ∼ N−1/4. So the final
runtime of our algorithm is O(N3/8 log(N)) + the time spent on the construction of η̂.
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E Algorithm for predictions without sensitive attribute

In this section we propose a modification of our methodology for the case when the predictions are defined as f :
Rd → R. That is, the fair optimal predictor f∗ : Rd → R is defined as a solution of

min
f :Rd→R

{
E(Y − f(X))2 : ∀C ⊂ R P (f(X) ∈ C |S = 1) = P (f(X) ∈ C |S = −1)

}
.

Remark E.1. In this part of the supplementary material we use the same notation as in the main body. This section
should be seen independently from the main body. For instance, the reader should not confuse f∗ defined in the main
body of the paper and f∗ defined above.

Similarly to the case with the use of S ∈ S , we work under the bounded signal Assumption 2.3, that is, |Y | ≤ M .
First we define the binned optimal fair predictor g∗L : Rd → QL, whereQL is the uniform grid on [−M.M ] of 2L+ 1
points defined in the main body. The binned optimal fair predictor g∗L : Rd → QL is a solution of

min
g:Rd→QL

{
E(Y − g(X))2 : ∀q ∈ QL P (g(X) = q |S = 1) = P (g(X) = q |S = −1)

}
.

Following the proof of Lemma 2.4 line by line, it is clear that an analogous statement holds in this case. Thus, in order
to extend the approach of the main body of this work to the case where the prediction function does not bring into play
the sensitive feature, we need to derive the form of g∗L for all integer L > 0.

Let us define5 η(X) := E[Y |X], τ(X) := P (S = 1 |X), and ps = P(S = s) for all s ∈ S.
Assumption E.2. The mappings t 7→ PX(η(X) ≥ t) and t 7→ PX(τ(X) ≥ t) are continuous.

Theorem E.3. For each L > 0 under Assumption E.2 it holds for all x ∈ Rd that

g∗L(x) = arg min
`∈{−L,...,L}

{
(η(x)− `M/L)2 + λ∗`

(
τ(x)

p1
− 1

)}
× M

L
,

where λ∗ = (λ∗−L, . . . , λ
∗
L)> is a solution of

min
λ

{
EX max

`

{
λ`

(
1− τ(X)

p1

)
− (η(X)− `M/L)2

}}
.

Proof. Fix some integer L > 0. Notice that we can write for all g : Rd → QL
E(Y − g(X))2 = EX(η(X)− g(X))2 + E(Y 2)− E(η2(X)) .

Thus, g∗L can be equivalently defined as a solution of

min
g:Rd→QL

{
EX(η(X)− g(X))2 : ∀q ∈ QL P (g(X) = q |S = 1) = P (g(X) = q |S = −1)

}
.

For an arbitrary q ∈ QL and s ∈ S we can write

P (g(X) = q |S = s) = p−1
s P(g(X) = q, S = s) = p−1

s EX [1{g(X)=q}P (S = s |X)] ,

therefore for (∗) = P (g(X) = q |S = 1)− P (g(X) = q |S = −1) we can write

(∗) =
∑
s∈S

sp−1
s EX [1{g(X)=q}P (S = s |X)]

= p−1
1 EX [1{g(X)=q}P (S = 1 |X)]− p−1

−1EX [1{g(X)=q}P (S = −1 |X)]

= p−1
1 EX [1{g(X)=q}τ(X)]− p−1

−1EX [1{g(X)=q}(1− τ(X))]

= EX
[(

τ(X)

p1p−1
− 1

p−1

)
1{g(X)=q}

]
.

The above implies that

(∗) = 0⇔ EX
[(

τ(X)

p1
− 1

)
1{g(X)=q}

]
= 0 .

Hence, g∗L is a solution of

min
g:Rd→QL

{
EX(η(X)− g(X))2 : ∀q ∈ QL EX

[(
τ(X)

p1
− 1

)
1{g(X)=q}

]
= 0

}
. (18)

5The reader should not confuse η defined in the main body with η defined in this section.
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Remark E.4. Notice that if X is independent from S, then τ(X) ≡ p1 and any predictor is fair.

The rest of the proof is similar to the proof of Proposition 2.6. Let us write the problem in Eq. (18) in its unconstrained
form. That is, we would like to solve

min
g:Rd→QL

max
λ

{
EX(η(X)− g(X))2 +

L∑
`=−L

λ`EX
[(

τ(X)

p1
− 1

)
1{g(X)=`M/L}

]}
.

The objective function of this minmax problem can be equivalently written as

EX
L∑

`=−L

[
(η(X)− `M/L)2 + λ`

(
τ(X)

p1
− 1

)]
1{g(X)=`M/L} .

Now, as before we focus on the dual maxmin formulation of the problem

max
λ

min
g:Rd→QL

{
EX

L∑
`=−L

[
(η(X)− `M/L)2 + λ`

(
τ(X)

p1
− 1

)]
1{g(X)=`M/L}

}
.

The inner minimization problem can be solved explicitly and the solution for all λ ∈ R2L+1 is given by g̃λ defined for
all x ∈ R as

g̃λ(x) = arg min
`∈{−L,...,L}

{
(η(x)− `M/L)2 + λ`

(
τ(x)

p1
− 1

)}
× M

L
.

Substituting the expression for g̃λ into the objective function of the maxmin formulation we get

max
λ

{
EX min

`

{
(η(X)− `M/L)2 + λ`

(
τ(X)

p1
− 1

)}}
.

Let λ∗ be any minimizer of the above problem. To finish the proof we show that g̃λ∗ is fair. It is done similarly to the
proof of Proposition 2.6. That is, we first make use of Assumption E.2 to conclude that the objective function in the
maximization problem for λ∗ is almost surely smooth. Then, we write the first order optimality condition for smooth
concave maximization problem which precisely gives the fairness of g̃λ∗ . Thus, g∗L = g̃λ∗ and we conclude.

Remark E.5. It is straightforward to construct a plug-in method once the form of the optimal predictor is established.
Indeed, we only need to solve three problems:

• Unconstrained regression on (X,Y ), to estimate E[Y |X].

• Unconstrained classification on (X,S) to estimate P(S = 1|X).

• Unconstrained minimization over λ ∈ R2L+1.

The statistical analysis of this method is left for future research.

F The impact of unlabeled data on the performance of the estimator

In this section, we empirically study the behavior of the proposed estimator as a function of unlabeled data sam-
ple used for recalibration. For this purpose, since the benchmark datasets considered in this paper are fully la-
beled, we subsample from the original dataset a smaller labeled sample Dn and then simulate a scenario in which
the unlabeled sample D′N varies. Specifically, we choose n = 1/10 the size of dataset used to estimate η, and
N ∈ {0, 1/10, 2/10, 4/10, 8/10} the size of the dataset considered to recalibrate η as a fair predictor. This data
generation procedure is applied to the LAW dataset, since it is the largest dataset. We apply our method using the
random forest algorithm, using the same cross-validation scheme as in Section 4. The above pipeline is repeated 30
times and the variance of the results is reported in Table 2. Notice that both MSE and DDP are improving with N ,
highlighting the importance of the unlabeled data. We believe that the improvement could have been more significant
if the unlabeled data were provided initially.
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LAW - RF+Ours MSE DDP
Dn=1/10 .096±.012 .046±.005
Dn=1/10,D′N=1/10 .093±.011 .044±.005
Dn=1/10,D′N=2/10 .092±.010 .041±.005
Dn=1/10,D′N=4/10 .090±.010 .039±.005
Dn=1/10,D′N=8/10 .089±.010 .038±.004

Table 2: Impact of the size of the unlabeled dataset on MSE and DDP. The size of the labeled sample Dn is fixed to
1/10 of the original dataset size. The unlabeledDN is initially empty (meaning that we both estimate η and recalibrate
it using the same sample Dn, as in the previous experiments of Table 1), and then it increases from 1/10 to 8/10 of
the original dataset.
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