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Abstract
The increasing demand for goods, especially in urban areas, together with the tech-
nological advances are creating both opportunities and challenges for planning ur-
ban freight systems. One of these promising opportunities is to use the underused
assets in people-based systems to transport goods. In this paper, we consider an
integrated system in which a set of freight requests needs to be delivered using a
fleet of grounded, and autonomous, pickup and delivery (PD) robots where a public
transportation service (referred to as scheduled line (SL)) can be used as part of
PD robot’s journey. Passengers and PD robots (carrying freight) share the avail-
able capacity on SLs where passengers are prioritized, and their transport demand
is stochastic. Thus, the number of available places for PD robots is only revealed
upon shuttle arrival to the corresponding SL station. We first formulate this prob-
lem as a Pickup and Delivery Problem with Time Windows and Scheduled Lines
(PDPTW-SL). We then introduce a sample average approximation (SAA) method
along with an Adaptive Large Neighborhood Search (ALNS) algorithm for solving
the stochastic optimization problem. Finally, we present an extensive computational
study, analyze its results, and give some directions for future research.

KEYWORDS
Pickup and delivery; Scheduled lines; Stochastic demand; ALNS; Sample average.

1. Introduction

The demand for freight transportation basically results from the need of trans-
porting goods from producers to consumers who are geographically apart. In general,
this transportation process consists of picking up products at their producer locations
(pre-haul), transporting them (long-haul), and delivering them to final consumers
(end-haul) at the right time and place and at low costs (Steadieseifi et al. (2014)). The
increasing demand for goods in urban areas, together with the emerging information
and technological advances are creating both opportunities and challenges for planning
urban freight systems (Savelsbergh & Van Woensel (2016)). One of these promising
opportunities is to use the low-utilized people transport systems (e.g. off-peak hours
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of urban rail, buses or private-car trips) to also transport goods. A successful integra-
tion of these transportation streams can enhance the service quality of their existing
transportation systems as well as their system-wide gains. For example, spare capacity
in public transport systems can be used for retail store replenishment (Trentini et al.
(2015)) or a taxi can deliver freight when transporting a passenger or during idle time
(Li et al. (2014)).

In such combined systems, we have a set of passengers and parcels that need to be
transported simultaneously from their origins to their destinations. This combination
can lead to minimizing vehicle-miles traveled, traffic congestion and pollution levels
in urban areas. It can also yield some travel cost reductions for passengers. However,
such a system must ensure that the transportation of goods does not disturb passenger
trips. In other words, a passenger would accept only small deviations and short extra
times when transporting some parcels in the same trip (i.e. trip times that exceed
passenger usual route times significantly might not be acceptable).

In this paper, we consider an integrated system in which a set of freight requests
needs to be transported from their origins to their destinations. We use a fleet of
grounded and autonomous pickup and delivery (PD) robots where a public trans-
portation service (e.g. a set of shuttles, referred to as scheduled line (SL)) can be used
as part of PD robot’s journey 1. Most research considers that passengers and goods are
transported separately. However, we consider that passengers and PD robots (carrying
goods) share the same capacity. This implies that a freight request can be served in one
of two ways: (1) a direct delivery (where only a PD robot is used) or (2) transferred
through SLs (where both PD robots and SLs are used). Therefore, a parcel might be
picked up at its origin location by a PD robot, transported through the scheduled line
with passengers, and delivered to its final destination by the PD robot. In order to
guarantee an acceptable service quality for passengers, they are assumed to have a
higher priority to use SL service. In other words, PD robots are only able to use SLs
when there are free places available (i.e. not used by any passengers).

A similar system is considered by Ghilas et al. (2016c) where a scheduled line service
is used along with a fleet of heterogeneous vehicles to serve a set of freight requests. In
their system, the exact quantities demanded by each customer are only learned upon
vehicles’ arrival at the corresponding pickup locations. Unlike their problem settings,
we consider that freight quantities are known in advance. In addition, we consider
that passengers demand for transportation is only learned upon the shuttles’ arrival
to each SL station. Since passengers and PD robots share the same capacity on SLs,
the number of available places for PD robots at each SL departure is thus stochastic.
Depending on the actual passengers transport demand, there are two possible violation
outcomes: (i) the PD robot is not able to take the next SL departure due to the high
passenger demand at the corresponding station, and (ii) the PD robot needs to get off
the SL at an intermediate station, where passengers demand is high, in order to give
its place to a passenger. When these route failures occur, a number of recourse actions
are needed in order to recover feasibility. Applying these recourse actions might lead
to extra handling and transportation costs compared to their original routes.

The key contributions of this paper are as follows. First, we model the proposed
pickup and delivery problem as a two-stage stochastic problem. The first stage consists
of defining routes for PD robots carrying freight requests. These routes are evaluated
over a set of scenarios and their associated recourse costs are calculated in the sec-

1This integrated system was inspired from Toyota new e-Palette concept in which small delivery robots travel
with passengers in autonomous shuttles moving around in a city.
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ond stage. The overall objective is to minimize the overall transportation costs (i.e.
the sum of the first-stage routing costs and the second-stage recourse costs). Second,
we propose a sample average approximation (SAA) method along with an Adaptive
Large Neighborhood Search (ALNS) algorithm for solving the stochastic optimization
problem. Finally, we provide a computational study to quantify the impact of pas-
sengers demand realization on such combined systems. This is achieved by comparing
the solutions obtained when deterministic and stochastic versions of the problem are
solved. While the potential benefits of integrating parcel deliveries to SL service were
extensively studied in Ghilas et al. (2016a), in this paper we aim at studying the im-
pacts of stochastic passenger demands on this system with different SL frequencies
and capacities.

This paper is organized as follows. In section 2, we provide an overview of related
literature. In section 3, we describe the problem, provide a mathematical formulation
for it, and introduce an algorithm to evaluate its solutions and calculate their recourse
costs. The proposed solution method is detailed in section 4. In section 5, we present
the computational study and analyze its results. Finally, in section 6, the key findings
are summarized and directions for future research are suggested.

2. Background

An increasing amount of research is being directed recently towards studying and
developing new transportation systems that integrate passenger and freight flows.
These systems can be classified into single-tiered and two-tiered systems. In single-
tiered systems, a set of vehicles transport passengers and goods to their destinations
while taking into account some considerations (e.g. request time windows, vehicle
capacity, etc.). On the other hand, passenger and freight flows are combined in two-
tiered systems thanks to the contribution of a first-tier (e.g. a public mass-transport
line), and a second-tier (e.g. a fleet of vehicles) that performs the last-mile deliveries
to customers (see Mourad et al. (2019) for a recent review).

Regarding single-tiered systems, Li et al. (2014) introduced the Share-a-Ride Prob-
lem (SARP) in which passenger and freight requests are transported using a fleet
of taxis driving around in a city. As passenger requests are given a higher priority,
some parcels are delivered during taxi trips in case this delivery does not affect the
passengers significantly. For solving the SARP, a MILP formulation, that extends the
classical Dial-a-Ride problem, along with an Adaptive Large Neighborhood Search
(ALNS) method were proposed (see also Li et al. (2016a)). Their results demon-
strated the benefits of such combination in terms of transportation costs and traveled
distances. These benefits were observed by comparing results to those where passen-
ger and freight requests are served separately. In another study, Arslan et al. (2016)
presented an event-based rolling horizon framework that dynamically assigns parcel
deliveries to self-employed drivers who are willing to earn some extra money by making
deliveries on their way to home or work. In addition, the authors proposed a heuristic
recursive algorithm for solving the routing subproblem. Their results demonstrated
that this integrated delivery can potentially reduce last-mile delivery costs as well as
the system-wide vehicle miles. Archetti et al. (2016) considered a similar single-tiered
model where a set of occasional drivers is used to supplement the service provided by
delivery vehicles and dedicated drivers. Occasional drivers are those willing to make a
single delivery using their own vehicle. The authors modeled this problem as a Vehicle
Routing Problem (VRP) with occasional drivers and proposed a heuristic approach
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that uses variable neighborhood and tabu search strategies for solving it. Their results
showed that introducing more occasional drivers to the system can decrease the total
transportation cost and the number of dedicated drivers required. Moreover, Wang
et al. (2016) presented a single-tiered model where last-mile deliveries are performed
by a large-pool, a crowd, of citizen workers. The proposed model was formulated as
a network min-cost flow problem and solved using an iterative pruning technique.
Furthermore, Dayarian & Savelsbergh (2017) suggested that potential customers can
express their interest to participate in making deliveries on their way home. The au-
thors proposed a tabu search heuristic method for generating vehicle routes.

On the other hand, some recent studies have focused on studying two-tiered sys-
tems. Fatnassi et al. (2015) introduced an integrated system where passengers and
goods are transported to intermediate points using a first-tier (train, bus or truck
line), and then delivered using a fleet of electric vehicles (second-tier). The authors
proposed a forward periodic-optimization approach which showed that the proposed
system can achieve a potential gain in terms of service time and energy consumption.
Another study, by Masson et al. (2017), considered a combined system that uses the
available capacity in a passenger bus line to transport parcels to specific bus stations
where a fleet of low-emission freighters delivers them to final customers. The paper
formulated the system as a Vehicle Routing Problem with transfers and proposed an
ALNS-based heuristic to solve it (see also Trentini et al. (2015)). Similarly, Ghilas et
al. (2016a) introduced a two-tiered system where parcels are delivered by a fleet of
vehicles such that a part of the delivery process is carried out on a scheduled line of
public transport. The paper modeled this integrated system as Pickup and Delivery
Problem with Time Windows and Scheduled Lines (PDPTW-SL) and introduced an
ALNS-based algorithm for solving it. Their results showed that an average cost sav-
ings of 10% can be achieved thanks to the use of the scheduled line compared to a
pure-freight delivery system. Moreover, Kafle et al. (2017) suggested that parcels can
be transported to intermediate points using a set of carrier trucks, and then delivered
by a set of potential cyclists and pedestrians who are living in the same neighborhood.
The authors proposed a tabu search algorithm for solving the asoociated optimization
problem. Their results demonstrated that the use of potential cyclists and pedestrians
can reduce the operational costs by 9.25% compared to a truck-based delivery system.

As for studying uncertainty in such combined systems, Li et al. (2016b) extended
the SARP, introduced earlier, by considering two stochastic variants. The first variant
considered the travel times to be stochastic while the second considered stochastic de-
livery locations. For solving both variants, a two-stage stochastic programming model
with recourse is used with the ALNS heuristic and a scenario generator. Through an
extensive experimental study on both stochastic models, the paper concluded that the
stochastic travel times have a more noticeable effect on the SARP than the stochastic
delivery locations. In addition, Ghilas et al. (2016c) extended their two-tiered model
by considering stochastic demand quantities of freight requests which are only revealed
upon the vehicle’s arrival to their pickup locations. A scenario-based sample average
approximation approach was introduced in order to consider this uncertainty. After
reviewing the related literature, we provide a detailed description of the considered
problem along with the method used to solve it in the following sections.
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3. Problem Description

Consider a set of shuttles that operate on a scheduled line (SL) service in both
directions. This service consists of a set of physical transfer nodes (i.e. stations) S,
where passengers take shuttles as part of their trip to their final destinations, and
a set of physical scheduled lines E linking different transfer nodes. Between every
pair of transfer nodes i, j ∈ S, there are two scheduled lines with opposite directions
(i, j), (j, i) ∈ E . Shuttles move through the scheduled line in fixed routes. Every shuttle
moving through scheduled line (i, j) has a capacity Qij , indicating the number of
available places, and a schedule Kij , indicating its departure times at origin transfer
node i (denoted by pwij , e.g. the second departure from s1 to s2 is p1

s1,s2 = 60 time
units). Moreover, shipping one unit of package on scheduled line (i, j) is associated
with a cost ηij per unit. In addition, a fleet of autonomous, pickup and delivery (PD)
robots are located at transfer nodes. Each PD robot v ∈ V is assigned to a depot
(i.e. transfer node) or ∈ S and has a capacity Qv and a maximum service distance δv
indicating the maximum distance it can go from a transfer node to a request pickup
or destination location. Each PD robot is associated with a routing cost per time unit
θv.

(a) Direct delivery - PD robot (b) Indirect delivery - PD robot and SL

Figure 1.: Request service modes: direct & indirect delivery

In addition, a set of freight requests need to be transported to their final destinations
using the fleet of PD robots. Each request is associated with an origin r ∈ P and a
destination r + n ∈ D (where n = |P| is the number of requests), indicating where
it should be picked up and to where it should be delivered. In addition, request r is
associated with two time windows, a pickup time window [er, lr] and a delivery time
window [er+n, lr+n], and a demand quantity dr. Pickup and delivery time windows
indicate when the request should be picked up by a PD robot and when it should
be delivered to its final destination. Depending on the availability of vacant places in
SLs, PD robots carrying freights may travel with passengers between different transfer
nodes. A freight, carried by a PD robot, can thus be transported by a shuttle between
two transfer nodes as part of its journey.

Indeed, allowing passengers and PD robots to travel simultaneously aims at using
the spare capacity in shuttles especially that loading (and unloading) these robots
into shuttles at transfer points come with relatively short service times. As a result,
delivering a request to its final destination can be done in either direct or indirect
way (see Figure 1). In a direct delivery, a request is picked up by a PD robot at its
origin and delivered directly to its final destination without the use of the scheduled
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line (Figure 1a; request a1 is picked up at its origin oa1
by a PD robot coming from

transfer node s2, and delivered to its final destination da1
before the PD robot returns

to transfer node s3).
It is important to mention that a direct delivery is only feasible if the distance

between the transfer node and request origin/destination, and between request origin
and destination locations is less than the maximum distance the robot can travel. In
Figure 1b, if the distance between oa1

and da1
is greater than the robot maximum

service distance, a direct delivery cannot be performed and the SL service must be
used. On the other hand, in an indirect delivery, a request may be collected by one
PD robot, transferred through the scheduled line and delivered afterwards to its final
destination by the same PD robot (Figure 1b, request a1 is picked up at its origin oa1

by a PD robot, brought to transfer node S2, transported through the scheduled line
from s2 to s3 and finally delivered to its final destination da1

by the PD robot).
Since passengers and PD robots are using SLs simultaneously in indirect deliveries,

we assume that a passenger or a PD robot needs one place in a shuttle while passengers
have higher priority to be transported. We also assume that PD robots cannot take
over more than a fixed number of places in each shuttle (e.g. if the shuttle capacity is
10 places, PD robots can take over at most 3 places). We assume that each PD robot
can serve only one freight request at a time. In other words, a PD robot can only
pickup one request from its origin to a transfer point and deliver it from a transfer
point to its final destination during one single trip. This assumption can be relaxed
so as to consider more realistic settings in which a PD robot can perform multiple
pickups and deliveries during a single trip.

Furthermore, the following set of assumptions is used throughout the paper:

• SLs are assumed to be homogeneous in terms of frequency and capacity.
• We assume that all the shuttles operating on SLs have the same capacity. Each

shuttle is thus assumed to have a maximum number of places to transport both
passengers and PD robots.
• We assume that a PD robot might return to a different station than the one it

departed from (as it is the case in Figure 1a) after delivering its request (i.e.
relocation operations are not considered).
• As PD robots are likely to be electric ones, a PD robot is assumed to be fully

charged at each time it departs from a transfer node for picking up or delivering a
request and that this charge is enough to perform its trip (recharging operations
are not considered).
• It is also assumed that each PD robot has a storage compartment (where parcels

are stored during the robot trip) and those compartments are assumed to be
homogeneous.
• Regarding freight demands, it is assumed that the exact quantity and delivery

time windows of each request are known beforehand.
• In addition, we assume that each demand unit corresponds to a package of a

standardized small size so that it can fit in robot storage compartments (content,
nature and weight of the package are disregarded).
• Finally, we assume that travel and service times are known beforehand and

remain unchanged during the planning horizon.

Similar to Ghilas et al. (2016b), each scheduled line is replicated in n copies. Figure
2 illustrates an example in which we have four transfer nodes {1, 2, 3, 4}, three physi-
cal scheduled lines (i.e., arcs (1,2), (2,1), (2,3), (3,2), (3,4) and (4,3)) and two requests
{ a, b }. Each replication is assigned to one request, and only that specific request
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(a) Physical scheduled line (b) Virtual scheduled line

Figure 2.: Scheduled line with four replicated transfer nodes

can travel on the assigned scheduled line (Figure 2b). As such, the set of all replicated
scheduled lines is denoted by F (i.e., { (1a,2a), (1b,2b), (2a,3a), (2b,3b), (3a,4a),
(3b,4b), (2a,1a), (2b,1b), (3a,2a), (3b,2b), (4a,3a), (4b,3b) } in Figure 2b). Further-
more, the set of replicated SLs associate with request r is given as Fr (e.g., in Figure
2, Fa = {(1a, 2a), (2a, 1a), ..., (3a, 4a), (4a, 3a)}). In addition, the set of replicated SLs
related to the replicated transfer node t is given as F t (e.g. F1a = {(1a, 2a), (2a, 1a)}).
Finally, F ij includes all replicated SLs associated with a physical SL (i, j) ∈ E (e.g.
F1,2 = {(1a, 2a), (1b, 2b)} and F2,1 = {(2a, 1a), (2b, 1b)}).

Figure 3.: An example network with s replicated nodes and two requests

Furthermore, each transfer node in S (i.e. nodes 1, 2, 3 and 4 in Figure 2a) is
copied n times. Hence, we denote the set of all replicated transfer nodes by T (i.e.
T = {1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b} in Figure 2b). In addition, we use ψt , ∀t ∈ T as the
physical transfer node represented by the replicated transfer node t (e.g. ψ1a = ψ1b =
1). Thus, set T t is {i ∈ T | ψi = ψt and i 6= t}, ∀t ∈ T (e.g. T 2a = {2b} in Figure 2b).

The proposed pickup and delivery problem is defined on a digraph G = (N ,A)
where N = P

⋃
D

⋃
T , represents the set of graph nodes (i.e. request origins,

destinations and replicated transfer nodes), and A ≡ A1 ∪A2 ∪A3 represents the set
of feasible arcs connecting different graph nodes, where:

• A1 = ((P ∪ D)× (P ∪ D)) \ {(r + n, r) : r ∈ P}
• A2 = {(i, j) : i, j ∈ T , (ψi, ψj) /∈ E}
• A3 = ((P ∪ D)× T ) \ ({(j, r) : r ∈ P, j ∈ T r} ∪ {(r + n, j) : r ∈ P, j ∈ T r})

As can be seen in Figure 3, subset A1 represents arcs linking request origin and
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destination nodes, subset A2 represents arcs linking replicated transfer nodes, and
subset A3 links request origin and destination nodes to transfer nodes.

For modeling the problem, we introduce two binary variables; xvij equals to 1 if arc
(i, j) is used by PD robot v and 0 otherwise, ∀(i, j) ∈ A, v ∈ V, and qvwij equals to 1
if replicated scheduled line (i, j) is used by PD robot v that departs from node i at
time pwij and 0 otherwise, v ∈ V, (i, j) ∈ F ij, w ∈ Kij . In addition, we introduce two
timing variables; βi indicates the departure time of a PD robot from node i, and γvi
which indicates the departure time of a PD robot v ∈ V from replicated transfer node
i (notations and variables used in this paper are summarized in Table 1). We present
a two-stage stochastic model in the following sections.

Notations:
S Set of physical transfer nodes.
T Set of replicated (virtual) transfer nodes.
E Set of physical scheduled lines.
F Set of replicated (virtual) scheduled lines.
P Set of requests (represented by their origin location nodes).
D Set of request destination nodes.
V Set of PD robots.
Kij Set of indices for the departure times from origin node i of scheduled line

(i, j) ∈ E .
ηij Cost of shipping one unit of package on scheduled line (i, j) ∈ E .
θv Routing cost per time unit of PD robot v ∈ V
Qij Capacity of scheduled line (i, j) ∈ E .
Qv Capacity of PD robot v ∈ V.
ov Origin location of PD robot v ∈ V.
tij Travel time from node i to node j.
si Service time at node i.

Decision variables:

xvij =

{
1 if arc (i, j) is used by robot v

0 otherwise

qvwij =

{
1 if replicated SL (i, j) is used by robot v that departs from node i at time pwij
0 otherwise

Timing decisions:
βi Departure time of a robot from node i.
γvi departure time of robot v ∈ V from transfer node i.

Table 1.: Notations and Variables

The first-stage model

Min
∑

(i,j) ∈ A

∑
v ∈ V

θvtijx
v
ij + E [ Q ( δ , ξ , η ) ] (1)
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subject to

Routing and flow constraints

∑
i∈N

∑
v∈V

xvij = 1 ∀j ∈ P ∪ D (2)

∑
i∈N

xvovi ≤ 1 ∀v ∈ V (3)

∑
i∈N

∑
v∈V

xvit ≤ 1 ∀t ∈ T (4)

∑
j∈N

xvij −
∑
j∈N

xvji = 0 ∀i ∈ N , ∀v ∈ V (5)

∑
t∈T

xvit −
∑
t∈T

xvtj = 0 ∀v ∈ V, ∀(i, j) ∈ P ×D (6)

tijx
v
ij ≤ δv ∀i, j ∈ N , ∀v ∈ V (7)

Capacity constraints

∑
i∈T

∑
v∈V

djx
v
ij ≤ Qv ∀j ∈ P (8)

Scheduling constraints

∑
v∈V

xvij = 1 =⇒ βj ≥ βi + tij + sj ∀i, j ∈ N (9)

βr+n ≥ βr + tr,r+n + sr+n ∀r ∈ P (10)

ei ≤ βi − si ≤ li ∀i ∈ P ∪ D (11)

Synchronization constraints

∑
w∈Kψi,ψj

qvwij = xvij ∀v ∈ V, (i, j) ∈ Fv (12)
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qvwij = 1 and xvij = 1 =⇒ γvi = pwij ∀v ∈ V, (i, j) ∈ Fv, w ∈ Kψi,ψj (13)

Decision variable domains

xvij ∈ {0, 1} ∀(i, j) ∈ A, v ∈ V (14)

qvwij ∈ {0, 1} ∀v ∈ V,∀(i, j) ∈ Fv, w ∈ Kψi,ψj (15)

βi ∈ R+ ∀i ∈ N (16)

γvi ∈ R+ ∀v ∈ V, i ∈ T (17)

The objective function (1) minimizes the total costs of operating PD robots and
the recourse costs incurred by SL capacity violations. In the recourse function, δ is
the given routing vector, ξ is the set of scenarios, and η is the cost vector for using
the scheduled lines per unit shipped. In this problem, we have four sets of constraints:
routing, capacity, scheduling, and synchronization constraints. As for routing and flow
constraints, constraints (2) state that all request pickup and delivery nodes (origins and
destinations) are visited exactly once by a PD robot. Constraints (3) ensure that each
PD robot must leave its depot at most once. Constraints (4) ensure that each replicated
transfer node is visited at most once. Flow conservation for PD robots is considered
in constraints (5). Constraints (6) ensure that the same PD robot that picked up the
request at its origin, will proceed to deliver it to its final destination (i.e. this set of
constraints couple the pickup and delivery trips of PD robots). Constraints (7) ensure
that the maximum travel distance that PD robots can perform is respected. Since
requests demand is known beforehand, constraints (8) ensure that the capacity of PD
robots is respected at each time they pickup a request. For the scheduling constraints,
constraints (9) ensure that if arc (i, j) is used by PD robot v, the departure time of v
from node j should be greater than or equal to the sum of v departure time from node i,
the travel time from i to j, and the service time at node j. Precedence relations for each
request (i.e. request origins should be visited before their destinations) are considered
in constraints (10). Constraints (11) enforce time window restrictions on request pickup
and delivery. In order to synchronize PD robot trips and the scheduled line, constraints
(12) and (13) ensure that the departure time of a PD robot at a transfer node is equal
to the SL departure time at that transfer node (i.e. their departures are synchronized).

Note that constraints (9) and (13) are formulated as implications, and thus, need
to be linearized. Using standard linearization techniques, we express them by one or
two linear inequalities as follows:

βj ≥ βi + tij + sj −Mij (1−
∑
v∈V

xvij) ∀i, j ∈ N (18)

γvi ≤ pwij +Mi (2− qvwij − xvij) ∀v ∈ V, (i, j) ∈ Fv, w ∈ Kψi,ψj (19)
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γvi ≥ pwij −Mi (2− qvwij − xvij) ∀v ∈ V, (i, j) ∈ Fv, w ∈ Kψi,ψj (20)

The second-stage decisions

Due to the uncertainty, the SL capacity might be violated each time a shuttle arrives
at a transfer node. This is because passenger demands are unknown by the time of the
planning and are assumed to follow a known probability distribution. In other words,
the SL service might not be sufficient for the actual passengers demand and PD robots
(21). Given the routing solution vector δ, indicating PD robot routes and schedules
from the first-stage, the aim of the second-stage is to evaluate this solution over a set
of scenarios and calculate the expected recourse cost (E [ Q ( δ , ξ , η ) ]). At this
stage, a scenario indicates the realized passengers demand at each departure from a
transfer node, and thus, the number of available places for transporting PD robots.

∑
r∈P ′

∑
(a,b)∈F ij

qrwab > Qwij ∀(i, j) ∈ E , w ∈ Kij (21)

Since the number of available places at each shuttle is only revealed upon the shut-
tle’s arrival time at a transfer node, capacity violations might occur at the corre-
sponding transfer node (denoted as failure point). Depending on passenger demand
realizations, these capacity violations might occur in two different situations:

• Situation#1 : After picking up a request and bringing it to a transfer node, a
PD robot may not be able to take the next SL departure at that transfer node
due to the high passenger demand (passengers are prioritized over PD robots).
• Situation#2 : After taking a shuttle to travel between two transfer nodes as

part of its trip, a PD robot may need to get off the SL at an intermediate transfer
node due to high passengers demand. In this case, the PD robot needs to give
its place to one of the passengers who are willing to take the SL at that transfer
node.

In both situations, the same capacity violation is obtained: not enough capacity for
transporting PD robots with passengers through the SL service. A set of corrective
(or recourse) actions needs to be applied in order to recover feasibility, which might
lead to additional costs. We consider the following recourse actions to deal with both
situations leading to capacity violation outcome. These are:

• Action#1 : If the PD robot cannot take the current departure at the failure
point due to high passengers demand, it is transported using the subsequent
service of the scheduled line. In other words, the PD robot waits for the next
shuttle arriving to the failure point. This recourse action comes with no extra
costs as long as waiting the next departure does not violate request delivery time
window.
• Action#2 : If waiting the next shuttle departure leads to violating the capacity

of the subsequent SL service or request delivery time window. If the distance
between failure point and request destination is less than the maximum service
distance that the PD robot can handle, the PD robot delivers the request to
its final destination by itself. This recourse action implies some additional costs
since a PD robot might have to perform a longer trip than planned.
• Action#3 : If none of the first two recourse actions can be applied, the request
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is served by an outsourced service (a dedicated vehicle). This service transports
the request from failure point to its final destination. The extra cost implied
by using this outsourced service depends on the distance that the outsourced
vehicle has to travel.

Figure 4.: Calculate-Recourse-Cost Algorithm

Another important issue is to rank or schedule PD robots that are waiting to take
the scheduled line at one transfer node, according to some criteria. The model needs
to decide which PD robots have the priority to be transported in case the realized
number of available places in a shuttle is insufficient (situation#1 ). For this purpose,
we sort PD robots at each transfer node according to the earliest delivery date of the
requests they carry. The PD robot carrying request with the earliest delivery date is
thus the first to be transported when a shuttle with available places arrives to the
corresponding transfer node. A similar issue appears when some PD robots need to
get off a shuttle at an intermediate transfer node to give space to more passengers
(situation#2 ). Therefore, the model also needs to determine the order in which PD
robots are asked to get off a shuttle at a certain intermediate transfer node. In this
latter case, PD robots already in shuttle are sorted according to their latest delivery
date (i.e. PD robot carrying request with the latest delivery date has to get off the
shuttle first). It is important to mention that we do not consider the case where a PD
robot is asked to get off to allow another one (with an earlier delivery date) to take
it’s place. PD robots are thus asked to get off only to give place to passengers.

To summarize, the recourse function checks if there are capacity violations at each
SL departure. In case SL capacity is violated at a given departure, PD robots that
are waiting at the corresponding transfer node, referred to as at-node PD robots, are
sorted according to the earliest delivery date of their carried requests. In addition, PD
robots that are already in-shuttle are sorted according to the latest delivery date of
their requests. Then, at-node and in-shuttle PD robots that cannot take the shuttle
at the current departure are assigned to the next departure (action#1 ) since it does
not imply extra costs. If waiting for the next departure leads to violating the request’s
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time windows, the recourse function checks if some PD robots can deliver their requests
from the corresponding transfer node to their final destination (action#2 ).

Finally, the still remaining requests (i.e. that could not be served using neither
action#1 nor action#2 ) are outsourced using dedicated delivery vehicles (action#3 ).
As a result, depending on actual passenger demand, (i) some at-node PD robots might
be able to take SL next departure while others might have to wait, (ii) all at-node PD
robots might not be able to take the next shuttle while no in-shuttle PD robots are
asked to drop off, or (iii) all in-shuttle PD robots may have to drop off from the shuttle
and join the waiting PD robots at the corresponding transfer node. The algorithm for
calculating the recourse cost of a given routing solution is outlined in Figure 4 (see
also Appendix A for the detailed recourse function).

4. Solution Approach

In this section, we present our solution approach. This consists of a scenario-based
Sample Average Approximation (SAA) framework (Section 4.1), and an ALNS-based
heuristic, to solve the corresponding SAA problems (Section 4.2).

4.1. The Sample Average Approximation method

The Sample Average Approximation (SAA) method is an iterative approach for
solving stochastic optimization problems. It aims at approximating the expected ob-
jective function of the stochastic problem using a sample average estimate derived from
a random sample (Verweij et al. (2003)). While the set of possible scenarios might be
very large, the SAA iteratively solves the problem using smaller and more tractable
sets of scenarios (referred to as SAA problems), and obtains candidate solutions along
with their respective optimality gaps.

Figure 5.: Sample Average Approximation (SAA) Algorithm
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The method starts by generating a large set of scenarios Ω and iterates until the
value of the optimal solution is approximated by solving the stochastic problem with
smaller sample sets. At each iteration l, a sample set of scenarios ωl : |ωl| << |Ω| is
generated from the larger set Ω and the corresponding SAA problem is solved using
the ALNS heuristic. The obtained solution xl with objective value f lωl is then evaluated
using the recourse function (Algorithm 2) in order to determine an upper bound fΩ(xl)
for the generated set of scenarios Ω:

fΩ(xl) = CalculateRecourseCost(xl,Ω) (22)

Afterwards, a statistical lower bound, denoted by f ′ωl(xl), for the optimal solution
value of sample ωl is calculated by averaging the objective function values obtained in
previous iterations:

f ′ωl(xl) = 1/l

l∑
i=1

f iωl , (23)

where f iωl is the objective function value obtained at iteration i. To the best of our
knowledge, this is the most commonly used approach in the literature for approximat-
ing a statistical lower bound in SAA-based methods (see also Ghilas et al. (2016c);
Verweij et al. (2003)). Once both bounds are obtained ((22),(23)), the SAA gap is
calculated as follows:

ε(ωl,Ω) = f ′Ω(xl)− f ′ωl(xl) (24)

The process continues until the best gap ε(ωl,Ω) is found and the corresponding
best solution is returned (see Figure 5, and Appendix B for the detailed algorithm).

4.2. ALNS heuristic

An ALNS heuristic algorithm is used to generate routing solutions of minimum total
cost. The heuristic is used in combination with the recourse function (Algorithm 2)
in order to compute the recourse cost of a generated solution. The main idea of the
ALNS is to iteratively apply a set of removal and insertion operators on an initial
solution until the best solution is found (Algorithm 1).

The algorithm starts by generating an initial solution indicating initial PD robot
routes (section 4.2). The algorithm then applies a removal operator to remove one
PD route from the initial solution. The removed PD route is then reconstructed and
reinserted to the solution using an insertion operator and a new solution is obtained.
The operators are dynamically selected according to their past and current perfor-
mances through a roulette-wheel mechanism. In other words, each operator, removal
or insertion, is associated with a score that is increased at each time this operator
leads to a better solution, and a probability that indicates how likely this operator is
to be selected in the next iteration. This means that operators with better scores have
a higher probability to be used by the algorithm. In order to build their scores, oper-
ators are selected randomly in the first 100 iterations. The roulette-wheel mechanism
is then used based on the calculated operator scores. Once applying these operators
yields an improvement, the new solution is stored, and the best solution is updated.
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Algorithm 1 The ALNS Framework

1: procedure ALNS-Heuristic(Set of removal operators OR, set of insertion op-
erators OI)

2: generate an initial solution: current solution
3: initialize best solution ← current solution
4: for a number of iterations do
5: select a removal operator r∗ ∈ OR with probability Pr∗
6: apply operator r∗ to current solution to obtain a partially destroyed solution
7: select an insertion operator i∗ ∈ OI with probability Pi∗
8: apply operator i∗ to repair the partially destroyed solution and get new

solution
9: if new solution is better than current solution then

10: current solution ← new solution
11: if current solution is better than best solution then
12: best solution ← current solution
13: update operator probabilities

14: return best solution

The algorithm continues until either a maximum number of iterations or a certain
number of iterations with no improvement is reached.

Generating initial solutions

Since we use simplified problem settings, in which only one pickup/delivery per
PD robot trip is allowed, we start with a simple heuristic to generate initial feasible
solutions. This heuristic is composed of two main steps:

(1) We start by selecting requests that can be delivered directly by a PD robot
depending on the distance between their origin and destination locations (direct
delivery). These direct PD robot routes are then added to the initial solution.

(2) For the other requests (indirect delivery), indirect PD robots are constructed by
randomly assigning them to one of the feasible pickup/drop-off transfer nodes
while respecting their time restrictions.

To this end, the feasibility of the returned solution, in terms of request time windows
and SL departure times, is assured. This initial feasible solution can then be improved
by the ALNS operators as it does not lead to min-cost PD robot routes. We describe
the removal and insertion operators used by the ALNS algorithm in the following
subsections.

Removal operators

• Random removal (R1): This operator removes a randomly selected robot route
(request) from the solution which helps in diversifying the search for a better
solution.
• Limited random removal (R2): This operator is similar to R1 but it limits the

number of times a robot route (request) is removed in the last 100 iterations.
For other requests, which their counts have not reached the specified limit, R1
is applied.
• Tabu-based removal (R3): This operator also keeps a record of robot route re-

15



moval counts for the last 100 iterations (as R2 ) and removes those with the
smallest frequency of removal rate. This operator also helps in diversifying the
search.
• Early-SL-depart removal (R4): This operator removes the robot route with the

shortest waiting time at the pickup transfer nodes from the solution. The request
waiting time at a specific transfer node is obtained from the difference between
its arrival to that transfer node and its departure from it (i.e. a PD robot might
have to wait at a transfer node until the next SL departure).
• Late-SL-depart removal (R5): Unlike R4, this operator removes the robot route

with the longest waiting time at transfer nodes from the solution.

Insertion operators

• Pickup Transfer-node insertion (I1): This operator reconstructs a robot route
by assigning it to a different pickup transfer node than the one it was assigned to
before being removed. This operator helps diversifying the search by leading to
different transportation costs (i.e. operational and recourse costs). This potential
improvement highly depends on SL and PD robot transshipment costs as well
as the maximum service distance of PD robots which can limit the feasibility of
this assignment.
• Drop-off Transfer-node insertion(I2): This operator reconstructs a robot route

by assigning it to a drop-off transfer node that is different than the one it was
assigned to before being removed. Similar to I1, this operator can lead to different
transportation costs.
• Early-SL-depart insertion (I3): This operator reconstructs a robot route by as-

signing it to the same pickup transfer node but with an earlier departure time.
Indeed, changing the SL departure to which a PD robot is assigned, leads to
different recourse costs as passengers demand varies between different SL depar-
tures.
• Late-SL-depart insertion (I4): Unlike I3, this operator reconstructs a robot route

by assigning it to the same pickup transfer node but with a later departure time.
This operator is also important for solving the stochastic optimization problem
as it leads to different recourse costs.

That said, these operators are used by the heuristic to remove and insert robot routes
to a current solution. They provide a reasonable choice for our problem settings where
only one request is served during a PD robot trip. The heuristic can thus be extended
by considering different operators when PD robots are allowed to perform multiple
pickups and deliveries at one trip (see operators at Ghilas et al. (2016b,c)).

5. Computational study

In this section, an extensive computational study to assess the performance of the
proposed solution approach is presented. First, we explain how we generate test in-
stances and we describe the different parameters used (Section 5.1). We then show how
we generate the set of scenarios used by the SAA algorithm for solving the stochas-
tic problem (Section 5.2). Afterwards, we analyze the performance of the proposed
heuristic approach along with the different operators used, and compare the results
obtained from solving the stochastic problem with those of the deterministic one (i.e.
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when no uncertainty is considered). Finally, we study the impacts of the considered
source of uncertainty on the obtained solutions with different settings (Section 5.3).

5.1. Parameters and instance generation

For testing the proposed solution approach, we generate instances with different
network topologies and freight request distributions. Generated instances are named
as P_D_r_n, where P represents the network topology, D is the geographical distribution
of freight requests, r is request nodes range from transfer nodes, and n is the number
of freight requests. Since the proposed model can adapt different network topologies,
we generate instances with line (referred to as ”L”) and triangular (referred to as ”T”)
topologies (Figure 6a & 6b). While the number of SLs is different, instances with either
topology have the same characteristics. In addition, each instance contains up to 60
freight requests where their origin and destination nodes are distributed over 200 x 200
Euclidean space. We consider three different distributions of freight requests (inspired
from Ghilas et al. (2016c)). These are: C - freight request origin and destination nodes
are clustered within at most 30 time units around transfer nodes (Figure 6a), RC -
request nodes are randomly clustered within at most 50 time units to one of the
available transfer nodes (Figure 6c), and UR - freight requests are uniform-randomly
distributed over the considered space (Figure 6d). As PD robots are located at transfer
nodes, we consider up to three PD robots at each transfer node.

(a) L C 30 25 (b) T C 30 25

(c) L RC 50 25 (d) L UR 50 25

Figure 6.: Instances with different network topologies and request distributions

We consider a planning horizon of 600 time units where SL departure interval is set
to 30 time units (i.e. there is a shuttle departing from each transfer node every 30 time
units). We consider that this frequency is enough to cover passengers demand through
SL. We generate request pickup and delivery time windows randomly with an average
width of 40 time units. A minimum of 100 time units is also assured between the end
of pickup time window and the start of delivery time window. Service time at each
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location (i.e. pickup, drop-off or transfer node locations) is set to three time units.
This service time represents the time needed for a PD robot to pick up or deliver a
freight request, or to get in or off a shuttle at a transfer node.

Parameter Value Parameter Value
PD robot cost 0.5 Num. iterations no improvement 50
SL cost 1 The size of the large set of scenarios 10 000
Outsourcing cost 3 The size of the sample set of scenarios 50
PD robot capacity 1 Number of ALNS iterations 10 000
SL capacity 10 Number of SAA iterations 10
Max. num. places for PD robots 3 Score for new best solution 3
Freight request quantity 1 Score for improving the current solution 1

Table 2.: Set of parameters used in the computational study

The capacity of each PD robot and the quantity of each freight request are set to 1.
This means that each PD robot can serve one freight (i.e. any freight request) at a time.
The capacity of shuttles on SL is set to 10 places for both passengers and PD robots
where PD robots can take up to 3 places (different limits are analyzed in section 5.3).
Regarding transportation costs, we assume the time unit cost for PD robots to be 0.5
unit. This cost includes energy consumption, insurance and transportation expenses
induced when PD robots are used. In addition, the time unit cost of using SL service is
set to 1 unit. This cost includes loading, unloading, and transportation expenses each
time a PD robot uses the SL service. Finally, the recourse cost of using the outsource
delivery service is assumed to be 3 units (different SL and robot shipment costs were
analyzed in Ghilas et al. (2016a)).

As introduced in section 4.2, we consider two stopping criteria for the heuristic
method. These are: the maximum number of ALNS iterations which is set to 10 000
iterations, and the maximum number of consecutive iterations with no improvement
which is set to 50 iterations. In addition, the score of an operator is increased by 1 if it
leads to improving the current solution, and by 3 if a new best solution is found. For
the SAA algorithm, the size of the large set of scenarios (Ω) is set to 10 000 scenarios
while the size of the smaller sample (ω) is set to 50 scenarios. Finally, the number of
SAA iterations is set to 10 (SAA parameters are fixed based on Ghilas et al. (2016c);
Li et al. (2016b) where similar problems and solution methods are considered). The set
of parameters used in the computational study along with their values are presented
in Table 2.

5.2. Scenario generation

In order to test the proposed SAA algorithm, we need to generate a large set of
scenarios which represent the realized passengers demand at each SL departure. The
actual passengers demand helps the algorithm to decide whether PD robots can be
transported through SLs or some recourse actions need to be applied. For this purpose,
passengers demand is assumed to follow a discrete triangular distribution for a given
minimum value a = 0, mean b = 6 and a maximum value c = 10 (Figure 7a).

For example in Figure 7b, based on the realized passengers demand, the number of
available places for PD robots at the different departures of scheduled line S2 → S3 is
respectively [2, 0, 1, 3, ..., 2]. Hence, PD robots are not able to take the second shuttle
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(a) Passengers demand distribution
(b) An example of SAA scenario

Figure 7.: SAA scenario generation

departure from S2 to S3 as there are no available places for them, while there are 3
available places at the fourth departure etc.

5.3. Experiments

The algorithms developed in this paper (i.e. recourse, ALNS and SAA algorithms)
are implemented in Java 1.8.0. CPLEX 12.6 solver is used for solving the MIP for-
mulation. Instances are tested on a quad-core i5-5300U machine with 8 GB of RAM.
We study the efficiency of the proposed ALNS approach by comparing its results to
those obtained with CPLEX solver and analyzing the performance of its operators. We
then examine the stochastic solutions obtained by the SAA algorithm, compare them
with the deterministic ones, and analyze the impact of different levels of passengers
demand, SL frequency and capacity on the obtained solutions.

Analyzing ALNS performance :

The results of solving instances with up to 100 freight requests are presented in Table
3 (results obtained by CPLEX are in bold). In this table, # dir. indicates the number
of direct deliveries, # ind. indicates the number of indirect deliveries, and # usv. indi-
cates the number of unserved freight requests. In addition, Cost column represents the
total transportation costs obtained by the ALNS heuristic and CPLEX (respectively)
while Gap (%) column gives the optimality gap percentage between them. Finally,
CPU column indicates the execution time needed to run both approaches, and # iter.
column gives the number of ALNS iterations performed.

Looking at table 3, we observe that the proposed ALNS is always able to find a
solution that is identical to the optimal one obtained by solving the MIP in terms of
direct and indirect deliveries. In addition, the ALNS is able reach the optimal solutions
(Gap = 0) for all instances with less than 40 freight requests. For instances with more
than 40 requests, the ALNS is still capable of finding solutions that are within 0.6% of
the optimal solutions. Moreover, the proposed heuristic returns solutions for instances
with 100 requests for which CPLEX is not able to find optimal solutions. This is due to
the increasing complexity of the problem (i.e. number of variables) when the number
of freight requests gets larger. Since the numbers of direct and indirect deliveries are
the same in both solutions, this small gap indicates that there are very few requests
that could have been assigned to another pickup or drop-off transfer node so that
some costs can be saved. We also observe that total costs are generally lower for
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Instance # dir. # ind. # usv. Cost Gap (%) CPU (s) # iter.

L C 30 10 0 (0) 10 (10) 0 (0) 1030.1 (1030.1) 0.0 0.03 (4.1) 19

L C 30 20 2 (2) 18 (18) 0 (0) 3339.1 (3339.1) 0.0 0.31 (32.3) 269

L C 30 30 3 (3) 27 (27) 0 (0) 4156.4 (4156.4) 0.0 0.53 (143.5) 431

L C 30 40 5 (5) 35 (35) 0 (0) 4896.9 (4872.2) 0.49 0.79 (537.6) 728

L C 30 60 7 (7) 53 (53) 0 (0) 7452.2 (7443.9) 0.11 1.47 (3103.4) 949

L C 30 100 12 (-) 88 (-) 0 (-) 12695.1 (-) - 5.01 (-) 3157

L RC 30 10 2 (2) 8 (8) 0 (0) 971.2 (971.2) 0.0 0.03 (3.3) 20

L RC 30 20 2 (2) 18 (18) 0 (0) 2910.4 (2910.4) 0.0 0.26 (23.9) 219

L RC 30 30 3 (3) 25 (25) 2 (2) 4120.2 (4120.2) 0.0 0.41 (112.9) 382

L RC 30 40 5 (5) 34 (34) 1 (1) 5291.3 (5291.3) 0.0 0.76 (351.9) 656

L RC 30 60 8 (8) 51 (51) 1 (1) 9006.8 (8983.8) 0.25 1.53 (1802.4) 976

L RC 30 100 12 (-) 87 (-) 1 (-) 14747.9 (-) - 5.31 (-) 3323

L UR 30 10 0 (0) 8 (8) 2 (2) 1472.1 (1472.1) 0.0 0.03 (4.5) 17

L UR 30 20 1 (1) 16 (16) 3 (3) 3510.0 (3510.0) 0.0 0.32 (26.9) 228

L UR 30 30 2 (2) 23 (23) 5 (5) 4707.5 (4707.5) 0.0 0.49 (135.7) 431

L UR 30 40 1 (1) 34 (34) 5 (5) 6120.8 (6099.7) 0.34 0.69 (349.3) 547

L UR 30 60 4 (4) 51 (51) 5 (5) 9779.1 (9741.8) 0.38 1.57 (2215.9) 1095

L UR 30 100 5 (-) 85 (-) 10 (-) 14917.4 (-) - 6.12 (-) 4217

T C 30 10 0 (0) 10 (10) 0 (0) 1087.7 (1087.7) 0.0 0.03 (1.3) 21

T C 30 20 5 (5) 15 (15) 0 (0) 1826.9 (1826.9) 0.0 0.14 (7.1) 239

T C 30 30 7 (7) 23 (23) 0 (0) 2535.9 (2535.9) 0.0 0.47 (31.1) 341

T C 30 40 7 (7) 33 (33) 0 (0) 4087.4 (4063.5) 0.0 1.07 (95.4) 672

T C 30 60 12 (12) 48 (48) 0 (0) 6001.2 (5978.6) 0.38 1.62 (444.9) 1313

T C 30 100 20 (-) 79 (-) 1 (-) 9473.3 (-) - 4.37 (-) 3543

T RC 30 10 2 (2) 7 (7) 1 (1) 1121.3 (1121.3) 0.0 0.03 (1.2) 19

T RC 30 20 1 (1) 17 (17) 2 (2) 2224.4 (2224.4) 0.0 0.22 (5.9) 227

T RC 30 30 3 (3) 24 (24) 3 (3) 3666.8 (3666.8) 0.0 0.39 (24.5) 318

T RC 30 40 1 (1) 36 (36) 3 (3) 5126.3 (5126.3) 0.0 0.96 (61.7) 566

T RC 30 60 6 (6) 51 (51) 3 (3) 6340.7 (6303.1) 0.58 1.61 (371.7) 1032

T RC 30 100 11 (-) 84 (-) 5 (-) 10148.9 (-) - 5.91 (-) 3782

T UR 30 10 0 (0) 7 (7) 3 (3) 1164.6 (1164.6) 0.0 0.03 (1.2) 24

T UR 30 20 1 (1) 16 (16) 3 (3) 2784.6 (2784.6) 0.0 0.19 (5.8) 188

T UR 30 30 2 (2) 24 (24) 4 (4) 3825.7 (3825.7) 0.0 0.32 (20.6) 240

T UR 30 40 2 (2) 34 (34) 4 (4) 5673.4 (5642.6) 0.54 0.94 (61.6) 643

T UR 30 60 5 (5) 44 (44) 11 (11) 7861.9 (7829.2) 0.41 1.38 (317.6) 927

T UR 30 100 8 (-) 78 (-) 14 (-) 13351.1 (-) - 4.34 (-) 2976

Average ALNS 4.6 36.1 2.5 5539.6 0.116 1.38 937.6

Table 3.: Analyzing ALNS performance

instances with clustered request distribution (L C & T C). This can be explained by
the likelihood of performing direct deliveries which is higher in clustered instances,
while requests are more scattered in randomly distributed instances (Table 3, ”#
dir.”). This can also be reflected by the increasing number of unserved requests in
randomly distributed instances. In this latter case, some requests cannot be brought
to transfer nodes due to PD robot distance limitations. Another observation is that the
total costs are generally higher in line networks than in triangular ones. This indicates
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that a triangular network might provide a better coverage to the service area while
reducing transportation costs.

The base case instances, with 10 freight requests, solve in few seconds with CPLEX.
This amount of time increases as the number of freight requests increases. We observe
that instances with line network topology need longer time to be solved to optimality
than those with triangular topology (an average of 6.3 mins for triangular instances
with 60 requests compared to 39.5 min for same instances with line topology). The
reason is that the number of transfer nodes, and thus the number of variables and
graph edges, is bigger in instances with line topologies. This observation also gives
an indication that a triangular network topology might be more effective in terms of
computational efforts needed to solve its instances. On the other hand, the proposed
heuristic solves the different instances in very short running times (1.38 seconds in
average) while maintaining near-optimal solutions. These short running times suggest
that our approach is suitable for approximating optimal solutions for the stochastic
problem where instances have to be solved over a large set of scenarios in the SAA
method.

In tables 4 & 5, we analyze the removal and insertion operators used in the ALNS
using some relevant information on their performance. For each operator, we present
its usage frequency as a percentage of the total number of iterations, and the total
time spent on running it (given in parenthesis).

Instance R1 R2 R3 R4 R5

L C 30 60 25.4% (0.02) 23.1% (0.02) 23.6% (0.02) 14.1% (0.01) 13.8% (0.01)

L RC 30 60 24.3% (0.02) 27.2% (0.02) 21.4% (0.02) 12.6% (0.01) 14.5% (0.01)

L UR 30 60 22.1% (0.02) 24.5% (0.02) 24.1% (0.02) 16.8% (0.01) 12.5% (0.01)

T C 30 60 26.5% (0.02) 25.3% (0.02) 22.7% (0.02) 12.1% (0.01) 13.4% (0.01)

T RC 30 60 26.2% (0.02) 23.1% (0.02) 27.6% (0.02) 12.9% (0.01) 10.2% (0.01)

T UR 30 60 24.9% (0.02) 23.9% (0.02) 25.2% (0.02) 11.8% (0.01) 14.2% (0.01)

Average 24.9% 24.5% 24.1% 13.4% 13.1%

Table 4.: The performance of removal operators

Considering removal operators (Table 4), we observe that operators R1, R2 and R3
are the most frequently used. This is mainly because these three operators randomly
select robot routes (requests) and are used to diversify the search for a better solution.

Instance I1 I2 I3 I4

L C 30 60 34.3% (0.04) 37.8% (0.04) 15.4% (0.02) 12.5% (0.01)

L RC 30 60 32.7% (0.04) 38.4% (0.04) 14.8% (0.01) 14.1% (0.01)

L UR 30 60 28.9% (0.03) 36.8% (0.04) 18.2% (0.02) 16.1% (0.02)

T C 30 60 31.5% (0.04) 38.3% (0.04) 16.3% (0.02) 13.9% (0.01)

T RC 30 60 34.7% (0.04) 40.1% (0.04) 13.6% (0.01) 11.6% (0.01)

T UR 30 60 33.8% (0.04) 35.2% (0.04) 16.4% (0.02) 14.6% (0.01)
Average 32.6% 37.8% 15.8% 13.8%

Table 5.: The performance insertion operators

We also observe that I1 and I2 are the most frequently used insertion operators
(Table 5). This indicates that operators which assign robot route to an earlier, or
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later, SL departure (i.e. I3 and I4) are used less than other operators which assign it
to a different pickup, or drop-off, transfer node.

Analyzing SAA performance and stochastic solutions

In order to quantify the impact of stochastic passengers demand, we solve the in-
stances, introduced earlier in Table 3, using the proposed SAA algorithm. Results are
presented in Table 6 where the first three columns represent the usage frequency of
recourse actions 1, 2, and 3 (respectively) as a percentage of the total number of times
recourse actions were used for each instance. The total transportation cost is then
given along with the associated operational and recourse costs. The additional cost
induced by uncertainty is then calculated by comparing the total cost of the stochas-
tic solution with that of solving the deterministic version of the problem using the
heuristic (given in Table 3).

In table 6, we observe that the realization of passengers demand can add an average
of 3.3% to the total transportation cost. This increase is due to the recourse actions
that are used to correct the interrupted robot routes. Indeed, when passengers demand
is revealed, the actual number of places for PD robots at each SL departure might not
be sufficient and recourse actions need to be applied adding extra expenses to the total
transportation cost. Since the recourse function applies recourse actions one by one to
recover feasibility, one can observe that action#1 is the most frequently used among
the other recourse actions (93.6% in average). This is because this recourse action
uses the subsequent SL service (i.e. waiting the next SL departure) which does not
imply additional transportation costs. We also observe that action#2 is not frequently
used by the algorithm (only 1.1%). This indicates that a direct PD robot delivery, from
failure point to request destination, is not feasible in most of the time due to PD robot
distance limitations. Most of the added recourse costs are thus induced by action#3 as
it guarantees the feasibility of all interrupted deliveries using the outsourced service.
Regarding network topology, we observe that the average added cost for instances with
line topology is lower than those with triangular topology (2.5% compared to 3.8%).
This is because the number of stations in triangular network is less than that of the
line network. As a consequence, the number of PD robots at each station is larger in
a triangular network and the likelihood of applying recourse actions (i.e. to recover
capacity violations at each SL departure) is thus higher. We analyze in the following
the impacts of uncertainty under different settings including passengers demand and
SL frequency and capacity.

Analyzing uncertainty with different levels of passengers demand

In the original setting, we generate SAA scenarios assuming that passengers demand
follows a discrete triangular distribution with a mean value b = 6 (Figure 7a). In this
section, we analyze the different levels of passengers demand by testing the algorithm
with different mean values (b = 2, 4, 6&8 respectively). As the mean value increases,
the probability of having a large passengers demand at each SL departure becomes
higher. This reflects a real-life case where passengers demand changes over day hours
which can limit the integration of PD robot deliveries into the system. The aim of this
analysis is thus to investigate the potential impact of these different levels of passengers
demand. This is done by performing ten runs of the algorithm for each demand level
and taking the average (Figure 8).

Results show that the total transportation costs increases as passengers demand
becomes higher (Figure 8a). This increase is mainly induced by the recourse actions
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Instance act1(%) act2(%) act3(%) Cost (oper. , rcs.) Add(%) CPU(s)

L C 30 10 95 1 4 1066.2 (1019.1 , 47.1) 3.5 15.7

L C 30 20 81 2 17 3427.1 (3070.2 , 356.9) 2.6 154.8

L C 30 30 86 1 13 4350.3 (3815.3 , 534.9) 4.7 234.5

L C 30 40 91 2 8 4983.4 (4382.8 , 600.6) 2.3 395.2

L C 30 60 89 0.5 1.5 7498.4 (7382.5 , 115.8) 0.7 635.4

L C 30 100 94 1 5 12839.7 (12671.6 , 168.1) 1.1 2505.2

L RC 30 10 99 1 0 975.1 (970.7 , 4.5) 0.4 13.8

L RC 30 20 85 0 15 3257.1 (2924.8 , 332.2) 5.7 129.8

L RC 30 30 92 0 8 4224.6 (4119.4 , 105.2) 2.5 204.5

L RC 30 40 98 0 2 5326.1 (5219.6 , 106.5) 0.7 381.2

L RC 30 60 97 1 2 9221.7 (8901.9 , 319.8) 2.6 765.1

L RC 30 100 95 1 4 15322.6 (14356.7 , 965.9) 3.9 2655.4

L UR 30 10 99 1 0 1478.3 (1470.1 , 8.3) 0.4 12.5

L UR 30 20 93 1 6 3559.3 (3427.8 , 131.5) 1.4 157.4

L UR 30 30 94 1 5 4960.1 (4622.6 , 337.6) 5.3 244.1

L UR 30 40 98 0 2 6183.1 (6165.2 , 17.8) 1.4 345.5

L UR 30 60 98 1 1 9929.2 (9670.2 , 258.9) 1.9 758.1

L UR 30 100 96 0 4 15464.1 (14619.4 , 844.6) 3.7 3060.3

T C 30 10 97 3 0 1172.9 (1170.6 , 2.3) 7.8 14.8

T C 30 20 85 1 14 2058.4 (1789.6 , 268.4) 8.1 72.4

T C 30 30 97 0 3 2582.9 (2483.6 , 99.3) 1.9 233.1

T C 30 40 94 2 4 4213.2 (4079.8 , 133.3) 3.1 535.4

T C 30 60 92 1 7 6114.8 (5669.5 , 445.2) 2.3 810.1

T C 30 100 97 1 2 9589.1 (9424.9 , 164.1) 1.2 2185.7

T RC 30 10 91 6 3 1138.7 (1074.3 , 72.4) 1.6 12.9

T RC 30 20 96 3 1 2270.6 (2208.6 , 62.4) 2.1 112.4

T RC 30 30 94 1 5 3738.8 (3578.6 , 160.2) 1.9 196.2

T RC 30 40 90 2 8 5566.4 (5041.7 , 524.7) 8.6 581.3

T RC 30 60 93 1 6 6678.8 (6231.9 , 446.9) 5.9 805.7

T RC 30 100 97 1 2 10407.3 (10045.2 , 362.1) 2.6 2955.2

T UR 30 10 95 0 5 1216.1 (1151.2 , 64.9) 4.4 12.8

T UR 30 20 97 0 3 2828.3 (2763.9 , 64.4) 1.6 96.1

T UR 30 30 91 1 8 4109.7 (3736.7 , 372.9) 7.4 162.4

T UR 30 40 97 0.5 2.5 5704.1 (5626.9 , 77.1) 1.1 570.3

T UR 30 60 94 1 5 8159.8 (7732.6 , 427.1) 4.2 691.6

T UR 30 100 95 1 4 13893.2 (13207.2 , 686.1) 3.9 2170.8

Average SAA 93.6 1.1 5.3 5708.6 (5439.6 , 269.2) 3.3 691.3

Table 6.: SAA results

that are used more frequently. Relatively, the average added costs slightly increase from
3.14% to 3.39% when passengers demand level goes from 2 to 8 (Figure 8b). These
observations are important for two main reasons. First, the increasing transportation
costs indicate that allowing PD robots to be transported with passengers through
SLs might not always be efficient when passengers demand is high (e.g. morning and
evening peak hours). In other words, this combination can prove most efficient during
day hours when the probability of having free places in SLs is bigger. Second, the
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(a) Average total costs (b) Average added costs

Figure 8.: Passengers demand analysis

(a) Average total costs (b) Average added costs

Figure 9.: SL frequency analysis

use of the outsourcing delivery service (action#3) will increase in peak hours as the
subsequent service might also be fully charged with passengers. This means that road
traffic can increase as more vehicles are circulating in the system to deliver freight
requests that could not be transported using SL service. However, SL combined service
still yields many benefits compared to existing freight delivery services, but these
benefits can be maximized in off-peak hours.

Analyzing uncertainty with different SL frequencies

As aforementioned, we consider the SL departure frequency to be 30 time units. We
investigate in this section the impact of SL frequency on the total transportation cost.
For this purpose, we run the algorithm with SL frequency of 20, 30, 40, 50 and 80
time units and we take the average of ten runs of the algorithm for each SL frequency
(Figure 9).

We observe that the total transportation costs increases as SL departures become
less frequent. This can be explained by the fact that less frequent SL departures lead
to more PD robots waiting at each transfer node which means a higher possibility of
having SL capacity violations (Figure 9a). On the other hand, with a more frequent
SL service (e.g. 20 time units), the total costs decreases as less recourse actions are
needed. This can also be observed by looking at the average added costs with different
SL frequencies (Figure 9b). While increasing the SL frequency to 20 time units can
reduce the added costs (up to 0.09%) compared to the original ones, decreasing the
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(a) Average total costs (b) Average added costs

Figure 10.: SL capacity analysis

frequency can yield a slightly increasing added costs (up to 0.03%, 0.11% and 0.21%
for 40, 50 and 80 SL frequencies respectively). However, increasing SL frequency might
also lead to additional costs for SL operators as more shuttles are circulating in the
system (e.g. energy, driver wages etc.). Although freight transportation costs can be
decreased by making SLs more frequent, it might not be profitable for SL operators
especially at passengers off-peak times. On the other hand, reducing SL frequency can
also lead to many passengers left unserved at SL stations. To conclude, increasing, or
decreasing, SL frequency need to take into account the varying levels of passengers
demand.

Analyzing uncertainty with different SL capacities

As introduced earlier, we assumed that PD robots can take up to 3 places in shuttles.
In this section, we investigate the effect of changing the maximum number of places
allowed for PD robots on the total transportation costs. As such, we take the average
of ten runs of the algorithm with up to 5 maximum places (Figure 10).

Looking at the obtained results, we observe that allowing more PD robots at each
SL departure has a positive effect in terms of the total transportation costs and the
average added costs. This positive effect is justified by a lowering of 0.07% and 0.1%
on the added costs when up to 4 or 5 PD robots are allowed at each SL departure.
This means that with an extra capacity for PD robots, stochastic solutions become
cheaper and less capacity violations can be encountered. However, this might also have
a negative effect on the number of PD robots that have to get off at an intermediate
transfer node where passengers demand is high leading to many waiting PD robots at
that node.

6. Conclusion

In this paper, a transportation service that combines passenger and freight flows has
been studied. The associated optimization problem has been formulated as a pickup
and delivery problem with time windows, scheduled lines (PDPTW-SL) and stochastic
passengers demand. An MIP formulation along with ALNS-based heuristic approach
have been introduced. For dealing with uncertainty, a sample average approximation
method and a recourse algorithm have been developed. An extensive computational
study to evaluate the performance of the proposed approaches and their different
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components has been presented.
Results of testing instance with up to 60 freight requests showed that the proposed

heuristic approach can return solutions that are within 0.6% of the optimal solutions.
The analysis also revealed that an average of 3.3% extra costs can be observed when
stochastic passengers demand is realized. These additional costs reflect the effect of
uncertainty on the total transportation costs. Analyzing the impact of different SL
frequencies and capacities, the results demonstrated the positive effect of increasing
the frequency of SL departures and the maximum capacity for PD robots on the
system.

Since we build our analysis on a set of assumptions that simplify the problem, there
are still a number of challenges facing the deployment of such integrated transportation
system. Here we outline some directions for future research: (1) We assumed in this
paper that each PD robot can only serve one freight request at a time due to the
complexity of the considered problem. A more realistic setting would be to allow
multiple request pickup and delivery per PD robot trip. This gives rise to the challenge
of coupling, or synchronizing, both pickup and delivery routing problems as the same
PD robot performs them. (2) Another interesting direction would be to study the
impact of such integrated service on passenger transportation on a daily horizon in
which their demand varies during day hours. Finally, (3) Since we consider in this
paper one source of uncertainty, which is passengers demand, it is also important to
look at other sources of uncertainty like travel times. As PD robots are operating in an
urban area, many external factors might affect their travel time and speed. We believe
that this study helps in a better understanding of the potential deployment of such
integrated systems, and thus, promote more research towards studying this emerging
trend in city logistics and transportation.
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Appendix A

Algorithm 2 Algorithm for calculating the average recourse cost of a given routing
solution

1: procedure Calculate-Recourse-Cost(routing solution δ, set of scenarios ξ)
2: initialize recourse cost : E [ Q ( δ , ξ , η ) ]← 0
3: let c(δ) be the routing costs of solution δ
4: for each scenario s in ξ do
5: for each transfer node t in S do
6: let Wt be the set of PD robots waiting at transfer node t: Wt ⊂ P ′
7: for each scheduled departure pwt,t+1 at t do
8: let Iwt be the set of PD robots already in shuttle at pwt,t+1

9: rank PD robots in Wt according to their requests earliest due dates
10: rank PD robots in Iwt according to their request’s latest due dates
11: if |Wt| > Qwij then
12: add PD robots to SL in order until Qwij is reached
13: for each excessive PD robot do
14: if direct delivery from t to destination is possible then
15: update recourse cost according to the extra traveled dis-

tance by PD robot
16: else
17: add PD robot to Wt

18: let ∆t be the realized number of passengers waiting for service at t
19: if |∆t| −Qwij > 0 then
20: for each robot in Iwt do
21: if direct delivery from t to destination is possible then
22: update recourse cost according to the extra traveled dis-

tance by PD robot
23: else
24: add PD robot to Wt

25: for each PD robot in Wt do
26: if time window is violated then
27: use outsourced vehicle to make the delivery
28: update recourse cost according to the traveled distance by

outsourced vehicle
29: remove PD robot from Wt

30: return recourse cost
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Appendix B

Algorithm 3 Sample Average Approximation (SAA) Algorithm

1: procedure Sample-Average-Approximation(sample size |Ω|, large set of sce-
narios Ω′, number of iterations m)

2: generate large set of scenarios Ω
3: m = 0
4: while m < M do
5: generate sample set ω
6: solve corresponding SAA problem using ALNS to get routing solution xm

7: Calculate-Recourse-Cost(δ, Ω) → get upper bound for Ω
8: calculate lower bound for ω by averaging objective values of previous iter-

ations
9: calculate SAA gap using upper bound and lower bound

10: if tighter gap is found then
11: best solution ← found solution
12: m = m+ 1

13: return best solution
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