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Figure 1: Example of a composition of two captured historical landmarks using our method. We extract the geometry of one
(b) from a multi-view dataset, and import it into the other (a). Our method ensures coherent treatment of lighting and shadows,

producing a realistic result (c).

ABSTRACT

Multi-view stereo can be used to rapidly create realistic virtual
content, such as textured meshes or a geometric proxy for free-
viewpoint Image-Based Rendering (IBR). These solutions greatly
simplify the content creation process compared to traditional meth-
ods, but it is difficult to modify the content of the scene. We propose
a novel approach to create scenes by composing (parts of) multiple
captured scenes. The main difficulty of such compositions is that
lighting conditions in each captured scene are different; to obtain
a realistic composition we need to make lighting coherent. We
propose a two-pass solution, by adapting a multi-view relighting
network. We first match the lighting conditions of each scene sepa-
rately and then synthesize shadows between scenes in a subsequent
pass. We also improve the realism of the composition by estimating
the change in ambient occlusion in contact areas between parts
and compensate for the color balance of the different cameras used
for capture. We illustrate our method with results on multiple com-
positions of outdoor scenes and show its application to multi-view
image composition, IBR and textured mesh creation.
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1 INTRODUCTION

Multi-view Stereo (MVS) - together with Structure from Motion for
camera calibration - is a powerful tool for capturing and visualizing
real-world environments using interactive computer graphics. The
resulting geometry can either be textured [Waechter et al. 2014]
as an asset, or used as input for Image-Based Rendering (IBR) algo-
rithms, allowing realistic free-viewpoint navigation [Hedman et al.
2018]. Importantly, such approaches avoid complex manual digital
content creation and computationally expensive realistic render-
ing. While capturing such scenes is as easy as taking a few tens of
photographs, it is very hard to modify the resulting scene. There
have been some attempts to remove objects [Philip and Drettakis
2018; Thonat et al. 2016], and to change lighting [Meshry et al. 2019;
Philip et al. 2019]. However, there is no obvious way to change the
geometry, and in particular to realistically combine content from
different captures into a single richer virtual environment, since
this would require the lighting conditions of the different scenes to
be coherent. In this paper, we present the first method that allows
combination of captured scenes with coherent lighting, suitable for
IBR, multi-view texturing but also image manipulation.
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Naively cutting pieces from one scene to another results in sev-
eral important issues. First, lighting is inconsistent between dif-
ferent scenes both in term of direction and intensities, since the
illumination conditions are not the same in each capture. Second,
regions of contact between pieces of one scene often suffer from an
unrealistic look of “floating” when directly inserted into another
scene. Finally, inconsistencies in camera parameters (e.g., color
temperature) may occur when combining captures and negatively
affect the final result.

To address lighting inconsistency, we turn to a state-of-the-art
multi-view relighting method [Philip et al. 2019]. However, since it
was designed for a single scene like all previous approaches, we need
to adapt it to our context. Specifically, if we insert part of potentially
several source (or part) scenes into a target (or reference) scene, we
first need to align the lighting conditions of the source scenes to
that of the target, then remove shadows from the illumination
condition of the source scene. We can then synthesize new realistic
shadows in the composite scene with the lighting conditions of
the target scene, correctly handling overlap between shadows in
the source and target scenes. Relighting, and in particular shadow
removal in previous methods only works for a single scene; we
develop a two-pass approach that enables good shadow removal
and consistent shadow and lighting in the composite scene, by
adapting the network of [Philip et al. 2019] so it can be used without
retraining. We also provide solutions to increase the realism of
contact geometry by creating more realistic contact shadows using
Ambient Occlusion and allow user control of color temperature
inconsistencies.

In summary, our contributions are:

o An efficient method to generalize single-scene multi-view
relighting to a multi-scene setting.

e An interactive method for creating compositions of IBR
scenes with coherent treatment of lighting and shadows.

We present results of our method on various compositions of out-
door scenes, and demonstrate a significant improvement over naive

compositions for multi-view image editing, IBR and textured meshes.

2 RELATED WORK

Our method is built upon a multi-view relighting network. We
review the previous work in areas close to our method. We first
review past research on image-based scene manipulation and then
review lighting estimation for composition and image relighting
techniques.

2.1 Scene Manipulation and Composition

Manipulating captured scenes is a notoriously difficult problem. The
focus in this area has been mostly on removing objects, followed
by inpainting the regions revealed by removal, while maintaining
multi-view consistency [Philip and Drettakis 2018; Thonat et al.
2016]. Some methods to manipulate real world scenes have been
proposed, but operate in a restricted context [Zhang et al. 2016]
or rely on drastic simplifications of the scene’s geometry [Huang
et al. 2017]. Other solutions are limited by the computational power
of the devices they use [Yue et al. 2017] to generate photorealistic
images.
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Deep Neural Textures [Thies et al. 2019] allow the user to copy
and translate an object in a single multi-view dataset, but does not
synthesize shadows correctly. To the best of our knowledge, there
is currently no previous work that attempts to compose several
captured scenes together with consistent lighting and shadows.
Lightshop [Horn and Chen 2007] allowed compositing of light fields,
while recent advances in neural rendering [Flynn et al. 2019] allow
compositing of light field videos [DuVall et al. 2019] but cannot
handle inconsistent lighting between scenes. Neither method is
adapted to our context of wide-baseline free-viewpoint navigation.

2.2 Lighting Estimation for Composition

Our goal is to realistically composite multi-view datasets; a related
field of work are methods to integrate virtual objects in images.
Such methods either use information recovered from inserting
specific objects into the scene [Debevec 2008], or request geometric
cues from the user [Karsch et al. 2011] in order to gather geometric
and lighting information missing in a single image. The survey
by Kronander et al. [2015], provides an extensive review of such
techniques. Recent deep learning methods can infer the lighting
conditions from single images [Gardner et al. 2017; Hold-Geoffroy
et al. 2019, 2017; LeGendre et al. 2019] or estimate the lighting
from the appearance of a specific object [Weber et al. 2018]. As the
input to our method is a multi-view dataset, we can extract more
information about the physical environment of each scene, and
thus generate realistic compositions by mixing captured objects
from several different scenes.

2.3 Image Relighting

Successful compositing of real scenes requires the use of relighting
techniques to achieve a consistent result. Older methods rely on
acquiring the intrinsic parameters of the scene either by computing
a reflectance model [Yu et al. 1999] and estimated geometry seg-
mentation [Loscos et al. 2000], or multiple photographs of the same
viewpoint with varying lighting conditions [Eisemann and Durand
2004; Loscos et al. 1999]. Other methods aim at decomposing im-
ages in their intrinsic appearance parameters [Tappen et al. 2003]
before computing a new rendering of the viewpoint, with changed
illumination.

The multi-view setting provides additional information such
as geometry estimation and multiple viewpoints of each surface.
Previous methods have taken advantage of this setting to estimate
intrinsic images [Duchéne et al. 2015; Laffont et al. 2013, 2012].
More recent methods rely on convolutional neural network archi-
tectures such as ResNet [He et al. 2016] to estimate intrinsic images
[Sengupta et al. 2019], or directly generate the relit images [Meshry
et al. 2019; Philip et al. 2019], thus avoiding the ambiguous and
under-constrained model of intrinsic images.

For relighting, we will use the method described in [Philip et al.
2019], since it provides the best results with our data. The network
has a notion of source and target lighting conditions, and a corre-
sponding sun direction for each. The method takes as input the
MVS geometry, shadows masks computed with this geometry for
source and target conditions, and a set of illumination buffers (e.g.,
normals etc) computed on the fly. A first subnetwork refines the
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shadow masks to assist shadow removal and resynthesis. The net-
work is trained with synthetic data, which for the original method
is manageable since all that is required is to export a pre-modeled
complete scene, place cameras for reconstruction and for training
relighting and then generate the MVS version of the geometry to
perform supervised training of shadow map refinement. As dis-
cussed in Sec. 4.1, this is not the case in our setting.

3 OVERVIEW

Our method can be decomposed into three main components :

(1) An interactive application that allows the user to import,
select, and move parts of captured scenes to create the desired
composition.

(2) A deep-learning based solution to enforce consistent lighting
and shadows in the composite scene.

(3) An environment compensation step to account for the mod-
ification of the surroundings of each part.

The overview of out method is displayed in Fig. 2.

3.1 Composition Interface

The input to our method consists of several multi-view datasets,
each composed of many photographs (typically between 75 and
200) of a static real-world scene. These photographs are used to ap-
proximate the scene’s geometry via Structure from Motion [Snavely
et al. 2006] and Multi-View Stereo [Goesele et al. 2007; Reality 2018].
The first building block of our method is the composition interface.
During this stage, we render a preview of the composition with a
slight variation of the unstructured lumigraph algorithm [Buehler
et al. 2001] (see 5.1), that allows the user to interactively edit their
selection and move parts around until the composition is finalized.

In the rest of this paper, we will refer to the scene in which the
user imports objects as the reference scene, and we will refer to the
objects imported in the reference scene as parts. We refer to all
scenes together as the constituent scenes, and the final combined
scene as the composite scene. Finally the scenes used to extract parts
are referred to as part or original scenes.

3.2 Consistent Composite Lighting

The composite scene contains the geometry from the different parts
and the reference scene. We next proceed with the relighting step,
to produce consistent lighting in the composite scene. We build on
the multi-view relighting algorithm of Philip et al. [2019], which
was designed for relighting a single scene. As a result, if applied
naively, it cannot handle the multiple constituent parts and their
corresponding different lighting and shadow levels. In addition,
it cannot handle the different shadow interactions between the
geometries coming from separate scenes if used on each constituent
scene separately. To avoid the artifacts from such a naive solution,
most notably for shadow removal, we proceed in two passes.

(1) An offline pass relighting the entire scene of origin of each
part to match the lighting conditions of the reference scene.
We do so by relighting all the input views.

(2) A second pass where we relight the composition, allowing us
to generate cast shadows between parts. This can be either
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online in the novel view, or offline on all the input views,
allowing interactive IBR for free-viewpoint navigation.

In most of the examples of this paper, we used the lighting con-
ditions of the reference scene as target lighting conditions. Com-
positions are however not restricted to the lighting conditions of
a constituent scene, and we can create compositions using any
desired target sun direction (e.g., Fig, 8).

3.3 Environment Compensation

Consistent lighting and shadows in the composite scene are often
not enough to achieve a satisfactory level of realism. As each part
is extracted from a given environment in its scene of origin, and
inserted in a new one, residual visual artifacts may remain even
after relighting has been applied. We identified two factors that
improve realism of compositions: ambient occlusion and camera
parameters. We estimate the former in both the scene of origin
and the reference scene for each part, and apply the corresponding
compensation to the result of the second step. We provide the user
with a per-scene color temperature slider, since we have no control
over the camera parameters with which each scene is captured. The
result of this compensation step is the final composition, suitable
for IBR.

In Sec. 4 we present our approach in detail; we present our results
in Sec. 5. We show results of our method on several compositions
of multiple real-world scenes captured under varying lighting con-
ditions, and compare with real-world ground truth and a previous
method [Thies et al. 2019].

4 OUR METHOD

4.1 Naive solution

Direct compositing of different parts into the reference scene cre-
ates obvious visual artifacts due to the different lighting conditions
in the constituent scenes (e.g., Fig. 3(a)). Multi-view relighting meth-
ods can be used to overcome this problem; we chose to work with
the most recent and effective such method that uses deep learn-
ing [Philip et al. 2019].

Our first attempt was to apply the relighting network to the
composite scene in a single pass. In our case, there are multiple
source conditions, one for each part and one for the reference scene,
while the target condition is common to all constituent scenes. To
apply the method to the composite scene, we generate all source
information (i.e., shadow maps, illumination buffers) on a per-pixel
basis, according to the source condition of each original scene;
i.e., source shadow map, sun direction, elevation etc. While the
network was able to correctly predict the refined source shadow
map in spite of the multiple sun orientations, it failed to completely
remove shadows in some areas of the composition, as shown in Fig.
3.

Indeed, the network was never trained to deal with compositions
of multiple scenes. One possible explanation for this failure is that
the network cannot handle multiple levels of the shadows in the
different scenes, since they can be significantly darker from one
capture to another. Since the network is trained with single scenes,
it may have learned to deal with a global value over the whole scene
for shadows to be removed or added.
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Figure 2: Overview of our method. We use multi-view datasets (a) as inputs. One dataset is considered the "reference" dataset
(d), and we use its sun direction to relight the other datasets (c), then we compute a composition of the selected parts (b) into
the reference scene (e). Finally, we relight the composite scene as one to synthesize shadows across scenes and we account for

the changes in the environment of each scene (f)
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Figure 3: Example of the failure to remove shadows while
directly using the relighting network of [Philip et al. 2019]
in the multi-scene setting. The original shadow in (a) is not
completely removed when using the network directly (b).
Our approach allows us to remove it more effectively (c).

A direct solution to this issue would be to generate composite
training data to re-train the network for multi-scene relighting.
However, generating such data is very complex compared to the
original, single-scene case. If we wanted to re-train the network, we
would have to manually cut different pieces from the various train-
ing models, and create a large number of combinations of parts and
references where each composition would require manual place-
ment of pieces. This process would be even more complicated when
inserting parts from several different scenes into the composite.
As a result, we chose to develop a new approach that can use the
original pre-trained CNN by using two separate passes, and some
careful preprocessing to generate the correct illumination buffers.

4.2 Two-pass Relighting for Composite Scenes

Our two-pass solution consists of first relighting each scene indi-
vidually, and then relighting the composition in a second pass. Our
approach is designed to correctly remove shadows in the multi-
scene setting — which cannot be handled directly by the relighting
network — and to provide a consistently lit composite scene. We
proceed as follows:

o Each scene is relit individually, i.e. we relight all the input
images of each scene to match the lighting conditions of

the reference scene. This is done once, offline, and requires
care to only consider the selected parts of each scene. This
pass generates consistent lighting for each part, but we are
lacking the interactions between parts and the reference
scene.

o In the second pass, we relight the current viewpoint of the
composition rendered with the input images modified by the
first pass. This adds cast shadows between parts, and creates
fully consistent lighting and shadows.

First Pass. The goal of the first pass is to generate lighting and
shadows on the selected part itself that are consistent with the
reference lighting conditions (i.e., with respect to its orientation in
the target scene), and in particular to correctly remove shadows of
the source lighting condition of each part. We do this by adapting
the relighting network of Philip et al. [2019] to relight each selected
part. This pass is applied on the original part scene, but care must
be taken to provide correct layers to the relighting CNN. We need to
avoid unselected parts of the original scene from casting shadows
onto the selected parts. We modify the shadow casting step to avoid
this, see Fig. 4. Specifically, we send a shadow ray from each visible
intersection point in the sun direction, to determine if the visible
point is in shadow. We compute the source shadow image normally,
but we compute the target shadow image only with the selected
geometry, to avoid shadows cast by the non-selected geometry.

The shadow refinement part of the relighting network is thus
provided with the input that will produce the desired result. At
the end of this pass, we have each input image of each part scene
with shadows removed, and self shadows correctly cast from the
selected geometry in the reference lighting conditions (Fig. 4).

Second Pass. We can now apply the relighting network a sec-
ond time on the full composite scene to cast shadows between
constituent scenes, and finalize the consistent overall lighting.

This pass also requires that we carefully prepare the data sent
to the relighting network. Specifically, when computing the source
shadow images, we ray cast again only considering visible selected
geometry of each part. The target shadow image is computed using
the full composite scene containing all the geometry.
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(b) Relit Image - no
Image shadow filtering

(a) Original Input {c) Relit Image - with

shadow filtering

Figure 4: Illustration of our first pass relighting strategy.
When relighting the input viewpoints (a) of a scene, we need
to make sure that no shadow is cast by unselected geometry
on the selected part (outlined in white in image a), resulting
in hard to remove shadows (outlined in red in image b). We
therefore intersect rays only against the selected geometry
when computing the target shadow map. Since the network
can not hallucinate full shadows, we end up with a "shadow-
free" relit image (c).

This pass can either be done online at a given novel view, or as
a preprocess on the sum of all input views (i.e., reference and part
input views), and then used for IBR (see Sec. 5).

4.3 Environment Compensation

After our two pass relighting, the resulting composite has a greatly
improved level of realism, for example Fig. 3(c). However there are
two remaining issues.

First, parts inserted into the reference scene often appear to
“float” above the ground because we have not captured the mutual
shadowing effect between the two scenes in the lighting. We com-
pensate for this problem by computing an Ambient Occlusion (AO)
shift based on the geometry of the two scenes, similar in spirit to
the differential rendering of Yu et al. [1999].

Second, the overall color temperature of the two scenes may be
very inconsistent, and may not convey the desired visual effect. We
allow the user to control the color balance of the composition to
achieve the desired effect.

4.3.1  Ambient Occlusion Shift. We want to estimate the local influ-
ence of the object on its new environment. For this we use ambient
occlusion. While an ambient occlusion shift is a coarse approxima-
tion of a full light transport simulation, it gives plausible results. In
addition, it does not require material or explicit light information
which is not available. We aim at estimating the amount of ambient
occlusion to add to or remove from our composition around the
newly inserted parts. We compute the original AO for each part in
its scene of origin, and then compute AO in the composition. We
then apply the per-pixel ratio of the two values to correct the AO
of the scene. This process is illustrated in Fig. 5.

4.3.2  Color Balance. The scenes used for creating compositions
may have been captured with different cameras or set up with dif-
ferent parameters, over which we have no control. In addition, the
hue of the different parts may not convey the desired visual effect.
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(a) Without AO

(b) AO Shift Map

(¢) With AO

Figure 5: Illustration of our AO shift computation. We com-
pute a per-pixel ambient occlusion shift (b) by casting rays
in the original scene of the visible part and in the composite
scene. We apply the ratio of the computed values (b) to the
composite image (a), resulting in image (c).

We want to balance color on each selected part, i.e., a “layer” com-
posed of the visible pixels of the part and black pixels everywhere
else. The ambiguity between reflectance and white balance of the
lighting makes it hard to adapt previous approaches that usually
focus on global image statistics. We thus opted for a fast, manual
correction.

We provide the user with a slider to adjust the color balance of
each scene if needed. Other parameters may be adjusted in this
manner, such as the exposure or gamma correction, but we found
that correcting the color temperature often suffices. This modifica-
tion was required for less than half of our scenes, and usually has a
subtle effect, as illustrated in Fig. 6.

o
{a) Before Temperature Compensation  {b) After Temperature Compensation

Figure 6: Illustration of our color balance compensation.

5 IMPLEMENTATION, RESULTS &
LIMITATIONS

All our results are obtained on scenes reconstructed using standard

Structure-from-Motion (SfM) and Multi-View Stereo (MVS) to cre-

ate a geometric proxy. We used the commercial SEM/MVS package

RealityCapture [Reality 2018] to perform reconstructions, but other

solutions (e.g., colmap [Schonberger 2016]) could also be used.

5.1 Implementation Details

We use a per-pixel version of the Unstructured Lumigraph Ren-
dering (ULR) algorithm [Buehler et al. 2001], that first renders the
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Reference Scene Extracted Part(s) Naive Composition Our Method

Figure 7: Examples of compositions created with our method. For each row, the leftmost image corresponds to the reference
scene for our composition, the next image shows the scene from which we extract a part, highlighted in green, the next image
is the naive IBR composition of the scenes, and the rightmost image is the result of the composition using our method.
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proxy depth, then blends the input images per-pixel using standard
ULR weights.

During interactive part placement, we render only the selected
geometry of each selected part in the same render target as the
reference while not clearing the depth buffer, thus allowing us to
render the composition with coherent occlusions. This allows for
a reasonable real-time preview using per-pixel ULR to create the
initial version of the composite scenes; please see accompanying
video. Furthermore, the user can switch to the “naive” use of the
relighting network to interactively preview the cast shadows in the
composite scene.

We experimented with screen-space AO, but it did not provide
sufficient accuracy to compute our AO shift ratio. Instead, we use
object-space AO computed by ray-casting against the reconstructed
geometry.

We enable interactive exploration of the resulting composition
by applying our method on all viewpoints of each constituent scene.
We then use the same per-pixel ULR as for the composition pre-
view, reprojecting modified images. In order to prevent occlusion
issues when relighting a viewpoint of a given scene occluded by
another part, we adjust each camera’s clipping planes to be as close
as possible to the selection, thus removing most of these issues, and
ensuring good quality renderings when the user viewpoint is near
a part’s input viewpoint. We inherit the lack of coherence between
relit viewpoints from Philip et al.[2019], both for temporal consis-
tency in animation, and multi-view consistency when relighting
all images of a dataset.

We show statistics of our scenes and computation times on a
Intel Xeon Silver 4110 with 32GB RAM and Quadro P5000 GPU
in Tab. 1. These computation times can be explained by the need
to cast visibility and shadow rays through each pixel of the scene
in both passes, as well as AO sample rays in the second pass, and
running the result through the network. While we already use
accelerating data structures and leverage SIMD instructions on the
CPU side, the ray-tracing overhead could be further accelerated
using ray-tracing hardware.

5.2 Applications & Results

(b) Arbitrary Output

(a) Naive Composition

Figure 8: Our method can produce compositions using any
provided sun direction (b).

We show three different applications: multi-view image editing,
IBR and textured meshes.

The first application is multi-view image editing, where we create
composite multi-view scenes. We show 7 examples of such compo-
sitions in Fig. 7, including the case of mixing 3 different scenes, and
the case of a different lighting direction from the reference scene

(Fig. 8).
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Table 1: Computation time of some of our compositions. For
each line, the first column indicates which composition we
refer to (row of Fig. 7), the second is the duration of the first
pass of our method, relighting all input viewpoints of the
imported scenes. The third column (# Images) is the num-
ber of images of each scene, and the fourth is the time of
the second pass, which allows interactive free-viewpoint nav-
igation in the composition after this computation. This step
is longer than the first one due to our expensive computa-
tion of ambient occlusion via ray casting, and could be ac-
celerated (e.g., using ray-tracing hardware). The last column
shows the number of input images (# Images) of the compos-
ite scene that are relit.

‘ Scene ‘ Pass 1 ‘ # Images ‘ Pass 2 ‘ # Images ‘

2nd row | 7m36s 177 33m8s 354

3rd row | 3mlis 75 30m56s 247
4th row | 3m24s 79 23m35s 194
6th row | 4m42s 85 15m26s 126

Such multi-view editing can be directly used for IBR. We can
either apply the second pass relighting for each novel view on the
fly (taking approx. one second per frame) or apply the pass on all the
input images for all views of the reference and part scenes. When
doing the latter, we can use our per-pixel ULR for free-viewpoint
navigation in the composite scene. We show examples of such free-
viewpoint navigation in the supplemental video. As we can see, our
compositions provide a high level of realism, providing a fast way
to rapidly create more complex scenes.

The last application is composite textured meshes. We first apply
our method to all the input images, then re-texture the composite
mesh with the relit images. In Fig. 9 we show two examples of
composite textured meshes with coherent lighting.

Yas"

Figure 9: Two examples of meshes textured using the relit
input viewpoints.

5.3 Comparisons & Evaluation

We show comparisons with naive compositions in Fig. 7. We also
show a comparison with the Deep Neural Textures approach [Thies
et al. 2019], which is the only other case of composite captured
scenes, albeit only with pieces of the same scene. As we can see
Fig. 10, Deep Neural Textures do not generate cast shadows for the
duplicated pieces.
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{b) Naive Composition

N S

{a) Reference viewpoint

(¢) Thies et al. 2019 (d) Our Method

Figure 10: Comparison of our method with [Thies et al.
2019], in the case of object duplication.

Finally we provide a ground truth comparison by capturing a
scene twice, once with an additional object and once without. We
show our composite compared to the ground truth version in Fig.
11. While not perfect, our composition is quite close to the ground
truth. Examples of remaining artifacts include small effects such as
the highlight on the left arm of the statue, since the network is not
designed to handle non-diffuse effects.

{d) Naive Composition

{c) Ground Truth {e) Our Result
Figure 11: Real-world ground truth comparison of our
method with a picture of a object inserted in a scene. While
lacking some global effects, our method conveys a convinc-
ing result compared to the naive solution (d) and the initial
conditions of the statue (a).

5.4 Limitations

While our method allows for fast, realistic compositions of captured
scenes, it has a few limitations. First it inherits the limitations of the

Nicolet et al.

methods it builds on, namely Image-Based Rendering and Relight-
ing. We have used a simple ULR-based IBR algorithm which can
suffer from visual artifacts, resulting in lower quality compositions,
e.g., when geometry is not well reconstructed. More sophisticated
IBR algorithms, such as Deep Blending [Hedman et al. 2018] could
be used, but combining or recomputing the per-view meshes for
part composition is not trivial.

The geometry-aware relighting network we use is designed to
relight outdoor scenes with cast shadows, which somewhat restricts
the set of possible compositions. In addition, the network does
not explicitly handle global effects. This can be seen in the real-
world ground-truth comparisons (Fig. 11), where while we achieve
significant improvement (b) over naive compositing (d), our method
fails to account for global effects such as the reflection of light over
the water’s surface, which illuminates the statue from behind.

Finally, the resolution of the images plays an important role in
the visual quality of the final result. Therefore, importing a part
of lower resolution (e.g. captured from further away) in a higher
resolution scene may impair the quality and realism of the result.

6 CONCLUSION

Interesting avenues of future work include the use of more sophis-
ticated IBR algorithms; this involves addressing several issues such
as the per-view data structures in a multi-scene context. Another
interesting direction is to optimize the size of the data of the com-
posite scene, since in many cases we can take advantage of the
specific way parts have been extracted to save space.

In conclusion, we have presented a method to simply and quickly
create visually compelling compositions of captured multi-view
scenes, by adapting a geometry-aware relighting network to our
task. To our knowledge we are the first to present such a method
that can handle several scenes and provide coherent illumination in
the resulting composite scene. Our solution can be used to enhance
the capabilities of using IBR for free viewpoint navigation, to create
more complex composite textured scenes from MVS and in some
cases for photo editing.
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