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A GENERALIZATION OF KING'S EQUATION VIA NONCOMMUTATIVE GEOMETRY

We introduce a framework in noncommutative geometry consisting of a * -algebra, a bimodule endowed with a derivation ("1-forms") and a Hermitian structure (a "noncommutative Kähler form"), and a cyclic 1-cochain whose coboundary is determined by the previous structures. This data leads to moment map equations on the space of connections on arbitrary finitely-generated projective Hermitian module. As particular cases, we obtain a large class of equations in algebra (King's equations for representations of quivers, including ADHM equations), in classical gauge theory (Hermitian Yang-Mills equations, Hitchin equations, Bogomolny and Nahm equations, etc.), as well as in noncommutative gauge theory by Connes, Douglas and Schwarz. We also discuss Nekrasov's beautiful proposal for re-interpreting noncommutative instantons on C n R 2n as an infinite-dimensional solution of King's equation

where H is a Hilbert space completion of a finitely-generated C[T 1 , . . . , Tn]-module (e.g. an ideal of finite codimension).

Introduction

There is a remarkable similarity between self-dual Yang-Mills equations and equations introduced by King in [START_REF] King | Moduli of representations of finite dimensional algebras[END_REF] for representations of quivers. The underlying reason is that both equations are obtained from appropriate moment maps. We introduce in this paper a common generalization based on noncommutative geometry. In this setup the moment map equation is governed by a cyclic 1-cochain. Examples of a generalized King's equation include ADHM equations, noncommutative instantons, vortex equations (in particular Hitchin and Vafa-Witten equations), as well as Bogomolny and Nahm equations for the gauge group U (k). Furthermore, we discuss Nekrasov's suggestion to reinterpret noncommutative instantons as infinitedimensional versions of King's equation, also related to Quantum minimal surfaces considered recently in [START_REF] Arnlind | Quantum Minimal Surfaces[END_REF].

Some motivations and backgrounds

2.1. Mumford stability and harmonic representatives: examples. One of major recurrent themes in Kähler geometry is an equivalence between the algebro-geometric property of a polystability, and the existence of a kind of harmonic metric. Let us start with several motivating examples.

2.1.1. Kempf-Ness Theorem. Let G be an algebraic reductive group over C acting linearly on a finite dimensional vector space V over C. Definition 2.1. A non-zero orbit G • v ⊂ V -{0} is called semistable iff its closure does not contain 0.

It is easy to see that the union of all semistable orbits forms an open G-invariant subset of V (possibly empty). Definition 2.2. A semistable orbit is called polystable iff it is closed (equivalently, closed in the semistable locus).

Let us choose a maximal compact subgroup K ⊂ G and a Hermitian norm • on V invariant under the K-action. By definition, on a semistable orbit G • v the function log(norm) is bounded below. Theorem 2.3. (Kempf-Ness [START_REF] Kempf | On the lengths of vectors in representation spaces[END_REF]) A semistable orbit G • v is polystable iff the restriction of the function log(norm) to this orbit achieves a minimum. Moreover, in this case the locus of minima is a unique orbit of K.

The set of polystable orbits coincides with the set of C-points of the reduced scheme M := Spec(A) -{0}, where A = C[V ] G is the algebra of invariants.

The function,

(2.1)

H : G • v → min g∈G log( g • v ) ∈ R
is a plurisubharmonic continuous function on M. Moreover, on the smooth locus of M, the function H is the potential of a Kähler metric ω M = i∂∂H.

Example 2.4. Fix integers r, n ≥ 1. If G = GL(r, C) (with the maximal compact subgroup K = U (r)) and the representation V is the direct sum of n copies of the adjoint representation of G, then the local minima of the function log(norm) on non-zero orbits are non-zero collections (T 1 , . . . , T n ) of n operators in

C r satisfying n i=1 [T † i , T i ] = 0 (2.2)
where T † i is the Hermitian conjugate to T i . The polystable orbits, together with the zero orbit, are exactly the conjugacy classes of r-dimensional semisimple representations of the free algebra C T 1 , . . . T n .

2.1.2. King's Theorem. A quiver is a finite oriented graph. Here is the formal definition: Definition 2.5. A quiver Q = (Q 0 , Q 1 , s, t) is a tuple consisting of finite sets Q 0 , Q 1 (whose elements are called vertices and arrows of Q respectively), and two maps s : Q 0 → Q 1 , t : Q 1 → Q 0 , (called the source and the target maps). Definition 2.6. A representation E of a quiver Q over a field k is given by a collection of k-vector spaces E v for each vertex v ∈ Q 0 , and a collection of morphisms T a : E s(a) → E t(a) for each arrow a ∈ Q 1 .

The representations of a given quiver form an abelian category. Definition 2.7. Let us fix a collection of numbers η = (η v ∈ R) v∈Q0 associated with the vertices of Q. Let E be a non-zero finite dimensional representation of a quiver Q such that, (2.3) 

v∈Q0 η v • dim E v = 0 ∈ R .
Then, E is called semistable with slope η (or, equivalently η-semistable ) iff for any subrepresentation E ⊂ E such that E = 0, E, one has v∈Q0 η v • dim E v ≤ 0. A η-semistable representation is called η-stable iff in the previous condition one has strict inequality v∈Q0 η v • dim E v < 0. A η-semistable representation is called polystable iff it is a direct sum of η-stable ones.

For any given η, the semistable representations with slope η, together with the zero representation, form an artinian abelian category. The simple objects in this category are exactly the η-stable representations, whereas the non-zero semisimple objects are exactly the η-polystable representations.

Theorem 2.8. (A. D. King [START_REF] King | Moduli of representations of finite dimensional algebras[END_REF]) In the case k = C, a representation is η-polystable iff there exists a collection of Hermitian norms ( • v ) v∈Q0 on vector spaces (E v ) v∈Q0 such that on the orthogonal direct sum E := v E v one has the following equality:

(2.4) a∈Q1 [T † a , T a ] = v∈Q0 η v • Pr Ev
taking place in the algebra of operators in E, where Pr Ev is the orthogonal projection to the direct summand

E v .
Notice that (2.4) is equivalent to a collection of individual constraints for each vertex v ∈ Q 0 :

∀v ∈ Q 0 : a∈Q1 Pr Ev • [T † a , T a ] • Pr Ev = η v • Pr Ev ∈ Pr Ev • End(E) • Pr Ev End(E v ) . (2.5)
Similarly to the Kempf-Ness theorem, the set of isomorphism classes of η-polystable representation of Q with a given dimension vector,

(2.6) --→ dim(E) := (dim(E v ) v∈Q0 ) ∈ Z Q0 ≥0
, is the set of C-points of a reduced separated scheme over C. Moreover, its open dense subset of smooth points is endowed with a natural Kähler metric.

2.1.3. Donaldson-Uhlenbeck-Yau (DUY) Theorem. Let X/C be a smooth connected Kähler manifold of complex dimension n > 0, and ν ∈ H 2 (X; R) ∩ H1,1 (X) be a Kähler class. We assume that

(2.7) [X], ν n = 1 . Definition 2.9. For λ ∈ R, a holomorphic vector bundle E on X is called λ-stable if [X], c 1 (E) • ν n-1 = λ • rank(E) (2.8)
and for any torsion-free coherent subsheaf 0

= E ⊂ E such that rank(E ) < rank(E) one has [X], c 1 (E) • ν n-1 < λ • rank(E ) . (2.9)
Equivalently, in (2.9) one can replace torsion-free subsheaves by subbundles of E restricted to the complements X -Z to closed analytic subsets Z ⊂ X of complex codimension at least 2. A λ-polystable bundle is defined as a finite sum of λ-stable ones.

Theorem 2.10. ( [START_REF] Donaldson | Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles[END_REF], [START_REF] Uhlenbeck | On the existence of Hermitian-Yang-Mills connections on stable bundles over compact Kähler manifolds[END_REF]) For a choice of a Kähler (1, 1)-form ω 1,1 on X with [ω 1,1 ] = ν, we have the following: a vector bundle E is λ-polystable iff it admits a Hermitian metric h E such that the curvature form F = F h E of the canonical connection associated with h E satisfies the Hermitian Yang-Mills equation (HYM in short):

(2.10) 1 2π √ -1 F • (ω 1,1 ) n-1 = λ • id E •(ω 1,1 ) n ∈ Γ(X, E ⊗ E ⊗ Ω n,n X ) .
The DUY theorem is a famous example of Kobayashi-Hitchin type correspondences in differential geometry.

Later this result was generalized in [START_REF] Bando | Stable sheaves and Einstein-Hermitian metrics[END_REF] by S. Bando and Y.-T. Siu to so-called reflexive sheaves

E ∈ Coh(X), E = E * * where E * := Hom(E, O X ) , (2.11)
which can be alternatively viewed as vector bundles defined outside of closed analytic subsets of complex codimension at least 2.

2.2.

Geometry of moment maps. Let (M, ω M ) be a symplectic manifold. Let a connected 1 compact Lie group K with Lie algebra k acts smoothly on M and preserves the symplectic form ω M . Then we get a homomorphism of Lie algebras

u ∈ k → X u ∈ Γ(M, T M ), X [u1,u2] = [X u1 , X u2 ], L Xu ω M = 0 . (2.12)
The condition L Xu ω M = 0 implies that the 1-form i Xu ω M is closed, as follows from the Cartan formula

L Xu = d • i Xu + i Xu • d and the closedness of ω M .
The symplectic action as above is called Hamiltonian if a homomorphism is chosen

K → (C ∞ (M ), {•, •}), u ∈ K → H u (2.13)
to the Lie algebra of functions on M endowed with the standard Poisson bracket {•, •}, lifting the homomorphism u → X u from k to the Lie algebra of symplectic vector fields on M . Explicitly, it means that

dH u = i Xu ω M ∀u ∈ k , (2.14) H [u1,u2] = {H u1 , H u2 } := ω M (i Xu 1 , i Xu 2 ) ∀u 1 , u 2 ∈ k . (2.15)
The collection of Hamiltonians (H u ) u∈k gives a moment map

µ : M → k * , x → (u → H u (x) ∈ R) . (2.16)
This is a K-equivariant map. We define the symplectic quotient of (M, ω M ) for a given Hamiltonian action to be the quotient of the space µ -1 (0) ⊂ M by the action of K. This quotient is a locally compact singular space in general, but it is symplectic on its open dense subset of smooth points. Moreover, if M is endowed with a complex structure such that ω M is the imaginary part of a Kähler (1,1)-form and K acts by Kähler isometries, then the quotient space µ -1 (0)/K is a reduced complex-analytic space with a Kähler metric on its smooth locus.

The constraint µ(x) = 0 on a point x ∈ M is called the moment map equation.

Remark 2.11. For a given symplectic K-action, the obstruction to the existence of a Hamiltonian lift is a class in H 2 (k, R). If the obstruction vanishes, then the set of all various lifts to a Hamiltonian action is a torsor over the group of abelian characters

Hom Lie (k, R) = H 1 (k, R).
Example 2.12. (King's equations as moment map equations) Let Q be a finite quiver. Fix a finite-dimensional Hermitian vector space E v for each vertex v ∈ Q 0 . Then the compact Lie group The moment map in this example is given (in terms of Hamiltonians) by the formula, where u = (u v ) v∈Q0 ∈ k,

K := v∈Q0 U (E v ) (2.17
H u ((T a ) a∈Q1 ) := √ -1 • Trace   v∈Q0 u v •   a∈Q1 [T † a , T a ] - v∈Q0 η v • P r Ev     . (2.20)
We see that the vanishing of the moment map is equivalent to King's equation (2.4).

Example 2.13. (Hermitian Yang-Mills equations as moment map equations)

Let E → X be a complex vector bundle over a Kähler manifold (X, ω 1,1 X ), endowed with a Hermitian metric. We define the "compact" group K to be the group of unitary automorphisms of E. The infinitedimensional manifold M on which K acts will be the affine space of ∂-connections ∇ 0,1 on E (not necessarily integrable). The space of ∂-connections has the tangent space (at each point) equal to Γ(X, End E ⊗ Ω 0,1 X ), and it is endowed with the Hermitian structure given by

(α, β) := √ -1 X Trace(α ∧ β) ∧ (ω 1,1 X ) dim C X-1 . (2.21)
We define a constant (i.e. translationally invariant) Kähler metric ω 1,1 M on the affine space of connections by the form (2.21) on each tangent space. The action of group K is by Kähler isometries, hence symplectic. Moreover, this action has a canonical Hamiltonian lift, with the moment map given by

H u (∇ 0,1 ) := X Trace(u • 1 2π √ -1 F ∇ 0,1 • (ω 1,1 X ) dim C X-1 -λu • (ω 1,1 X ) dim C X ) . (2.22)
Again, we see that the vanishing of the moment map is equivalent to the HYM equation.

2.3.

Further examples of harmonic representatives.

ADHM construction.

In physics (gauge theory) one is interested in solutions of HYM equations (2.10) in the case of a non-compact space X = R 4 = C 2 endowed with the standard flat metric. The solution with finite energy F 2 < ∞ are called instantons. A classical result [START_REF] Atiyah | Construction of instantons[END_REF] identifies instantons for the gauge group U (k) and total charge N ∈ Z ≥0 (the second Chern class c 2 ), with a conjugacy classes (under the natural action of U (k) × U (N )) of solutions of the system of ADHM equations

(2.23) [α, β] + ba = 0, [α † , α] + [β † , β] + b † b -aa † = 0 where α, β ∈ End(C N ), a ∈ Hom(C k , C N ), b ∈ Hom(C N , C k ) (2.24)
satisfying the following non-degeneracy condition: the stabilizer of (a, b, α, β) in is trivial. (2.25) Framed instantons are defined as solutions of ADHM equations satisfying the nondegeneracy condition (2.25), modulo the (free) action of the group U (N ) only. In terms of algebraic geometry, framed instantons on R 4 correspond to polystable holomorphic vector bundles E on CP 2 ⊃ C 2 R 4 with the Chern classes

rank E = k, c 1 (E) = 0, [CP 2 ], c 2 (E) = N (2.26)
and with the trivialization of the restriction of E to the projective line at infinity CP 1

∞ := CP 2 -C 2 . The residual action of U (k) ⊂ GL(k, C) is via changing the trivialization isomorphism E CP 1 ∞ C k ⊗ O CP 1 ∞ . (2.27)
One can view instantons on R 4 = C 2 as solutions of HY M on CP 2 for a singular Kähler metric (which is the flat metric on C 2 ), with singularities at CP 1 ∞ ⊂ CP 2 .

(Framed) ADHM equations can be re-interpreted as King's equation for the following quiver Q (k) . The set of vertices is two-element set {1, 2}. Quiver Q (k) has two arrows α, β connecting vertex 1 with itself, k arrows a 1 , . . . , a k connecting 2 with 1, and k arrows b 1 , . . . , b k connecting 1 with 2.
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A solution of ADHM equations gives a representation F of Q (k) in the Hermitian spaces F 1 = C N , F 2 = C 1 (endowed with the standard Hermitian norm), satisfying the constraints 

(2.28) [α, β] + k i=1 b i a i = 0, (2.29) [α † , α] + [β † , β] + k i=1 b † i b i - k i=1 a i a † i =
[α † , α] + [β † , β] + k i=1 [b † i , b i ] + k i=1 [a † i , a i ] = 0 . (2.30)
Therefore, equation (2.29) implies that the l.h.s. of the King's equation at the vertex 2 has also trace 0, but it is an endomorphism of the 1-dimensional space F 2 = C 1 , hence it is equal to 0 as an operator.

2.3.2.

Instantons on noncommutative R 4 and deformed ADHM construction. About 20 years ago, motivated by ideas from string theory, following pioneering work [START_REF] Connes | Noncommutative geometry and Matrix theory[END_REF], N. Nekrasov and A. Schwarz in [START_REF] Nekrasov | Instantons on noncommutative R 4 , and (2, 0)-superconformal six dimensional theory[END_REF] proposed a generalization of ADHM construction and HYM equations to the case of noncommutative flat space R 4 θ . The latter is understood as certain completion of quantum algebra A θ generated by coordinates x 1 , x 2 , x 3 , x 4 satisfying commutation relations

[x i , x j ] = √ -1 • θ ij (2.31)
where θ = (θ ij ) 1≤i,j≤4 is a real non-degenerate skew-symmetric 4 × 4 matrix. A bundle over the noncommutative space, corresponding to A θ , is understood as a finitely-generated projective A θ -module. The space of framed instantons on noncommutative R 4 θ is in one-to-one correspondence with the set of solutions of the deformed ADHM equations

[α, β] + ba = 0, [α † , α] + [β † , β] + b † b -aa † = η • id C N , η = 0 (2.32)
without any non-degeneracy condition like (2.25). The deformed ADHM equations can be (again) interpreted as King's equations for the same quiver Q (k) but with the deformed moment map (parameters η v as in (2.3)).

Each instanton on noncommutative space R 4 θ gives a torsion-free module E over C[z 1 , z 2 ] where z 1 , z 2 are two complex coordinates on C 2 R 4 , which is extended to a coherent sheaf on CP 2 trivialized as a bundle at CP 1 ∞ . In contrast with the commutative case, E is not necessarily locally-free (i.e. not a vector bundle globally). For example, E could be an ideal of finite codimension in C[z 1 , z 2 ], giving a large class of examples of instantons of rank k = 1 on R 4 θ which does not have any analog in the commutative limit θ → 0. Notice that such torsion-free coherent sheaves are not reflexive (see (2.11), hence are are excluded in the classical (commutative) Kobayashi-Hitchin correspondence. 2.3.3. Nekrasov's proposal: an infinite-dimensional King's equation. Soon after [START_REF] Nekrasov | Instantons on noncommutative R 4 , and (2, 0)-superconformal six dimensional theory[END_REF] it was observed in works by K. Furuuchi [START_REF] Furuuchi | Instantons on noncommutative R 4 and projection operators[END_REF] and by N. Nekrasov [START_REF] Nekrasov | Noncommutative instantons reisited[END_REF] that the equations for an instanton on R 4 θ for θ = 0 are in a sense equivalent to a structure of pre-Hilbert space on C[z 1 , z 2 ]-module E satisfying certain constraint which is an infinite-dimensional generalization of King's equation, which differs drastically from ADHM equations. This equivalence is not translationally invariant, in a sense it depends on a specific coherent state for algebra A θ which is "centered" at point 0 ∈ R 4 .

Many years ago one of us (M.K) was told by N. Nekrasov that the correspondence between solutions of HYM equations on flat noncommutative spaces and solutions of the infinite-dimensional King's equation should exist in any complex dimension n of the flat space C n R 2n , beyond the hyperkähler case n = 2 where we have ADHM construction at our disposal.

In what follows we will describe informally the infinite-dimensional King's equation from Nekrasov's proposal. In the last section of the paper 6.5 we will sketch a derivation of the infinite-dimensional King's equation from HYM equations on flat noncommutative spaces R 2n θ for arbitrary n.

Let E = E global be a finitely generated torsion-free C[z 1 , z 2 , . . . , z n ]-module, corresponding to an algebraic coherent sheaf E on CP n which is a vector bundle outside of a finite set of points in C n ⊂ CP n , together with the trivialized restriction to CP n-1

∞ := CP n -C n .
The infinite-dimensional King's-like equation (which we suggest to call Nekrasov equation) is the equation on a positive Hermitian inner product h = h global on E global . Let us denote by H = H h the completion of the vector space E global with respect to h. The action of generators

z i ∈ C[z 1 , z 2 , • • •, z n ] give rise to commuting unbounded operators Z i on H. The proposed equation is, (2.33) n i=1 [Z † i , Z i ] = • n • id H
where the "Planck's constant" > 0 is only a real parameter, and Hermitian conjugates Z † i are taken with respect to h.

We cannot help but ask the reader to notice the remarkable similarity between King's equation (2.2) (for the quiver with one vertex and n loops) and Nekrasov equation (2.33). This is not yet a precise mathematical formulation because one should specify the "behaviour at infinity". Presumably, it is given by the condition

(2.34) ∀ 1 ≤ i, j ≤ n : [Z † i , Z j ] = δ ij
• id H +trace class operator . Also, Nekrasov argued that for torsion-free algebraic coherent sheaves on C n of higher (k > 1) rank, the solutions of noncommutative HYM should approximate the solutions of the usual HYM equation in the limit → 0, at least at the open locus in C n where the sheaf is a bundle. First, the space of positive Hermitian products on E global is an approximation to the space of Hermitian metrics on a holomorphic vector bundle over X. Indeed, e.g. for E = O ⊕k C n the Hermitian product on

E global = C k ⊗ C[z 1 , z 2 , • • •, z n ] is given (roughly) by a positive self-adjoint element in (2.35) E global ⊗ E global = C[z 1 , z 2 , • • •, z n ] ⊗ C[z 1 , z 2 , • • •, z n ] ⊗ (C k ⊗ C k ) ∼ = C ∞ (R 2n ) ⊗ R M at(k × k, C),
and then should give a metric in the trivial bundle of rank k on C n .

Following two (informal) conjectures are due to Nekrasov.

Conjecture 1. Equation (2.33) has a unique solution with a given appropriate boundary condition at infinity. Conjecture 2. In the limit → 0 solutions of the equation (2.33) approaches to the solutions of the equation (2.10) with parameter λ = 0.

It seems that one can generalize all this to arbitrary coherent sheaves on C n , not necessarily torsion-free. Presumably, the sheaf should be pure of certain dimension m ≤ n (meaning that the dimension of support of the sheaf is m, and the sheaf has no non-zero subsheaves with at most (m -1)-dimensional support). Moreover, the trivialization at infinity (in the case m = n) should be replaced by an extension to CP n-1 ∞ together with a metric on it satisfying HYM equation. The corresponding Nekrasov equation is

(2.36) n i=1 [Z † i , Z i ] = • m • id H .
As an example we mention King's equation for finite-dimensional representations of C[z 1 , . . . , z n ] (the case m = 0, the equation is literally the same as (2.2)), and the case m = 1 for curves in affine spaces studied partially before (see [START_REF] Arnlind | Quantum Minimal Surfaces[END_REF] and references therein).

Algebraic formalism: synopsis

Let us fix some notations. For an associative unital algebra A over C, we denote by A the complexconjugate algebra:

(3.1) f + g = f + g, f • g = f • g, λf = λ • f ∀f, g ∈ A, ∀λ ∈ C ,
and by A op the opposite algebra

(3.2) f op + g op = (f + g) op , f op • g op = (g • f ) op , (λf ) op = λ • f op ∀f, g ∈ A, ∀λ ∈ C .
There are canonical isomorphisms

(3.3) (A 1 ⊗ A 2 ) op A op 1 ⊗ A op 2 , A 1 ⊗ A 2 A 1 ⊗ A 2 , A op A op , A (A op ) op A .
If E is a left module over A then E is a left module over A. Similarly, a right module over A is the same as a left module over A op . We have a duality between finitely-generated projective left module E over A and finitely-generated projective right modules

(3.4) E E ∨ := Hom A-mod (E, A) ∈ mod -A, E = Hom mod-A (E ∨ , A) .
A * -algebra is an associative unital algebra A over C endowed with an anti-linear involution f → f * satisfying

(3.5) (f * ) * = f, f * + g * = (f + g) * , f * • g * = (g • f ) * , (λ • f ) * = λ • f * ∀f, g ∈ A, ∀λ ∈ C .
For any * -algebra A we have a canonical isomorphism

A A op , f → (f * ) op . An element f ∈ C is called Hermitian if f = f * ,
and non-negative iff it can be written as a finite sum of the form i f i f * i .

In particular, for a * -algebra A and a bimodule B over A (i.e. a module over A ⊗ A op , we can write B ∈ A -mod -A), the complex-conjugate B (which is a module over A ⊗ A op ) is naturally again a bimodule over A via the chain of canonical isomorphisms of algebras

(3.6) A ⊗ A op A ⊗ A op A op ⊗ A A ⊗ A op .
The setup (in which later we will define the moment map equations) is the following: we are given

(A1) an associative unital * -algebra A over C, (A2) a bimodule Ω 1 over A, (A3) a derivation d : A → Ω 1 , i.e. a C-linear map d satisfying the Leibniz rule d(f • g) = f • d(g) + d(f ) • g, ∀f, g ∈ A , (3.7) (A4) a bilinear form ω : Ω 1 ⊗ C Ω 1 → C (a "noncommutative Kähler form") satisfying the properties (3.8) ω(α, β) = ω(β, α), ω(f • α • g, β) = ω(α, f * • β • g * ), ω(α, α) > 0 ∀α = 0 , (A5) a linear functional η : A → C satisfying (3.9) η(f * ) = -η(f ), η([f, g]) = -1 2 √ -1 • ω(df, d(g * )) -ω(dg, d(f * )) .
This setup will be applied to (M1) a finitely-generated projective A-module E, (M2) a connection on E which is defined as a C-linear map ∇ :

E → Ω 1 ⊗ A E satisfying (3.10) ∇(f • φ) = df ⊗ φ + f • ∇(φ), ∀f ∈ A, φ ∈ E , ( 
M3) a Hermitian form on E which is defined to be a bilinear map

H : E ⊗ C E → A satisfying (3.11) H(f φ 1 , g • φ 2 ) = f • H(φ 1 , φ 2 ) • g *
and such that the induced morphism of right modules over A

E → E ∨ = Hom A-mod (E, A), φ 2 → φ 1 → H(φ 1 , φ 2 ) (3.12)
is an isomorphism and is positive-definite, in the sense H(φ, φ) ≥ 0 for all φ ∈ E. We will explain in the next section (see Proposition 2) that the action of the gauge group of unitary automorphisms of E on the space of connections on E can be lifted using (3.9) to a Hamiltonian action. In particular, we will get the notion of a harmonic representative. Definition 3.1. For a finitely-generated projective A-module E endowed with connection ∇, a Hermitian form H is called harmonic iff it satisfies the moment map equation (5.70) defined later in section 5.3. Remark 3.2. Our setup differs from the one proposed in [START_REF] Haiden | Iterated logarithms and gradient flows[END_REF]. It would be interesting to compare two formalisms.

Explanations in two basic examples

We will illustrate our axiomatics in the case of a quiver, or a compact C ∞ -manifold X.

(A1)+(M1):

The algebra A is either a finite sum C Q0 of copies of C (quiver case), or the algebra

C ∞ C (X) := C ∞ (X) ⊗ R C of smooth C-
valued functions on a manifold X, with the involution * given by the complex conjugation. In these examples A happen to be commutative, although this property does not play any role in the general formalism. In the noncommutative gauge theory the algebra A is the algebra of functions on a noncommutative deformation of R 4 .

In general, a finitely-generated projective A-module E is a left A-module which is isomorphic to A n • P where P ∈ M at(n × n, A) is a projector, P 2 = P . Such a module is the same data as a collection of finite-dimensional complex vector spaces (E v ) v∈Q0 where E := ⊕ v E v (quiver case), or the same data as a finite-dimensional complex vector bundle E over X where E = Γ(X, E) (manifold case).

(A2): The bimodule Ω 1 in the quiver case is the complex vector space C Q1 spanned by the set of arrows Q 1 of the quiver, with the structure of a bimodule over A given by (4.1)

a = π s(a) • a • π t(a) ,
where π v ∈ A = C Q0 denotes the projector (the base vector) corresponding to arbitrary v ∈ Q 0 .

In the case of a manifold, the bimodule Ω 1 is the space of complex-valued 1-forms on X with both the left and the right action given by the point-wise multiplication. More generally, one can consider pairs (X, F) where F ⊂ T X ⊗ R C is a complex vector subbundle of the complexified tangent bundle T X to X such that

(4.2) F + F = T X ⊗ R C .
We define in this case the bimodule Ω 1 as the space of sections of the dual bundle Γ(X, F * ), which is the quotient of the space Γ(X, T * X ⊗ R C) of complex-valued 1-forms on X. The condition (4.2) is satisfied e.g. when X is endowed with a complex structure and F = T 0,1 X . More generally, the case when (4.2) is satisfied and F is formally integrable (which means that Γ(X, F) ⊂ Γ(X, T X ⊗ R C) is closed under the Lie bracket), corresponds to a foliation on X with a transversal holomorphic structure. The foliation is given by the real distribution F ∩ T X . In this case the sheaf of functions on X are killed by all the complex-valued vector fields which are local sections of F, is the same as the sheaf of functions which are locally constant along the foliation and holomorphic on the complex quotient.

In what follows, we will call the case Ω 1 = Γ(X, T * X ⊗ R C) the totally real case, and the case Ω 1 = Γ(X, (T 0,1 X ) * ) when X is endowed with a complex structure, the totally complex case.

(A3)+(M2): the derivation d is equal to zero in the quiver case, and to the de Rham differential in the manifold case when Ω 1 = Γ(X, T * X ⊗ R C). More generally, in the case of a complex distribution F as above, the differential d is the composition of the de Rham differential

A = C ∞ C (X) → Γ(X, T * X ⊗ R C
) and of the projection Γ(X, T * X ⊗ R C) → Γ(X, F * ). In the quiver case, a connection on a finitely-generated projective module E = (E v ) v∈Q0 is the same as an action of arrows

(4.3) T a : E s(a) → E t(a) ∀a ∈ Q 1
which extend to an action of the path algebra of the quiver.

In the manifold case, a connection is the usual connection on a complex vector bundle, or a connection along distribution F. In the totally complex case when F = T 0,1 X , the connection in algebraic sense is the same as ∂-connection on E.

In the general algebraic setup, the differential d : A → Ω 1 gives rise to a structure of a bimodule on

B := A ⊕ Ω 1 given by (4.4) f • (h, α) • g := (f • h • g , f • α • g + df • h • g), ∀f, h, g ∈ A, α ∈ Ω 1
endowed with an epimorphism π B onto the diagonal bimodule A diag given by (h, α) → h, and a splitting h → (h, 0) which is a monomorphism i B of right modules over A. Conversely, any A-bimodule B together with morphisms 2 

(4.5) π B ∈ Hom A-mod-A (B, A diag ), i B ∈ Hom mod-A (A diag , B) such that π B •i B = id A ,
∇ : E → B ⊗ A E, ∇ ∈ Hom A-mod (E, B ⊗ A E) satisfying the constraint (4.7) (π B ⊗ id E ) • ∇ : E → A diag ⊗ A E E is equal to id E .
Explicitly, the correspondence is given by

connection ∇ morphism ∇ : φ → (φ, ∇(φ)) ∈ E ⊕ (Ω 1 ⊗ A E) = B ⊗ A E . (4.8)
Assume that B is a finitely-generated projective when considered as a right module over A (equivalently, one can replace B by Ω 1 because Ω 1 ⊕ A diag B in mod -A). Then B can be represented as the dual to a finitely-generated projective left A-module which we denote by Diff ≤1 : (4.9)

Diff ≤1 Hom mod-A (B, A), B Hom A-mod (Diff ≤1 , A)

In the manifold case and Ω 1 = Γ(X, T * X ⊗ R C) the space Diff ≤1 can be naturally identified with the space of differential operators of order ≤ 1, hence the notation.

The left A-action on B gives a right action on Diff ≤1 , therefore we have Diff ≤1 ∈ A -mod -A. The epimorphism π B gives (by duality) a monomorphism of bimodules π ∨ B : A diag → Diff ≤1 . We define the algebra Diff of "noncommutative differential operators" as the quotient of the tensor algebra (4.10)

T A (Diff ≤1 ) := A ⊕ Diff ≤1 ⊕ (Diff ≤1 ⊗ A Diff ≤1 ) ⊕ . . .
by the two-sided ideal generated by the subspace

(4.11) {f -π ∨ B (f ) | f ∈ A} ⊂ A ⊕ Diff ≤1 ⊂ T A (Diff ≤1
) . The algebra Diff is filtered (with the component Diff ≤n ⊂ Diff defined as the image of the subspace Diff ⊗ A n ≤1 ⊂ T A (Diff ≤1 )), and endowed with a homomorphism A → Diff . It follows from definitions 2 In the formulation of the notion of a connection belowe, the homomorphism i B plays no role. It can be completely omitted.

What we really need is just a bimodule B and a morphism π B : B → A daig of bimodules.

that finitely-generated A-modules with connections can be identified with Diff -modules which are finitelygenerated projective as A-modules. The algebra Diff is the usual path algebra in the quiver case, and a "free analog" of the algebra of differential operators in the manifold case. In the totally real case Ω 1 = Γ(X, T * X ⊗ R C), in the local coordinates (x 1 , . . . , x k ) on X, an element of Diff can be written as a finite sum (4.12) l≤N,i1,...,i l ∈{1,...,k}

f i1,...,i l • ∂ i1 • • • • • ∂ i l for some N < ∞, f i1,...,i l ∈ C ∞ C (X) ,
where ∂ i are free noncommutative variables obeying the exchange relation with the elements of C:

(4.13) ∂ i • f -f • ∂ i = ∂f ∂x i ∈ A = C ∞ C (X) .
In the totally complex case one replaces free variables (∂ i = ∂ xi ) i=1,...,dim R X by the antiholomorphic derivatives (∂ zi ) i=1,...,dim C X .

If we are interested e.g. in flat connections (or bundles with a holomorphic structure in the complex case), we should impose certain additional relations in Diff (e.g. the commutativity relation

∂ i • ∂ j = ∂ j • ∂ i ).
The corresponding quotient algebra is either the usual algebra of (complex-valued) differential operators in the totally real case, or its subalgebra of differential operators in ∂-direction in the totally complex case.

(A4): In the quiver case, a choice of ω is equivalent to a choice of a collection of Hermitian norms on vector spaces

Ω 1 v1,v2 := π v1 • Ω 1 • π v2 = C {a∈Q1 | s(a)=v1,t(a)=v2} (4.14)
for all pairs (v 1 , v 2 ) of vertices of Q. For example, one can declare the generating set

{a ∈ Q 1 | s(a) = v 1 , t(a) = v 2 }
to be an orthonormal basis of Ω 1 v1,v2 . In the manifold case, the choice of ω is equivalent to a choice of a Hermitian form on the vector bundle F ⊂ T X ⊗ R C. In the totally real (resp. totally complex) cases, a particular choice of such a form is given by a Riemannian metric (resp. a Kähler metric) on X. 

1 ⊗ Ω 1 → C satisfying ω((f • α • g) ⊗ α ) = ω(α ⊗ (g • α • f )), α ∈ Ω 1 , α ∈ Ω 1 , f, g ∈ A (4.16)
give rise to a skew-symmetric functional on A 

Ψ(f ⊗ g) := ω(df ⊗ d † g) -ω(dg ⊗ d † f ) (4.17) satisfying an additional reality constraint Ψ(f ⊗ g) = -Ψ(f * ⊗ g * ) .
Ψ(f 0 f 1 ⊗ f 2 ) + Ψ(f 1 f 2 ⊗ f 0 ) + Ψ(f 2 f 1 ⊗ f 1 ) = 0 . (4.

19)

Proof: A direct calculation using (3.7) and (4.16) gives

(4.20) Ψ(f 0 f 1 ⊗ f 2 ) + Ψ(f 1 f 2 ⊗ f 0 ) + Ψ(f 2 f 1 ⊗ f 1 ) = Ψ(f 0 f 1 ⊗ f 2 ) + • • • = = ω(df 0 f 1 ⊗ d † f 2 ) + ω(f 0 df 1 ⊗ d † f 2 ) -ω(df 2 ⊗ d † f 0 f 1 ) -ω(df 2 ⊗ f 0 d † f 1 ) + • • • = = ω(df 0 ⊗ f 1 d † f 2 ) + ω(df 1 ⊗ d † f 2 f 0 ) -ω(df 2 ⊗ d † f 0 f 1 ) -ω(df 2 ⊗ f 0 d † f 1 ) + • • • = 0
where triple dots in each line denote terms obtain by cyclic permutation of indices 0 → 1 → 2 → 0. So, we see that Ψ is a 2-cocycle in the cyclic cochain complex of A. Recall that the latter is defined by

C n cycl (A) := {ψ : A ⊗n → C | ψ(f 2 ⊗ • • • ⊗ f n ⊗ f 1 ) = (-1) n-1 ψ(f 1 ⊗ • • • ⊗ f n )} (4.21) with the differential dψ(f 0 ⊗ • • • ⊗ f n ) = i∈Z/(n+1)Z (-1) in ψ(f i f i+1 ⊗ f i+2 ⊗ • • • ⊗ f i-1 ) . (4.22)
The existence of η satisfying the constraint (3.9) means that the 2-cocycle Ψ is a coboundary. The obstruction lies in H 2 cycl (A). In the quiver case for A = C Q0 , there is no obstructions as H 2 cycl (C Q0 ) = 0. In the manifold case, the 2-nd continuous cyclic cohomology of A = C ∞ C (X) coincides with the continuous dual to Ω 1 (X)/dΩ 0 (X). Assume for simplicity that X is oriented. In this case, a dense subset of the continuous dual, as above, consists of closed forms on X of degree equal to dim(X) -1. Any closed form

β ∈ Γ(X, ∧ dim X-1 T * X ⊗ R C), dβ = 0 (4.23)
gives a cyclic 2-cochain by the formula

f 1 ⊗ f 2 → X f 1 df 2 ∧ β . (4.24)
In our example of a complex distribution F ⊂ T X ⊗ C and a Hermitian form on F, the corresponding obstruction class in H 2 cycl (A) is represented by the differential of certain form δ of degree dim R X -2. The vanishing of the obstruction means that δ is closed. This is a necessary and sufficient condition for the existence of a solution η for the constraint (3.9). In the case of HYM equations on complex Kähler manifolds the form δ is equal to (ω X ) dim C X-1 where ω X is the Kähler form on X. Remark 4.2. We already observed that (for a given data A1, A2, A3, A4) the obstruction to the existence of functional η is a class in H 2 cycl (A) satisfying the reality constraint (4.18). If the obstruction vanishes, the set of choices of possible functionals η is a torsor over the real subspace of H 1 cycl (A) = Hom(A/[A, A], C) given by the fixed points of the anti-linear involution

η → η σ , η σ (f ) := -η(f * ) . (4.25)
Notice the similarity with the analogous question for the liftings of a symplectic action to a Hamiltonian one, cf. Remark 2.11.

(M3): In the quiver case, a Hermitian A-valued form on A-module E is equivalent to the collection of Hermitian forms on the individual complex vector spaces E v for all vertices v ∈ Q 0 .

In the manifold case (independently on the choice of complex distribution F), a Hermitian A-valued form on an A-module E = Γ(X, E) is equivalent to a Hermitian norm on the corresponding complex vector bundle E.

In general, when a projector P ∈ M at(n × n, A), P 2 = P is self-adjoint:

P = (p ij ) 1≤i,j≤n ∈ M at(n × n, A), p * ij = p ji ∀i, j, P 2 = P , (4.26)
then the submodule E := A n • P carries an A-valued Hermitian form given by the restriction to E ⊂ A n of the standard form on A n :

(4.27) H standard ((f 1 , . . . , f n ), (g 1 , . . . , g n )) := i f i g * i .
Remark 4.3. The framework of [START_REF] Connes | Noncommutative geometry and Matrix theory[END_REF] (and then of [START_REF] Nekrasov | Instantons on noncommutative R 4 , and (2, 0)-superconformal six dimensional theory[END_REF]) fits (partially) into our setup. In order to define the notion of a connection, authors of [START_REF] Connes | Noncommutative geometry and Matrix theory[END_REF] use a collection (∂ i ) i=1,...n of derivations of an algebra A closed under the Lie bracket. In our formalism the corresponding bimodule is Ω 1 := A ⊕n diag endowed with the derivation d(f

) := (∂ 1 f, . . . , ∂ n f ) ∈ Ω 1 .
(4.28) 5. Formula for the Hamiltonian action 5.1. The case of a trivial bundle.

Let us assume that E A n = C n ⊗ A is a free finitely generated left module over A, endowed with the canonical Hermitian A-valued form (see (4.27)).

The set M of connections on E can be identified in the usual way with the space of matrices of 1-forms:

(5.1)

A = (A ij ) 1≤i,j,≤n ∈ M at(n × n, Ω 1 ) ∇ A : E → Ω 1 ⊗ A E, ∇ A (φ) = dφ + φ • A .
The Lie algebra of the "compact gauge group" is defined as

(5.2) k := {(u ij ) 1≤i,j≤n ∈ M at(n × n, A) | u * ij = -u ji ∀i, j} .
It acts on the (infinite-dimensional) complex affine space M of connections by the infinitesimal affine transformations

(5.3) (d + •A) → (1 -• u) • (d + •A) • (1 -• u) -1 = d + •A + • (du + [u, A])
where is a formal variable satisfying 2 = 0, and notation •A stays for the operator of right multiplication by A, and similarly for other symbols. In other words, the value of the vector field X u corresponding to u ∈ k on M at the point A is

X u|A = du + [u, A] . (5.4)
An A-valued Hermitian form H 0 on E together with a "noncommutative Kähler metric" ω produces a usual C-valued Hermitian form on the complex vector space M at(n × n, C) ⊗ Ω 1 given by (5.5) ω 0 (A (1) , A (2) ) :

= ij ω(A (1) ij , A (2) 
ij ) .

This form is strictly positive on non-zero vectors by (3.8), and the infinitesimal action of k via A → A+ [u, A] preserves ω 0 . Therefore, the infinitesimal action of k on affine space M of connections endowed with the "constant" Kähler metric corresponding to ω 0 is by Kähler isometries, because the vector field X u is the sum of the infinitesimal generator of the linear action A → A + [u, A] (which is an isometry), and of the shift by a constant vector A → A + du (which is also an isometry).

In what follows, we will use an identity which follows directly from (3.8) and the definition (5.5) 1) , u], A (2) ) = ω 0 (A (1) , [u, A (2) ]) ∀A (1) , A (2) ∈ M, ∀u ∈ k . (5.6)

ω 0 ([A ( 
The constant (i.e. invariant under shifts) symplectic form ω symp M on M corresponding to the Kähler metric ω 0 is given by the real skew-symmetric form on the tangent space (5.7) ω symp M (A (1) , A (2) ) := Im ω 0 (A (1) , A (2) ) = 1 2 √ -1 ω 0 (A (1) , A (2) ) -ω 0 (A (2) , A (1) ) .

For a given u ∈ k, the corresponding vector field X u is an infinitesimal Kähler isometry, hence it preserves the symplectic form ω symp M . We claim that this symplectic action of k can be lifted to a Hamiltionian action. Let us denote for u ∈ k by H u the following real-valued function on M :

H u (A) := η(Trace(u)) -ω symp M (A, du) + 1 2 ω symp M (A, [A, u]) . (5.8)
Proposition 1. The assignment u → H u is a Lie algebra homomorphism lifting the action u → X u .

Later we will need a formula for H u (A) written in a slightly different form:

(5.16) H u (A)

(5.8) = η(Trace(u)) -ω symp (A, du) + 1 2 ω symp (A, [A, u]) = (5.7) = η(Trace(u)) + 1 2 √ -1 -ω 0 (A, du) + ω 0 (du, A) + 1 2 ω 0 (A, [A, u]) - 1 2 ω 0 ([A, u], A) = (5.6) = η(Trace(u)) + 1 2 √ -1 -ω 0 (A, du) + ω 0 (du, A) -ω 0 ([A, u], A) .

General bundle.

Let P be a self-adjoint (see (4.26)) projector in M at(n × n, A). Then the free module E = A n splits into the orthogonal sum of two submodules (here we denote id A N as 1 for brevity)

E E 1 ⊕ E 2 , E 1 := E • P, E 2 := E • (1 -P ) .
(5.17)

We will consider the action of the gauge group of unitary automorphisms of E 1 on the space M 1 of connections on E 1 . First, consider the Lie subalgebra k 1+2 of k consisting of infinitesimal unitary symmetries preserving the direct sum decomposition (5.17)

k 1+2 := {u ∈ k | u = P uP + (1 -P )u(1 -P )} . (5.18) It is clear that k 1+2 is the direct sum of two subalgebras k 1 := {u ∈ k | u = P uP }, k 2 := {u ∈ k | u = (1 -P )u(1 -P )} (5.19)
and k 1 is the Lie algebra of infinitesimal unitary symmetries of E 1 .

Next, consider the space of connections on E preserving the direct sum decomposition (5.17):

M 1+2 := {A ∈ M at(n × n, Ω 1 ) | d + A = P • (d + A) • P + (1 -P ) • (d + A) • (1 -P )} . (5.20)
It is an affine subspace of the affine space M of connections on E, and it is isomorphic to the product of the space M 1 of connections in E 1 and the space M 2 of connections in E 2 .

There is a distinguished point A can ∈ M 1+2 given by

A can = P • dP + (1 -P ) • d(1 -P ) = (2P -1) • dP (5.21) which gives points A can,1 ∈ M 1 , A can,2 ∈ M 2 after the identification M 1=2 M 1 ×M 2 .
Then we identify M 1 with an affine subspace M (1) ⊂ M 1+2 consisting of connections whose restriction to E 2 is A can,2 . Explicitly, we have

M (1) = {A ∈ M | A = A can + δ A , δ A = P δ A P } . (5.22)
The Lie subalgebra k 1 ⊂ k preserves the submanifold M (1) ⊂ M . In particular, for any u ∈ k 1 the value of the vector field X u restricted to M (1) is given (see (5.4)) at the point A can + δ A by

X u|A can+δA = du + [u, A can + δ A ] .
(5.23) Using (5.11), this formula implies for any

u 1 , u 2 ∈ k 1 (5.24) ω symp (X u1 , X u2 ) = ω symp (du 1 + [u 1 , A], du 2 + [u 2 , A]) = = η(Trace([u 1 , u 2 ])) -ω symp (A, d[u 1 , u 2 ]) + 1 2 ω symp (A, [A, [u 1 , u 2 ]]) ,
where A := A can + δ A . We conclude we obtain the Hermitian-conjugate connection (formulated in terms of a morphism of A-modules)

∇ † ∈ Hom A-mod (E, B ⊗ A E), (π B ⊗ id E ) • ∇ † = id E . (5.33)
Here in (5.32) we use the fact that for any finitely-generated projective A-module E and an arbitrary Amodule F , the canonical map

(5.34) E ∨ ⊗ A F → Hom A-mod (E, F ), E ∨ ⊗ A F = Hom A-mod (E, A) ⊗ A Hom A-mod (A, F ) composition -------→ Hom A-mod (E, F ) is an isomorphism.
Alternatively, let us use the Hermitian-conjugate derivation d † with values in Ω 1 (see (4.15))

d † : A → Ω 1 , d † (f ) := -d(f * ), d † (f • g) = f • d † (g) + d † (f ) • g for free . (5.35)
The bimodule B is identified with

A ⊕ Ω 1 , with the bimodule structure f • (h, α) • g := (f • h • g, f • α • g + d † f • h • g) (as in (4.4)) (5.36) by the map (h, α) ∈ B → (h * , α -dh) ∈ A ⊕ Ω 1 .
(5.37) For the trivial A-module E = A n with the canonical Hermitian A-valued form (4.27), for any connection A given by a (n × n) matrix

A = (A ij ) 1≤i,j≤n ∈ M at(n × n, Ω 1 ) (5.38)
the Hermitian conjugate connection is given by

A † = ((A † ) ij ) 1≤i,j≤n ∈ M at(n × n, Ω 1 ), (A † ) ij := A ji ∀ i, j .
(5.39) 5.3.2. Bimodules and traces. In this section A denotes an arbitrary associative algebra over C (not necessarily a * -algebra). With every A-bimodule G we associate a vector space #(G) by the formula

#(G) := G/{linear span of a • g -g • a | a ∈ A, g ∈ G} G ⊗ A⊗A op A diag . (5.40)
It follows form the definition that for any finite sequence of bimodules G 1 , . . . , G n ) one has a chain of canonical isomorphisms

#(G 1 ⊗ A G 2 ⊗ A • • • ⊗ A G n ) #(G 2 ⊗ A G 3 ⊗ A • • • ⊗ A G 1 ) #(G n ⊗ A G 1 ⊗ A • • • ⊗ A G n-1 ) . (5.41)
For any finitely-generated A-module E, any A-bimodule G and any morphism of A-modules

Φ : E → G ⊗ A E (5.42)
we define its trace along E (denoted by Trace E (Φ)) with values in #(G), via the chain of isomorphisms

Φ ∈ Hom A-mod (E, G ⊗ A E) (5.34) E ∨ ⊗ A G ⊗ A E G ⊗ A⊗A op (E ⊗ C E ∨ ) (5.43) and a map G ⊗ A⊗A op (E ⊗ C E ∨ ) id G ⊗ A⊗A op δ E ----------→ G ⊗ A⊗A op A diag = #(G) Trace E (Φ) , (5.44)
where

δ E : E ⊗ C E ∨ → A diag , δ E (e ⊗ e ∨ ) := e ∨ (e) ∈ A, ∀e ∈ E, ∀e ∨ ∈ Hom A-mod (E, A) = E ∨ (5.45)
is the canonical morphism of A-bimodules.

All the checks are straightforward corollaries of the Leibniz rule, of the fact that ω descends to a functional ω : #(Ω 1 ⊗ A Ω 1 ) → C (see (5.47)), and of the relation (3.9). Here is the most non-trivial check (5.56).

(5.63) -

f 1 • g ⊗ f 2 ⊗ f 3 + f 1 ⊗ g • f 2 ⊗ f 3 + f 1 ⊗ dg • f 2 ⊗ f 3 + f 1 ⊗ d † g • f 2 ⊗ f 3 → + 2 √ -1 3 η(gf 2 f 3 f 1 -f 2 f 3 f 1 g) + + 1 3 • ω(f 1 • dg , d † f 2 • f 3 ) + ω(df 3 , f 1 • d † g •f 2 ) -ω(dg • f 2 , d † f 3 • f 1 ) -ω(df 1 , d † g • f 2 •f 3 )- -ω(f 1 • dg •f 2 , d † f 3 ) -ω(df 2 • f 3 , f 1 • d † g ) + ω(dg • f 2 •f 3 , d † f 1 ) + ω(df 3 • f 1 , d † g • f 2 ) + + ω(dg • f 2 , d † f 3 • f 1 ) -ω(df 3 • f 1 , d † g • f 2 ) = (3.9),(5.35) = 1 3 ω(dg, d † (f 2 f 3 f 4 )) -ω(d(f 2 f 3 f 4 ), d † g) + + 1 3 -ω(dg, d † f 2 • f 3 f 1 ) -ω(dg, f 2 • d † f 3 • f 1 ) -ω(dg, f 2 f 3 • d † f 1 )+ + ω(df 2 • f 3 f 1 , d † g) + ω(f 2 • df 3 • f 1 , d † g) + ω(f 2 f 3 • df 1 , d † g) = 0 .
The rest is a routine calculation.

5.3.4.

Formula for the moment map in terms of Ξ . Our goal (in the setup (A1)-(A5)) is to associate with any Herimitan module (E, H) endowed with a connection ∇, a R-linear functional on the Lie algebra k defined as in (5.27). In other words, we want to define a number

H u (H, ∇) ∈ R (5.64)
depending R-linearly on u ∈ k, extending the formulas (5.8), (5.25).

We can form the following a chain of morphisms of A-modules:

E u → E ∇ ∇ -→ B ⊗ A E id B ⊗ A ∇ ∇ ------→ B ⊗ A B ⊗ A E (id B⊗ A B )⊗ A ∇ ∇ ---------→ B ⊗ A B ⊗ A B ⊗ A E (5.65) where ∇ ∇ : E → B ⊗ A E (5.66)
is the morphism of A-modules associated with the connection ∇ ⊕ ∇

† : E → (Ω 1 ⊕ Ω 1 ) ⊗ A E.
The composition in (5.65) is a morphism of A-modules Proposition 4. In the case when Hermitian finitely-generated projective A-module E is isomorphic to the image of a self-adjoint projector P ∈ M at(n × n, A) for some n < ∞ endowed with the induced Hermitian A-valued pairing, the definition of the moment map via (5.69) and as in (5.25) agree.

C 3 : E → B ⊗ A B ⊗ A B ⊗ A E . ( 5 
Proof: In order to alleviate the notations we will perform the check in the simplest case when E is the free module of rank 1 endowed with the standard Hermitian form. Hence, u is a (1 × 1)-matrix, which is just an element of A satisfying u * = -u. Similarly, the connection is an element α ∈ Ω 1 .

The morphism ∇ ∇ : E → B ⊗ A E is given (on the base element 1 ∈ E = A) by

∇ ∇ : 1 → (1, α, α) ⊗ 1 . (5.71)
The chain (5.65) applied to the element 1 ∈ A = E is given by

(5.72) 1 → u → (u, u • α, u • α) ⊗ 1 → (u, u • α, u • α) ⊗ (1, α, α) ⊗ 1 → → (u, u • α, u • α) ⊗ (1, α, α) ⊗ (1, α, α) ⊗ 1 .
Hence, we have to calculate Taking the sum of (5.74),(5.75),(5.76),(5.77),(5.78) we obtain we see that the result is the same as in (5.16).

Ξ (u, u • α, u • α) ⊗ (1, α, α) ⊗ (1, α, α) (5.73) Term (5.50) gives 3 3 (-2 √ -1) η(u) = -2 √ -1 η(u) (5.
Ξ (Trace E (C 3 )) = -2 √ -1 η(u) + ω(α, d † u) -ω(du, α) + ω(α • u, α) -ω(u • α, α) . ( 5 
The case of a higher rank trivial bundle, or, more generally, of an image of a Hermitian projector, is completely parallel.

6. Examples 6.1. Quiver type. The case of a quiver was essentially described above. The algebra A is C Q0 , the bimodule Ω 1 is C Q1 , the derivation d is 0. The choice of functional η corresponds to the choice of a real cyclic 1-cocycle of A. The resulting moment map equation is thus the general King's equation.

As particular examples relevant for gauge theory we would mention ADHM equations (2.23), deformed ADHM equations (2.32), and the 0-dimensional reduction of HYM:

[z 1 , z 2 ] = 0, [z † 1 , z 1 ] + [z † 2 , z 2 ] = 0.
6.2. Manifold type. For a real Riemannian or for a complex Kähler manifold X we set A := C ∞ (X) ⊗ R C, the bimodule Ω 1 is either Γ(X, T * X ⊗ R C) or Γ(X, (T 0,1 ) * ). We get HYM equations in the complex case, and a real version in the totally real case. In the case of flat connection over a Riemannian manifold we obtain the well-known equation for the harmonic metric on a non-unitary local system.

In the mixed real/complex case one gets a generalization which coincides with Bogomolny equations when dim R X = 3 and the complex distribution F is in local coordinates (x 1 , x 2 , x 3 ) generated by

C • ∂ x1 + C • (∂ x2 + i∂ x3 ) . ( 6 
.1) 6.3. Mixed manifold/quiver case. 6.3.1. Twisted quiver bundles (following [START_REF] Álvarez-Cónsul | Hitchin-Kobayashi correspondence, quivers, and vortices[END_REF]). Suppose that we are given a Kähler manifold X with a Kähler form ω 1,1 X , a finite quiver Q, and a collection of holomorphic vector bundles M a over X for each arrow a ∈ Q 1 , endowed with Hermitian metrics H a . Then we have the following algebra

A := C Q0 ⊗ C ∞ C (X). The bimodule Ω 1 defined as (6.2) Ω 1 :=   v∈Q 0 π v • Ω 0,1 (X) • π v   ⊕   a∈Q1 π s(a) • Γ(X, C ∞ X,C ⊗ O X M a ) • π t(a)   .
and the derivation d : A → Ω 1 is ∂-operator taking values in the first summand of (6.2). An example of a module with a connection is an M -twisted Q-bundle, which is by definition (see [START_REF] Álvarez-Cónsul | Hitchin-Kobayashi correspondence, quivers, and vortices[END_REF]) a collection of holomorphic vector bundles (E v ) v∈Q0 together with a collection of holomorphic morphisms

∀a ∈ Q 1 : φ a : M a ⊗ E s(a) → E t(a) . (6.3) 
For such a module an A-valued Hermitian form is a collection of Hermitian metrics (h v ) v∈Q0 on the individual bundles E v . Let ρ and σ be collections of real numbers ρ v and σ v > 0. The harmonicity equation on (h v ) v∈Q0 (e.g. the moment map equation) is called twisted quiver (ρ, σ)-vortex equation, and it is:

(6.4) ∀v ∈ Q 0 : σ v √ -1ΛF Hv + a∈s -1 (v) φ a • φ Ha a - a∈t -1 (v) φ Ha a • φ a = ρ v id Ev ,
where Λ is the contraction with the bivector field (ω 1,1 X ) -1 , and F H = (F Hv ) is the curvature corresponding to the metric H = H v , ∀v ∈ Q 0 . Here the compositions on the l.h.s. are defined as

φ a • φ Ha a : E s(a) → M a ⊗ R t(a) → E s(a) , φ Ha a • φ a : E t(a) → M * a E s(a) → E t(a) . (6.5)
A special case of the above vortex equation is when Q is one vertex v with one loop a, and map M a ⊗E v → E v gives a map from M := M a to commuting endomorphisms of E := E v . Such an object can be interpreted as a coherent sheaf on the total space of the dual bundle M * with dim C X-dimensional support which is proper and finite over X, and such that the direct image to X is a vector bundle. In the case M = T X this is equivalent to the Hitchin equation. When dim C X = 2 and M = ∧ 2 T * X we get Vafa-Witten equation, and when n = dim C X > 2 and M = ∧ n T * X we get a generalization of Vafa-Witten equations considered by one of us (G.B.) in an unpublished manuscript. In all these examples the total space of M * is a non-compact Calabi-Yau space in the algebro-geometric sense, i.e. it is endowed with a non-vanishing holomorphic volume form. Remark 6.1. For any quiver Q and a collection of bundles M a labeled by the arrows of Q one can construct a new quiver Q with the same set of vertices Q 0 = Q 0 and with exactly one edge a ij for every ordered pair (i, j) of vertices. The new bundles M ij can be defined as the direct sums M ij := ⊕ a∈Q1:s(a)=i,t(a)=j M a . (6.6) There is an obvious equivalence between the M -twisted Q-bundles and the M -twisted Q -bundles, and the corresponding harmonic metrics. Nevertheless, for bookkeeping purposes, it is more convenient to work with the original description. The algebra A is endowed with commuting derivations ∂ 1 , . . . , ∂ n and ∂ 1 , . . . , ∂ n given by ∂ i (z j ) = ∂ i (z * j ) = δ ij , (6.9) ∂ i (z * j ) = ∂ i (z j ) = 0 . (6.10) A noncommutative HYM instanton is a finitely-generated projective A-module E endowed with a Avalued Hermitian form (see (3.11)) We conclude from (6.16) and (6.19) that (6.22

H : E ⊗ C E → A, H(f φ 1 , g • φ 2 ) = f • H(φ 1 , φ 2 ) • g * (6.
) ∇ i φ 1 , φ 2 = ρ H(∇ i (φ 1 ), φ 2 ) = ρ ∂ i (H(φ 1 , φ 2 )) - ρ H(φ 1 , ∇ i (φ 2 )) = = 1 ρ + ρ H(φ 1 , φ 2 ) • z i -φ 1 , ∇ i (φ 2 ) = φ 1 , 1 ρ + z * i • φ 2 -∇ i (φ 2 ) .
Also, it follows from (6.20) that

z i • φ 1 , φ 2 = ρ H(z i • φ 1 , φ 2 ) = ρ z i • H(φ 1 , φ 2 ) = ρ ρ + ρ H(φ 1 , φ 2 ) • z i = φ 1 , ρ ρ + z * i • φ 2 . (6.23)
Let us introduce operators in the Hilbert space H which is the completion of E with respect to •, • :

Z i = z i -ρ∇ i . (6.24)
The equations (6.22) and (6.23) imply that Z † i = ρ∇ i . (6.25) Finally, using (6.13) and (6.15) we conclude that Consider the subspace H 0 ⊂ H which the common kernel of operators ∇ i , i = 1, . . . , n. This subspace is preserved by the operators z i , hence it is preserved by the operators Z i . We claim (the argument in not totally rigorous) that H 0 ⊂ H is also preserved by the adjoint operators Z † i . Indeed, it is the case when E is the trivial bundle of rank one (in this case H 0 is a completion of C[z 1 , . . . , z n ]). In general, let us consider the orthogonal decomposition

H = H 0 ⊕ H 1 , H 1 := H ⊥ 0 . (6.27)
In this splitting we have for any i = 1, . . . , n:

Z i = Z 00 i Z 01 i 0 Z 11 i , Z † i = (Z 00 i ) † 0 (Z 01 i ) † (Z 11 i ) † .
(6.28)

We conclude that For each i the operator [(Z 00 i ) † , Z 00 i ] -ρ • Id H0 is of trace class, hence its trace is equal to zero (reasoning: the trace does not change by small deformations). Together with (6.29) this vanishing of traces implies that i Trace((Z 01 i ) † Z (01) i ) = 0 , (6.30) and therefore all operators Z (01) i vanish. Hence, the equation (6.26) holds on H 0 as well. This concludes the argument.

  ) acts on the finite-dimensional complex vector space M := a∈Q1 Hom(E s(a) , E t(a) ) (2.18) parameterizing representations of Q in (E v ) v∈Q0 . We endow M with the constant (i.e., translationally invariant) Kähler metric associated with the Hermitian norm on M given by (T a ) a∈Q1 2 := a∈Q1 Trace(T † a T a ) . (2.19)

  is the same data as a bimodule Ω 1 := Ker(π B ) together with a derivation d : A → Ω 1 satisfying the Leibniz rule (3.7). The notion of a connection satisfying the analogous condition (3.10) can be rephrased as a homomorphism of left A-modules(4.6) 

(

  A5): Let us denote by d † the derivation A → Ω 1 given by d † (f ) := -d f * . (4.15) Two derivations d, d † with values in A-bimodules Ω 1 , Ω 1 and a linear map ω : Ω

Lemma 4 . 1 .

 41 The functional Ψ satisfies the identity

Definition 5 . 2 .

 52 .67) Applying the trace along E to the morphism C 3 we obtain an element Trace E (C 3 ) ∈ #(B ⊗ A B ⊗ A B) . (5.68) The moment map (see (5.64)) is given by H u (H, ∇) well-defined by Proposition 3. The equation on the Hermitian form H u (H, ∇) = 0 ∀u ∈ k (5.70) we call the universal moment map equation.

  74) as d1 = d † 1 = 0. Term (5.51) gives +ω(α, d † u) . (5.75) Term (5.52) gives -ω(du, α) . (5.76) Term (5.53) gives -ω(u • α, α) -ω(α, α • u) -ω(α, u • α) . (5.77) Term (5.54) gives +ω(α, u • α) + ω(α • u, α) + ω(u • α, α) . (5.78)

  .79) Using the fact d † u := -du * = +du (5.80)

6. 3 . 2 . 4 .

 324 Nahm's equation. The algebra C is C ∞ (X) where X is a 1-dimensional manifold. The bimodule is supported on the diagonal and is Γ(X, T * X ⊗ R C) ⊕ C ∞ C (X), looks like the tensor product of 1-forms on X and the quiver with one vertex and one loop. The equation for harmonic representatives is exactly Nahm equation for the groupU (k): Ȧi = ijk [A j , A k ] where A i = -A † i ∈ M at(k × k, C) are functions of time. 6.Noncommutative instantons. Ignoring the problem related to the noncompactness of the noncommutative space R 2n θ , the corresponding framework is the following. The algebra A is certain C ∞ -version of the algebra generated by generators z 1 , . . . , z n and their Hermitian conjugates z * 1 , . . . , z * n satisfying relations 4 [z i , z j ] = 0, [z * i , z * j ] = 0 , (6.7)[z * i , z j ] = δ ij . (6.8)

  [START_REF] Kempf | On the lengths of vectors in representation spaces[END_REF] endowed with C-linear endomorphisms ∇ 1 , . . . , ∇ n and ∇ 1 , . . . , ∇ n satisfying relations[∇ i , ∇ j ] = [∇ i , ∇ j ] = 0 , (6.12) [∇ i , z j ] = [∇ i , z j ] = δ ij , (6.13) [∇ i , z j ] = [∇ i , z j ] = 0 , (6.14) n i=1 [∇ i , ∇ i ] = 0 , (6.15)andH(∇ i (φ 1 ), φ 2 ) + H(φ 1 , ∇ i (φ 2 )) = ∂ i (H(φ 1 , φ 2 )) . (6.16) 6.5. From noncommutative HYM to infinite-dimensional King's equation. The algebra A has a positive functional (state) ρ : A → C (depending on arbitrary constant ρ > 0) satisfying ρ aa * ≥ 0 ∀a ∈ A (6.

  17

δ

  ki,li k i !ρ ki . (6.18) One can check using(6.18) that one has ∀a ∈ A, ∀i ∈ {1, . . . , n}:ρ ∂ i (a) = 1 ρ + ρ a • z i , (6.19) ρ z i • a = ρ ρ + ρ a • z i . (6.20)4 One can further generalize these relations and get holomorphic noncommutative spaces, via replacing (6.7) by [z i , z j ] = c ij and [z * i , z * j ] = -c ij where (c ij ) 1≤i,j≤n is any skew-symmetric complex n × n matrix.Let us introduce a non-negative C-valued pre-Hermitian pairing on E by φ 1 , φ 2 := ρ H(φ 1 , φ 2 ) . (6.21)

  i , Z i ] = ρ • n • id H . (6.26)

=

  ρ • n • id H0 . (6.29)

  0 .

	Equation (2.28) can be viewed as a relation in the path algebra of Q (k) , and equation (2.29) can be viewed as
	King's equation at vertex 1, cf. (2.5). Notice that the King's equation at vertex 2 is automatically satisfied
	by the following reason: we have an obvious trace identity
	Trace

This is a simplifying assumption which holds in the context of our paper.

Proof: First, it is immediate to see that the vector field X u corresponds to the Hamiltionian H u :

(5.9) It suffices (see (2.15)) to prove that ω symp M (X u1 , X u2 ) = H [u1,u2] ∀u 1 , u 2 ∈ k . (5.10) In other words, we have to check that for any A ∈ M (5.11)

Indeed, we have (5.12)

Then we use

and, utilizing the antisymmetry of ω symp M , (5.15

This calculation finishes the proof of (5.11).

Proposition 2. The assignment

gives a Hamiltionian action of k 1 on M (1) M 1 lifting the symplectic action by gauge transformations.

5.3.

Universal formula for the moment map.

In this section we propose a formula for the moment map written in an "invariant" way, which does not refer explicitly to the representation of finitely-generated projective A-module E as an image of a self-adjoint projector P ∈ M at(n × n, A) for some n < ∞.

In order to be able to write the formula, we will need to introduce some notations and constructions.

5.3.1.

More about Hermitian modules. In this section A denotes an arbitrary * -algebra. Recall (see (3.12)) that a Hermitian structure H on a finitely-generated A-module E gives rise to an isomorphism of A op -modules iso H : E E ∨ (5.26) (here we consider the A-module E as an A op -module via the canonical isomorphism of algebras A A op ).

With any endomorphism u : E → E, u ∈ Hom A-mod (E, E) we can associate

(1) the complex-conjugate morphism

(2) the adjoint morphism, by applying the contravariant functor Hom A-mod (•, A)

The Lie algebra of infinitesimal unitary symmetries of (E, H) is defined (generalizing (5.2),(5.19)) as

Recall (see (4.4),(4.5) and (4.6),(4.7)) that a connection ∇ on A-module E we can recast as a homomorphism of A-modules

(5.29)

The complex conjugation gives

Applying the isomorphism iso H from (5.26) we obtain another morphism

where we treat B as a A ⊗ A op -module via the canonical isomorphism of algebras A ⊗ A op A ⊗ A op . Finally, using the following chain of isomorphisms (5.32) Hom mod-A (E ∨ , E ∨ ⊗ A B) Hom mod-A (E ∨ , Hom A-mod (E, B))

Remark 5.1. The constraints for the left and right action form on the noncommutative Kähler form ω (see (3.8)) can be interpreted as follows: ω is equal to the composition of a linear functional

and of the canonical surjection

) . (5.47) 5.3.3. Linear functional on the triple tensor product. In this section we work in the setup (A1)-(A5). Recall that we have automatically two derivations d, d † (see (5.35)), hence we can define a doubled bimodule by

by the following formulas (the missing terms map to zero):

and the same r.h.s. for

and the same r.h.s. for

and the same r.h.s. for

and the same r.h.s. for Proof: It follows from the definition that the map Ξ is Z/3Z-invariant, where Z/3Z acts 3 by cyclic permutations of factors in B ⊗3 . This symmetry reduces the number of possible checks to the following list:
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