Yue Tong 
  
Wanqing Shen 
  
Jianfu Shao 
email: jian-fu.shao@polytech-lille.fr
  
Jueliang Chen 
  
A new bond model in peridynamics theory for progressive failure in cohesive brittle materials

Keywords: Cohesive brittle materials, Concrete, Peridynamics, Finite element method, Crack propagation, Progressive failure

In this study, a new bond damage model is proposed in the framework of the bond-based peridynamics theory to better describe the progressive failure process in cohesive brittle materials. The new bond model is able to account for the progressive failure and residual strength of bonds. The peridynamics theory is further coupled with the classical finite element method in order to efficiently describe failure processes at a large scale of structures. Several benchmark tests concerning mode-I and mixed-mode fractures in concrete structures are studied to verify the efficiency of the coupled peridynamics-finite element method. The obtained numerical results are in good agreement with the experimental data for both overall force-displacement responses and crack propagation patterns. It is found that the new bond damage model significantly improves the prediction of progressive failure process in cohesion brittle materials with respect to the classical elastic-brittle bond model.

Introduction 1

Progressive failure process of cohesive geomaterials such as rocks and cement-based materials is gener-2 ally relevant to the transition from diffuse micro-cracking to localized macro-cracking (Rots, 1988, Loehn-3 ert and[START_REF] Loehnert | Crack shielding and amplification due to multiple microcracks interacting with a macrocrack[END_REF]. Despite of significant advances obtained during the last decades, modeling of 4 progressive failure process in those materials still remains an open challenge, in particular for cases with 5 multiple cracks.

6

Based on rigorous homogenization techniques, some micro-mechanics based damage models have been 7 developed, considering unilateral effects of crack opening-closure [START_REF] Zhu | A micromechanics based thermodynamic formulation of isotropic damage with unilateral and friction effects[END_REF] and coupling between 8 crack propagation and frictional sliding [START_REF] Zhu | A refined micromechanical damage friction model with strength prediction for rock like materials under compression[END_REF][START_REF] Zhu | Analytical and numerical analysis of frictional damage in quasi brittle materials[END_REF], Zhao et al., 2018b). In these 9 models, the localized cracking process is not explicitly taken into account. This has been completed in some 10 recent studies by introducing a localized crack in the representative volume element (Zhao et al., 2018a). 11 However, the efficiency of those models still needs to be demonstrated.

12

Various advanced numerical methods have also been developed for modeling cracking and failure in different engineering materials. For instance and without giving an exhaustive list of all existing methods, extended finite element methods (XFEM) [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF] and enriched finite element methods (EFEM) [START_REF] Oliver | Modelling strong discontinuities in solid mechanics via strain softening constitutive equations, part 1: fundamentales[END_REF] have been widely adopted by many authors. Extended finite element methods have successfully been applied to modeling hydraulic fracturing in rocks [START_REF] Zeng | Numerical study of hydraulic fracture propagation accounting for rock anisotropy[END_REF][START_REF] Zeng | Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid edfm-xfem approach[END_REF]. However, in those methods, specific nodal enrichment functions and crack propagation criteria are required. Stress singularity issues around crack tip should also be properly considered. In enriched finite element methods, it is needed to introduce local enrichment methods in sharp functions. In these two types of methods, the nucleation of a new crack is also a delicate issue. More recently, phase-field methods have been proposed by approximating sharp fractures by regularized smeared cracks [START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF]. The mathematical formulations of phase-field methods are sometimes complex.

On the other hand, peridynamics-based methods have gained more and more attention during recent years as an efficient tool for modeling cracking and failure process [START_REF] Silling | A meshfree method based on the peridynamic model of solid mechanics[END_REF][START_REF] Macek | Peridynamics via finite element analysis[END_REF], Shojaei et al., 2018). In this class of methods, integral motion equations are solved instead of differential equations solved in finite element method. This makes it easier to consider discontinuities related to cracking process (Silling, 2000, Madenci and[START_REF] Madenci | Peridynamic theory[END_REF]. The macroscopic cracking of continuum is directly related to progressive breaking of materials bonds [START_REF] Javili | Peridynamics review[END_REF][START_REF] Diehl | A review of benchmark experiments for the validation of peridynamics models[END_REF]. However, due to the non-locality of integral equations, it is computationally more demanding than the traditional finite element calculations. Therefore, it seems pertinent to combine the peridynamics-based method with finite element method in order to increase the capability in dealing with large boundary values problems [START_REF] Macek | Peridynamics via finite element analysis[END_REF][START_REF] Galvanetto | An effective way to couple fem meshes and peridynamics grids for the solution of static equilibrium problems[END_REF], Zaccariotto et al., 2018).

In most classical peridynamics-based methods, bonds exhibit an elastic-brittle behavior [START_REF] Madenci | Peridynamic theory[END_REF]Oterkus, 2014, Javili et al., 2018). At the macroscopic scale, this leads to a very brittle failure process and the progressive failure process in cohesive materials is generally not correctly described [START_REF] Bažant | Concrete fracture models: testing and practice[END_REF][START_REF] Yang | An improved ordinary state-based peridynamic model for cohesive crack growth in quasibrittle materials[END_REF]. Some improvements have been proposed by using a bilinear bond model [START_REF] Zaccariotto | Examples of applications of the peridynamic theory to the solution of static equilibrium problems[END_REF] and a trilinear bond model [START_REF] Yang | Investigation on mode-i crack propagation in concrete using bond-based peridynamics with a new damage model[END_REF]. However, there are some drawbacks in determining the parameters of those bond models and the obtained results are not really satisfactory. As a result, it is needed to establish an appropriate bond model for the bond-based peridynamics theory to properly study crack problems in quasi brittle materials.

In this paper, a new damage model is proposed for the local behavior of bonds by considering progressive degradation of mechanical strength and residual strength of bonds. Further, the peridynamics theory is coupled with the standard finite element method in view of numerical analysis of large structures. The parameters involved in the new bond model will be physically identified. The efficiency of the proposed coupled peridynamics-finite element method will be evaluated through three typical laboratory tests.

Bond-based peridynamics theory

In the bond-based peridynamics theory, a solid body is divided into a number of material points occupying a given volume. As shown in Figure 1, each material point defined by the position vector x directly 2 interacts with other material points x in the form of "bond" within the horizon zone H x . The radius δ determines the size of the horizon zone H x , and represents the range of nonlocal interactions. From this point of view, the classical elasticity theory can be treated as a limiting case of the peridynamics theory when δ approaches zero [START_REF] Silling | Convergence of peridynamics to classical elasticity theory[END_REF]. The motion equation of each material point obeying the Newton's second law is given as [START_REF] Silling | Reformulation of elasticity theory for discontinuities and long-range forces[END_REF]:

ρ(x) ü(x, t) = H x f (u(x , t) -u(x, t), x -x)dV x + b(x, t) (1) 
where ρ(x) is the mass density, u(x, t) (short form: u) and u(x , t) (short form: u ) are the displacement vectors of material points x and x respectively, f (u -u, xx) is a pairwise force density function defined as the force vector per unit volume squared describing the action exerted by x on x, V x (short form: V )

is the volume of the point x, b(x, t) (short form: b) is the external load density. This equation can be more concise by introducing the relative position of the two points in the reference configuration ξ = xx and the relative displacement in the deformed configuration η = uu:

ρ ü = H x f (η, ξ)dV + b (2) 
For static equilibrium problems, the motion equation takes the following form:

0 = H x f (η, ξ)dV + b (3) 
In the bond-based peridynamics theory, for a linear elastic isotropic solid, the pairwise force density function f has the following properties [START_REF] Silling | Reformulation of elasticity theory for discontinuities and long-range forces[END_REF]:

f (-η, -ξ) = -f (η, ξ) (4) f (η, ξ) = cs y -y |y -y| (5) 
where y=x+u and y =x +u are the current position of the material points, c is the local elastic modulus standing for the stiffness of the bond, and s is the relative elongation of the bond. This means that the force density between material points is equal in magnitude and parallel to their relative position in the deformed configuration. Naturally, it assures the conservation of linear momentum and angular momentum. The scalar bond stretch s is expressed as:

s = |ξ + η| -|ξ| |ξ| (6)
And the local bond modulus c can be expressed in terms of macroscopic elastic constants of continuum as follows [START_REF] Silling | Reformulation of elasticity theory for discontinuities and long-range forces[END_REF]:

c =                                            12E πδ 4 , 3D 48E 5πtδ 3 , plane strain 9E πtδ 3 , plane stress 2EA δ 2 , 1D . ( 7 
)
in which E is the Young's modulus, δ is the horizon radius in peridynamics theory, t is the thickness of 2D case and A is the cross section area of 1D case. It is useful to point out that the relations above are obtained for a fixed value of Poisson's ratio, namely ν = 1/4 for 3D and plane strain cases and ν = 1/3 for plane stress case. Other values of Poisson's ratio cannot be used in the classical peridynamics theory. In order to overcome this limitation, an extended bond-based peridynamics theory has been proposed by considering bond rotation ( (Zhu andNi, 2017, Li et al., 2020)). Concerning the bond failure, an elastic-brittle bond model is generally used in the classical peridynamics theory [START_REF] Silling | Reformulation of elasticity theory for discontinuities and long-range forces[END_REF]. The linear elastic -brittle bond model (called PMB model) is illustrated in Figure 2 and defined as follows:

f (η, ξ) = csµ y -y |y -y| (8)
where µ is a scalar valued function defining the bond status and takes the value of 1 for active bond and 0 for broken bond:

µ(ξ) =                  1, s < s c 0, otherwise . (9) 
The parameter s c denotes the critical stretch of bond. It is possible to link the energy required to break all the bonds per unit area (as shown in Figure 3) to the macroscopic fracture energy G f for tensile failure [START_REF] Silling | A meshfree method based on the peridynamic model of solid mechanics[END_REF]:

G f = δ 0 2π 0 δ z cos -1 z ξ 0 ωξ 2 sinφdφdξdθdz ( 10 
)
where ω is the work needed to break one bond. For the elastic-brittle material, ω is expressed as: Then by considering ( 10) and ( 11), the critical stretch of bond for the PMB model can be given in the following form [START_REF] Silling | A meshfree method based on the peridynamic model of solid mechanics[END_REF]:

ω = s c 0 f ξds = cs c 2 ξ 2 (11) o θ A δ ξ z Φ Fracture surface
s c =                                  5G f 6Eδ , 3D 5πG f 12Eδ , plane strain 4πG f 9Eδ , plane stress . ( 12 
)
On the other hand, it is convenient to define a macroscopic damage state variable at each material point.

This damage variable is generally defined as the ratio between the broken bonds number and the total one.

Thus, the macroscopic damage state variable 0 ≤ ϕ ≤ 1 is calculated by:

ϕ(x) = 1 - H x µ(ξ)dV H x dV (13) 
It is clear that ϕ = 0 corresponds to the undamaged state and ϕ = 1 means that the material point x is completely cracked and separated from the other points within its horizon. In practice, the value of ϕ is generally used to describe the initiation and propagation of macroscopic cracks.

3. New bond damage model for cohesive brittle materials

Formulation of new bond damage model

In the classical bond model shown in Figure 2, the bond force increases linearly with the bond stretch and drops abruptly to zero when the bond stretch reaches its critical value. This model has been widely used for modeling fracture problems in linear elastic brittle materials. However, for most cohesive brittle materials such as rocks and cement-based materials, the macroscopic failure is generally a progressive process. Due to material cohesion and frictional effect, in uniaxial tension or compression test, the stress progressively decreases after the peak strength [START_REF] Petersson | Crack growth and development of fracture zones in plain concrete and similar materials[END_REF][START_REF] Reinhardt | Tensile tests and failure analysis of concrete[END_REF]. There is even a residual strength for large strain. It is obvious that the classical bond model presented above does not physically correspond to the mechanical behavior of cohesive brittle materials. When studying the flexion test of a concrete beam, Rots [START_REF] Rots | Computational modeling of concrete fracture, delft university of technology[END_REF] has compared three different mathematical functions for the stress-crack opening curve (namely, linear, power and exponential) to reproduce the global load-deflection response. The exponential law was found to be the most consistent with the experimental results. Based on this experimental background, some authors have used the exponential law to analyze tensile softening in concrete [START_REF] Winkler | Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining[END_REF][START_REF] Yang | An improved ordinary state-based peridynamic model for cohesive crack growth in quasibrittle materials[END_REF]. In this study, it is assumed that the local mechanical behavior of bonds is physically consistent with that at the macroscopic scale. Hence, the following new damage model (called QBR model in subsequent sections) is proposed to describe the mechanical response of bonds for cohesive quasi-brittle materials. The proposed model is formulated as follows:

f =                        cs, s < s 0 cs 0           e -k s -s 0 s 0 + α s -s 0 s           , s > s 0 . ( 14 
)
The relationship between the bond stretch s and the bond force is illustrated in Figure 4. s 0 represents the elastic limit of bond stretch at the peak force. k is the parameter that mainly governs the reduction of the bond force while α controls the residual bond force. By using this model, the bond status coefficient µ can be calculated as:

µ(ξ) =                    1, s ≤ s 0 f cs 0 , s > s 0 . ( 15 
)
With ( 15), ( 14) can be rewritten as:

µ(ξ) =                    1, s ≤ s 0 e -k s -s 0 s 0 + α s -s 0 s , s > s 0 . ( 16 
)
As the basic difference with the classical bond model in ( 9), the bond status coefficient given in ( 16)

from the new bond model continuously evolves from 1 to 0. This provides the possibility to describe the progressive damage process instead of the abrupt one. By adopting the general concept of continuum damage mechanics, the degradation of material properties due to damage process can be described by the diminution of the local elastic modulus of bonds. Thus, the local elastic damage behavior of bonds can be expressed in the following form:

f = c d s (17) 
where c d denotes the current local modulus of damaged bonds, which is determined by: 

c d =                            c, s ≤ s 0 cs 0           e -k s -s 0 s 0 + α s -s 0 s           s , s > s 0 . ( 18 
) s s 0 f 0 α•c•s 0 α =0 α >0

Parameters determination

In the new bond model, there are three parameters to be determined, namely, the bond elastic stretch limit s 0 , the bond force reduction parameter k, and the bond residual force parameter α. The elastic stretch limit s 0 is physically related to the nucleation of micro-cracks. The macroscopic failure of most cohesive brittle materials is the consequence of coalescence of micro-cracks. It is physically not reasonable to link the local elastic limit s 0 to the macroscopic tensile strength f t . It is however consistent to calculate s 0 from the fracture energy G f . For this purpose, the work required to break one bond is calculated as:

ω = s 0 f ξds = cs 0 2 ξ           1 2 + 1 k           1 -e -k s -s 0 s 0           + α s s 0 -1 -ln s s 0           (19) 
According to ( 19), the fracture energy for 3D case can be expressed as:

G f = δ 0 2π 0 δ z cos -1 z ξ 0 ωξ 2 sinφdφdξdθdz = πcs 0 2 δ 5           1 + 2 k           1 -e -k s -s 0 s 0           + 2α s s 0 -1 -ln s s 0           10 (20)
In the same way, the fracture energy for 2D case can be calculated as:

G f = 2t δ 0 δ z cos -1 z ξ 0 ωξdφdξdz = tcs 0 2 δ 4           1 + 2 k           1 -e -k s -s 0 s 0           + 2α s s 0 -1 -ln s s 0           4 (21)
Unfortunately, it is noted that the elastic stretch limit s 0 cannot be calculated directly by using ( 20) and ( 21) because of the unknown parameters k and α. Therefore, an iterative method is needed. As a trial approximation, the residual force is first neglected by putting α = 0. Then it is assumed that the bond failure takes place when the bond stretch s is big enough such that the quantity (1e -k s-s 0 s 0 ) is very close to 1. In this case, the trial value of s 0 can be expressed as a function of k:

s 0 =                                            10G f πcδ 5 1 + 2 k , 3D 4G f tcδ 4 1 + 2 k , 2D . (22) 
Substituting ( 7) for ( 22), the trial value of s 0 can be obtained by:

s 0 =                                                                        5G f 6Eδ 1 + 2 k , 3D 5πG f 12Eδ 1 + 2 k , plane strain 4πG f 9Eδ 1 + 2 k , plane stress . ( 23 
)
Comparing ( 23) with ( 12), it is found that the trial value of s 0 in the new bond (QBR) model has the following mathematical relationship with the critical stretch s c used in the classical (PMB) bond model:

s 0 = s c 1 + 2 k (24)
Thus, by setting a given value to k, the value of s 0 can be calculated from the fracture energy G f and elastic modulus E. Afterwards, the values of s 0 and α are iteratively optimized by comparing numerical results

and experimental data for a given laboratory test.

4. Coupling of peridynamics theory and finite element method

Coupling strategy

According to (3), the static equilibrium equation for the discrete solid system inside the horizon of the point x is written as:

0 = N p p=1 f (η, ξ)V p + b (25)
where N p is the number of points within the horizon and V p is the volume of the point p. Then by introducing the following second order tensor initially proposed by [START_REF] Macek | Peridynamics via finite element analysis[END_REF]Silling, 2007, Silling, 2000),

C(ξ) = ∂ f ∂η (0, ξ) ∀ξ (26)
one obtains the following discrete system of linearized equilibrium equations [START_REF] Macek | Peridynamics via finite element analysis[END_REF]Silling, 2007, Silling, 2000):

0 = N p p=1 C(x p -x) • (u p -u x ) + b (27)
where x p is a point within the horizon of the point x, and u p is the displacement of the point x p . Similarly to the classical finite element method, the system of equilibrium equations can also be written in the matrix form [START_REF] Macek | Peridynamics via finite element analysis[END_REF]Silling, 2007, Silling, 2000):

K p U p = F p (28)
in which K p is the stiffness matrix of peridynamics region, U p and F p are respectively the related displacement and force vectors of peridynamics points.

Based on previous studies [START_REF] Galvanetto | An effective way to couple fem meshes and peridynamics grids for the solution of static equilibrium problems[END_REF], Zaccariotto et al., 2018), the coupling strategy between peridynamics theory and finite element method is developed by using the following general idea.

The internal forces evaluated using the finite element method only act on the finite element nodes, while the internal forces evaluated using the peridynamics theory only act on peridynamics nodes [START_REF] Galvanetto | An effective way to couple fem meshes and peridynamics grids for the solution of static equilibrium problems[END_REF]. Therefore, in the global stiffness matrix, the terms related to finite element nodes are determined only from the finite element method and those related to peridynamics nodes only from the peridynamics theory. For the sake of clarity, an example is here presented for 1D problem, as shown in Figure 5. The bar is discretized into eight nodes with an equal interval ∆x. The nodes 4 and 5 (red solid circles) are set as peridynamics points with a horizon radius of δ = 3∆x, and the other nodes (blue solid squares) are finite element nodes. The black solid lines represent finite elements and the dotted black curves represent peridynamics bonds. For the finite elements, the stiffness matrix of a bar element is calculated by [START_REF] Zienkiewicz | The finite element method[END_REF]:

K F = EA ∆x               1 -1 1 -1               = m               1 -1 1 -1               , where m = EA ∆x (29) 
E is the Young's modulus and A the section area of the bar. For the peridynamics bonds, by using the bond elastic modulus for 1D case given in ( 7), the stiffness matrix of the bond between the point i and one other point j within its horizon is given by:

K P = c ξ i j V i V j               1 -1 1 -1               or K P = c ξ i j V i V j 2               1 -1 1 -1               (30) 
In ( 30), the first expression is used when the point j is completely within the horizon of i, while the second one is used for the points at the boundary of the horizon of i [START_REF] Galvanetto | An effective way to couple fem meshes and peridynamics grids for the solution of static equilibrium problems[END_REF]. By considering the local modulus of damaged bond c d in ( 18), the stiffness matrix for the peridynamics bonds ( 30) is rewritten as:

K P = c d ξ i j V i V j               1 -1 1 -1               or K P = c d ξ i j V i V j 2               1 -1 1 -1               (31) 
Finally, by introducing the notation n = cV i V j ∆x , the coupled global stiffness matrix of the 1D bar shown in Figure 5 can be obtained as:
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Elastic response verification

In order to verify the coupled method and the related computation code, two linear elastic problems are here considered. The first one is a bar subjected to tensile force, as shown in Figure 6. The bar with a length of 20 (unit of length) is divided by a constant interval of ∆x = 1 (unit of length). The bar is constrained at the left end (x = 0), and is subjected to a tensile unit force (F = 1) (unit of force) at the right end (x = 20). The input parameters for this problem are the elastic modulus E = 1 (unit of stress or modulus), the cross section area A = 1 (unit of area). Three nodes respectively located at P1 (x = 3), P2 (x = 10) and P3 (x = 17) are designated as the peridynamics nodes, and the others are finite element nodes. In Figure 7, it is shown that the calculated node displacements using the coupled method perfectly coincide with the exact solution. The second example is a 2D rectangular plate with the size of 20 × 15 (unit of length) as shown in Figure 8. The no-displacement boundary condition is prescribed on the left edge (x = 0), and the uniform tensile unit force acts on the right edge (x = 20). The input parameters are the plate thickness t = 1 (unit of length), the elastic modulus E = 1 (unit of stress) and Poisson's ratio υ = 1 3 . And the plate is meshed by the grid of ∆x = ∆y = 1 (unit of length). The peridynamics nodes are in the region of 7 ≤ x ≤ 13, 5 ≤ y ≤ 10. And all the rest nodes belong to the finite element region. For the purpose of comparison, this plate is respectively analyzed by the coupled method with MATLAB and by full finite element method with ABAQUS code. The obtained distributions of node displacement are respectively presented in Figure 9 for the coupled method and in Figure 10) for the full finite element method. Taking the results obtained by ABAQUS as the reference values, the relative error of the maximum horizontal displacement (x-displacement) obtained by the coupled method is about 0.05% and the relative error of the maximum vertical displacement (y-displacement) is about 0.79%. This shows the good accuracy of the coupled method and the related computation code. 

Numerical implementation for cohesive brittle materials

After the verification of the proposed coupled method for elastic problems, this method is now applied to modeling progressive failure processes in cohesive brittle materials by using the new bond damage model presented above. The general numerical procedure is as follows. The geometry and related mesh are first created and the related boundary conditions are introduced. The parameters of the bond damage model k, α and s 0 are given. The loading history is divided into n step steps. For the loading step n th (n ≤ n step ), the following subsequent steps are followed.

1. Update the coupled stiffness matrix with ( 29), ( 31) and (32);

2. Solve the system of equations and calculate all node displacements;

3. Calculate the bond stretch values s with (6);

4. Update the bond damage values ϕ according to ( 16) and ( 13), evaluate the bond status function µ;

5. Update the current local modulus c d of the damaged bonds for the next loading step (n + 1) th ;

Experimental verification

In this section, three experimental tests are studied by using the new bond damage model and the coupled peridynamics-finite element method. All the calculations are performed in 2D plane stress conditions.

Uniform meshes are used with 4-node rectangular elements. The displacement-controlled loading path is adopted in order to capture complete post-peak responses.

Three-point bending beam test

The first example is a three-point beam bending test which is widely used to investigate mode-I fracture behavior [START_REF] Rots | Computational modeling of concrete fracture, delft university of technology[END_REF][START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF]. The geometric domain and boundary conditions of the beam are shown in 

Sensitivity study of main parameters

As mentioned in Section 3.2, there are three mechanical parameters (s 0 , k, α) in the new bond damage model. But as indicated in ( 20) and ( 21), the value of s 0 can be obtained as long as the values of k and α are given. Therefore, the parameters that can play a major role are the bond force reduction parameter k and the bond residual force parameter α. Hence, the sensitivity study is carried out in order to determine the influence of these parameters on the macroscopic mechanical response of beam.

Three different values of k are first considered (k = 0.01, k = 0.02, k = 0.05) while putting α = 0.

The obtained force-displacement curves are shown in Figure 12. It is found that k primarily controls the reduction rate of force after the peak value. The significant differences in the peak value between three cases are the direct consequence of the correlation between s 0 and k given by ( 24). When the value of k is higher, the peak value of force is higher but the force is reduced more quickly in the post-peak regime.

Similarly, three values of α (α = 0, α = 0.02, α = 0.04) are considered by taking k = 0.01. The predicted results are presented in Figure 13. One can see that α mainly influences the response of beam in the postpeak regime, in particular the residual force. In other words, α plays a significant role when the damage of bonds becomes relatively large.

Moreover, the influence of s 0 is also analyzed by using the constant values of k = 0.01 and α = 0. For this purpose, the value of s 0 given by ( 24) is first calculated as the reference one. Then, three cases with s 01 = s 0 , s 02 = 0.93s 0 and s 03 = 0.88s 0 are considered. From the results presented in Figure 14, it can be seen that, as the value of s 0 decreases, both the peak force and peak displacement decrease while the residual force remain unchanged. The crack propagation during the three-point bending test is a strongly nonlinear problem. As for most 249 numerical methods, the structure response may be sensitive to the size of load increment. For this reason, 250 the impact of the prescribed displacement increment size (∆u) is verified. As shown in Figure 15, the overall 251 force-displacement responses are sensitive to the size of ∆u. However, there is a convergence of numerical 252 results when the size of ∆u is small enough. For the present case, the size of ∆u should be smaller than 

Comparison with experimental data

The numerical results are compared with the experimental data reported in [START_REF] Rots | Computational modeling of concrete fracture, delft university of technology[END_REF] in terms of overall displacement-force curves. As shown in Figure 16, two tests have been performed. There are quite large experimental scatters between these two tests probably due to heterogeneities of concrete in two tested beams. For numerical modeling, the parameter k is adjusted to 0.01. But two values of α are chosen: α = 0 and α = 0.02. Note that when α = 0, no residual force is taken into account in the damaged bonds.

According to Figure 16, the new bond damage model (QBR) associated with the coupled method is able to well reproduce the overall responses of beam in two tests. In particular, the progressive failure process during the post peak regime is well described. The use of the parameter α allows a better description of residual force. In order to illustrate the advantage of the new bond model, the numerical results obtained by using the classical bond model (PMB) are also presented and compared with those obtained by the new bond model. It is obvious that the new bond model (QBR) brings a significant improvement of numerical predictions both in the qualitative and quantitative way. In particular, the classical bond model (PMB) is not able to correctly describe the progressive failure process of beam in the post-peak regime. The crack propagation process of the notched beam is also investigated. For this purpose, an overall 

Double-edge notched specimen test

In this section, the tension test of a double-edge notched concrete specimen, typically studied in previous papers [START_REF] Shi | Crack interaction in concrete[END_REF][START_REF] Le | Localised failure mechanism as the basis for constitutive modelling of geomaterials[END_REF], is considered. As shown in Figure 19, the bottom edge of the specimen as well as the top-left corner is fully fixed. Besides, the top edge is subjected to a uniform vertical displacement. In the experiment study conducted by [START_REF] Shi | Crack interaction in concrete[END_REF], two tests were performed with 

Discussion

In order to illustrate the effectiveness of the proposed bond damage model for the description of failure process in cohesive quasi-brittle materials under different kinds of loading history, the case of double-edge notched specimen subjected to axial compression is here considered. As shown in Figure 24, a uniform compressive vertical displacement is prescribed on the upper edge of the specimen. However, the mechanical parameters, the grid size, and the prescribed PD region are all the same as for the tension case.

Global force-displacement curves are presented in Figure 25 for different values of the prescribed displacement increment by using k = 0.005 and α = 0. It is shown that the global responses are quite stable.

The value of 10 -4 mm is here used for the analysis of damage and displacement field. The distributions of damage and displacement are respectively given in Figure 26, Figure 27 and Figure 28 for the different values of prescribed displacement. It can be found that cracks initiate at the end of the initial notches and then propagate into the specimen main along the vertical direction. It is interesting to note that the damage of bonds in the peridynamics theory is activated only by the tensile strain. In this case, even if the specimen is subjected to a compression at the global scale, local tensile stresses and strains are still generated in some regions, for example around the initial notches. On the other hand, in cases without initial notch, the existence of material heterogeneities can also induce local tensile stresses and strains and then the initiation and propagation of cracks under globally compressive loads. It seems that the proposed bond damage model is able to capture the progressive failure process also for such cases with compressive loads. 

L-shape structure test

The third laboratory test is a mixed-mode test of an L-shaped structure with geometric domain and boundary conditions depicted in Figure 29. This test was previously investigated in [START_REF] Winkler | Experimental verification of a constitutive model for concrete cracking[END_REF][START_REF] Winkler | Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining[END_REF]. As in the experiment setup, the vertical displacement is prescribed to the point at a distance of 30 mm from the right edge, while the fixed displacements constraints are applied to the bottom edge.

The basic mechanical parameters used are E = 25.85GPa, ν = 1 3 and G f = 0.065N/mm. The size of grid is ∆x = 5mm. In view of studying crack propagation, the range of 0 ≤ x 1 ≤ 250, 200 ≤ y 1 ≤ 245 and 0 ≤ x 2 ≤ 350, 250 ≤ y 2 ≤ 375 is set as the peridynamics region (the origin is set at the bottom left point).

The related horizon radius δ of the peridynamics points is 3∆x. Through the analyses of the above three tests, the advised QBR damage model has been confirmed again. The main calculation parameters are summarized in Table 1. What should be noted is the applied bond elastic stretch limit s0 in the numerical simulation is smaller than the ratio of tensile strength to elastic modulus (ft/E), which may be due to the size effect. But for materials with high brittleness index, the value of s0 can be approximately determined by ft/E. In addition, the parameter k in the new damage model may be inversely related to the elastic modulus E. 

Conclusions

A linear-exponential continuous damage model (QBR model) is introduced to the bond-based PD theory to investigate the crack propagation in quasi brittle rock-like materials, such as concrete materials. Different from the original linear damage model for PMB materials, the tension softening behavior can be reasonably expressed by The peridynamics theory with the new bond model has further been coupled with the standard finite element method. The coupled method is able to investigate the damage and failure process in a large scale of structures.

A numerical sensitivity study has been performed to identify the respective impacts of three parameters introduced in the new bond damage model. It is found that the bond damage exponent parameter k plays an essential role in the determination of the macroscopic peak strength and in the description of post-peak responses. The impact of the bond residual force parameter α remains relatively small. Therefore, in many cases, it is possible to neglect this parameter by taking α = 0. The bond elastic limit parameter s 0 has an indirect impact on the overall responses as soon as its value is depending on that of k.

The performance of the new bond model as well as the coupled method has been verified through three typical laboratory tests on concrete structures, three-point bending test, double-edge notched tension test and L-shape structure test. In all three cases, the experimental force-displacement curves are well reproduced by the coupled method with the help of the bond model. In particular, the new bond damage model significantly improves the prediction of the post-peak responses with respect to the classical elastic-brittle bond model.

The proposed coupled method together with the new bond damage model well describes the progressive failure processes in these tests.
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 1 Figure 1: Illustration of bond-based peridynamics theory
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 2 Figure 2: Illustration of classical linear elastic brittle failure model of bond
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 3 Figure 3: Evaluation of fracture energy G f
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 4 Figure 4: Illustration of the new bond damage model for cohesive quasi brittle materials (QBR model)
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 5 Figure 5: Coupling diagram of 1D bar
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 7 Figure 6: Geometry and boundary conditions of 1D bar problem

Figure 8 :Figure 10 :

 810 Figure 8: Geometry and boundary conditions of 2D plate problem
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 1111 Figure 11. The size of the regular mesh grid is ∆x = 2.5mm. The input macroscopic mechanical parameters are the Young's modulus E = 20GPa, Poisson's ratio ν = 1 3 and fracture energy G f = 0.113N/mm. The beam is subjected to a prescribed displacement (u) at the upper midpoint, while it is fixed in the both directions at the lower left point and in the vertical direction at the lower right point. The nodes in the range of 200 ≤ x ≤ 250, 0 ≤ y ≤ 100 (the origin is set at the bottom left point) are peridynamics points with a horizon radius δ = 3∆x.
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 14 Figure 12: Sensitivity study of k with α = 0

  Figure 15: Convergence study of overall beam response for three-point bending test with respect to prescribed displacement increment size ∆u
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 16 Figure16: Force-displacement curve of beam in three-point bending test: comparison between experimental data ([START_REF] Rots | Computational modeling of concrete fracture, delft university of technology[END_REF]), the new bond model (QBR) and the classical bond model (PMB)
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 1718 Figure 17: Global damage value contours in three-point bending test (α = 0)
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 212623 Figure20: Force-displacement curves in double-edge-notched test (a = 0), experimental data from[START_REF] Shi | Crack interaction in concrete[END_REF] 
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 2527 Figure 24: Sketch map of compression test on double notched specimen
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 29 Figure 29: Sketch map of L-shape structure test
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 3029 Figure30: Force-displacement curve of L-shape structure test: experimental data from[START_REF] Winkler | Experimental verification of a constitutive model for concrete cracking[END_REF] 
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 31 Figure 31: Crack propagation mode in L-shape structure test (α = 0)

Table 1

 1 Parameters used in simulations

	Parameters	Example 1 Example 2 Example 3
	Young's modulus E (GPa)	20	40	25.85
	Poisson's ratio ʋ	1/3	1/3	1/3
	Fracture energy Gf (N/mm) 0.113	0.063	0.065
	Tensile strength ft (MPa)	2.4	2.86	2.7
	Damage model k	0.01	0.005	0.01
	Damage model s0	6.24•10 -5	4.60•10 -5	4.30•10 -5
	ft /E	1.2•10 -4	7.15•10 -5	1.04•10 -4

• 10 -4 mm. 254
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different values of the vertical distance a (unit of length) between two notches (a = 0, a = 10).

The mechanical parameters chosen for numerical calculations are E = 40GPa, ν = 1 3 and G f = 0.063N/mm.

The grid size adopted is ∆x = 1mm. In order to capture the crack propagation process between two notches, the PD region is chosen as 0 ≤ x ≤ 60, 30 ≤ y ≤ 90 (the origin is set at the bottom left point). Similarly, for all the peridynamics points, the horizon radius δ is taken as 3∆x. In the first case, two symmetrical notches (a = 0) are created. After preliminary calculations, the size of prescribed displacement increment is chosen as 10 -4 mm. The parameter k is determined as 0.005. The obtained force-displacement curves are shown in Figure 20. In an overall manner, the numerical results agree well with the experimental responses, especially when the residual force of damaged bonds is taken into account α = 0.025. The crack propagation pattern is illustrated in Figure 21 by using the overall damage variable contour for α = 0. It can be observed that the crack initiates and propagates horizontally along the symmetric line until the crack goes through the entire cross-section, which is consistent with the experimental observation [START_REF] Shi | Crack interaction in concrete[END_REF].

In the second case, the specimen contains two asymmetric notches (a = 10). The same values of mechanical parameters are used as for the first case. The predicted force-displacement results are presented in Figure 22, again with a good agreement with the experimental data. Considering the little effect of the residual force parameter α on cracking pattern, the crack propagation pattern in the specimen is illustrated in Figure 23 by using α = 0. The numerical results indicate that the cracks initiate and propagate horizontally at the early loading stage. As the prescribed displacement increases, the crack propagation path deflects and the cracks extend along the diagonal line until two cracks join together. The crack propagation pattern is well supported by the experiment observations [START_REF] Shi | Crack interaction in concrete[END_REF].