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Abstract

Some nilpotent Lie groups possess a transformation group analogous to the
similarity group acting on the Euclidean space. We call such a pair a nilpotent
similarity structure. It is notably the case for all Carnot groups and their dilatations.
We generalize a theorem of Fried: closed manifolds with a nilpotent similarity
structure are either complete or radiant and, in the latter case, complete for the
structure of the space deprived of a point. The proof relies on a generalization
of convexity arguments in a setting where, in the coordinates given by the Lie
algebra, we study geodesic segments instead of linear segments. We show classic
consequences for closed manifolds with a geometry modeled on the boundary of a
rank one symmetric space.

1 Introduction

Let Sim(Rn) be the group of similarities of Rn . That is to say, an element of Sim(Rn) is
of the form x 7→ λP (x)+ c where λ> 0 is a dilatation factor, P ∈ O(n) is a rotation and
c ∈ Rn describes a translation. Similarity manifolds are smooth manifolds equipped
with an atlas of charts with values in Rn and transition maps in Sim(Rn).

More generally, a nilpotent similarity group of transformations, Sim(N ), acting on a
nilpotent Lie group N , is described by the transformations of the form x 7→λP (x)+N c ,
where the addition +N is the group law of N , λ > 0 is again a dilatation that can
be seen through a coordinate system of the nilpotent Lie algebra as λ(x1, . . . , xn) =
(λd1 x1, . . . ,λdn xn) with di ≥ 1, P is a rotation for the choice of the Euclidean metric asso-
ciated to the coordinate system (x1, . . . , xn) and c ∈N is again representing a translation.
This larger class of geometries includes for example Carnot groups with their dilatations.

Fried [Fri80] showed that every closed (real) similarity manifold is either Euclidean
or radiant and therefore covered by a Hopf manifold. In other terms, if a closed simi-
larity manifold is not complete, then it is radiant (the holonomy fixes a point and the
developing map avoids this point). It was also proven by alternative analytic methods in
an independent work of Vaisman and Reischer [VR83]. A generalization has been made
for the Heisenberg group by Miner [Min90].

The main obstruction to generalize Fried’s theorem for any nilpotent similarity
structure is the need for a generalized version of convexity and geodesic structures.
Convexity arguments are used in Fried’s proof [Fri80], but not in a very explicit form.
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When Miner generalized the result for the Heisenberg group [Min90], he pointed out
the convexity arguments in use. He attributed them to Carrière and to Fried. Indeed,
Carrière [Car89] used such convexity arguments, and refered to Fried’s article but also to
Koszul [Kos65], Benzécri [Ben60] and Kobayashi [Kob84]. In Miner’s article [Min90] the
convexity arguments rely on the fact that geodesics in the Heisenberg group are straight
lines, and therefore a classic point of view on convexity remains: it is the property of
containing interior straight lines. But with a general nilpotent space (i.e. with a nilpotent
rank at least three), it is no longer true that geodesics are straight lines, and therefore a
generalization of convexity arguments makes sense.

We understand here by “geodesics” a class of curves parametrized by the tangent
space and invariant by left-translation. The most natural class of such geodesics in a Lie
group is given by the integral lines of left-invariant vector fields. In Fried’s and Miner’s
proofs, it is a major requirement that such a class of curves and that special subsets
(convex subsets) are available.

We will say that a geodesic structure (X ,exp) is the data of a smooth manifold
X together with an exponential map exp: TX → X , which verifies some additional
hypotheses. Such an exponential map might not come from a Riemannian structure.
The pair (X ,exp) is thought to be a geometric model where geodesics are fully defined
on R. On a smooth manifold M , a (X ,exp)-structure will be the additional data of a
local diffeomorphism from the universal cover, M̃ , of M to X , called a developing map.
It gives a sense of what geodesics are on M̃ (they are curves which are developed into
geodesics of X ) but might not be fully defined on R. At a point p ∈ M̃ there is a subset
Vp ⊂ Tp M̃ , called the visible set from p. Its elements are the vectors that can be taken as
initial speeds of (fully defined) geodesic segments on M̃ .

Geodesic convexity in X will be the property for a subset to contain a geodesic seg-
ment for each pair of points, together with a stability property (a sequence of geodesic
segments based at a fixed point and with a converging endpoint gives again a geodesic
segment). In M̃ , the convexity is for a subset to be injectively developed into a convex
subset of X .

One of the classic results that is generalized in section 2 will be the following.

Theorem (2.11). Let M be a connected (X ,exp)-geodesic manifold. The following prop-
erties are equivalent.

1. The developing map D : M̃ → X is a diffeomorphism.

2. For all p ∈ M̃, the subset Vp is convex and equal to Tp M̃.

3. There exists p ∈ M̃ such that Vp is convex and equal to Tp M̃.

This result should be compared with a more classic setting. If (X ,exp) is the Eu-
clidean space Rn together with its natural complete Riemannian structure, then it is well
known that D is a covering if, and only if, Vp = Tp M̃ . The injectivity of D (i.e. when D is
a diffeomorphism) is then equivalent to the convexity of Vp and we get the equivalence
of the theorem. The same reasoning remains true if Rn is equipped with a complete
pseudo-Riemannian structure. Note that in the classic case, geodesics are straight lines.

We will show that for some structures (that are said to be injective), in particular
for the nilpotent similarity structures, Vp = Tp M̃ implies that Vp is convex. Therefore,
this theorem gives the first argument of Fried’s theorem’s proof: if the structure is not
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complete, that is to say D is not a diffeomorphism, then at any point p ∈ M̃ , Vp is not
convex.

This allows, as in the original version of Fried’s proof, to find a maximal (geodesic
convex) open ball in Vp , and to study its radius following p. The open balls of N , that
are also geodesically convex, are constructed in section 3. Their construction relies on a
fine theorem of Hebisch and Sikora [HS90].

Section 2 is also devoted to the other major convexity arguments. One of those
convexity arguments that will be central is proposition 2.23. It allows to find vectors in
Vp with the initial data of a convex subset of Vp . In particular, with our previous open
balls, the dynamic of an incomplete geodesic will describe Vp more precisely: it will
show that each Vp is at least a half-space.

The last step, once we know that every Vp is at least a half-space, consists of showing
that the developing map will be a covering onto its image, and that the holonomy must
be discrete. But a discrete holonomy implies the final result. This idea for the last
argument is not due to Fried’s original proof but appears in the survey of Matsumoto
[Mat92].

Therefore, we will be able to prove the following generalization of Fried’s theorem.
The proof of theorem 4.1 will be given in section 4.

Theorem (4.1). Let M be a connected closed (Sim(N ),N )-manifold. If the developing
map D : M̃ →N is not a diffeomorphism, then the holonomy group Γ= ρ(π1(M)) fixes a
point in N and D is in fact a covering onto the complement of this point.

This theorem notably applies in the case of every Carnot group [Pan89] and also
Heinsenberg-type groups. This last family includes all hyperbolic boundary geometries
[Cow+91]. In general, if K AN is an Iwasawa decomposition of a semisimple group G ,
then A can both be seen as a maximal flat subspace of G/K and as a dilatation group
acting on N . When we see N as the base space, we get a boundary geometry M AN /M A
where M ⊂ N is the centralizer of A. When A is of rank one, the theorem holds. In section
3 we will discuss the framework of this theorem, examples and counter-examples.

Theorem 4.1 suggests that the study of nilpotent affine manifolds is close to the
traditional affine manifolds’ study. By nilpotent affine manifold we mean manifolds
possessing a (Aff(N ),N )-structure, where Aff(N ) = Aut(N )nN is the group of the
affine transformations of N . In consequence, one could ask what becomes of the vari-
ous central conjectures stated in the Euclidean affine geometry. For example, the Chern
conjecture states that every affine closed manifold has a vanishing Euler characteristic.
Does every nilpotent affine closed manifold also have a vanishing Euler class?

Finally in section 5, we will show classic consequences for the closed manifolds with a
geometry modeled on the boundary of a rank one symmetric space Hn

F ,
(
PUF(n,1),∂Hn

F

)
,

where F can be the field of real, or complex, or quaternionic or octonionic numbers. In
the octonionic case, the only dimension considered is n = 2.

Theorem (5.1). Let M be a connected closed
(
PUF(n,1),∂Hn

F

)
-manifold. If the developing

map D is not surjective then it is a covering onto its image. Furthermore, D is a covering
on its image if, and only if, D(M̃) is equal to a connected component of ∂Hn

F −L(Γ), where
L(Γ) denotes the limit set of the holonomy group Γ= ρ(π1(M)).

Acknowledgement This work is part of the author’s doctoral thesis, under the su-
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2 Convexity

2.1 Geodesic structures

Definition 2.1 (Geodesic structure). Let X be a smooth manifold. We will say that
(X ,exp) is a geodesic structure if a smooth map exp: TX → X is such that for any x ∈ X
fixed, expx : Tx X → X is a surjective open map and a local diffeomorphism around
0 ∈ Tx X .

We call geodesic segment a curve γ : [0 ,1] → X such that γ(t) = expx (t v) with x =
γ(0) and v ∈ Tx X . A subset C ⊂ X is said to be convex if:

a. for every pair of points (x, y) ∈ C there is a geodesic segment from x to y fully
contained in C ;

b. for any sequence (γn) of geodesic segments all based in p ∈C , if γn(1) tends to q ∈C ,
then a subsequence of (γn) tends to a geodesic segment γ : [0 ,1] →C from p to q
such that γ(t ) ∈C for t < 1.

We ask that (X ,exp) verifies two more conditions.

1. Let x ∈ X and u ∈ Tx X . Let 0 ≤ s < 1 and y = expx (su). Then there exists v ∈ Ty X
such that for any 0 ≤ t < 1− s, expy (t v) = expx ((s + t )u).

2. The space X is locally convex: for any neighborhood of x, there exists a subset of the
neighborhood that is open, convex and contains x.

Condition 1. ensures that a geodesic segment γ(t) based in γ(0) is also a geodesic
segment based in γ(s) for any s ≥ 0 and t ≥ s.

Note that a geodesic segment γ : [0 ,1] → X is univocally defined by γ(0) and the first
derivative γ′(0). Any curve c : [0 ,T ] → X can be parametrized by c̃ : [0 ,1] → X by taking
c̃(t ) = c(tT ). We can therefore say that c is a geodesic segment if c̃ is a geodesic segment.

It is important to note that in general, expx : Tx X → X is neither injective and nor a
covering map.

Example 1 Riemannian and pseudo-Riemannian complete structures give a Levi-
Civita connection ∇u v . A geodesic is a curve γ such that ∇γ̇γ̇= 0. Such curves, which
are therefore solutions to a first order partial differential equation, are parametrized by
TX . It gives an exponential map as required. Therefore, any complete Riemannian or
pseudo-Riemannian manifold gives a geodesic structure.

Example 2 A left-invariant geodesic structure on Lie groups with a surjective exponen-
tial map is a way to get geodesic structures.

Definition 2.2. Let G be a Lie group and g its Lie algebra. The Maurer-Cartan form is the
g-valued 1-form ωG : TG → g defined by

∀vg ∈ Tg G , ωG (vg ) = (Lg−1 )∗vg , (1)

where Lg denotes the left-translation Lg (x) = g x.

Let X be a Lie group. The Maurer-Cartan form ωX : TX → x defines left-invariant
vector fields V by the condition that ωX (V ) is constant. Take as geodesics the integral
lines of such vector fields. Those integral lines are given by expx (t v) = Lx expe (t v) and
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are exactly the maps such that expx (t v)∗ωX = v with base point x. Such a structure
gives a geodesic structure if the exponential map of the Lie algebra to the Lie group is
surjective.

On some homogenous spaces, the same construction can be adapted. It is the case
for the reductive homogeneous spaces with surjective exponential map, and for those,
geodesic segments are the projection of integral lines of horizontal vector fields.

Geodesic manifolds

Definition 2.3 (Geodesic manifold). Let (X ,exp) be a geodesic structure and M be a
connected smooth manifold. We will say that M is a (X ,exp)-geodesic manifold if there
exists a local diffeomorphism D : M̃ → X called a developing map. A geodesic segment
in M̃ is a smooth curve γ : [0 ,1] → M̃ such that D(γ) : [0 ,1] → X is a geodesic segment of
(X ,exp).

Note that since D is a local diffeomorphism, a geodesic segment γ : [0 ,1] → M̃ is
univocally defined by γ(0) and some vector γ′(0) = v ∈ Tx M̃ given by v = (dDγ(0))−1(u)
such that we have (D ◦γ)(t ) = expD(γ(0))(tu).

Definition 2.4. If γ : [0 ,1] → M̃ is geodesic, then we denote γ(t) by expγ(0)(t v) with
v = γ′(0).

To distinguish the exponential map of X from the last on M̃ , we will denote some-

times expX and expM̃ .
It is worth to note that D : M̃ → X is independent from the choice of the geodesic

structure (X ,exp) but only dependent on M̃ and X . In general, a developing map is
hard to construct. A (G , X )-structure in the sense of Thurston [Thu79] is a way to give
such a developing map. Also according to a theorem of Whitehead [Whi61], any open
manifold of dimension n ≤ 3 has a local diffeomorphism with Rn . In the framework of
Cartan geometries, a developing map corresponds to a flat Cartan connection.

Proposition 2.5 (Definition of the visible set). Let p ∈ M̃. There exists a unique subset
Vp ⊂ Tp M̃ that is a neighborhood of 0, star-shaped, maximal and on which expp : Vp →
M̃ is well defined. This set is called the visible set of (or from) p.

Proof. By assumption, the space X is locally convex, and the developing map is a local
diffeomorphism. Hence a maximal Vp is defined and non empty. It is also naturally
star-shaped and must be a neighborhood of 0 since the developing map is a local
diffeomorphism.

For all p ∈ M̃ and v ∈Vp , then by definition,

∀t ∈ [0 ,1], D
(
expM̃

p (t v)
)
= expX

D(p)(dDp (t v)). (2)

Therefore if for p ∈ M̃ we take v ∈ ∂Vp −Vp , then there can not exist a vector u ∈Vp such

that for all t ∈ [0 ,1], D(expM̃
p (tu)) = expX

D(p)(t dDp (v)).

Definition 2.6 (Convexity). A subset C ⊂ M̃ is said to be convex if the developing image
D(C ) is convex and if the developing map restricted to C is injective. A subset Cp ⊂Vp for
p ∈ M̃ is said to be convex if expp (Cp ) is convex.
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This injectivity hypothesis may seem strong. However, note that the developing
map could be injective on expp (Cp ) even if expp is not injective.

Since the developing map is a local diffeomorphism, and since X is locally convex,
we get the following lemma.

Lemma 2.7. The space M̃ is locally convex: for every point p ∈ M̃, there exists an arbitrary
small open neighborhood of p that is convex in M̃.

Note that if η : [0 ,1] → X is a geodesic segment lifted to γ : [0 ,1] → M̃ , that is to
say D(γ) = η, then (since D is a local diffeomorphism) γ is unique as soon as γ(0) is
prescribed.

Lemma 2.8. Let C ⊂ M̃ be convex. For any p ∈C we have C ⊂ expp (Vp ).

Proof. By convexity, D|C : C → D(C ) is a diffeomorphism. Let p ∈ C and q ∈ C . If γ is
a geodesic segment from D(p) to D(q), then D−1(γ) is a geodesic segment from p to
q .

Proposition 2.9. If for p ∈ M̃, Vp is convex and open, then expp (Vp ) = M̃.

Proof. The set expp (Vp ) is open. Indeed, D(expM̃
p (Vp )) = expX

D(p)(dDp (Vp )) is open
since exp is an open map of TX and D is a diffeomorphism between expp (Vp ) and
D(expp (Vp )). Therefore, it suffices to show that expp (Vp ) is closed, since by connexity

this implies expp (Vp ) = M̃ . Let q ∈ M̃ be in expp (Vp ). We show that q ∈ expp (Vp ).
By local convexity, there exists C open and convex containing q . There exists a

sequence qn ∈C ∩expp (Vp ) such that qn → q .
In the developing image, we can take a sequence (γn) of geodesic segments from

D(p) to D(qn). By convexity of D(expp (Vp )) in X , this sequence has a subsequence
converging to a geodesic segment γ : [0 ,1] → X such that: γ(0) = D(p) and γ(1) = D(q).
We have furthermore, for t < 1, γ(t) ∈ D(expp (Vp )) and, for t < 1 large enough, γ(t) ∈
D(expp (Vp )∩C ). Note that γ(t ) → D(q) when t → 1.

The geodesic segment γ can be lifted to γ̃ for t < 1 in expp (Vp ). Take tn → 1 an
increasing sequence of times 0 ≤ tn < 1. By injectivity on expp (Vp )∩C and since γ(tn) →
D(q), we have γ̃(tn) → q . Therefore the lifting γ̃ does not blow up when tn → 1 and
the natural compactification of γ̃ by γ̃(1) = q lifts γ for all t ∈ [0 ,1]. This shows that
q ∈ expp (Vp ).

Lemma 2.10. Let p ∈ M̃ and suppose that Vp = Tp M̃. Then D(M̃) = X .

Proof. By definition and the surjectivity of the exponential in X , if Vp = Tp M̃ then

D
(
expM̃

p

(
Tp M̃

))= expX
D(p)

(
dDp

(
Tp M̃

))= expX
D(p)

(
TD(p)X

)= X . (3)

Theorem 2.11. Let M be a connected (X ,exp)-geodesic manifold. The following proper-
ties are equivalent.

1. The developing map D : M̃ → X is a diffeomorphism.

2. For all p ∈ M̃, the subset Vp is convex and equal to Tp M̃.

3. There exists p ∈ M̃ such that Vp is convex and equal to Tp M̃.
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Proof. Suppose that 1 is true, we prove 2. For any p ∈ M̃ , it is clear that Vp = Tp M̃ since
any geodesic segment is lifted by D−1. By definition, Vp is also convex since X is convex
and D is a diffeomorphism.

2 clearly implies 3. We suppose that 3 is true and we prove 1. By the preceding
proposition, M̃ = expp (Vp ) is convex and therefore D is injective on M̃ . Furthermore by

the preceding lemma, D(M̃) = X .

Convexity versus completeness It is legitimate to investigate if Vp = Tp M̃ implies that
Vp is convex. In a short moment, we will see that this is true for injective structures. For
now, consider the usual torus R2/Z2 and its universal cover π : R2 → R2/Z2. On the torus,
consider the exponential map given by the straight segments of R2 projected on R2/Z2.
(It is the natural Euclidean structure.) This gives a geodesic structure. The universal
cover being a local diffeomorphism, we can see it as a developing map. Take p ∈ R2.
Then Vp = Tp R2 but Vp is not convex because expp (Vp ) = R2 is not injected into the
torus. And indeed, π is not a diffeomorphism.

If we no longer ask D to be a diffeomorphism but only to be a covering map, it
seems reasonable that geodesic completeness (Vp = Tp M̃ for every p ∈ M̃) is a sufficient
condition. But when X is a simply connected space, which will be the case for us, it is
equivalent to investigate when D is a diffeomorphism.

Flat Cartan geometries and completeness Suppose that X is a homogenous space
G/H and is equipped with a geodesic structure. It is known in the Cartan theory (through
the separated works of Ehresmann and Whitehead – compare with [Sha97, p. 213] for a
more precise theorem), by very different techniques, that M̃ is diffeomorphic to G/H
if and only if ωD is complete (that is to say every ωD constant vector field on D∗G is
complete).

On the other hand, Sharpe asks (see [Sha97, p. 184]) what a good geometric inter-
pretation of the completeness of a Cartan connection could be in terms of geodesics:
“It would be very interesting to have a definition of completeness in terms of M [...],
something like completeness of geodesics.” This theorem gives such an interpretation
in some cases. In our setting, the Cartan connection ωD is complete if, and only if, D is
a diffeomorphism, and this is (by the preceding theorem) equivalent to a completeness
condition on the geodesic structure on M̃ .

Injective structures

An additional hypothesis can sometimes be made on (X ,exp). It is notably the case
when X is an Hadamard space.

Definition 2.12. Let (X ,exp) be a geodesic structure. We will say that it is an injective
geodesic structure if for any pair of points (x, y) ∈ X ×X , there exists a unique geodesic
segment from x to y.

Lemma 2.13. Let p, x ∈ M̃. Let C be a convex subset of M̃ . Suppose that p ∈C , x is visible
from p and D(x) ∈ D(C ). Then x ∈C .

Proof. Let γ : [0 ,1] → M̃ be a geodesic segment from p to x. By injectivity of the geodesic
structure, D(γ) is the unique geodesic segment from D(p) and D(x) and is therefore by
convexity entirely contained in D(C ). But γ is also the unique lifting of D(γ) based in
p. In particular, the lifting of D(γ) in C by using the diffeomorphism D|C : C → D(C ) is
again γ and this shows that γ(1) = x ∈C .
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Proposition 2.14. Let C1,C2 be two convex subsets with a non empty intersection. Then
the developing map D is injective on C1 ∪C2.

Proof. Let p ∈ C1 ∩C2. Suppose that for q1 ∈ C1 and q2 ∈ C2 we have D(q1) = D(q2).
Then there exists a unique geodesic segment from D(p) to D(q1) = D(q2). By convexity,
this geodesic segment is simultaneously in D(C1) and in D(C2). By unicity of the lifted
geodesic segment we have q1 = q2.

Lemma 2.15. Let p ∈ M̃. The developing map D restricted to the subset expp (Vp ) is
injective.

Proof. Let q1, q2 ∈ expp (Vp ) and suppose that D(q1) = D(q2). Let γ1,γ2 be two geodesic
segments from p, to q1 on one hand and to q2 on the other hand. Then D(γ1) = D(γ2)
by the injectivity of the geodesic structure (X ,exp). By unicity of the lifted geodesic
segment q1 = q2.

Proposition 2.16. Suppose that for p ∈ M̃ we have Vp = Tp M̃, then Vp is convex.

Proof. We already know that D(expp (Vp )) = X is convex. Furthermore the injectivity on
expp (Vp ) comes from the preceding lemma.

This allows to state another version of theorem 2.11.

Corollary 2.17 (Theorem 2.11 for injective structures). Let M be a connected (X ,exp)-
geodesic manifold, with (X ,exp) an injective geodesic structure. The following properties
are equivalent.

1. The developing map D : M̃ → X is a diffeomorphism.

2. For all p ∈ M̃, Vp = Tp M̃.

3. There exists p ∈ M̃ such that Vp = Tp M̃.

2.2 Geodesic structures with compatible holonomy

The preceding section addressed the question of the topology of M̃ . However, it is
natural to ask what a geodesic structure on M implies on M . To do so, we need to make
the assumption that a transformation of the fundamental group π1(M) does not change
the geodesic nature of a curve.

A (G , X )-structure in the sense of Thurston [Thu79] is the pair of a smooth space X
together with a transitive group G of analytic diffeomorphism acting on X . A manifold
M with a (G , X )-structure is called a (G , X )-manifold. That is the case if M has charts
over X with transitional maps in G1. If M is a (G , X )-manifold, then we can construct a
pair (D,ρ) of the developing map D : M̃ → X and the holonomy morphism ρ : π1(M) →G .
The developing map is a local diffeomorphism and those two maps are equivariant:
D(g x) = ρ(g )D(x) for any x ∈ M̃ and g ∈π1(M).

Definition 2.18. Let (G , X ) be a geometrical structure in the sense of Thurston. Let
(X ,exp) be a geodesic structure. Then (G , X ,exp) is a geodesic structure with compatible
holonomy, if for any geodesic segment γ : [0 ,1] → X and any g ∈G, the curve gγ is again
a geodesic segment.

1Our definition is here less general than Thurston’s, since he allows G to be only a pseudogroup. (Compare
also with his book [Thu97].)
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If M is a (G , X )-manifold in the sense of Thurston, then with no additional assump-
tion, M is a (G , X ,exp)-manifold. The developing map D is the developing map of
Thurston’s structure.

Proposition 2.19. Let M be a connected (G , X ,exp)-manifold.

1. If γ : [0 ,1] → M̃ is a geodesic segment based in p, then for any g ∈ π1(M), gγ is a
geodesic segment based in g p.

2. In particular, if for p ∈ M̃ and v ∈ Tp M̃, expp (t v) is only defined for t < 1, then for
any g ∈π1(M), g expp (t v) is again only defined for t < 1.

3. If C ⊂ M̃ is convex, then for any g ∈π1(M), gC is again convex.

Proof. The first two properties are clear, we prove the third. Let C ⊂ M̃ be convex
and let g ∈ π1(M). By equivariance, D(gC ) = ρ(g )D(C ) is convex in X . It suffices to
show that the developing map is injective when restricted to gC . Let g x1, g x2 ∈ gC and
suppose that D(g x1) = D(g x2) then ρ(g )D(x1) = ρ(g )D(x2) and therefore D(x1) = D(x2),
implying x1 = x2 and hence g x1 = g x2.

This shows that if we fix x ∈ M and a curve c : [0 ,1] → M based in x, then if any lift
of c in M̃ is geodesic, then this is in fact the case for any lift. Furthermore by this same
proposition, if for p ∈π−1(x), we have Vp = Tp M̃ , then it is again true for any q ∈π−1(x).
If this is the case, we denote Vx = Tx M . In general, if we want to define Vx ⊂ Tx M as Vp

for a p ∈π−1(M), it depends on the choice of p, and a change in p gives an isomorphism
acting on Tx M .

The following corollary interprets theorem 2.11 in this framework.

Corollary 2.20. Let M be a connected (G , X ,exp)-geodesic manifold. The following
properties are equivalent.

1. The developing map D : M̃ → X is a diffeomorphism.

2. For all x ∈ M, the subset Vx is convex and equal to Tx M.

3. There exists x ∈ M such that Vx is convex and equal to Tx M.

Proof. By theorem 2.11, we only need to verify that propositions 2 and 3 correspond to
propositions 2 and 3 of theorem 2.11. But this follows from the preceding discussion
and the preceding proposition (the fact 3 concerning convexity).

The next two propositions give topological properties on M .

Proposition 2.21. Let x ∈ M and π : M̃ → M be the universal cover. Then there exists an
open trivializing neighborhood U 3 x such that π−1(U ) is a disjoint union of convex open
subsets.

Proof. Let U be any open trivializing neighborhood of x. Let V be a connected open
in π−1(U ), containing p ∈ π−1(x). Since M̃ is locally convex, we can reduce V into V ′
such that V ′ is convex, open and contains p. Now, for any g ∈ π−1(M), gV ′ is again
convex and contains g p ∈π−1(x). Since π(gV ′) =π(V ′) ⊂U , this is an open trivializing
neighborhood of x.

Proposition 2.22. Let x ∈ M. If Vx is convex and open, then any homotopy class with
fixed endpoints of a continuous curve c : [0 ,1] → M with c(0) = x is realized by a geodesic.
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Proof. If Vx is convex and open, then this means that there exists p ∈π−1(x) such that
Vp is convex and open. But then expp (Vp ) = M̃ . Let c̃ be the lift of c in M̃ based at p.
Then there exists a geodesic segment from p to c̃(1). This geodesic segment realizes the
homotopy class of c when projected by π to M .

This last proposition is to be compared with the Hopf-Rinow theorem. Indeed,
suppose that M is a compact Riemannian manifold with negative or null constant cur-
vature. Then for the suitable (X ,exp) (either the Euclidean or the hyperbolic space) and
by compacity of M , the Hopf-Rinow theorem gives that for any x ∈ M , Vx = Tx M . This
shows that Vx is also convex by injectivity of the structure. The preceding proposition
then shows that any homotopic curve can be supposed geodesic. This representative
geodesic is unique by injectivity of the geodesic structure (X ,exp).

This phenomenon was already known, but with various other proofs involving other
methods.

Injective structures with compatible holonomy

Again, an additional injective hypothesis on the geodesic structure (X ,exp) allows
additional results. For example, it is not hard to reformulate corollary 2.20 as we did
for theorem 2.11: the condition Vx = Tx M implies that Vx is convex. But the following
construction is specific to an injective structure with compatible holonomy. It comes
from the fact that in X , we can define exp−1

x : X → Tx X , and that was not possible
without the injectivity hypothesis.

This result appears in Miner’s article [Min90]. It is essential to the proof of Fried’s
theorem, and was used in Fried’s original work [Fri80] without being stated indepen-
dently.

Proposition 2.23. Suppose that (G , X ,exp) is an injective geodesic structure with com-
patible holonomy. Let M be a connected (G , X ,exp)-manifold. Let p ∈ M̃ and g ∈π1(M).
Suppose that g p = expp (u) ∈ expp (Vp ). We define

G = dD−1
p ◦ (expX

D(p))
−1 ◦ρ(g )◦expX

D(p) ◦dDp . (4)

The following properties are true.

1. We have G(0) = u.

2. If v ∈Vp ∩G−1(Vp ) and if g expp (v) ∈ expp (Vp ), then

expM̃
p (G(v)) = g expM̃

p (v). (5)

3. Suppose that Cp ⊂ Vp is a convex open subset containing u. If for w ∈ Tp M̃ we
have G(w) ∈Cp then w ∈Vp .

Proof. Property 1 is immediate by definition. We show that 2 is true. Let v ∈ Vp ∩
G−1(Vp ).

D
(
g expM̃

p (v)
)
= ρ(g )expX

D(p)

(
dDp (v)

)
(6)

D
(
expM̃

p (G(v)
)
= expX

D(p)

(
dDp (G(v))

)= ρ(g )expX
D(p)

(
dDp (v)

)
(7)
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This shows that expp (G(v)) and g expp (v) have the same developing image. The geodesic
segment γ : [0 ,1] → X joining D(p) to D(g expp (v)) = D(expp (G(v)) is unique. Since the
developing map is injective on expp (Vp ), it suffices that both g expp (v) and expp (G(v))
be visible from p, and they are by assumption.

Now we show that 3 is true. For t ≥ 0 small enough, t w belongs both to Vp and
G−1(Vp ) since G is continuous and G(0) = u ∈Cp . Also, for t small enough, g expp (t w) ∈
expp (Vp ) since it is a neighborhood of g p by the existence of Cp . Therefore, for t ≥ 0
small enough, we have g expp (t w) = expp (G(t w)).

Take a look at the linear segment t w for t ∈ [0 ,1]. The map expD(p) ◦dDp trans-
forms this segment into a geodesic segment. The map ρ(g ) transforms this geodesic
segment into a geodesic segment, say c(t) : [0 ,1] → X . The maps G and c are re-
lated by expD(p)(dDp (G(t w))) = c(t). But the endpoints of c(t) and D(expp (G(t w)))
are D(expp (G(0))) = D(g p) at t = 0 and D(expp (G(w)) at t = 1, and both belong to
D(expp (Cp )). Hence, by unicity of the geodesic and by convexity of expp (Cp ), the lift of
c based in expp (G(0)) is exactly expp (G(t w)). Hence, expp (G(t w)) is well defined for all
t ∈ [0 ,1].

Now, the equation g expp (t w) = expp (G(t w)) was only true for t small enough.

But clearly, g−1 expp (G(t w)) is always defined, and for t small enough we have that

g−1 expp (G(t w)) = expp (t w). Hence g expp (t w) is defined for every t ∈ [0 ,1]. It follows
that w ∈Vp .

Note that fact 2 shows an equivariance between π1(M) and expM . Fact 3 allows to
deduce visible vectors from a convex subset.

3 Nilpotent similarity structures

Let g be a Lie algebra with the decomposition

g=m⊕a⊕n. (8)

Let G , M , A, N be Lie groups of the Lie algebras g,m,a,n. Suppose that

• the Lie algebra n is nilpotent and the subgroup N is simply connected (therefore
exp: n→ N is a diffeomorphism);

• the subgroup M A normalizes N and centralizes A;

• there exists an isomorphismα : a→ R, a basis (e1, . . . ,en) of n and constants di ≥ 1
such that for any a ∈ a, [ a,ei ] =α(a)di ;

• the group M is compact and is orthogonal for the Euclidean structure
∑

x2
i of

n where (x1, . . . , xn) is the coordinate system associated to the previous basis
(e1, . . . ,en);

• the adjoint representation AdA is injective and exp: a→ A is surjective.

The fact that m⊕a normalizes n implies that the adjoint representation adG defines a
restricted map adM A : m⊕a→ gl(n). Therefore we see M A as acting on N by conjugation
and N acting on itselt by left translation. This action of G on N gives a nilpotent
similarity structure (G ,N ), where N = N is denoted differently to emphasize the fact
that the Lie group is thought as a space and not only as a group. We also denote G by
Sim(N ) when this does not cause any ambiguity.
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We can compute the action of A on N more explicitly. Let α : a→ R be an isomor-
phism and (e1, . . . ,en) be a basis of n. By hypothesis for any a ∈ a, we have [a,ei ] =
α(a)di , with di ≥ 1. Therefore

adA =




αd1

αd2

. . .
αdn




(9)

with zeroes in the blanks. The equality exp(adA(a)) = AdexpA (a) gives

AdexpA
=




exp(α)d1

exp(α)d2

. . .

exp(α)dn




. (10)

By changing exp(α) ∈ R+ for t ∈ R+, we get A equal to {δt }t∈R+ such that δt xi = t di xi for
any xi ∈ Rei . Such a group is called a dilatation group.

Example 1 For each semisimple Lie group, there is an Iwasawa decomposition K AN
(see [Kna02]) such that K is compact, A is abelian and N is nilpotent. Take k,a and n the
corresponding Lie algebras of K , A and N . Take m the centralizer of a in k. Now, reduce
a such that it has real dimension one. Then this gives a nilpotent similarity structure.
(See [Kna02, proposition 6.40].)

In particular, the boundary geometries of the different hyperbolic spaces (with base
field F that can be the field of real or complex or quaternionic or octonionic numbers) –
that is (G , X ) structures with G = PUF(n,1) and X = ∂Hn

F – give the subgeometries of a
stabilized point (PUF(n,1)p ,∂Hn

F − {p}) as nilpotent similarity structures.

Example 2 Let N be a Carnot group [Pan89]. That is to say, let n = n1 ⊕·· ·⊕nr be a
nilpotent graded Lie algebra such that [n1,ni ] = ni+1. A group N is a Carnot group if
it corresponds to such a Lie algebra n and is simply connected. A dilatation group A
acting by automorphisms on N is naturally given by δt x1 = t x1 for x1 ∈ n1. For any other
xi ∈ ni we have by construction δt xi = t i x. In particular, it is a dilatation group where
di is always an integer. For example H-type groups (e.g. the group of Heisenberg) are
Carnot groups.

Example 3 Damek and Ricci [DR92a; DR92b] defined a class of harmonic Riemannian
spaces that may not be coming from symmetric spaces. If N is a H-type group, then
in particular N is a two-step nilpotent Lie group equipped with an inner product. The
Lie algebra of N naturally decomposes itself into n= v⊕ z, with z being the center of n
and v the orthogonal of z. Then (following [DR92a]) one can take the Lie algebra n⊕RT ,
where T is the transformation given by

ad(T )(X +Z ) = [T, X +Z ] = 1

2
X +Z , (11)

with X ∈ v and Z ∈ z. Let S = N A be the corresponding simply connected Lie group
extension ofn⊕RT . By denoting A(s) = expS (sT ), A(s) acts on N by A(s)(z, x) = (

p
sz, sx).

By substituting s = t 2 (we could also have taken 2T instead of T ), we get A(t)(z, x) =
(t z, t 2x). This defines a nilpotent similarity structure (S, N ).
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Consider (Sim(N ),N ) a nilpotent similarity structure. If ωN denotes the Maurer-
Cartan form on N , then we can define expx (tu) as the integral line of the left-invariant
vector field ωN X = u. Now, by construction M A leaves invariant the set of N -left-
invariant vector fields on N . Indeed, denote by ρ the conjugation by P ∈ M A: ρ(x) =
P xP−1 for x ∈ N . Also, let X = (Lx )∗u be the left-invariant vector field such that
ωN X = u ∈ n.

ρLx = Lρ(x)ρ (12)

=⇒ ρ∗ (Lx )∗ = (
Lρ(x)

)
∗ρ∗ (13)

=⇒ ρ∗X = ρ∗ (Lx )∗ u (14)

= (
Lρ(x)

)
∗ρ∗u (15)

Therefore, the action of M A on the vector field X gives again a left-invariant vector field
on N .

This allows to define a geodesic structure with compatible holonomy, denoted
(Sim(N ),N ,exp) and where exp is the Lie exponential map exp: n→ N . Since N is
nilpotent, the exponential gives a diffeomorphism from n to N . Hence, this structure
is injective. Note that geodesics from 0 are given by exp(tu), and geodesics from any
x ∈N are given by x exp(tu).

This geodesic structure differs generaly from the classic Riemannian structure. Take
the Heinseberg group. The classic Riemannian structure induced by a contact form
makes Legendrian curves geodesic. In particular those classic geodesics are not ours
since we took as geodesics the straight lines exp(tu) (they remain straight after left-
translation by the Campbell-Hausdorff formula).

Lemma 3.1. Closed (M N ,N )-manifolds are complete.

By a result of Auslander [Aus60, th. 1], if Γ is a discrete cocompact subgroup of M N ,
then in fact Γ∩N has finite index in N and is cocompact. Therefore closed (M N ,N )-
manifolds are all given (up to finite index) by cocompact subgroups of N .

Proof. It is a classic general fact that if a geometric structure (G , X ) has compact stabi-
lizers, then closed (G , X )-manifolds are complete (see [Thu97]). Let m ∈ M and n ∈ N . If
for x ∈N , m(nx)m−1 = x then m(nx) = mx, hence nx = x. It can only be true if n = e.
Since M is compact, (M N ,N ) has compact stabilizers.

From now on, we will denote the group law of N by the addition. In general, this
law is not commutative, since N is only nilpotent. When this will be of use, we will
distinguish the addition in N from the addition in n by respectively denoting +N and
+n. Note that since exp: n→ N is a diffeomorphism, there is a rule for exchanging
+N and +n by looking at the corresponding coordinates in n given by ln = exp−1. The
explicite rule is exactly given by the Campbell-Hausdorff formula (see e.g. [Kna02]). To
be more specific (with H the function given by the Campbell-Hausdorff formula):

ln(x +N y) = H(ln(x), ln(y)), (16)

H(a,b) = a +n b +n
1

2
[a,b]+n

1

2
[a, [a,b]]−n

1

2
[b, [a,b]]+n . . . (17)

Also, we denote by product the action of M A on N by conjugation. For any f ∈
Sim(N ) we define λ f ∈ A,P f ∈ M ,c f ∈N such that f (x) =λ f P f (x)+ c f .
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Lemma 3.2. Suppose that for f ∈ Sim(N ), there exists β such that f (β) = β. Then
f (x) =λ f P f (x −β)+β.

Proof. By hypothesis f (x) = λ f P f (x)+ c f . Now f (β) = β = λ f P f (β)+ c f . This gives
c f =−λ f P f (β)+β. Since M A acts by conjugation on N and A commutes with M , we
get λ f P f (x)−λ f P f (β) = λ f P f (x −β). It follows that f (x) = λ f P f (x)+ c f = λ f P f (x −
β)+β.

The following proposition implies that theorem 4.1 is true as soon as the holonomy
group is discrete. It is the main result of [LS98].

Proposition 3.3. Suppose that a subgroup Γ⊂ Sim(N ) is discrete. Let f ∈ Γ and a ∈N

be such that for any x ∈N , we have f n x → a. Then for any g ∈ Γ, g (a) = a.

Proof. Let g ∈ Γ. Suppose that g (a) 6= a. The map h = g ◦ f ◦ g−1 has g (a) as fixed point.
We set hn = f n ◦h ◦ f −n and it has f n(g (a)) as fixed point. Write hn(x) = L(hn)(x)+cn

with L(hn) the M A part of hn . We have

L(hn) = L( f n)L(h)L( f −n) (18)

=
(
λn

f P n
f

)(
λg Pgλ f P f λ

−1
g P−1

g

)(
λ−n

f P−n
f

)
(19)

=λ f P n
f Pg P f P−1

g P−n
f (20)

hn(x) ==λ f P n
f Pg P f P−1

g P−n
f (x)+ cn (21)

with cn a constant converging to some constant when n →∞. Indeed, f n(g (a)) → a by
hypothesis, hn fixes f n(g (a)) and

cn =−λ f P n
f Pg P f P−1

g P−n
f

(
f n(g (a))

)+hn
(

f n(g (a))
)

(22)

→−λ f P n
f Pg P f P−1

g P−n
f (a)+a (23)

By compacity of the subgroup M ⊂ Sim(N ), the map P n
f Pg P f P−1

g P−n
f converges to-

wards some P ∈ M . This shows that cn converges aswell and therefore hn converges
towards some map h′ ∈ Sim(N ). But (hn) is not a constant sequence of maps by hy-
pothesis on g . It raises a contradiction since Γ is discrete.

In general, let {δt }t∈R+ be a one-parameter subgroup of linear automorphisms acting
on a nilpotent Lie algebra n. Furthermore, assume that there is a coordinate basis
x1, . . . , xn of n such that δt xi = t di xi for any i and with di ≥ 1. Those transformations
are called dilatations. A very general theorem of Hebisch and Sikora [HS90] allows to
have a pseudo-norm on N .

Theorem 3.4 ([HS90]). Let N be a nilpotent group with dilatations {δt }. There exists a
symetric pseudo-norm ‖·‖N (also denoted ‖·‖ when no confusion is possible) on N such
that the following properties are true.

1. ‖x +N y‖ ≤ ‖x‖+‖y‖;

2. ‖δt x‖ = t‖x‖;

3. ‖x‖ = 0 ⇐⇒ x = 0;

4. ‖−x‖ = ‖x‖;
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5. ‖ ·‖ is continuous on N and smooth on N − {0};

6. the unit ball ‖x‖ < 1 is the Euclidean ball
∑

x2
i < r 2 for some r < ε small enough

which has to be chosen first.

The last property relies on the second theorem of [HS90], and is not true for any pseudo-
norm verifying the other five conditions.

With such a pseudo-norm on N , we can define a distance function and a good
notion of open balls. First, we define the distance function by

dN (x, y) := ‖−x +N y‖N . (24)

This distance function is left-invariant by the action of N on itself. We define the open
balls of N to be

B(x,R) := {y ∈N | d(x, y) < R}. (25)

Note that for any x ∈ N , x + B(0,R) = B(x,R). Also if ρ ∈ M A, then we have
ρB(x,R) = B(ρ(x),λρR). Indeed,

d(ρ(x),ρ(y)) = ‖−ρ(x)+ρ(y)‖ (26)

= ‖ρ(−x + y)‖ (27)

=λρ‖−x + y‖ =λρd(x, y). (28)

Note that we used the fact that M preserves the Euclidean metric
∑

x2
i : it therefore

preserves the unit ball centered in 0 and hence any ball centered in 0.

Proposition 3.5. The open balls B(x,R) are geodesically convex (in the sense of definition
2.1).

Proof. First, we examine the fact that any two points in an open ball have a geodesic
segment that is contained in the open ball. By left-invariance, it is only required to prove
this result for B(0,R).

We first show that this ball is convex in the usual sense. That is to say, we show that
if x, y ∈ B(0,R) then the linear combination t x +n (1− t)y also belongs to B(0,R) for
t ∈ [0 ,1] and for +n the linear addition in the coordinates given in n by the inverse of
exp: n→ N . By the second theorem of [HS90], we can suppose that the unit ball is
Euclidean and of radius r as small as desired (but fixed), hence convex for linear seg-
ments. Now take R > 0, and suppose that x, y ∈ B(0,R). To show that the linear segment
γ : [0 ,1] → N from x to y is contained in B(0,R), we show that δ1/Rγ is contained in
B(0,1). By linearity of the action of δt on n,

δ1/R (t x +n (1− t )y) = tδ1/R x +n (1− t )δ1/R y (29)

and since δ1/R x,δ1/R y are both in B(0,1) and the last expression is a linear segment
with extremities in B(0,1), the segment δ1/Rγ is fully contained in B(0,1).

Now we prove that B(0,R) contains its geodesic segments for any R > 0. We make
the following observation: geodesics from 0 are given by exp(tu), so the coordinates are
tu. By the Campbell-Hausdorff formula, coordinates of geodesics now based in exp(x)
are given by the equation

exp(x)exp(tu) = exp

(
x +n tu +n

1

2
[x, tu]+n

1

12
[x, [x, tu]]−n

1

12
[y, [x, y]]+n . . .

)
(30)
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but when x is close to 0, and tu is close to 0 then

exp(hx)exp(htu) = exp
(
hx +n htu +n o

(
h2)) . (31)

Therefore, essentially, geodesics close to 0 are linear segments.
If x, y ∈ B(0,R), then up to applying δt for t small enough, we can assume tR = ε

and ‖δt x‖,‖δt y‖ < ε. In fact, the entire ball is transformed: δt (B(0,R)) = B(0, tR). Let
γ : [0 ,1] →N be the geodesic segment from x to y . Then δtγ is the geodesic segment
from δt x to δt y . The fact that γ is entirely contained in B(0,R) is equivalent to the
fact that δtγ is entirely contained in B(0,ε). Since both γ and ∂B(0,R) are given by
smooth functions, assume that for t1, t2 we have, for any s ∈ ] t1, t2 [, γ(s) 6∈ B(0,R) and
γ(t1),γ(t2) ∈ ∂B(0,R). By injectivity of the geodesic structure, γ(s) is the only geodesic
segment from γ(t1) to γ(t2). Now δtγ(s) does never belong to B(0,ε) for any ε> 0. On
the other hand, δtγ(s) tends to a linear-segment by the preceding observation, hence
it must at least intersect B(0,ε), since it contains the linear-segment from δtγ(t1) to
δtγ(t2). Absurd, therefore γ is entirely contained in B(0,R). This finishes to prove that
any two points in an open ball give a geodesic segment that is contained in this ball.

We now prove the second requirement for convexity (see definition 2.1). To be more
specific, let γn be a sequence of geodesic segments with a fixed base point p ∈ B(x,R)
and with endpoints qn converging towards q ∈ B(x,R). We need to show that γn has in
fact a subsequence converging to γ, which is a geodesic segment from p to q .

Again by left invariance, it suffices to show this fact for p = 0 ∈ N . With this as-
sumption, each γn is given by γn(t ) = exp(t vn) with vn ∈ n. By assumption exp(vn) → q .
Denote q = exp(v). Since the exponential map is a diffeomorphism, this implies that
vn → v . Now it is clear that the sequence exp(t vn) converges towards exp(t v), and this
is precisely the geodesic from p to q .

Open questions for nilpotent similarity structures in higher ranks We did suppose
that A is a rank one group of dilatations. But for example if we consider the Iwasawa
decomposition of a semisimple Lie group, then the dilatation group A is of the same
rank as the semisimple group, and in particular has no reason to be of rank one. So now,
until the end of this section, we consider A a group of dilatations with a higher rank.
We no longer have a nice symmetric pseudo-norm as we had before, and therefore no
longer a nice sense of open balls that would remain invariant under the transformation
group. (An open ball is still convex, but is not necessarily transformed into another
open ball.)

1. If M is a closed higher rank manifold, when does M have a holonomy group with
a dilatation subgroup of rank more that one?

2. Is there a nice general class of geometrical objects that are convex, open, and
invariant under the transformation group?

3. When is theorem 4.1 true in higher rank?

The answer to the first question would generalize the conclusion of theorem 4.1 for
manifolds with a higher rank nilpotent similarity structure. For the second question,
it should be pointed out that the work of Carrière [Car89] about Lorentzian manifolds
relies on the fact that the set of the ellipsoids remains stable under the transformation
group (and allows Carrière to study the “discompacity” of a holonomy group).
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We now discuss the third question. First, note that proposition 3.3 remains true,
since the proof did not rely on the fact that A was of rank one. But the existence of f
such that f n(x) → a depends on a more specific description of A. By lemma 3.1, an
incomplete structure on a closed manifold implies the existence of f such that the A
part of f is not the identity map, say A f . If An

f or A−n
f tends to the null transformation,

then we can apply proposition 3.3. Say this is the case. In order to have a (very weaker)
discrete version of theorem 4.1, we still need to have a version of lemma 3.1 for (M A,N )-
closed manifolds. In higher rank, there is no evident reason for this to be true.

A counterexample in rank 2 This example is part of a paper of Aristide [Ari04, p. 3699].
This paper is about radiant manifolds with a similarity group looking like SO(n,1)R+.
(We could think SO(n,1) as a group somehow constituted of a subgroup of O(n +1) and
of dilatations.)

Consider R2 and the “pseudo-similarity” group G constituted of translations and of
a rank 2 dilatation group, generated by δt (x, y) = (t x, t y) and ρs (x, y) = (sx, s2 y). In this
dilatation group we consider λt defined by λt = ρtδ

−1
t , thus giving λt (x, y) = (x, t y).

Now consider the subgroup Γ generated by γ1(x, y) = (x +1, y) and γ2(x, y) = (x,2y).
We have Γ ⊂ G . The quotient R×R∗+/Γ is compact, and diffeomorphic to a torus. Of
course, this is not a complete affine structure on the torus. Since Γ does not fixe any
point of R2, the conclusion of theorem 4.1 does not hold, providing a counterexample
when the rank of A is no longer 1.

Note that this example is particular in the sense that the quotient is in fact a product
of a Euclidean manifold and a radiant manifold.

Open question What are the affine manifolds which are diffeomorphic to a product
E1 ×·· ·×Ek ×R1 · · ·Rm where the Ei are Euclidean (or nilpotent) manifolds and R j are
radiant manifolds?

Those manifolds (with m 6= 0) are incomplete affine manifolds, and still comply to
the Chern conjecture.

4 Closed nilpotent similarity manifolds

Throughout this section, let Sim(N ) denote a similarity group acting on a nilpotent
space N as defined in the preceding section. For any f ∈ Sim(N ) we define λ( f ) ∈
A,P ( f ) ∈ M ,c( f ) ∈ N such that f (x) = λ( f )P ( f )(x)+ c( f ). Also, since this creates no
ambiguity, for g ∈ π1(M) we denote λ(g ), P (g ), c(g ) instead of λ(ρ(g )), P (ρ(g )) and
c(ρ(g )).

Theorem 4.1. Let M be a connected closed (Sim(N ),N )-manifold. If the developing
map D : M̃ →N is not a diffeomorphism, then the holonomy group Γ= ρ(π1(M)) fixes a
point in N and D is in fact a covering onto the complement of this point.

The proof of this result begins here and ends at the end of the section.
Corollary 2.20 and proposition 2.16 show that for every p ∈ M̃ , the set Vp 6= Tp M̃ .

Hence the image D(expp (Vp )) = expD(p)(dDp (Vp )) is never equal to N by the injectivity

of the geodesic structure (N ,exp). Theorefore for each p ∈ M̃ , there exists an open
subset Bp ⊂ Vp ⊂ Tp M̃ such that the image D(expp (Bp )) is the maximal open ball in
D(expp (Vp )) centered in D(p). We let

r : M̃ →]0,+∞[ (32)
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be the map that associates the radius of the ball D(expp (Bp )) in N to p ∈ M̃ . Note
that since the structure is injective and since open balls are geodesically convex by
proposition 3.5, the set expp (Bp ) is always convex for any p ∈ M̃ .

Lemma 4.2. For p ∈ M̃ and q ∈ expp (Bp ),

r (p) ≤ r (q)+dN (D(p),D(q)). (33)

Furthermore, if g ∈π1(M) then r (g p) =λ(g )r (p) with λ(g ) being the dilatation factor of
the holonomy transformation ρ(g ) ∈ Sim(N ).

Proof. Let p ∈ M̃ and let q ∈ expp (Bp ). By lemma 2.8, expp (Bp ) ⊂ expq (Vq ). Let v ∈ ∂Bq

such that expq (v) is not defined. Then expD(q)(dDq (v)) does not belong to D(expq (Vq ))
and hence does not belong to D(expp (Bp )) either, which is precisely an open ball of
radius r (p). Therefore

r (p) ≤ dN

(
D(p),expD(q)

(
dDq (v)

))
(34)

≤ dN (D(p),D(q))+dN

(
D(q),expD(q)

(
dDq (v)

))
(35)

≤ dN (D(p),D(q))+ r (q). (36)

This proves the inequality.
For the second part, we prove that ρ(g ) transforms the ball D(expp (Bp )) into the

ball D(expg p (Bg p )). If that is true then for any v ∈ ∂D(expp (Bp )), we have ρ(g )v ∈
∂D(expg p (Bg p )) and therefore

r (g p) = dN (D(g p),ρ(g )v) = dN (ρ(g )D(p),ρ(g )v) (37)

=λ(g )dN (D(p), v) =λ(g )r (p). (38)

In fact, it suffices to prove that ρ(g )D(expp (Bp )) ⊂ D(expg p (Bg p )) since with g−1

we would get the other inclusion. By proposition 2.19, g sends expp (Bp ) into a con-
vex subset containing g p, and by lemma 2.8 this convex is contained in expg p (Vg p ).
But ρ(g ) preserves open balls, hence ρ(g )D(expp (Bp )) is an open ball contained in
D(expg p (Bg p )) by maximality of Bg p .

The equivariance between r and λ allows a sense of length in M̃ which will be
invariant by the holonomy group. By comparing with proposition 2.21, we will give a
system of trivializing neighborhoods of M for the covering π : M̃ → M such that those
neighborhoods are comparable to the sets expp (Bp ).

In M̃ we set the pseudo-distance function

dM̃

(
p1, p2

)= dN

(
D

(
p1

)
,D

(
p2

))

r
(
p1

)+ r
(
p2

) (39)

which is π1(M)-invariant by the preceding lemma. Let p ∈ M̃ and let ε > 0. We will
describe open balls of radius ε in M̃ by looking locally at the pseudo-distance function
dM̃ on couples (p, x) with x ∈ expp (Bp ). On those couples, D is injective. Also, by lemma
4.2,

dM̃ (p, x) = dN (D(p),D(x))

r (p)+ r (x)
(40)

=⇒ dM̃ (p, x) ≥ dN (D(p),D(x))

2r (x)+dN (D(p),D(x))
(41)
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hence if we suppose dM̃ (p, x) < ε with ε small enough, we get

dN (D(p),D(x))

2r (x)+dN (D(p),D(x))
< ε (42)

⇐⇒ dN (D(p),D(x))

r (x)
< 2ε

1−ε . (43)

If r (p) ≥ r (x) then the same inequality is true for r (p) instead of r (x). If r (p) < r (x),
then p ∈ expx (Bx ) by lemma 2.13. By repeating the same argument for (x, p) we get the
preceding inequality with r (p) instead of r (x). In either cases

dN (D(p),D(x))

r (p)
< 2ε

1−ε . (44)

Conversely by using r (x) ≥ r (p)−dN (D(p),D(x)):

dM̃ (p, x) ≤ dN (D(p),D(x))

2r (p)−dN (D(p),D(x))
, (45)

hence for ε> 0

dN (D(p),D(x))

2r (p)−dN (D(p),D(x))
< ε (46)

⇐⇒ dN (D(p),D(x))

r (p)
< 2ε

1+ε (47)

This shows that for ε small enough, the ball

BM̃ (p,ε) :=
{

x ∈ expp

(
Bp

) | dM̃ (p, x) < ε
}

(48)

has an approximation in its developing image:

{
dN (D(p),D(x))

r (p)
< 2ε

1+ε
}
⊂ D

(
BM̃ (p,ε)

)⊂
{

dN (D(p),D(x))

r (p)
< 2ε

1−ε
}

(49)

and is contained in an open of M̃ . Those open balls hence provide the same basis for
the topology of M̃ . This means that dM̃ (p, x) < ε is true when in the ball D(expp (Bp ))
normalized by the radius r (p), the distance between D(x) and D(p) is less than ' 2ε.

If g ∈π1(M), then by the proof of lemma 4.2, g BM̃ (p,ε) ⊂ g expp (Bp ) is a subset of
expg p (Bg p ) since g expp (Bp ) = expg p (Bg p ). The pseudo-distance function dM̃ being
π1(M)-invariant, this shows that

∀g ∈π1(M), g BM̃ (p,ε) = BM̃ (g p,ε). (50)

In M , we can define a system of open neighborhoods by projecting the previously
constructed balls of M̃ :

BM (x,ε) :=π(BM̃ (p,ε)), p ∈π−1(x). (51)

For ε small enough, the ball BM (x,ε) is therefore a trivializing neighborhood of x, and
this system of open balls gives the same topology for M as the original one.
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gi j

<latexit sha1_base64="2rfvGGJqT7QoQwO1w27t90LL9hc="></latexit>

pi

<latexit sha1_base64="gUSCxoLmnSvr/gxIdb0CwU/CFOc=">AAAC8HicjVLLSsNAFL2Nr1qtVsWVm2AR3Fhaqeiy4MaVVLQPqKUk6bQOTZMwmQil+Alu1Z106x/4Kf6Bgh/hmWkKavExQ5Iz555zb+7M2IHLQ5nPvySMmdm5+YXkYmppOb2ymllbr4Z+JBxWcXzXF3XbCpnLPVaRXLqsHghm9W2X1ezesYrXrpkIue9dyEHAmn2r6/EOdywJ6jxo8VYmm8/l9TCnQSEG2VJ6cy97+jwq+5l3uqQ2+eRQRH1i5JEEdsmiELNBBcwAXJOG4AQQ13FGN5SCN4KKQWGB7eHdxaoRsx7WKmeo3Q6quHgEnCbtwONDJ4BVNVPHI51ZsT/lHuqc6t8G+Npxrj5YSVdg//JNlP/1qV4kdehI98DRU6AZ1Z0TZ4n0rqg/Nz91JZEhAKdwG3EB7GjnZJ9N7Ql172pvLR1/1UrFqrUTayN6+7W7TlyX64o4G1yFwveDnwbV/VyhmDs4w50o0ngkaYu2aRfnfkglOqEyVVCpS7d0R/eGMB6MR2M0lhqJ2LNBX4bx9AE265v8</latexit>

p j

<latexit sha1_base64="STLJjEOC26QXHxYr6/6ROH8I9jQ="></latexit>

¥i

<latexit sha1_base64="ibd1r89X4fVkfCqa/3gn9oPP5kA=">AAAC83icjVLLSsNAFL2Nr1qtVsWVm2AR3FhSqeiy4MaVVLAPaEtJ0mkdzYtkIpTiP7hVV4pbP8BP8Q8U/AjPTFNQi48Zkpw595x7c2fGChweCcN4SWlT0zOzc+n5zMJidmk5t7Jai/w4tFnV9h0/bFhmxBzusargwmGNIGSmazmsbl0cynj9koUR971TMQhY2zX7Hu9x2xSgai0mzA7v5PJGwVBDnwTFBOTL2fWd/PHzfcXPvVOLuuSTTTG5xMgjAeyQSRFmk4qYAbg2DcGFQFzFGV1RBt4YKgaFCfYC7z5WzYT1sJY5I+W2UcXBE8Kp0xY8PnQhsKymq3isMkv2p9xDlVP+2wBfK8nlghV0BvYv31j5X5/sRVCPDlQPHD0FipHd2UmWWO2K/HP9U1cCGQJwEncRD4Ft5Rzvs648kepd7q2p4q9KKVm5thNtTG+/dtdL6nJVEWeDq1D8fvCToLZbKJYKeye4EyUajTRt0CZt49z3qUxHVKEqKp3TNd3QrRZrd9qD9jiSaqnEs0Zfhvb0AZgCnUA=</latexit>

¥ j

<latexit sha1_base64="PmSk86OJGBKOQATufss8GvkP7kM="></latexit>

p

<latexit sha1_base64="WFpczD1eWVT+QVNeyjZvlv1KUoI="></latexit>

v

<latexit sha1_base64="17jgpgvpwFcPJbj7U0bDstlleVw="></latexit>

º(p)

<latexit sha1_base64="zMSxwRLKREXxi6o+SoFgxG24MBc=">AAAC83icjVLLSsNAFL2Nr1pftS4FCRahbkorFXVXcOOygn1AWyRJp3VsXiQToRT/wYUbdSdu/SD/QEHcuvXMNAW1+JghyZlzz7k3d2ZM3+ahKBSeEtrU9MzsXHI+tbC4tLySXs3UQi8KLFa1PNsLGqYRMpu7rCq4sFnDD5jhmDarm/1DGa9fsCDknnsiBj5rO0bP5V1uGQJUreXznL99ms4W8gU19ElQjEG2nLl+O8hvvFe89Cu1qEMeWRSRQ4xcEsA2GRRiNqmI6YNr0xBcAMRVnNElpeCNoGJQGGD7ePewasasi7XMGSq3hSo2ngBOnbbg8aALgGU1XcUjlVmyP+Ueqpzy3wb4mnEuB6ygM7B/+cbK//pkL4K6tK964OjJV4zszoqzRGpX5J/rn7oSyOCDk7iDeABsKed4n3XlCVXvcm8NFX9WSsnKtRVrI3r5tbtuXJerijgbXIXi94OfBLWdfLGU3z3GnSjRaCRpnTYph3PfozIdUYWqqHROV3RDt1qk3Wn32sNIqiVizxp9GdrjB9ghnc4=</latexit>

c(t )

<latexit sha1_base64="9x4vsHJyNXYAKVeuEO+XpuNmKfk="></latexit>

fM

<latexit sha1_base64="GOKiFXX7ChvWYsXi2HiWF4BGmnI="></latexit>

M

<latexit sha1_base64="rWNIs53tjLRWVarLcP+6XjRp9ok=">AAAC7nicjVLbSsNAEJ3GW623qo++BIvgU0mkom8WfPFFaMFeoBZJttu6NDc2G6EUv8BXFRTEV3/BT/EPFPwIZ6cpqMXLLEnOnpkzs7MTN/JErCzrJWNMTc/MzmXncwuLS8sr+dW1ehwmkvEaC71QNl0n5p4IeE0J5fFmJLnjux5vuP1D7W9ccBmLMDhRg4i3facXiK5gjkKqenyWL1hFi8ycBHYKCgfPd9ruK2H+HU6hAyEwSMAHDgEoxB44EONqgY0rQq4NQ+QkIkF+DpeQQ22CURwjHGT7+O7hrpWyAe51zpjUDKt4+EhUmrCFmhDjJGJdzSR/Qpk1+1PuIeXUZxvg101z+cgqOEf2L9048r863YuCLuxTDwJ7iojR3bE0S0K3ok9ufupKYYYIOY076JeIGSnH92ySJqbe9d065H+lSM3qPUtjE3j7tbtuWldQRZwN/gr298FPgvpO0S4Vd6tWoVyCkWVhAzZhG+e+B2U4ggrU6BRXcA03RmTcGg/G4yjUyKSadfhixtMH0jqdMg==</latexit>

c(ti )

<latexit sha1_base64="lApXu4eXMdi3pX1qzlhf3BOyUUQ=">AAAC83icjVLLSsNAFL3Gd31VXQoSFEE3IZWKuiu4calgH1BLScZpHZsXyUQoxX9w4UbdiVs/yD9QELduPTNNwQc+Zkhy5txz7s2dGTfyRCJt+3HIGB4ZHRufmMxNTc/MzuXnFypJmMaMl1nohXHNdRLuiYCXpZAer0Uxd3zX41W3s6fi1XMeJyIMjmQ34g3faQeiJZgjQVXYumyKjWZ+1bZsPczvoJCB1dLC1euutfx2EOZf6JhOKCRGKfnEKSAJ7JFDCWadCpgRuAb1wMVAQsc5XVAO3hQqDoUDtoN3G6t6xgZYq5yJdjNU8fDEcJq0Bk8IXQysqpk6nurMiv0pd0/nVP/WxdfNcvlgJZ2C/cs3UP7Xp3qR1KId3YNAT5FmVHcsy5LqXVF/bn7oSiJDBE7hE8RjYKadg302tSfRvau9dXT8SSsVq9Ys06b0/Gt3rayu0BVxNrgKha8H/x1UNq1C0do6xJ0oUn9M0BKt0DrOfZtKtE8HVEalM7qka7oxUuPWuDPu+1JjKPMs0qdhPLwDyHCdyA==</latexit>

c(t j )

<latexit sha1_base64="w7P2/KZLy2yHHGsbxjHRc1M3eC0="></latexit>

z

<latexit sha1_base64="bdV8Kkpbr9SImY/4zWTrt0tA9hw=">AAAC7nicjVLbSsNAEJ3GW623qo++BIvgU0mkom8WfPGxBXuBWiTZbuvS3NhshFr8Al9VUBBf/QU/xT9Q8COcnaagFi+zJDl7Zs7Mzk7cyBOxsqyXjDE1PTM7l53PLSwuLa/kV9fqcZhIxmss9ELZdJ2YeyLgNSWUx5uR5I7verzh9g+1v3HOZSzC4FgNIt72nV4guoI5CqnqxWm+YBUtMnMS2CkoHDzfabuvhPl3OIEOhMAgAR84BKAQe+BAjKsFNq4IuTYMkZOIBPk5XEIOtQlGcYxwkO3ju4e7VsoGuNc5Y1IzrOLhI1FpwhZqQoyTiHU1k/wJZdbsT7mHlFOfbYBfN83lI6vgDNm/dOPI/+p0Lwq6sE89COwpIkZ3x9IsCd2KPrn5qSuFGSLkNO6gXyJmpBzfs0mamHrXd+uQ/5UiNav3LI1N4O3X7rppXUEVcTb4K9jfBz8J6jtFu1TcrVqFcglGloUN2IRtnPselOEIKlCjU1zBNdwYkXFrPBiPo1Ajk2rW4YsZTx9Ei51f</latexit>

zi

<latexit sha1_base64="kxfZddbDWAR/LBlI3jCsi6Wz5pU="></latexit>

z j

<latexit sha1_base64="B7B1RQVsLwrkd/TFe63qjZR55ls=">AAAC8HicjVLLSgMxFL0d3/VVFVduBkVwVVqp6FJw47KibYVaSiZNa+x0ZshkhPr4BLfqTtz6R/oFCn6EJ3EEtfhImJmTc8+5d24SL/JlrAuFx4wzNDwyOjY+kZ2cmp6Zzc3NV+MwUVxUeOiH6tBjsfBlICpaal8cRkqwnueLmtfdMfHaqVCxDIMD3Y9Eo8c6gWxLzjSo/bPmSTO3UsgX7HAHQTEFK9uLG+vsYumpHOZe6YhaFBKnhHokKCAN7BOjGLNORcwIXIPOwSkgaeOCLikLbwKVgIKB7eLdwaqesgHWJmds3RxVfDwKTpdW4QmhU8Cmmmvjic1s2J9yn9uc5t/6+Hpprh5YTcdg//J9KP/rM71oatOW7UGip8gypjueZknsrpg/dz91pZEhAmdwC3EFzK3zY59d64lt72ZvmY0/W6VhzZqn2oRefu2undaVtiLOBleh+P3gB0F1PV8s5Tf2cCdK9D7GaYmWaQ3nvknbtEtlqqBSh67omm4c5dw6d879u9TJpJ4F+jKchzfOxZw7</latexit>

∞i j

<latexit sha1_base64="6MalfTG9x0TEUWU+7V42E8ZqWys=">AAAC+HicjVJLSwMxEJ6ur1pfVfHUy2IRPJVdadFjwYvHCvYBbSnZNK2x+yKbFWrtz/Cq3sSr/0Z/gYI/wkm6BbX4SNjsl2/mm8lk4oQuj6RlPaeMufmFxaX0cmZldW19I7u5VYuCWFBWpYEbiIZDIuZyn1Ully5rhIIRz3FZ3RkcK3v9komIB/6ZHIas7ZG+z3ucEolUs9Unnkc6I34x7mTzVsHSw5wFdgLy5Z3SAbnOvVSC7Du0oAsBUIjBAwY+SMQuEIhwNsHGGSLXhhFyAhHXdgZjyKA2Ri+GHgTZAa593DUT1se9ihlpNcUsLn4ClSbsoSZAP4FYZTO1PdaRFftT7JGOqc42xL+TxPKQlXCO7F+6qed/daoWCT040jVwrCnUjKqOJlFifSvq5OanqiRGCJFTuIt2gZhq5fSeTa2JdO3qbom2v2pPxao9TXxjePu1ul6Sl+uM2Bt8Cvb3xs+C2kHBLhZKp/gmijAZacjBLuxj3w+hDCdQgaruzQ3cwp1xZdwbD8bjxNVIJZpt+DKMpw9jQp/R</latexit>

e∞(ti )

<latexit sha1_base64="GMt4JBUHfWHW+CocmP2EhT0jWfI="></latexit>

e∞(t j )

<latexit sha1_base64="dqPqN/s0922xRYKf8b2e1Vr4faI="></latexit>

expz (w)

<latexit sha1_base64="sVAN/KILg3ib9AAyU09Qaeu+KiM="></latexit>

N

<latexit sha1_base64="kiHrGP+nS07EVYpSnWyb8XLVe+M=">AAAC93icjVJLSwMxEJ6ur1pfVY9eFovgqWylojcLXjxJBfvAtkg2TdvQ7INsVijFf+FFQb2JV4/+FP+Bgj/CSboFtfiYsLtfvplvJpNZNxQ8Uo7zkrKmpmdm59LzmYXFpeWV7OpaNQpiSVmFBiKQdZdETHCfVRRXgtVDyYjnClZz+4faX7tgMuKBf6oGIWt5pOvzDqdEIXXW9IjqUSLs4/Nszsk7xuxJUEhA7uD5WttNOci+QxPaEACFGDxg4INCLIBAhKsBBVwhci0YIicRceNncAkZ1MYYxTCCINvHdxd3jYT1ca9zRkZNsYrAR6LShi3UBBgnEetqtvHHJrNmf8o9NDn12Qb4dZNcHrIKesj+pRtH/lene1HQgX3TA8eeQsPo7miSJTa3ok9uf+pKYYYQOY3b6JeIqVGO79k2msj0ru+WGP+ridSs3tMkNoa3X7vrJHW5qYizwV+h8H3wk6C6ky8U87snTq5UhJGlYQM2YRvnvgclOIIyVLCSD1dwC3fWwLq3HqzHUaiVSjTr8MWspw+06qDj</latexit>

x

<latexit sha1_base64="NiJjaRB9q4qxhufbpHi+PlvyMDo=">AAAC7nicjVLbSsNAEJ3GW623qo++BIvgU0mkom8WfPGxBXuBWiTZbuvS3NhsxFL8Al9VUBBf/QU/xT9Q8COcnaagFi+zJDl7Zs7Mzk7cyBOxsqyXjDE1PTM7l53PLSwuLa/kV9fqcZhIxmss9ELZdJ2YeyLgNSWUx5uR5I7verzh9g+1v3HOZSzC4FgNIt72nV4guoI5CqnqxWm+YBUtMnMS2CkoHDzfabuvhPl3OIEOhMAgAR84BKAQe+BAjKsFNq4IuTYMkZOIBPk5XEIOtQlGcYxwkO3ju4e7VsoGuNc5Y1IzrOLhI1FpwhZqQoyTiHU1k/wJZdbsT7mHlFOfbYBfN83lI6vgDNm/dOPI/+p0Lwq6sE89COwpIkZ3x9IsCd2KPrn5qSuFGSLkNO6gXyJmpBzfs0mamHrXd+uQ/5UiNav3LI1N4O3X7rppXUEVcTb4K9jfBz8J6jtFu1TcrVqFcglGloUN2IRtnPselOEIKlCjU1zBNdwYkXFrPBiPo1Ajk2rW4YsZTx8/d51d</latexit>

BM (x,")

<latexit sha1_base64="bmFTQExXBGaV6Oj1J7J8/m1ObRQ=">AAADAXicjVLLSsNAFL2Nr1pftS4FCYqgIKUVRd2JbtwIFewDbClJnNahaRImE2kRV/6Ca7fqTtz6Jf6Bgrh165lpBLX4mCHJmXPPuTd3ZuzA5aHM5R4TxsDg0PBIcjQ1Nj4xOZWezpRCPxIOKzq+64uKbYXM5R4rSi5dVgkEs9q2y8p2a1fFy6dMhNz3DmU3YLW21fR4gzuWBFVPZ3bq+0udleqpJVgQctf3luvphVw2p4fZD/IxWNjOXL5uZefeCn76hap0TD45FFGbGHkkgV2yKMQ8ojxmAK5GZ+AEENdxRueUgjeCikFhgW3h3cTqKGY9rFXOULsdVHHxCDhNWoTHh04Aq2qmjkc6s2J/yn2mc6p/6+Jrx7naYCWdgP3L96H8r0/1IqlBm7oHjp4CzajunDhLpHdF/bn5qSuJDAE4hY8RF8COdn7ss6k9oe5d7a2l409aqVi1dmJtRM+/dteI63JdEWeDq5D/fvD9oLSaza9l1w9wJ9aoN5I0S/O0hHPfoG3aowIVUalDV3RNN8aFcWvcGfc9qZGIPTP0ZRgP7/MwowM=</latexit>

[c(t )]

<latexit sha1_base64="oYY191L2PIA6tOFSCh+0NHesymY=">AAAC83icjVLLSsNAFL2Nr1pftS4FCRahbkorFXVXcOOygn1ALZJMp3U0TUIyEUrxH1y4UXfi1g/yDxTErVvPTFNQi48Zkpw595x7c2fG9h0RykLhKWFMTE5NzyRnU3PzC4tL6eVMLfSigPEq8xwvaNhWyB3h8qoU0uENP+BWz3Z43T7fV/H6BQ9C4blHsu/zVs/quqIjmCVB1ZosJzdbJ+lsIV/QwxwHxRhky5nrt7382nvFS7/SMbXJI0YR9YiTSxLYIYtCzCYVMX1wLRqAC4CEjnO6pBS8EVQcCgvsOd5drJox62KtcobazVDFwRPAadIGPB50AbCqZup4pDMr9qfcA51T/VsfXzvO1QMr6RTsX76R8r8+1YukDu3qHgR68jWjumNxlkjvivpz81NXEhl8cAq3EQ+AmXaO9tnUnlD3rvbW0vFnrVSsWrNYG9HLr9114rpCV8TZ4CoUvx/8OKht5Yul/PYh7kSJhiNJq7ROOZz7DpXpgCpURaUzuqIbujUi4864Nx6GUiMRe1boyzAePwCfmp24</latexit>

B fM (pi ,")

<latexit sha1_base64="JsLNcXOp4ZLVwNvqcUytRcdeVww="></latexit>

B fM (p j ,")
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Figure 1: The general setting.

We will now construct holonomy transformations which will be very contracting,
with a common center point and with no rotation. The idea is to take v ∈ ∂Bp such
that expp (v) is not defined and to compare with expD(p)(dD(v)) in N where it must be
defined. The holonomy transformations will be centered in expD(p)(dD(v)) = expz (w).
See figure 1 for the global setting.

Consider p ∈ M̃ such that expp (t v) is defined for 0 ≤ t < 1 but not for t = 1. The
geodesic curve [c(t)] = expp (t v) is an incomplete geodesic. In M , the corresponding
curve c(t ) =π([c(t )]) is then an infinite long curve in a compact space. There is therefore
a recurrent point x ∈ M .

Let BM (x,ε) be a ball with radius ε> 0 small enough such that BM (x,ε) is trivializing
π : M̃ → M . Let 0 < t1 < ·· · < tn < . . . be entry times such that tn → 1; c(tn) ∈ BM (x,ε);
but c([tn , tn+1]) 6⊂ BM (x,ε) (it just states that c exits BM (x,ε) before time tn+1). Since ε
is small enough, for each tn , up to homotopy we can uniquely set ηn the segment from
x to c(tn) contained in BM (x,ε). By construction we have the following lemma.

Lemma 4.3. For any i , [c(ti )] ∈ exppi
(Bpi ) and dM̃ ([c(ti )], pi ) < ε.

Proof. By hypothesis and according to the preceding discussion, since BM (x,ε) is triv-
ializing, if c(ti ) ∈ BM (x,ε) then any lift of c(ti ) is in BM̃ (p̂,ε) for p̂ ∈ π−1(x). In partic-
ular [c(ti )] is at a maximum distance ε from pi and lies in exppi

(Bpi ) by definition of
BM̃ (pi ,ε).

We define the concatenated path gi j by

gi j = η−1
j ? c(t )|[ti ,t j

]?ηi . (52)

20



This is a family of transformations belonging to π1(M , x). We are now interested in gi j

acting on M̃ . The path g̃i j lifting gi j sends pi to p j by construction. We denote by γi j

the holonomy transformation ρ(gi j ) and we denote by γ̃ the image D([c(t)]). Even if
γ(1) is not defined, γ̃(1) is well defined.

The initially chosen vector v is sent to w by dD and z := D(p). Each pi is sent to zi

by D . See again figure 1.

Proposition 4.4. Suppose that j À i →∞ and we are up to choose a subsequence of
(i , j ). The transformation γi j verifies the following properties.

1. P (γi j ) → E (With E the identity transformation.)

2. λ(γi j ) → 0

3. For any x ∈N , γi j (x) → expz (w) = γ̃(1).

Proof. Since M is compact and since γ j kγi j = γi k , the transformation P (γi j ) accu-
mulates to the identity E . This proves the first point up to choose a subsequence of
(i , j ).

Now we prove that λ→ 0. By lemmas 4.3 and 4.2

r (p j ) ≤ r ([c(t j )])+dN (z j , γ̃(t j )) (53)

and by lemma 4.3 and the definition of dM̃

dN (z j , γ̃(t j )) < ε(
r (p j )+ r ([c(t j )])

)
. (54)

This shows that for j →∞, dN (z j , γ̃(t j )) is arbitrarily small. This also gives

r (p j ) ≤ (1+ε)r ([c(t j )])+εr (p j ). (55)

Note r (p j ) = r (gi j (pi )) =λ(gi j )r (pi ), it follows that

λ(gi j )r (pi ) ≤ (1+ε)r ([c(t j )])+ελ(gi j )r (pi ) (56)

⇐⇒ λ(gi j ) ≤ 1+ε
1−ε

r ([c(t j )])

r (pi )
. (57)

Since the numerator tends to 0, for i fixed we get that λ→ 0 for j tending to +∞. So this
is true for i , j large enough such that j À i . This proves the second point.

The preceding calculation showed that dN (z j , γ̃(t j )) is arbitrarily small, and when
t j → 1 we have γ̃(t j ) → expz (w) = γ̃(1). Therefore z j → expz (w). By construction, γi j

sends D(pi ) = zi to D(p j ) = z j . Now:

dN (γi j (zi ),γi j (x)) =λ(γi j )dN (zi , x) (58)

and since λ(γi j ) → 0, we have γi j (x) → γi j (zi ) = z j → expz (w). This proves the third
and last point.

Lemma 4.5. We have the following inequalities

dN (ρ(gi j )γ̃(ti ), γ̃(t j )) ≤ r ([c(t j )])
4ε−4ε2

1−5ε+3ε2 , (59)

λ(gi j ) ≤ 1+ε
1−3ε

r ([c(t j )])

r ([c(ti )])
. (60)
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Proof. We estimate first r ([c(t j )]) in terms of r ([c(ti )]) and λ(gi j ). By the preceding
calculations, we know that

λ(gi j )r ([c(ti )]) ≤ 1+ε
1−ε

r ([c(t j )])

r (pi )
r ([c(ti )]). (61)

But [c(ti )] ∈ exppi
(Bpi ) and dM̃ ([c(ti )], pi ) < ε. Therefore by equation (43):

dN (D(pi ), γ̃(ti )) < 2ε

1−ε r ([c(ti )]). (62)

Since we can choose ε small enough such that 2ε/(1−ε) < 1, we see that in fact

dN (D(pi ), γ̃(ti )) < r ([c(ti )]). (63)

We therefore have pi ∈ exp[c(ti )](B[c(ti )]) (see lemma 2.13). It follows by lemma 4.2 and
the previous inequality that

r ([c(ti )]) ≤ r (pi )+dN (γ̃(ti ),D(pi )) (64)

≤ r (pi )+ 2ε

1−ε r ([c(ti )]) (65)

=⇒ 1−3ε

1−ε r ([c(ti )]) ≤ r (pi ). (66)

Therefore

λ(gi j )r ([c(ti )]) ≤ 1+ε
1−ε

r ([c(t j )])

r (pi )
r ([c(ti )]) (67)

≤ 1+ε
1−ε r ([c(t j )])

1−ε
1−3ε

(68)

≤ 1+ε
1−3ε

r ([c(t j )]). (69)

This proves the second inequality.
Now, we can compute the distance between ρ(gi j )γ̃(ti ) and γ̃(t j ). Recall equation

(56).

dN (ρ(gi j )γ̃(ti ), γ̃(t j )) ≤ dN (ρ(gi j )γ̃(ti ),ρ(gi j )D(pi ))+dN (ρ(gi j )D(pi ), γ̃(t j )) (70)

≤λ(gi j )dN (γ̃(ti ),D(pi ))+dN (D(p j ), γ̃(t j )) (71)

≤λ(gi j )
(
ε(r (pi )+ r ([c(ti )]))

)+ε(r (p j )+ r ([c(t j )])) (72)

≤ ε
(
λ(gi j )r ([c(ti )])

(
1+ε
1−ε +1

)
+ r ([c(t j )])

(
1+ε
1−ε +1

))
(73)

≤ εr ([c(t j )])

(
1+ε

1−3ε

2

1−ε +
2

1−ε
)

(74)

≤ εr ([c(t j )])
2+2ε+2−6ε

1−5ε+3ε2 (75)

≤ εr ([c(t j )])
4−4ε

1−5ε+3ε2 (76)

It gives the required inequality.
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Note that those inequalities allow to compute a bit more explicitly how ρ(gi j ) moves
γ̃(1) = expz (w). We already know that for j À i both large enough, it sends γ̃(1) close to
itself.

dN (ρ(gi j )γ̃(1), γ̃(1)) ≤ dN (ρ(gi j )γ̃(1),ρ(gi j )γ̃(ti ))+dN (ρ(gi j )γ̃(ti ), γ̃(1)) (77)

≤λ(gi j )r ([c(ti )])+dN (γ̃(t j ),ρ(gi j )γ̃(ti ))+dN (γ̃(t j ), γ̃(1)) (78)

≤ r ([c(t j )])

(
1+ε

1−3ε
+ 4ε−4ε2

1−5ε+3ε2 +1

)
(79)

We now recall the construction made for proposition 2.23. Let p ∈ M̃. If for g ∈π1(M),
g ·p is visible from p by a vector in Bp , then if a vector u is such that G(u) ∈ Bp , then in
fact expp (u) is visible from p, with G given by

G = dD−1
p ◦exp−1

D(p) ◦ρ(g )◦expD(p) ◦dDp . (80)

This allows to extend the set of vectors that can be seen from p further than Bp . By
passing through the developing map, if dDpG(u) ∈ dDp (Bp ) then it is true that G(u) ∈ Bp .
Therefore if expD(p)(dDpG(u)) ∈ D(expp (Bp )) then u is visible.

Lemma 4.6. For j À i large enough, the point gi j p belongs to expp (Bp ).

Proof. Recall lemma 2.13. To prove that gi j p is visible from p, we will show that: p j

belongs to expp (Bp ); gi j p is visible from p j ; and D(gi j p) ∈ D(expp (Bp )). Those three
facts and lemma 2.13 show that gi j p belongs to expp (Bp ).

To prove the first point, we use lemma 2.13 again. It will be true for in fact any integer
i . Of course, [c(ti )] belongs to expp (Bp ). By construction (see lemma 4.3), pi is visible
from [c(ti )]. By lemma 4.3, by definition of the pseudo distance function dM̃ and by
equation (43):

dN (D(pi ),D([c(ti )])) < 2ε

1−ε r ([c(ti )]). (81)

Also note that dN (D(p),D([c(ti )]) = r (p)− r ([c(ti )]), it follows that:

dN (D(p),D(pi )) ≤ dN (D(p),D([c(ti )])+dN (D([c(ti )]),D(pi )) (82)

< r (p)− r ([c(ti )])+ 2ε

1−ε r ([c(ti )]) (83)

< r (p)− 1−3ε

1−ε r ([c(ti )]) < r (p) (84)

And the last step comes from the initial choice of ε small enough. This shows that
D(pi ) ∈ D(expp (Bp )) and therefore pi ∈ expp (Bp ).

Now, take a geodesic segment from p to pi . This geodesic segment is transformed
by gi j onto a geodesic segment from gi j p to gi j pi = p j ∈ expp (Bp ). We still have to
show that D(gi j p) ∈ D(expp (Bp )).

By lemma 4.5

dN (ρ(gi j )γ̃(ti ), γ̃(t j )) ≤ r ([c(t j )])
4ε−4ε2

1−5ε+3ε2 . (85)

Now, take B the ball centered in γ̃(t j ) and of radius r ([c(t j )]). Apply a dilatation of factor
r ([c(t j )])−1. It gives the unit ball B(γ̃(t j ),1). Translate this ball so it is centered in 0 ∈N .
By construction of the open balls (see theorem 3.4), this ball is given in coordinates by
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∑
x2

i ≤ 1, where (xi ) is the adapted basis of n such that the dilatations act as diagonal
transformations. By a uniform choice of ε, the corresponding point of ρ(gi j )γ̃(ti ) is
really close to 0.

Now we compare the geodesic segment corresponding to the geodesic segment
γ̃({t ≥ t j }) with the one corresponding to ρ(gi j )γ̃({t ≥ ti }). Both start very closely to
0. Their tangent vector at 0 is given by the corresponding vector of (1− t j )w , where
w = dDp vp has been transformed by parallel transport. The other one is given by
ρ(gi j )∗(1− ti )w . The linear transformation ρ(gi j )∗ has an orthogonal part close the the
identity since we can suppose j À i large enough. Therefore on each coordinate wi of
(w1, . . . , wn) = w , we have ρ(gi j ) 'λ(gi j )wi =λ(gi j )di wi . It follows that if wi ≥ 0 then
ρ(gi j )∗wi ≥ 0.

Therefore the geodesic segment ρ(gi j )γ̃(ti ) starts close to γ̃(t ≥ ti ) and has its direc-
tional vector in the same spherical quadrant than γ̃(t ≥ t j ). Therefore, the geodesic seg-
ment γ̃(t ) is transformed by ρ(gi j ) onto a geodesic segment that still is in D(expp (Bp )).
In particular ρ(gi j )γ̃(0) = D(gi j p) is in D(expp (Bp )).

The first part of the next proposition is inferred from the last discussion.

Proposition 4.7. The exponential based in p is well defined on a subspace of Tp M̃ given
by

Hp = ⋃
jÀiÀ0

dD−1(γ−1
i j (dD(Bp ))). (86)

The subspace Hp ⊂ Tp M̃ is a half-space. More precisely, the boundary ∂D(expp (Hp )) is
the left-translation of exp0(V ) with V ⊂ n a codimension 1 linear vector space.

Proof. Up to apply a left translation, suppose that γ̃(1) = 0. The ball D(expp (Bp )) has
a tangent hyperplane T at 0. Let fλ(x) =λx be a dilatation of factor λ> 0 small. Then
f −1
λ

(T ) converges to a hyperplane V when λ→ 0. This hyperplane needs not to be
tangent to D(expp (Bp )).

Now, consider a ball B(0,ε) with ε > 0 very small. The intersection C = B(0,ε)∩
D(expp (Bp )) ressembles to the intersection of B(0,ε) with the half space with boundary
T . Let H be the half-space with boundary V . Then any point x ∈ H has its orbit fλ(x)
converging to C . Therefore x corresponds to a vector that is visible from D(p).

Note that H is rarely the full developing image of the visible set from p. Indeed,
V might intersects D(expp (Bp )). This indicates that the boundary of H is sometimes
visible.

Corollary 4.8. For each p ∈ M̃, Hp is convex.

We now divide ∂Hp onto Wp t Ip , where Wp denotes the visible vectors and Ip the
invisible vectors of ∂Hp .

Lemma 4.9. The image expD(p)(dDp (Ip )) is locally constant (hence constant) following
p, this image is denoted I . Furthermore, I is affine.

By “affine” we will mean the following property: I is equal to an intersection of a
finite number of expD(p)(dDp (∂Hp )).

Proof. If Wp = ;, then Ip = ∂Hp is affine and its image by the developing map must
be constant since expp (Vp ) = M̃ is convex (because Hp is convex and equal to Vp if
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∂Hp is only constituted of invisible vectors) and D is therefore a diffeomorphism from
expp (Vp ) to its image.

Let vp ∈ Ip . Suppose that u ∈Wp . Let q = expp (u). The point q has a half-space Hq .
We will show that expD(p)(dDp (vp )) ∈ expD(q)(dDq (∂Hq )). It shows

expD(p)(dDp (Iq )) ⊂ expD(p)(dDp (∂Hp ))∩expD(q)(dDq (∂Hq )). (87)

Since expD(q)(dDq (∂Hq )) ( expD(p)(dDp (∂Hp )), such an intersection decreases the
topological dimension. By repeating the argument for a new u, the image of Ip becomes
constant following p and is indeed affine.

Since expp (Hp ) and expq (Hq ) are convex and with non empty intersection, it follows
that D is injective on (expp (Hp ))∪ (expq (Hq )). If expD(p)(dDp (vp )) lies in D(expq (Hq )),
then this is locally true: D(c(t )) = D(expp (t vp )) ⊂ D(expq (Hq )) for t ∈]T,1[. By injectiv-
ity of D , this shows that c(t ) = expp (t vp ) is contained in expq (Hq ) for t ∈]T,1[ and this
geodesic is defined for t = 1 by hypothesis. But this contradicts the fact that c(1) is not
defined. Therefore expD(p)(dDp (vp )) 6∈ D(expq (Hq )).

Take p ′ in expp (Hp ) such that expD(p)(dDp (vp )) belongs to ∂D(expp ′ (Bp ′ )). Then
there exists ρ(gi j ) centered in expD(p)(dDp (vp )) very contracting with almost no rota-
tion for i , j large enough.

If expD(p)(dDp (vp )) 6∈ expD(q)(dDq (∂Hq )), then this last set has no fixed point under

ρ(gi j ). Therefore, D(gi j (expq (Hq ))) is convex and contains expD(q)(dDq (Bq )). But
gi j (expq (Hq )) and expq (Hq ) intersect, hence D is injective on the reunion of both. If
c(t ) ∈ expq (Bq ) is a geodesic such that c(0) = q and c(1) is not defined, then this shows
that c(t ) is well defined in t = 1, since it is in gi j (expq (Hq )), absurd.

Lemma 4.10. The developing map D : M̃ →N − I is a covering map onto its image.

Proof. Since the developing map D is a local diffeomorphism, we only have to show the
property of lifting paths. Let z ∈ D(M̃). We have to show that if γ : [0 ,1] → D(M̃) ends
in z and if it can be lifted to γ̃ for t < 1, then it can be lifted at t = 1. Let T < 1 be large
enough. Then r (γ̃(T )) is equal to the distance from γ(T ) to I . But for T large enough, it
is approximately equal to the distance of z to I and hence is minored by some constant
c > 0. We can choose T such that d(γ(T ), z) < c/2 < r (γ̃(T )). Therefore, z belongs to the
interior of D(expγ̃(T )(Bγ̃(T ))). It follows that the path γ can be lifted at t = 1.

Recall proposition 3.3:

Proposition (3.3). Suppose that a subgroup Γ⊂ Sim(N ) is discrete. Let f ∈ Γ and a ∈N

be such that for any x ∈N , we have f n x → a. Then for any g ∈ Γ, g (a) = a.

Such maps f and g are given by the various gi j by changing the base point p. If I is
not a single point, then two such maps f , g exist with two different attracting points. We
will show that it does not occur. If N − I is simply connected, then the holonomy group
must be discrete, and with proposition 3.3 this raise a contradiction.

It remains to study the case when N − I is not simply connected. First we prove an
intermediary lemma that explains how I is impacted by the fact that it is invariant by
dilatations. Let (x1, . . . , xn) be a Lie algebra coordinates of N such that a dilatation acts
like δt (x1, . . . , xn) = (t d1 x1, . . . , t dn xn). Up to conjugation by a translation, suppose that I
contains 0 = (0, . . . ,0). By lemma 4.9, I is affine. Since 0 ∈ I , it implies that I is given by
linear equations (see proposition 4.7).
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Lemma 4.11. Suppose that dim I = k > 0. Then any system of n −k equations defining I
is such that if a1x1 +·· ·+an xn = 0 is an equation, then every non-vanishing coordinates
ai 6= 0 are associated to a same degree d = di .

Proof. Let
a1x1 +·· ·+an xn = 0 (88)

be an equation verified by I . Then

t d1 a1x1 +·· ·+ t dn an xn = 0 (89)

is also verified by I since it is stable by the dilatations δt (I contains 0). But the points
associated to the coordinates (t d1 a1, . . . , t dn an) with different values of t > 0 are linearly
independent if for i 6= j , di 6= d j and ai , a j 6= 0. Since I has a non vanishing dimension
k > 0, it implies the lemma.

The case where N − I is not simply connected corresponds to the case where I is
of codimension 2. Let a1x1 +·· ·+an xn = 0 and b1x1 +·· ·+bn xn = 0 be two equations
defining I . Let H be {a1x1 +·· ·+an xn > 0,b1x1 +·· ·+bn xn = 0}. Then H is connected
and ∂H = I . By the preceding lemma, H is invariant by the dilatations δt .

By rotating H around I , we find that the universal cover of N − I is H ×R. Let
Sim(I ) ⊂ Sim(N ) be the subgroup leaving invariant I ⊂N . This subgroup contains the
holonomy group Γ since it leaves invariant D(M̃) =N − I . Let Sim(I )H be the subgroup
of Sim(I ) that preserves H .

Lemma 4.12. The subgroup Sim(I )H acts transitively on H.

Proof. Let B ⊂ N be a small open ball at 0. Let BH = B ∩ H . The subgroup Sim(I )H

contains the dilatation subgroup A ⊂ Sim(N ). Therefore, any point p ∈ H can be
assumed to be in BH up to apply an element of A. Furthermore, two points in BH can
be assumed to be parallel along I , up to apply again a dilatation on one of them.

Let NI ⊂ N be the subgroup of the translations preserving I . Its lasts to show
that NI ⊂ Sim(I )H . A (small) translation acts like the flow of a vector field parallel
to I . But such a vector field must preserve I and (therefore) {b1x1 + ·· · + bn xn = 0}.
Hence, this subgroup sends BH in H . Otherwise it would intersect I in the subspace
{b1x1 + ·· · +bn xn = 0}. But therefore NI sends H in H up to conjugation by A. This
concludes the proof.

It follows that the covering H×R →N −I has a lifted transformation group Sim(I )H×
R that acts transitively. If f = gi j then f̃ ' f × {0} since f does not rotate much around I .
Therefore, we have a lifting of (G , X )-structures

(Sim(I )H ×R, H ×R) → (Sim(I ),N − I ) (90)

and M gets a lifted (Sim(I )H ×R, H ×R)-structure. The developing map is given by the
classic choice of a base point: take p ∈ M̃ and D(p) ∈N − I , we have to choose q ∈ H ×R
such that q is send to D(p) by the covering H ×R → N − I , denote q by D̃(p). The
new developing map D̃ is now fully prescribed by D, the point D̃(p) and the covering
H ×R →N − I . Indeed, any point x ∈ M̃ is seen as a path from p to x and D̃ is chosen
so this path developed by D is lifted by the covering at D̃(p).

Again, D̃ is a covering map since D is a covering map. Since H ×R is simply con-
nected, the new holonomy group Γ̃must be discrete. But this is again contradicted by
proposition 3.3 since we can take f̃ , g̃ ∈ Γ̃ such that f̃ ' f × {0} and g̃ ' g × {0} with two
different attracting points in I = ∂H . This concludes the proof of theorem 4.1.
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5 Closed manifolds with a geometry modeled on the
boundary of a rank one symmetric space

Some classic facts can be derived from theorem 4.1. The geometric structures arising as
boundary geometries of rank one symmetric spaces are those given by

(
PUF(n,1),∂Hn

F

)

where F can be the field of real, or complex, or quaternionic or octonionic numbers. In
the octonionic case, the only dimension considered is n = 2. (See example 1 p. 12.)

We will show the following result, which is mainly a consequence of theorem 4.1. It
seems that this was known for at least the fields F = R (see Kulkarni and Pinkall [KP85]
and also Matsumoto [Mat92]) and F = C (see Falbel and Gusevskii [FG94]). The author
does not know wether this was known for the quaternionic or octonionic field. Even if
this result is not very new, our proof has the merit to be general since every such rank
one boundary geometry is simultaneously taken into account.

Theorem 5.1. Let M be a connected closed
(
PUF(n,1),∂Hn

F

)
-manifold. If the developing

map D is not surjective then it is a covering onto its image. Furthermore, D is a covering
on its image if, and only if, D(M̃) is equal to a connected component of ∂Hn

F −L(Γ), where
L(Γ) denotes the limit set of the holonomy group Γ= ρ(π1(M)).

If we fix a point ∞ ∈ ∂Hn
F , then we get a nilpotent similarity structure by taking(

PUF(n,1)∞,∂Hn
F − {∞}

)
and we denote this structure by (Sim(N ),N ). (Compare again

with example 1 p. 12.)

Definition 5.2. Let Γ⊂ PUF(n,1) be a subgroup. The limit set L(Γ) of Γ is the subset of
∂Hn

F given by

L(Γ) = ∂Hn
F ∩Γ ·p (91)

for any p ∈ Hn
F .

Lemma 5.3. We have the following properties.

1. The definition of L(Γ) does not depend on the choice of p ∈ Hn
F .

2. The set L(Γ) is closed and invariant by the action of Γ.

3. If C ⊂ ∂Hn
F is closed, Γ-invariant and contains at least two different points, then

L(Γ) ⊂C .

4. If L(Γ) =; then Γ⊂ K in the K AN decomposition of PUF(n,1).

This lemma is well known. See for example the fundamental paper of Chen and
Greenberg [CG74]. Even if they don’t consider the case where F is the octonionic field,
everything remains true for our lemma. In particular, the last property can be shown by
CAT(0)-techniques, see for example Bridson and Haefliger’s book [BH99, p. 179].

Note that if Γ is the holonomy group of a closed manifold M and if L(Γ) =;, then
M is in fact a spherical manifold with a (K ,∂Hn

F )-structure and must be complete by
compacity of K .

The following lemma can be found in Kulkarni and Pinkall’s paper [KP85, theorem
4.2], it was originally for the case where F = R. The name of this lemma comes from
a paper of Falbel and Gusevskii [FG94]. The proof in [KP85] is easily extended to our
general setting.
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Lemma 5.4 (Cutting lemma). Let M be a connected closed
(
PUF(n,1),∂Hn

F

)
-manifold.

Let D be the developing map and Γ be the holonomy group ρ(π1(M)). If L(Γ) consists of
at least two points and if D(M̃) avoids L(Γ), then D is a covering map onto a connected
component of ∂Hn

F −L(Γ).

The theorem is cut into two parts given by the following propositions.

Proposition 5.5. Let M be a connected closed
(
PUF(n,1),∂Hn

F

)
-manifold. If the develop-

ing map D is not surjective then it is a covering onto its image.

Proof. Let Ω= ∂Hn
F −D(M̃). Then by hypothesis Ω 6= ;. Let Γ be the holonomy group

ρ(π1(M)). By equivariance of the holonomy morphism and the developing map,Ω is
Γ-invariant and is also closed.

• IfΩ= {a} then we can suppose that a =∞ and thenΓ⊂ Sim(N ). We also naturally
have D(M̃) ⊂N . Therefore M has a nilpotent similarity structure (Sim(N ),N ).
Since M is closed and since the developing map is surjective, this structure must
be complete by theorem 4.1.

• Suppose that {a}(Ω. Then L(Γ) ⊂Ω. If L(Γ) =;, then M is a spherical manifold
(K ,∂Hn

F ) and must be complete, absurd since Ω 6= ;. If L(Γ) = {b}, then again M is
a similarity manifold and by theorem 4.1, D is a covering map onto its image. If
L(Γ) consists of at least two points, then by the cutting lemma 5.4, the developing
map is a covering onto its image.

This shows the proposition.

Proposition 5.6. Let M be a connected closed
(
PUF(n,1),∂Hn

F

)
-manifold. The developing

map D is a covering on its image if, and only if, D(M̃) is equal to a connected component
of ∂Hn

F −L(Γ), where L(Γ) denotes the limit set of the holonomy group Γ= ρ(π1(M)).

Proof. Suppose that the developing map D is a covering onto its image.

• If D is a covering onto ∂Hn
F or ∂Hn

F − {a}, then since both are simply connected,
D is a diffeomorphism. Therefore, the holonomy group Γ is discrete and D must
avoid L(Γ) since it is a covering onto its image. If D is a covering onto ∂Hn

F then
L(Γ) = ; and M is spherical. If D is a covering onto ∂Hn

F − {a} then L(Γ) = {a}
(otherwise M would be spherical and complete).

• If D avoids at least two points, then this complement is closed and invariant
and therefore contains L(Γ). Also, L(Γ) must contain at least two points, since
otherwise D would be a covering onto ∂Hn

F or ∂Hn
F − {a} by theorem 4.1. By the

cutting lemma 5.4, D is a covering onto a connected component of ∂Hn
F −L(Γ).

Now we suppose that D has its image equal to a connected component of ∂Hn
F −L(Γ).

• If L(Γ) =; then M is spherical and D is a covering map.

• If L(Γ) = {a} then M is a nilpotent similarity manifold, and by hypothesis and
theorem 4.1, D is a covering onto its image.

• If L(Γ) has at least two points, then by the cutting lemma 5.4, the developing map
is a covering onto its image.

It concludes the proof.

It also concludes the proof of theorem 5.1.
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