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Abstract This article presents an axiomatic characterization of a new value
for cooperative games with incomplete communication. The result is obtained
by slight modifications of associated games proposed by Hamiache (1999,
2001). This new associated game can be expressed as a matrix formula. We
generate a series of successive associated games and show that its limit is
an inessential game. Three axioms (associated consistency, inessential game,
continuity) characterize a unique sharing rule. Combinatorial arguments and
matrix tools provide a procedure to compute the solution. The new sharing
rule coincides with the Shapley value when the communication is complete.
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1 Introduction

The present article contributes to the literature generalizing the Shapley value
(Shapley, 1953) for situations of limited communication between players. We
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consider a type of communication that can be represented by graph, as initi-
ated by Myerson (1977). Only pairwise meetings can occur, and some of them
are not permitted.

The present article joins a family of works dealing with value on graphs:
the Myerson value (1977), the position value (Borm et al, 1992), the average-
tree value (Herings et al, 2008), the F-value (Hamiache, 1999) and the mean
value (Hamiache, 2003). The extension of the Shapley value, for the games
with communication structure discussed herein, is a brand new solution.

Here the associated consistency axiom is an direct extension of the associa-
ted game proposed by Hamiache (2001). Instead of considering the coalition
N \S, coalition S now considers only its immediate neighbors, namely S∗ \S.
The general idea behind this kind of consistency is as follows. For a given
game, agents may elaborate expectations of the game and may be willing to
allow the computation of their payments to be based on these expectations. In
game theory this approach, which involves auxiliary games, namely reduced
games, was initially proposed by Davis and Maschler (1965), Sobolev (1975),
and Peleg (1980). In the context of the Shapley value, Hart and Mas-Colell
(1989) introduced a consistency axiom based on a modified reduced game.

From a technical point of view, the proposed associated game v∗ can be
represented by a matrix formula, v∗ = PgMc Pg v, where Pg is a matrix trans-
lating the communication structure and matrix Mc is intimately linked to the
Shapley value. The process of the associated game generates a sequence of
games: the associated game of the game, the associated game of the associ-
ated game and so on. We show that this sequence converges to some inessential
game. Using the inessential game axioms we characterize a unique sharing rule
for cooperative games with communication structure which coincides with the
Shapley value for complete communication structures. The proof partly deve-
lops matrix arguments and partly relies on combinatorial computations.

In the next chapter the general framework is presented. In chapter 3 the
associated game and the axioms are detailed. The proof of the main theorem is
assembled in Chapter 4. The most technical aspects of the proofs are relegated
to the Appendix.

2 The General Framework

Let U be a non-empty and finite set of players. A coalition is a non-empty
subset of U. A coalitional game with transferable utility (a TU game) is a pair
(N, v) where N is a coalition and v is a function satisfying v : 2N → R and
v(∅) = 0. A game (N, v) is said to be inessential if for all pairs of disjoint
coalitions S ⊆ N and T ⊆ N \ S, v(S ∪ T ) = v(S) + v(T ). Note that a game
(N, v) is inessential if and only if, for all coalitions S ⊆ N , v(S) =

∑
i∈S v({i}).

A unanimity game (N, uR) is defined such that uR(S) = 1 if R ⊆ S, and 0
otherwise.

In this article, structures of communication are represented by simple
graphs. Given a coalition N , we denote by g

N
the set of all unordered pairs of
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N , g
N

= {{i, j} | i 6= j, i ∈ N, j ∈ N}. Note that we define only links between
two distinct vertices, in other words, no loops are admitted. A graph is a pair
〈N, g〉 where N ⊆ U is the set of vertices and g ⊆ g

N
is the set of links. We

denote by GR the set of all the graphs, GR = {〈N, g〉 | N ⊆ U and g ⊆ g
N
}.

Two vertices i and j such that {i, j} ∈ g are said to be adjacent. Two play-
ers can communicate directly if and only if they are adjacent. The graph
〈S, g(S)〉 with S ⊆ N is an induced graph of 〈N, g〉 when g(S) is given by
g(S) = {{i, j} | i ∈ S, j ∈ S, {i, j} ∈ g}. Given two vertices i and j in N ,
a path of graph 〈N, g〉 between vertices i and j is a series of vertices of N ,
i = i1, i2, . . . , ik = j such that for all q, 1 ≤ q ≤ k− 1, {iq, iq+1} ∈ g. If a path
of graph 〈N, g〉 exists between two players i and j of N , we say that they are
connected by graph 〈N, g〉. The fact that two members of N , i and j, are con-
nected by graph 〈N, g〉 will be symbolized by i→〈N,g〉 j. Moreover, we admit
that for all players i ∈ N we also have i→〈N,g〉 i. The binary relation →〈N,g〉
is symmetric, transitive and reflexive. For a given graph 〈N, g〉, we denote by
N/g the partition of set N defined by N/g =

{
{i ∈ N | i→〈N,g〉 j} | j ∈ N

}
.

A member of N/g is called a component of graph 〈N, g〉. A component can
also be defined as a maximal connected coalition. The induced graph 〈S, g(S)〉
is connected if any two players of S are connected by the graph 〈S, g(S)〉. In
terms of components, the graph 〈S, g(S)〉 is connected if set S/g is a singleton
(#(S/g) = 1). We say that coalition S is connected if 〈S, g(S)〉 is a connected
graph. We denote by S∗

〈N,g〉
the closed neighborhood of coalition S. It is the

set of all the vertices of the graph 〈N, g〉 which are adjacent to at least one of
the vertices of the set S, S∗

〈N,g〉
= {i ∈ N | ∃ j ∈ S such that {i, j} ∈ g} ∪ S.

Where no confusion is possible, we omit subscript 〈N, g〉 and only write S∗.
A game with communication structure is a triplet (N, v, g), where N is a

coalition, (N, v) is a game and 〈N, g〉 is a graph. Let us denote by G the set
of all these games, and by GN the set of games whose players’ set is N . We
define the game (N, v/g, g) so that: (v/g) (S) =

∑
R∈S/g v (R) for all S ⊆ N .

In words, the value of a coalition in the new game is the sum of the values
of the coalition’s components. Therefore, the value (v/g) (S) of coalition S
reflects the fact that cooperation can only take place between players who can
physically communicate.

A sharing rule, or a solution on G, is a function φ which associates with
each game (N, v, g) ∈ G, a vector φ(N, v, g) of RN .

3 The Associated Game and Three Axioms

Given a game (N, v, g) and a positive real parameter τ , the associated game
(N, v∗τ , g) is defined for connected coalitions S as,

v∗τ (S) = v(S) + τ
∑
j

j∈S∗\S

[v(S ∪ {j})− v(S)− v({j})], (1)

and for non-connected coalitions S by v∗τ (S) =
∑
R∈S/g v

∗
τ (R). The associated

game (N, v∗τ , g) is indeed a game, since v∗τ (∅) = 0. It is also true that v∗τ (N) =
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v(N). Note that for complete graphs we have for all coalitions S∗ = N , in that
case Equation (1) coincides with the associated game1 in Hamiache (2001).

For a given game, its associated game is assumed to translate formally how
players understand their original situation. A given coalition may have designs
on at least a part of the surplus generated by the cooperation with “satellite
players” taken separately. In other words, coalition S may believe that the
appropriation of at least a part of the surpluses [v(S ∪ {j})− v(S)− v({j})],
generated by its cooperation with each of its immediate neighbors, j ∈ S∗ \
S, is within reach. What we are actually doing here is applying a “divide
and rule” approach to the set of players that are immediate neighbors of the
coalition. This short-sighted associated game can be interpreted as coalition
self-evaluation, and thus could give rise to new claims. The solution concept
is said to be consistent if it gives the same payments to players in the original
game and in the imaginary associated game.

In the following we will deal with large square matrices of order 2n − 1.
We will start by developing a matrix formula for the associated game v∗τ . To
ensure homogeneity in the notations of matrices and vectors, we have found it
convenient to order the set of coalitions of N to label columns and rows of the
square matrices of size 2n−1. We define a lexicographic order for sets of same-
size coalitions. Let us consider two coalitions of size ε, K = {κ1, κ2, . . . , κε}
and L = {`1, `2, . . . , `ε} with κ1 < κ2 < · · · < κε and `1 < `2 < · · · < `ε.
The lexicographic order ≺

`ex
for the set of coalitions of size ε is defined as

follows, K≺
`ex
L if and only if [κ1 < `1] or [there is a natural number γ, with

1 < γ ≤ ε, verifying κη = `η for all 1 ≤ η < γ, and κγ < `γ ].
Let us consider two coalitions S and T . We will say that coalition S

precedes coalition T , denoted S ≺ T , if [#S < #T ] or [#S = #T and
S≺

`ex
T ]. The order chosen induces an order for the values of coalitions of N ,(

v({1}), . . . , v({n}), v({1, 2}), . . . , v({n−1, n}), v({1, 2, 3}), . . . , v(N)
)
. The first

n coordinates of vector v are the values of singletons. The next
(
n
2

)
coordinates

of vector v are the values of doubletons and so on.
Let us consider Mc, the matrix form of the associated game in Hamiache

(2001), as defined in Hamiache (2010), a square matrix of order 2n − 1, the
lines and columns of which are labeled with coalitions respecting the above
order. The generic element of matrix Mc for ∅ 6= S ⊆ N and ∅ 6= T ⊆ N , is
given by,

Mc[S, T ] =


1−#(N \ S) τ if S = T,
τ if #S + 1 = #T and S ⊆ T,
−τ if #T = 1 and T 6⊆ S,
0 otherwise.

(2)

We know that matrix Mc is diagonalizable, and that 1 is an eigenvalue with
algebraic multiplicity n. We also know that 1− s τ are eigenvalues of Mc with
multiplicity

(
n
s

)
for all s verifying 2 ≤ s ≤ n.

1 v∗τ (S) = v(S) + τ
∑
j∈N\S [v(S ∪ {j})− v(S)− v({j})].
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Given a graph 〈N, g〉, we define Pg, a square matrix of order 2n−1, so that
for all non-empty coalitions S and T ⊆ N ,

Pg[S, T ] =

{
1 if T ∈ S/g,
0 if T 6∈ S/g. (3)

Numerical Example 1: To illustrate the concepts presented in this article,
we adopt the format “running numerical example”. We shall focus on the
simplest case of interest, namely a three player game N = {1, 2, 3} when the
communication system is described by the line graph g = {{1, 2}, {2, 3}}.

21 3

Since #N = 3, we have the matrix form of Eq. (2),

Mc =



1 2 3 12 13 23 123

1 1−2τ −τ −τ τ τ 0 0
2 −τ 1−2τ −τ τ 0 τ 0
3 −τ −τ 1−2τ 0 τ τ 0
12 0 0 −τ 1−τ 0 0 τ
13 0 −τ 0 0 1−τ 0 τ
23 −τ 0 0 0 0 1−τ τ
123 0 0 0 0 0 0 1


.

And,

Pg =



1 2 3 12 13 23 123

1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
12 0 0 0 1 0 0 0
13 1 0 1 0 0 0 0
23 0 0 0 0 0 1 0
123 0 0 0 0 0 0 1


.

Before going further, let us list a few properties of matrices Pg.
Property 1: Pg v = (v/g).

Property 2: Matrix Pg is idempotent, Pg Pg = Pg.
Proof: For all games v we have Pg Pg v = Pg (v/g) = (v/g) = Pg v.
Let us define matrix Dg as follows:

Dg[S, T ] =

{
1 if S = T and #(S/g) = 1,
0 otherwise.

It is clear that DgDg = Dg. We also have Dg Pg = Dg and PgDg = Pg.

Property 3: Matrix Pg is diagonalizable.
Proof: For matrix R = Pg+I−Dg and its inverse R−1 = −Pg+I+Dg, direct
computation shows that Pg = (Pg + I −Dg)Dg (−Pg + I +Dg).
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Property 4: Let us consider the n vectors x{i} for i ∈ N , defined by,

x{i} [T ] =

{
1 if i ∈ T,
0 otherwise.

(4)

The pairs <1, x{i}> are eigenpairs of matrix Pg.
Proof: Let us compute (Pg · x{i})[T ] for all coalitions T ⊆ N ,

(Pg · x{i})[T ] =
∑
K

∅6=K⊆N

Pg[T,K] · x{i} [K] =
∑
K

∅6=K⊆N
K∈T/g

x{i} [K] =
∑
K

∅6=K⊆N
i∈K∈T/g

1.

If i ∈ T there is only one coalition K verifying i ∈ K ∈ T/g and (Pg ·x{i})[T ] =
1 = x{i} [T ]. If i 6∈ T there is no coalition K verifying i ∈ K ∈ T/g and (Pg ·
x{i})[T ] = 0. We have thus proved that Pg · x{i} = x{i} , which completes the
proof of Property 4.

Lemma 1: For all games (N, v, g) in G, a matrix form of the associated game
(N, v∗τ , g) is given by,

v∗τ = PgMc Pg v. (5)

Proof:(
PgMc Pg v

)
[S] =

(
PgMc (v/g)

)
[S] =

∑
T

T⊆N

(
PgMc

)
[S, T ] (v/g)(T )

=
∑
T

T⊆N

∑
R

R⊆N

(
Pg
)
[S,R]

(
Mc

)
[R, T ] (v/g)(T )

=
∑
R

R⊆N

(
Pg
)
[S,R]

∑
T

T⊆N

(
Mc

)
[R, T ] (v/g)(T ).

Using the fact that (Mc w)[R] = w(R)+τ
∑
j 6∈R[w(R∪{j})−w(R)−w({j})),

=
∑
R

R⊆N

(
Pg
)
[S,R]

[
(v/g)(R)+τ

∑
j

j∈N\R

[
(v/g)(R ∪ {j})−(v/g)(R)−(v/g)({j})

]]

=
∑
R

R∈S/g

[
(v/g)(R) + τ

∑
j

j∈N\R

[(v/g)(R ∪ {j})− (v/g)(R)− (v/g)({j})]
]
.

For all connected coalitions R and all players j 6∈ R∗, we have [(v/g)(R∪{j})−
(v/g)(R)− (v/g)({j})] = 0,∑

R
R∈S/g

[
v(R) + τ

∑
j

j∈R∗\R

v(R ∪ {j})− v(R)− v({j})
]

=
∑
R

R∈S/g

v∗τ (R),

which completes the proof of Lemma 1.

As a consequence of Lemma 1 the successive associated games can be ex-

pressed as v∗∗τ =
(
PgMc Pg

)
v∗τ =

(
PgMc Pg

)2
v, . . . , v

(k ∗)
τ =

(
PgMc Pg

)k
v.
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We will show below that the series of powers of matrix
(
PgMc Pg

)k
is conver-

gent as k tends to infinity.

The reader will observe that the previous matrix form of the associated
game differs from the usual transformations of matrix Mc, where for some
non-singular matrix Z we compute matrix ZMc Z

−1. Here the transformation
generates a matrixMg = PgMc Pg which is not similar toMc. Moreover matrix
Pg is generally singular, which makes the treatment of the convergence of the
series of powers of Mg far more complicated.

Numerical example 2: For 〈N, g〉 = 〈{1, 2, 3}, {{1, 2}, {2, 3}}〉 we have,

Mg =
(
PgMc Pg

)
=



1− τ −τ 0 τ 0 0 0

−τ 1− 2 τ −τ τ 0 τ 0

0 −τ 1− τ 0 0 τ 0

0 0 −τ 1− τ 0 0 τ

1− τ −2 τ 1− τ τ 0 τ 0

−τ 0 0 0 0 1− τ τ

0 0 0 0 0 0 1


.

We are now ready to formulate our system of axioms:

Axiom 1: (Inessential Game) For all inessential games (N, v), the solution
verifies φi(N, v, g) = v({i}) for all i in N .

Axiom 2: (Associated Consistency) For all games (N, v, g) in G, the associ-
ated game (N, v∗τ , g) verifies φ(N, v, g) = φ(N, v∗τ , g).

Axiom 3: (Continuity) For all convergent sequences {(N, v
k
, g)}∞k=1 the limit

of which is game (N, ṽ, g) we have limk→∞ φ(N, v
k
, g) = φ(N, ṽ, g). (The con-

vergence of the games is point-wise).

This set of axioms is a direct adaptation of Hamiache’s (2001) set of ax-
ioms to situations of incomplete communication. Naturally, the second axiom
applies to the associated game defined by Equation (1).

Main Theorem:

There is one and only one solution φ verifying Axioms 1, 2, and 3, provided
that τ is sufficiently small2.

The remainder of this article is devoted to the proof of the main theorem.

2 That threshold value depends on the characteristic values of matrix (1/τ)(PgMcPg−Pg).
Since those characteristic values are changing from graph to graph we do not have a sharp
result for τ . In Hamiache (2001) we obtained τ < 2

n
for complete graphs.
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4 The Proof

Lemma 2: Let us define matrix A = 1
τ (PgMcPg −Pg), the sequence {Aθ}∞θ=1

of powers of a matrix A verifies for all integer m,

(PgMcPg)
m =

m∑
θ=1

τθ
(
m

θ

)
Aθ + Pg. (6)

Proof:3 From the definition of matrix A we have, PgMcPg = τ A+Pg. Since Pg
is idempotent, PgPg = Pg, and APg = PgA = A, using the binomial formula
leads to the required result.

Numerical example 3: For three player games when the communication
system, 〈N, g〉 = 〈{1, 2, 3}, {{1, 2}, {2, 3}}〉, matrix A is as follows,

A =
1

τ
(PgMcPg − Pg) =



−1 −1 0 1 0 0 0

−1 −2 −1 1 0 1 0

0 −1 −1 0 0 1 0

0 0 −1 −1 0 0 1

−1 −2 −1 1 0 1 0

−1 0 0 0 0 −1 1

0 0 0 0 0 0 0


.

The reader will note that A is the matrix of the coefficients of τ in matrix Mg.
Below we present, on the basis of Eq. (6), a few examples of the polynomials
which are elements of the successive powers of matrix Mg. These terms cor-
respond to coalitions S = {1, 2} and T = {3} (fourth line and third column).

(Mg)[S, T ] = −1 τ,

(Mg)
2[S, T ] = 2 τ2 − 1

(
2
1

)
τ,

(Mg)
3[S, T ] = −4 τ3 + 2

(
3
2

)
τ2 − 1

(
3
1

)
τ,

(Mg)
4[S, T ] = 8 τ4 − 4

(
4
3

)
τ3 + 2

(
4
2

)
τ2 − 1

(
4
1

)
τ,

(Mg)
5[S, T ] = −16 τ5 + 8

(
5
4

)
τ4 − 4

(
5
3

)
τ3 + 2

(
5
2

)
τ2 − 1

(
5
1

)
τ,

(Mg)
6[S, T ] = 32 τ6 − 16

(
6
5

)
τ5 + 8

(
6
4

)
τ4 − 4

(
6
3

)
τ3 + 2

(
6
2

)
τ2 − 1

(
6
1

)
τ,

(Mg)
7[S, T ] = − 64 τ7+32

(
7
6

)
τ6−16

(
7
5

)
τ5+8

(
7
4

)
τ4− 4

(
7
3

)
τ3+ 2

(
7
2

)
τ2−1

(
7
1

)
τ.

Lemma 3: Given parameter q = 2n − 1, there exists µ, 1 ≤ µ ≤ q − 1 and a
set of parameters b1, b2, . . . , bq−µ such that,

Aq = −bq−µ.Aµ − bq−µ−1.Aµ+1 − ...− b1.Aq−1. (7)

3 This proof has been proposed by a referee. It replaces advantageously a longer previous
proof.



Associated Consistency, Value and Graphs? 9

Note that µ is the algebraic multiplicity of the null eigenvalue of A.

Proof : Let us consider the characteristic polynomial of matrix A.

charpoly(A) = bq + bq−1. x+ bq−2. x
2 + ...+ b1. x

q−1 + xq. (8)

The terms of the last line of matrix A being all zeroes, 0 is an eigenvalue of A
and x is one of the factors of the characteristic polynomial. As a consequence,
bq = 0. Coefficient b1 in Eq. (8) is the trace of matrix A. The terms of the
trace of matrix A are as follows,

A[S, S] =

{
−(#S∗ −#S) if #(S/g) = 1,
0 otherwise.

As a consequence, the trace of A is strictly negative and b1 6= 0. So there
must exist a parameter µ, which is in fact the algebraic multiplicity of the null
eigenvalue of matrix A, such that the characteristic polynomial reduces to,

charpoly(A) = bq−µ. x
µ + ...+ b1. x

q−1 + xq. (9)

Since matrix A annihilates the characteristic polynomial (Cayley-Hamilton),
isolating Aq, we obtain the required Equation (7), which completes the proof
of Lemma 3.

Numerical example 4: charpoly(A, x) := x7 + b1 x
6 + b2 x

5 + b3 x
4 = x7 +

6x6 + 12x5 + 8x4 = x4 (x+ 2)3. In that case we have b1 = 6, b2 = 12, b3 = 8.

Remark: In the above calculations the characteristic polynomial could be re-
placed by the minimal polynomial. Indeed, this step would significantly reduce
the number of parameters b.

Let us consider a real function f(x). The Taylor series of f (or more pre-
cisely the Maclaurin series) is given by,

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . . (10)

Given a sequence of real numbers, can we find any function such that the suc-
cessive coefficients of the Maclaurin series coincide with the successive elements
of the sequence in question? For example, in the case of the infinite constant
sequence {1, 1, 1, . . . } there is indeed such a function f(x) = (1 − x)−1 =
1 + x+ x2 + x3 + . . . . We will say that (1− x)−1 is the generating function of
the sequence {1, 1, 1, . . . }. An obvious advantage of this concept is an econ-
omy of means in describing infinite sequences. The following proposition gives
the general form of generating functions for the sequences {Aθ[·, ·]}∞θ=1.

Lemma 4: For all coalitions S, T ⊆ N , there is a set of parameters a1, a2,
. . . aq−µ such that the generating function F of {Aθ[S, T ]}∞θ=1 is:

F (x)=

∞∑
i=1

Ai[S, T ]xi=
R(x)

Q(x)
=

a1 x+ a2 x
2 + a3 x

3 + ...+ aq−µ x
q−µ

1 + b1 x+ b2 x2 + b3 x3 + ...+ bq−µ xq−µ
,

(11)
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where parameters b1, b2, . . . bq−µ are those found in Lemma 3.
Proof 4: To define the coefficients a, let us consider the following system of
equations,

A1[S, T ]x1 = a1 x
1

A2[S, T ]x2 + b1A
1[S, T ]x2 = a2 x

2

...

Aq−µ[S, T ]xq−µ + b1A
q−µ−1[S, T ]xq−µ · · ·+ bq−µ−1A

1[S, T ]xq−µ = aq−µ x
q−µ

Aq−µ+1[S, T ]xq−µ+1 + b1A
q−µ[S, T ]xq−µ+1 + · · ·+ bq−µA

1[S, T ]xq−µ+1 = 0

Aq−µ+2[S, T ]xq−µ+2 + b1A
q−µ+1[S, T ]xq−µ+2 + · · ·+ bq−µA

2[S, T ]xq−µ+2 = 0

...

Summing up the above expressions we get,

F (x) + b1 xF (x) + · · ·+ bq−µ x
q−µF (x) = a1 x

1 + . . . aq−µ x
q−µ,

which concludes the proof of Lemma 4.

Numerical Example 5: Direct computations give the following values:
(A)[S, T ] = −1, (A)2[S, T ] = 2, (A)3[S, T ] = −4, (A)4[S, T ] = 8, (A)5[S, T ] =
−16, (A)6[S, T ] = 32, (A)7[S, T ] = −64. We know that in our particular case
b1 = 6 and b2 = 12. Below we compute the relevant coefficients a.

a1 = (A)1[S, T ] = −1,
a2 = (A)2[S, T ] + b1 (A)3[S, T ] = 2 + 6× (−1) = −4,
a3 = (A)3[S, T ]+b1 (A)2[S, T ]+b2 (A)1[S, T ] = (−4)+6×(2)+12×(−1) = −4.

As a result we have,

F (x) =
R(x)

Q(x)
=

−4x3 − 4x2 − x
8x3 + 12x2 + 6x+ 1

.

Reader will note that we have F (x) = −x/(1 + 2x), but we are not interested
at this stage by the simplified form.

Lemma 5: If <λ, v > is an eigenpair of matrix Mg = PgMc Pg with λ 6= 0,
then <1, v> is an eigenpair of matrix Pg.
Proof: Suppose that PgMc Pg v = λ v. Multiplying both sides of the last
equation by Pg, and using the fact that Pg is idempotent, we get, PgMc Pg v =
λPg v = λ v. As a result, when λ 6= 0, < 1, v > is an eigenpair of matrix
Pg.

Lemma 6: For all i ∈ N , <1, x{i} > where x{i} is defined by Eq. (4) are
eigenpairs of matrix Mg = PgMc Pg.

4 We thank an anonymous referee for this extremely concise proof.
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Proof: It is well known (Hamiache, 2010) that 1 is an eigenvalue of matrix Mc

with multiplicity n, and that the n vectors x{i} for i ∈ N are the corresponding
eigenvectors.

PgMc Pg x{i} = PgMc x{i} = Pg x{i} = x{i} .

The first and the last equalities follow from Property 4. The second equality
is true since < 1, x{i} > is an eigenpair of matrix Mc.

Lemma 7: The eigenvalues of matrix PgMc Pg are of the form λ = 1 − στ
where σ is a real or complex parameter.
Proof: Let us decompose matrix Mc as Mc = Id− τ M̃c. Let us consider an
eigenpair < λ, w > of matrix PgMc Pg.

PgMc Pg w = Pg

(
Id− τ M̃c

)
Pg w = Pg w − τ Pg M̃c Pg w = λw.

Since we know that < 1, w > is an eigenpair of matrix Pg we have,

Pg w − τ Pg M̃c Pg w = w − τ Pg M̃c Pg w = λw,

re-ordering the previous expression leads to,

Pg M̃c Pg w = −λ− 1

τ
w = σ w,

which completes the proof of Lemma 7.

Lemma 8: The spectral radius of PgMc Pg is equal to 1.
Proof: In appendix.

Lemma 9: The moduli of complex eigenvalues of matrix PgMc Pg are strictly
smaller than 1.
Proof: In appendix.

The fact that λ = 1 − σ τ combined with Lemma 8 and Lemma 9, means
that 1 is the sole eigenvalue of Mg on the unit circle.

Lemma 10: The sequence (PgMcPg)
m[S, T ] is convergent and

lim
m→∞

(PgMcPg)
m[S, T ] =

aq−µ
bq−µ

+ Pg[S, T ], (12)

with aq−µ and bq−µ being the coefficients of terms xq−1 in R(x) and Q(x),
respectively as defined by Equation (11) (see Lemma 4).
Proof: In appendix.

The Main Theorem stipulates that parameter τ should be small enough.
From the proof of Lemma 10 we learn that τ should verify that | 1 + τ

zi
|< 1

for all the roots zi of polynomial Q(x), where 1 ≤ i ≤ q − µ. Let us consider
a complete communication structure. The eigenvalues of the corresponding
matrix A that can be expressed as (Mc − Id)/τ are 0, −2, −3, . . . , −n. It is
easy to see that the roots of Q(x) are zi = − 1

2 , − 1
3 , . . . , − 1

n . The constraint
| 1 + τ

zi
|< 1 leads to 0 < τ < 2

n , as required in Hamiache (2001).
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Lemma 11: For all games (N, v, g) ∈ G, the limit game (N, ṽ, g) defined by

ṽ = lim
k→∞

(PgMc Pg)
k v, (13)

is an inessential game.
Proof: In appendix.

Numerical Example 6: Since Q(x) = 8x3 +12x2 +8x = (1+2x)3, polyno-
mial Q(x) has three identical roots zi = − 1

2 . To ensure convergence we must

have
∣∣∣1 + τ

zi

∣∣∣ = |1− 2 τ | < 1 which is true if and only if 0 < τ < 1.

lim
m→∞

(PgMcPg)
m = (Mg)

∞ =



1
2 −

1
4 0 1

4 0 − 1
4

1
4

− 1
2

1
2 −

1
2 0 0 0 1

2

0 − 1
4

1
2 −

1
4 0 1

4
1
4

0 1
4 −

1
2

1
4 0 − 1

4
3
4

1
2 −

1
2

1
2 0 0 0 1

2

− 1
2

1
4 0 − 1

4 0 1
4

3
4

0 0 0 0 0 0 1


.

Note that a3
b3

= −4
8 = − 1

2 as shown at line 4 column 3.

We have now all the elements permitting to conclude the main proof. By
the associated consistency, the continuity and the inessential game axioms, we
have for sufficiently small parameters τ ,

φi(N, v, g) = lim
m→∞

φi(N, v
(m∗)
τ , g) = φi(N, ṽ, g) = ṽ({i}).

It is also true that for the unanimity game u
N

we have, φi(N, uN , g) =
(Mg)

∞[{i}, N ]. The proof of the main theorem is thus complete.

5 Conclusion

As a conclusion, we provide some comparisons of the New Value and the Mean
Value5 (Hamiache, 2003) for unanimity games u

N
on a selection of graphs.

New Value Mean Value

1 2

4

3

( 4
9 ,

7
36 ,

7
36 ,

1
6 ) ( 4

9 ,
7
36 ,

7
36 ,

1
6 )

1 2

4

3

( 5
18 ,

5
18 ,

2
9 ,

2
9 ) ( 7

24 ,
7
24 ,

5
24 ,

5
24 )

5 The mean value of the unanimity game (N,uN , g) can be computed with the following
formula, MV (N, uN , g) = 1

k(N)

∑
i∈N :#(N\{i})=1MV (N \ {i}, u

N\{i} , g(N \ {i})), where

k(N) = #{i ∈ N | N \ {i} connected}.
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New Value Mean Value

1

2

4

35
( 7
36 ,

7
36 ,

10
27 ,

7
54 ,

1
9 ) ( 31

144 ,
31
144 ,

101
288 ,

11
96 ,

5
48 )

2

5

43
1

( 3
14 ,

11
56 ,

11
56 ,

11
56 ,

11
56 ) ( 7

30 ,
23
120 ,

23
120 ,

23
120 ,

23
120 )

3

4

5 12 ( 5
12 ,

11
36 ,

7
72 ,

7
72 ,

1
12 ) ( 5

12 ,
11
36 ,

7
72 ,

7
72 ,

1
12 )

The reader will note the propinquity between these two solutions. At least
in the exhibited cases the results do not contradict the basic intuition that
better connected players are better rewarded. This is not the case for all the
values in the literature. For example, the Myerson value (Myerson, 1977),
in the case of unanimity games over connected coalition N , gives 1

n to each
one of the player independently of the graph. The average tree value (ATV )
(Herings et al, 2008) coincides with the Myerson value for unanimity games
over connected trees. In our numerical example it would then give 1

3 to each
player. The position value (Borm et al, 1992) rewards particularly players on
links that contribute more to the connectedness of the grand coalition and
may lead to counter-intuitive results.

The new value proposed in this paper has several advantages over existing
values. The knowledge of the values of sub-games is not needed. As already
pointed out, it is not the case for the mean value and the F-value (Hamiache,
1999).

This new value offers payoffs for the unanimity games that are rational
numbers, so we have exact values without any approximation. This is usually
not the case for values requiring the computation of characteristic vectors such
as Hamiache (1999).

The associated game presented in this paper is simpler than the associated
game that leads to the Mean Value (Hamiache, 2003). Indeed, in the case of the
Mean Value when a coalition “attacks” a player, this player can call on other
coalitions for protection. This point adds a significant amount of complexity
to the construction of the associated game.

Finally, the axiomatic characterization developed in this article is based
on the same axioms as those found in Hamiache (2001) to characterize the
Shapley value.
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Appendix

Proof of Lemma 8: First of all it is easy to see that < 0, yT > are eigenpairs of matrix
Mg for non-connected coalitions T , when yT [S] = 1 if S = T and yT [S] = 0 if S 6= T . In the
following, we will assume that λ 6= 0.

We already know that n vectors x{i} for i ∈ N , as defined by Eq. (4), are independent
eigenvectors of matrix Mc related to eigenvalue 1 and that they are also eigenvectors of Mg .
We will denote the other eigenpairs of matrix Mc by < λS , xS > for S ⊆ N and #S ≥ 2.
Let < λ,w > be an eigenpair of matrix Mg = PgMc Pg . Vector x can be expressed as a
linear combination of eigenvectors of matrix Mc, w =

∑
∅6=S⊆N cS xS . We will prove below

that the eigenvalues of matrix Mg have a norm smaller than or equal to one.

PgMc Pg
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
= PgMc

[ ∑
i

i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]

= Pg
[ ∑

i
i∈N

c{i} x{i} +
∑
S

#S≥2

λS cS xS

]
=
∑
i

i∈N

c{i} x{i} + Pg
∑
S

#S≥2

λS cS xS

= λ
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
.

The first equality uses the fact that the < 1, w > is an eigenpair of matrix Pg . The second
equality is true since < λS , xS > is an eigenpair of matrix Mc. Let us consider the norm of
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the two last terms,

||Pg
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

λS cS xS

]
|| =| λ | · ||

[ ∑
i

i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
||.

Matrix Pg is diagonalizable (Property 3), its eigenvalues are thus semi-simple. It is well
known that in that case there exists a matrix norm ||| · ||| verifying |||Pg ||| = ρ(Pg) where
ρ(Pg) is the spectral radius which is equal to one. Moreover, there exists a vector norm || · ||
compatible with the considered matrix norm (theorem 5.7.13 p. 324 Horn and Johnson),
which means that

||Pg
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

λS cS xS

]
|| ≤ |||Pg ||| · ||

[ ∑
i

i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

λS cS xS

]
||

= ||
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

λS cS xS

]
||.

We thus obtain,

| λ | · ||
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
|| ≤ ||

[ ∑
i

i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

λS cS xS

]
||,

for #S = s ≥ 2 the eigenvalues of Mc are λS = 1− sτ ,

| λ | · ||
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
|| ≤ ||

[ ∑
i

i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

(1− sτ) cS xS

]
||

≤ ||
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
||+ τ ||

∑
S

S⊆N
#S≥2

s cS xS ||

(| λ | −1) · ||
[ ∑

i
i∈N

c{i} x{i} +
∑
S

S⊆N
#S≥2

cS xS

]
|| ≤ τ · ||

∑
S

#S≥2

s cS xS ||.

Parameter τ is positive and arbitrarily small. Thus if (| λ | −1) is positive, the term of the
left hand side of the inequality is positive and we can choose parameter τ to be sufficiently
small to contradict the inequality. So (| λ | −1) cannot be strictly positive, which leads to
| λ |≤ 1.

Proof of Lemma 9: Let< λ, w > be an eigenpair of matrixMg when w =
∑
∅6=S⊆N cS xS ,

PgMcPg
∑
S

∅6=S⊆N

cS xS = λ
∑
S

∅6=S⊆N

cS xS .

We know that < 1, w > is an eigenpair of matrix Pg ,

PgMc

∑
S

∅6=S⊆N

cS xS = λPg
∑
S

∅6=S⊆N

cS xS .

Separating the singletons,

PgMc

∑
S

∅6=S⊆N

cS xS = PgMc

∑
i

i∈N

c{i} x{i} + PgMc

∑
S

#S≥2

cS xS = Pgλ
∑
S

∅6=S⊆N

cS xS .
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Since < 1, x{i} > for all i ∈ N and < 1− s τ, xS > for all coalitions S verifying #S = s ≥ 2
are eigenpairs of matrix Mc,

Pg
∑
i

i∈N

c{i}x{i} + Pg
∑
S

S⊆N
#S≥2

(1− s τ)cSxS=Pg
∑
S

∅6=S⊆N

cSxS − Pgτ
∑
S

S⊆N
#S≥2

scSxS=Pgλ
∑
S

∅6=S⊆N

cSxS .

For all connected coalitions T we have, after assembling a few terms,

τ
∑
S

S⊆N
#S≥2

s cS xS [T ] = (1− λ)
∑
S

∅6=S⊆N

cS xS [T ].

Since w =
∑
∅6=S⊆N cS xS is an eigenvector, there exists at least a connected coalition T

such that w[T ] =
∑
∅6=S⊆N cS xS [T ] 6= 0. Isolating λ,

λ = 1− τ

∑
S

#S≥2

s cS xS [T ]

∑
S

∅6=S⊆N

cS xS [T ]
.

Since matrix PgMcPg is real, λ, the complex conjugate of λ, is also one of its eigenvalues,
and the next equality is true,

λ = 1− τ

∑
S

#S≥2

s cS xS [T ]

∑
S

∅6=S⊆N

cS xS [T ]
.

λ λ =| λ |2=
1

| w[T ] |2
[
w[T ]− τ

∑
S

#S≥2

s cS xS [T ]
][
w[T ]− τ

∑
S

#S≥2

s cS xS [T ]
]
.

Expanding the two last terms of the previous expression,

| λ |2=
1

| w[T ] |2
[
| w[T ] |2 − 2 τRe

(
w[T ]

∑
S

#S≥2

s cS xS [T ]
)

+ τ2 |
∑
S

#S≥2

s cS xS [T ] |2
]
.

We can choose an eigenvector w such that | w[T ] | = 1,

| λ |2= 1− 2 τRe
(
w[T ]

∑
S

#S≥2

s cS xS [T ]
)

+ τ2 |
∑
S

#S≥2

s cS xS [T ] |2 .

Since | λ |2≤ 1 we have,

2 τRe
(
w[T ]

∑
S

#S≥2

s cS xS [T ]
)
− τ2 |

∑
S

#S≥2

s cS xS [T ] |2≥ 0.

0 < τ ≤
2Re

(
w[T ]

∑
S:#S≥2 s cS xS [T ]

)
|
∑
S:#S≥2 s cS xS [T ] |2

.

Choosing parameter τ sufficiently small will ensure that | λ |2< 1.
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Auxiliary result:

m∑
θ=1

(j + θ − 1

θ

)(m
θ

)( τ

zi

)θ
= −1

+

j−1∑
θ=0

( j − 1

j − 1− θ

)( m

j − 1− θ

)( τ

zi

)j−1−θ (
1 +

τ

zi

)m−j+1+θ

.

Proof:

m∑
θ=0

(θ + j − 1

θ

)(m
θ

)( τ

zi

)θ
=

m∑
θ=0

(θ + j − 1) . . . (θ + 1)

(j − 1)!

(m
θ

)( τ

zi

)θ

=
1

(j − 1)!

m∑
θ=0

dj−1

d
(
τ
zi

)j−1

[(m
θ

)( τ

zi

)θ+j−1
]

=
1

(j − 1)!

dj−1

d
(
τ
zi

)j−1

[(
τ

zi

)j−1 m∑
θ=0

(m
θ

)( τ

zi

)θ]

=
1

(j − 1)!

dj−1

d
(
τ
zi

)j−1

[(
τ

zi

)j−1 (
1 +

τ

zi

)m]
. (14)

Applying Leibnitz’s Theorem for differentiation of a product,

dt

dxt
(u · v) =

t∑
θ=0

(t
θ

) dθ

dxθ
(u)

dt−θ

dxt−θ
(v),

to Eq. (14), with u = (τ/zi)
j−1, v = (1 + τ/zi)

m and t = j − 1 we obtain,

=
1

(j − 1)!

j−1∑
θ=0

(j − 1

θ

) dθ

d
(
τ
zi

)θ ( τ

zi

)j−1 dj−1−θ

d
(
τ
zi

)j−1−θ

(
1 +

τ

zi

)m

=
1

(j − 1)!

j−1∑
θ=0

(j − 1

θ

) (j − 1)!

(j − θ − 1)!

(
τ

zi

)(j−1−θ) (m)!

(m− j + θ + 1)!

(
1 +

τ

zi

)(m−j+1+θ)

=

j−1∑
θ=0

( j − 1

j − θ − 1

)( m

j − θ − 1

)( τ

zi

)(j−1−θ) (
1 +

τ

zi

)(m−j+1+θ)

,

which proves the Auxiliary result.

Proof of Lemma 10: If T is non-connected, all the terms of the series are equal to 0 and
Lemma 10 is true. So let us consider instead that T is connected.

(PgMcPg)m[S, T ] =

m∑
θ=1

Aθ[S, T ]
(m
θ

)
τθ + Pg [S, T ],

where the parameters Aθ[S, T ] are the successive coefficients of the powers of x in the
Maclaurin development of the generating function F (x). Those coefficients are the value of
the relevant derivatives of F (x) at point x = 0.

Aθ[S, T ] =
1

θ!

dθ F (0)

d xθ
. (15)
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Performing the euclidean division of Eq. (11), we can rewrite the generating function of
Lemma 4 as,

F (x) =
R(x)

Q(x)
=

α0 + α1 x+ ...+ αq−µ−1 xq−µ−1

1 + b1 x+ b2 x2 + ...+ bq−µ+1 xq−µ+1
+
aq−µ

bq−µ
,

where αi = ai −
aq−µ
bq−µ

bi for 1 ≤ i ≤ q − µ− 1 and α0 = −aq−µ
bq−µ

.

From the partial fraction decomposition theorem, we can write the rational function,
the first term of the right hand side of the previous equation, as a finite linear combination
of terms of the form, E(x) = (x − z)−w, where z is a root of the denominator and w is
an integer at most equal to the algebraic multiplicity of z. Note that z could be a complex
number.

F (x) =

p∑
i=1

wi∑
j=1

βi,j
1

(x− zi)j
+
aq−µ

bq−µ
,

where z1, . . . , zp are the roots ofQ(x), w1, . . . , wp are their respective algebraic multiplicities
and βi,j are the coefficients of the linear combination. The derivative of order θ is given by,

dθ F (x)

d xθ
=

p∑
i=1

wi∑
j=1

βi,j
(−j)(−j − 1) . . . (−j − θ + 1)

(x− zi)j+θ
,

and the coefficients Aθ[S, T ] are given by,

Aθ[S, T ] =
1

θ!

dθ F (0)

d xθ
=

p∑
i=1

wi∑
j=1

βi,j
(−1)θ

(−zi)j+θ
(j + θ − 1

θ

)
.

(PgMcPg)m[S, T ] =
m∑
θ=1

p∑
i=1

wi∑
j=1

βi,j
(−1)θ

(−zi)j+θ
(j + θ − 1

θ

)(m
θ

)
τθ + Pg [S, T ].

Inverting the order of summations,

=

p∑
i=1

wi∑
j=1

βi,j
1

(−zi)j

m∑
θ=1

(j + θ − 1

θ

)(m
θ

)( τ

zi

)θ
+ Pg [S, T ]. (16)

Using the Auxiliary result we get,

(PgMcPg)m[S, T ] = −
p∑
i=1

wi∑
j=1

βi,j
1

(−zi)j
+ Pg [S, T ] (17)

+

p∑
i=1

wi∑
j=1

βi,j
1

(−zi)j

j−1∑
θ=0

( j − 1

j − 1− θ

)( m

j − 1− θ

)( τ

zi

)j−1−θ (
1 +

τ

zi

)m−j+1+θ

.

Since,

F (0) =
R(0)

Q(0)
=

p∑
i=1

wi∑
j=1

βi,j

(
1

−zi

)j
+
aq−µ

bq−µ
= 0,

we have,

(PgMcPg)m[S, T ] =
aq−µ

bq−µ
+ Pg [S, T ]

+

p∑
i=1

wi∑
j=1

βi,j
1

(−zi)j

j−1∑
θ=0

( j − 1

j − 1− θ

)( m

j − 1− θ

)( τ

zi

)j−1−θ(
1 +

τ

zi

)m−j+1+θ
.

Let us consider the characteristic polynomial in Eq. (8) and Q(x) as defined by Eq. (11). If
zi is a root of Q(x), it is true that 1

zi
is a root of Eq. (8) and thus an eigenvalue of matrix

A (note that zi 6= 0). We are now ready to show that 1 + τ
zi

is an eigenvalue of matrix Mg .
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Since the columns of matrix (PgMcPg) corresponding to non-connected coalitions are
zero, the non-zero eigenvalues are preserved when we delete from matrix (PgMcPg) the
lines and columns corresponding to non-connected coalitions. Let us denote by Ms

g that
“simplified” matrix. The corresponding sub-matrix of A is thus equal to (As) = (Ms

g−Id)/τ ,
which leads to Id+τ As = Ms

g . As a consequence, the eigenvalues of Ms
g are given by 1+ τ

zi
,

which are also non-zero eigenvalues of matrix Mg . Since the spectral radius of Mg is one,
and since zi 6= 0, the moduli of 1 + τ

zi
are strictly smaller than 1.

Let us focus now on the terms
( m
j−1−θ

)
(1 + τ

zi
)m as m tends to infinity. If θ = j − 1,

the corresponding term reduces to (1 + τ
zi

)m and thus converges to 0. Let us assume now

that θ = 0, 1, . . . , j − 2.

( m

j − 1− θ

) ∣∣∣∣(1 +
τ

zi

)∣∣∣∣m =
m(m− 1)(m− 2)...(m− j + 2 + θ)

(j − 1− θ)!

∣∣∣∣(1 +
τ

zi

)∣∣∣∣m

≤
mj−1−θ

(j − 1− θ)!

∣∣∣∣(1 +
τ

zi

)∣∣∣∣m. (18)

The logarithm of the last expression converges if and only if (j−1−θ) log(m)+m log
∣∣∣(1 + τ

zi

)∣∣∣
converges as m→∞. Using the fact that (logm)/m→ 0 as m→∞, the term in Expression
(18) converges to 0 as m tends to infinity, which completes the proof of Lemma 10.

Proof of Lemma 11:

Let us write (PgMc Pg)n = (PgMc Pg) (PgMc Pg)n−1, and let W be the limit of the
series {(PgMc Pg)k}∞k=1. It is thus true that (PgMc Pg)W = W . In words, the columns
of matrix W are eigenvectors of matrix (PgMc Pg) related to eigenvalue 1. We shall show
that these eigenvectors are “inessential” vectors. Let w = (wS )∅6=S⊆N be an eigenvector

associated to λ = 1. We will solve the following system of linear equations, (PgMc Pg)w = w.
Since we have, for non-connected coalitions S, wS =

∑
K∈S/g wK , we will concentrate only

on connected coalitions. Considering Eq. (1), we obtain after few cancellations,

∑
j

j∈S∗\S

(
w
S∪{j} − wS − w{j}

)
= 0. (19)

So we learn that for all connected coalitions S, the related coefficient wS is defined uniquely
as a linear combination of wN∪{j} and w{j} for j ∈ S∗ \ S. Noting that for S = N \ {i},
we have w

N\{i} = wN −w{i} , we can conclude that wS is a linear combination of wN and
a selection of w{j}. We show below that for all connected coalitions S such that 1 ≤ #S ≤
n− 1, we have,

wS = wN −
∑
i
i6∈S

w{i} . (20)

Equation (20) is of course true for S = N and for all the connected coalitions with n − 1
elements. Let us assume that Eq. (20) is true for all connected coalitions of size s and above.
We will show that Eq. (20) is also true for connected coalitions T verifying #T = s− 1.

−
∑
j

j∈T∗\T

w{j} − (#T ∗ −#T )wT +
∑
j

j∈T∗\T

w
T∪{j} = 0.

Using the induction hypothesis,

−
∑
j

j∈T∗\T

w{j} − (#T ∗ −#T )wT +
∑
j

j∈T∗\T

[
wN −

∑
m

m∈N\(T∪{j})

w{m}

]
= 0.



20 Gérard Hamiache, Florian Navarro

Taking into account that N \ (T ∪ {j}) = (N \ T ) \ {j},

−
∑
j

j∈T∗\T

w{j} − (#T ∗ −#T )wT + (#T ∗ −#T )wN

+
∑
m

m∈T∗\T

w{m} − (#T ∗ −#T )
∑
m

m∈N\(T )

w{m} = 0.

After relevant cancellations,

wT = wN −
∑
m

m∈N\T

w{m} ,

which proves that Equation (20) is true for all non-empty connected coalitions. As a conse-
quence,

w{j} = wN −
∑
i

i∈N\{j}

w{i} , (21)

wN =
∑
i

i∈N

w{i} . (22)

Combining Eqs. (20) and (22),

wS = wN −
∑
i

i∈N\S

w{i} =
∑
i

i∈N

w{i} −
∑
i

i∈N\S

w{i} =
∑
i
i∈S

w{i} . (23)

The eigenvectors of matrix PgMc Pg related to eigenvalue 1 are “inessential” vectors. We
have thus proved that (PgMc Pg)∞[S, T ] =

∑
i∈S(PgMc Pg)∞[{i}, T ]. Which ensures that

the limit game ṽ is inessential.


