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introduction

The general 2D incompressible Boussinesq system describes the influence of the convection-diffusion phenomenon in a viscous fluid as follows:

           ∂ t u + u • ∇u -∇ • (ν(θ)∇u) = -∇p + θe 2 , x ∈ R 2 , t > 0 ∂ t θ + u • ∇θ -∇ • (κ(θ)∇θ) = 0, ∇ • u = 0, u(0, x) = u 0 (x), θ(0, x) = θ 0 (x), (1.1) 
where u denote the velocity field, p, θ are two scalar representing pressure and temperature respectively. e 2 = (0, 1) denotes the vertical unit vector field and the forcing term of the first equation θe 2 indicating the buoyancy force due to the gravity. ν(θ) and κ(θ) are the viscosity and thermal diffusivity depending on the temperature.

The Boussinesq system describe the influence of convection phenomenon in the dynamics of the ocean or of the atmosphere (see e.g. [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF]). Mathematically, the global well-posedness for system (1.1) in the case ν, κ are positive constant has been solved in [START_REF] Cannon | The initial value problem for the Boussinesq equations with data in L p[END_REF][START_REF] Guo | Spectral method for solving two-dimensional Newton-Boussinesq equations[END_REF]. But it the case ν = κ = 0, it is still an unsolved problem that whether we can construct global unique solutions for some non-trivial θ 0 . So this system has been extensively studied in the last few years due to the physical background and mathematical challenging.

For the constant viscosity case ν(θ) = ν > 0, κ = 0, Chae in [START_REF] Chae | Global regularity for the 2D Boussinesq equations with partial viscosity terms[END_REF] and Hou, Li in [START_REF] Hou | Global well-posedness of the viscous Boussinesq equations[END_REF] obtained the global well-posedness result for regular initial data. Later, Abidi and Hmidi studied this system in the Besov space in [START_REF] Abidi | On the global well-posedness for Boussinesq system[END_REF]. For lower regularity initial data, the global weak solution with finite energy has been constructed in [START_REF] Hmidi | On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity[END_REF] and has been proved to be unique later in [START_REF] Danchin | Les théorèmes de leray et de fujita-kato pour le système de Boussinesq partiellement visqueux[END_REF]. On the other hand, for the constant thermal diffusive case κ(θ) = κ > 0, ν = 0, the global well-posed for regular initial data has been obtained by Chae in [START_REF] Chae | Global regularity for the 2D Boussinesq equations with partial viscosity terms[END_REF]. Later, Hmidi and Keraani extended this result to rough initial data in some Besov space in [START_REF] Hmidi | On the global well-posedness of the Boussinesq system with zero viscosity[END_REF]. Danchin and the first author studied this system in [START_REF] Danchin | Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data[END_REF] with Yudovich's type data.

For the temperature dependent viscosity, system (1.1) has been studied in [START_REF] Wang | Global well-posedness for the 2-D Boussinesq system with the temperaturedependent viscosity and thermal diffusivity[END_REF], and they obtained the global well-posedness result for smooth data with De Giorgi method.

Later, Li and Xu studied the case ν = 0, κ(θ) > 0 in [START_REF] Li | Global well-posedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity[END_REF] with smooth initial data. In contrast, the case ν(θ) > 0, κ(θ) = 0 still unsolved even for smooth initial data. Other interesting results corresponding to this model can be found in [START_REF] Lai | Initial boundary value problem for two-dimensional viscous Boussinesq equations[END_REF][START_REF] Li | Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion[END_REF][START_REF] Sun | Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity[END_REF][START_REF] Zhai | Global well-posedness for n-dimensional Boussinesq system with viscosity depending on temperature[END_REF].

In this paper, we investigate the 2D Boussinesq equations with only temperaturedependent thermal diffusion under the Yudovich's type initial data, the system reads:

           ∂ t u + u • ∇u = -∇p + θe 2 , x ∈ R 2 , t > 0 ∂ t θ + u • ∇θ -∇ • (κ(θ)∇θ) = 0, ∇ • u = 0,
u(0, x) = u 0 (x), θ(0, x) = θ 0 (x), (1.2) Through out this paper, we assume that κ(θ) satisfies

C -1 0 ≤ κ(θ) ≤ C 0 , κ (θ) ≤ C 0 , for some constant C 0 > 0.
Here we want to introduce an important quantity ω ∂ 1 u 2 -∂ 2 u 1 called vorticity which measures how fast the fluid rotates and its control plays an important role in the literature we mentioned above. The Yudovich's type initial data is (u

0 , θ 0 ) in L 2 with bounded vorticity ω 0 ∂ 1 u 2 0 -∂ 2 u 1 0 .
Taking curl operator to the first equation of (

we can obtain the corresponding vorticity equation

∂ t ω + u • ∇ω = ∂ 1 θ. (1.3)
Let us denote by ψ(•, t) the flow associated with the vector field u, that is

   d dt ψ(x, t) = u(ψ(t, x), t), ψ(0, x) = x.
(1.4)

The classical vortex patch problem is concerned about the following 2D incompressible Euler equations

     ∂ t u + u • ∇u = -∇p, ∇ • u = 0, u(0, x) = u 0 (x).
(1.5)

The associate vorticity ω satisfies the following transport equation

∂ t ω + u • ∇ω = 0. (1.6)
If the initial vorticity

ω 0 = ∂ 1 u 2 0 -∂ 2 u 1 0 = χ D 0 (x) 1 x ∈ D 0 , 0 x / ∈ D 0 , (1.7) 
where D 0 is a connected bounded domain, χ D 0 is the standard characteristic function of D 0 . Then according to the properties of the flow ψ, we have ω(t) = χ Dt with D t = χ(D 0 , t). A natural problem is that whether the regularity of the boundary ∂D t preserving through the evolution of the flow. It has been proved by Chemin (see e.g. [START_REF] Chemin | Persistance de structures géométriques dans les fluides incompressibles bidimensionnels[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF]) that the regularity of the boundary can be persisted for all the time. Later, Gamblin and Saint-Raymond studied the vortex patch problem for 3D Euler equations in [START_REF] Gamblin | On three-dimensional vortex patches[END_REF]. As for Boussinesq system, the vortex patch problem for inviscid Boussinesq equations has been discussed by Hassainia and Hmidi in [START_REF] Hassainia | On the inviscid Boussinesq system with rough initial data[END_REF]. Then Danchin and Zhang in [START_REF] Danchin | Global persistence of geometrical structures for the Boussinesq equation with no diffusion[END_REF], Gancedo and García-Juárez in [START_REF] Gancedo | Global regularity for 2D Boussinesq temperature patches with no diffusion[END_REF] considered the temperature patch problem associate to the Boussinesq system with full Laplacian dissipation in velocity and no diffusion in temperature. Then for the stratified Euler system, which is system (1.2) with constant temperature diffusion, Hmidi and Zerguine studied the vortex patch problem in [START_REF] Hmidi | Vortex patch problem for stratified Euler equations[END_REF]. Many similar studies have been subsequently implemented by numerous authors for homogeneous (inhomogeneous) Navier-Stokes and other viscous (inviscid) flows, see for instance [3, 8-12, 16, 17, 22, 30-32] and the references therein.

In order to understand the striated regularity clearly, we need first to introduce some notations and definitions which will be used to describe the boundary regularity. Let X 0 be a vector field defined on D 0 , X is the evolution of X 0 along the flow ψ defining as follows,

X(x, t) ∂ X 0 ψ(ψ -1 (x, t), t), (1.8) 
where ∂ X 0 f X 0 • ∇f denoting the standard directional derivative.

Taking time derivative of (1.8), one can obtain X satisfies the following transport equation,

∂ t X + u • ∇X = ∂ X u, X(0, x) = X 0 (x). (1.9) It is not hard to check that ∂ X satisfies, [∂ X , ∂ t + u • ∇] = 0, (1.10) 
where [A, B] AB -BA represents the standard commutator.

Applying div operator to (1.9) and combining with the divergence-free condition of u, we obtain in addition

∂ t div X + u • ∇div X = 0, div X(0, x) = div X 0 (x). (1.11)
Therefore, the divergence-free property can be preserved through the evolution.

The following definition of I(x) is needed in order to estimate the striated regularity and state our result, which can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF].

Definition 1.1. A family (X λ ) λ∈Λ of vector fields over R 2 is said to be non-degenerate whenever I(X) inf

x∈R d sup λ∈Λ |X λ (x)| > 0.
Let r ∈ (0, 1) and (X λ ) λ∈Λ be a non-degenerate family of C r vector fields over R 2 . A bounded function f is said to be in the function space C r X if it satisfies

f C r X sup λ∈Λ f L ∞ X λ C r + ∇ • (X λ f ) C r-1 I(X) < ∞.
Then we give the definition about how to describe a boundary curve in C s class.

Definition 1.2. Let 0 < s < 1 and Ω be a bounded domain in R 2 . We say that Ω is of class C 1+s if there exists a compactly supported function f ∈ C 1+s (R 2 ) and a neighborhood V of ∂Ω such that

∂Ω = f -1 ({0}) ∩ V and ∇f (x) = 0 ∀ x ∈ V.
The main result of our paper can be stated as follows.

Theorem 1.1. Assume u 0 ∈ L 2 be a divergence-free vector field, the corresponding

vorticity ω 0 ∂ 1 u 2 0 -∂ 2 u 1 0 ∈ L 2 ∩ L ∞ . θ 0 ∈ L 2 ∩ B 2-2 r p,r with 2 < p < ∞, r > 1 and 1 p + 2 r < 2.
Then here exists a small enough positive constant ε 0 such that if

κ(•) -1 L ∞ (R) ≤ ε 0 , (1.12) system (1.2) has a global solution (u, θ) satisfies u ∈ L ∞ ([0, T ]; H 1 ), ω ∈ L ∞ ([0, T ]; L ∞ ), θ ∈ L ∞ ([0, T ]; L 2 ) ∩ L σ ([0, T ]; W 2,p ),
for any T > 0 and some σ > 1. If p and r satisfy 1 p + 1 r ≤ 1, then the solution is unique. Furthermore, for any non-degenerate divergence-free vector field X 0 ∈ C s such that ∂ X 0 ω 0 ∈ L p , there exists a unique global solution X ∈ L ∞ ([0, T ]; C s ) to equation (1.9) and we have

∂ X ω ∈ L ∞ ([0, T ]; L p ), ∇u ∈ L 1 ([0, T ]; L ∞ ),
Moreover, if we assume X 0 ∈ Ẇ 1,p additionally, then

X ∈ L ∞ ([0, T ]; Ẇ 1,p ).
Remark 1.1. Noticing that with Yudovich's type data, ∂ X ω is defined as

∂ X ω div (ωX) -ωdiv X,
in the sense of distribution. For the sake of simplicity, we assume div X 0 = 0 in Theorem 1.1, which can be preserved for all the time. As for the general case (div X 0 = 0), we just need to propagate the regularity of div X, which is easy to get because div X satisfies a transport type equation (1.11). We will explain the details in Remark 4.1.

Remark 1.2. In the process of proving ∇u in L 1 ([0, T ]; L ∞ ), we only need ∂ X 0 ω 0 ∈ C s-1 , which leads to the estimate of ∂ X ω in C s-1 . This is enough to obtain the Lipschitz bound of the velocity u. The reason we choose L p space here is because L p → C s-1 and the L p norm of ∂ X ω will be used in the proof of X ∈ L ∞ ([0, T ]; Ẇ 1,p ). Theorem 1.1 can be used to deal with the following vortex patch problem directly.

Let ω 0 defined as (1.7), the solution ω(x, t) = ω 1 (x, t) + ω 2 (x, t) where ω 1 is the solution of the system

∂ t ω 1 + u • ∇ω 1 = 0, ω 1 (x, 0) = ω 0 (x), (1.13) 
and ω 2 is the solution of the system

∂ t ω 2 + u • ∇ω 2 = ∂ 1 θ, ω 2 (x, 0) = 0. (1.14)
Then the main result can be stated as follows.

Corollary 1.1. Assume u 0 be a divergence free vector field with vorticity ω 0 defined as in (1.7) and D 0 be a connected bounded domain with its boundary ∂D 0 in Hölder class C 1+s (0 < s < 1), θ 0 defined as Theorem 1.1. Then system (1.2) exists a unique global solution satisfies the properties shows in Theorem 1.1. Moreover, the solution of systems (1.13) and (1.14) satisfying

ω 1 = χ Dt , ∂ X ω 2 ∈ L ∞ ([0, T ]; L p ),
with D t ψ(D 0 , t) and the boundary of the domain remains in the class C 1+s .

The rest of this paper is divided into four sections and an appendix. Some tool lemmas will be given in section 2. In the third section, we prove the well-posedness result for system (1.2) which shows the proof of results of the first part in Theorem 1.1. Section 4 is devoted to give some estimates of the striated regularity which complete the proof the Theorem 1.1. The last section presents the proof of Corollary 1.1, which solves the corresponding vortex patch problem for system (1.2). In the appendix, we provide the description of the Littlewood-Paley decomposition, the Besov space and some related facts used in the previous sections.

Preparations

In this section, we will give some lemmas which will be used in the next several sections. Throughout this paper, C stands for some real positive constant which may be different in each occurrence. C(t) is also a constant which depending on t and the initial data.

Noticing that if u is a divergence-free vector field in R 2 , then there exists a stream function ψ such that u = ∇ ⊥ ψ. Then we can obtain that the velocity u can be recovered from the corresponding vorticity ω by means of the following Biot-Savart law

u = ∇ ⊥ ∆ -1 ω. (2.1)
Combining the classical Calderón-Zygmund estimate with (2.1), it can lead to the following lemma (see [START_REF] Chemin | Perfect incompressible fluids[END_REF] for details).

Lemma 2.1. For any smooth divergence-free vector field u with its vorticity ω ∈ L p and p ∈ (1, ∞), there exists a constant C such that

∇u L p ≤ C p 2 p -1 ω L p . (2.2)
Then we present the maximum regularity estimate for heat semi-group, which play an important role in the regularity estimate for θ of system (1.2). (see e.g. Lem. 7.3

in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF] for the proof.)

Lemma 2.2. Let 1 < p, r < ∞, f (x, t) ∈ L r ((0, t); L p (R d ))
and A be an operator satisfies

A(f ) = t 0 ∇ 2 e (t-τ )∆ f (τ, •) dτ.
Then we have

A(f ) L r ((0,t);L p (R d )) ≤ C f L r ((0,t);L p (R d )) .
The next lemma shows the Hölder estimate for transport equation, which is useful in the estimate of the striated regularity. The proof can be found in [START_REF] Chemin | Perfect incompressible fluids[END_REF].

Lemma 2.3. Let u be a smooth divergence-free vector field, r ∈ (-1, 1).

Consider two functions f ∈ L ∞ loc (R; C r ) and g ∈ L 1 loc (R; C r ) satisfy the transport equation ∂ t f + u • ∇f = g.
Then we have

f (t) C r ≤ C f (0) C r e C t 0 ∇u(τ ) L ∞ dτ + C t 0 g(τ ) C r e C t τ ∇u(s) L ∞ ds dτ,
and the constant C depends only on r.

Next we give lemma which showing a logarithmic inequality which can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF]. This inequality plays an important role in the proof of the vortex patch problem for Euler equations.

Lemma 2.4. Let r ∈ (0, 1) and (X λ ) λ∈Λ be a non-degenerate family of C r vector fields over R 2 . Let u be a divergence-free vector field over R 2 with vorticity ω ∈ C r X . Assume in addition that u ∈ L q for some q ∈ [1, +∞] or that ∇u ∈ L p for some finite p. Then there exists a constant C depending on p and r such that

∇u L ∞ ≤ C min( u L q , ω L p ) + ω L ∞ log e + ω C r X ω L ∞ . (2.3)
Finally we give a commutator estimate for tangential derivatives and Riesz transform , which will be used in the regularity estimate for X. The proof can be found in the Appendix of [START_REF] Paicu | Striated regularity of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscosity[END_REF].

Lemma 2.5. Let p, r ∈ (1, ∞) and q ∈ (1, ∞]) satisfying 1 r = 1 p + 1 q . Let X ∈ Ẇ 1,p (R 2 ) with ∇ • X = 0, g ∈ L q (R 2 ), R i = ∂ i (-∆) 1 2
be the Riesz transform. Then one has

[∂ X , R i R j ]g L r ≤ C ∇X L p g L q .
3. Well-posedness and global regularity estimate for System (1.2)

In this section, we will give some a priori estimates for (u, θ), then obtain the global existence and uniqueness results for system (1.2).

Firstly, basic L 2 energy estimate for θ shows that

θ(t) 2 L 2 + 2C -1 0 t 0 ∇θ(τ ) 2 L 2 dτ ≤ θ 0 2 L 2 , for all t ∈ R + . (3.1)
Then using the estimate (3.1) and the divergence free condition of u, one can obtain the L 2 estimate for u and ω that,

u(t) L 2 ≤ u 0 L 2 + t 0 θ(τ ) L 2 dτ ≤ u 0 L 2 + t θ 0 L 2 , (3.2) 
and

ω(t) L 2 ≤ ω 0 L 2 + t 0 ∇θ(τ ) L 2 dτ ≤ u 0 L 2 + C(t) θ 0 L 2 . (3.3)
Similarly, L q estimate of ω can be obtained by the same way that,

ω(t) L q ≤ ω 0 L q + t 0 ∇θ(τ ) L q dτ. (3.4)
So we need to do the L q estimate for ∇θ firstly. The following proposition alerting the W 2,p estimate for θ.

Proposition 3.1. Let (u 0 , θ 0 ) satisfies the assumptions in Theorem 1.1, then for some σ ≥ 1, we have θ ∈ L σ ((0, t); W 2,p ) for any t > 0.

Proof. Multiplying the second equation of system (1.2) by |θ| q-2 θ (2 < q < ∞) and integrating over R 2 with respect to x, according to the divergence free condition of u, we have 1 q

d dt θ(t) q L q + C -1 0 (q -1) R 2 |∇θ| 2 |θ| q-2 dx = 0.
Then integrating for time variable, we obtain θ(t) L q ≤ θ 0 L q , for any t > 0.

(3.5)

In order to obtain the first and second order derivative estimates for θ, we need first rewrite the second equation of system (1.2) as

∂ t θ -∆θ = -∇ • (uθ) + ∇ • ((κ(θ) -1)∇θ) = -u • ∇θ + κ (θ)(∇θ) 2 + (κ(θ) -1)∆θ. (3.6)
Then θ can be represented by

θ(t) = e t∆ θ 0 + t 0 e (t-τ )∆ (-∇ • (uθ) + ∇ • ((κ(θ) -1)∇θ))dτ, (3.7) 
where (e t∆ ) t>0 stands for the heat semi-group. Applying ∇ to (3.7) and taking

L 2σ t (L 2p x ) (1 ≤ σ) norm, one can deduce ∇θ L 2σ t (L 2p x ) ≤ ∇e t∆ θ 0 L 2σ t (L 2p x ) + t 0 ∇e (t-τ )∆ (∇ • (uθ)) dτ L 2σ t (L 2p x ) + t 0 ∇e (t-τ )∆ ∇ • ((κ(θ) -1)∇θ))dτ L 2σ t (L 2p x ) F 0 + F 1 + F 2 .
(3.8)

For F 0 , according to Lemma A.1, we have

F 0 = ∇e t∆ θ 0 L 2σ t (L 2p x ) ≤ C ∇θ 0 Ḃ-1 σ 2p,2σ ≤ C θ 0 B 1-1 σ 2p,2σ
.

(3.9)

For the case 1 p + 1 r ≤ 1, by taking σ = r and making use of Proposition A.1, we obtain

θ 0 B 1-1 r 2p,2r ≤ C θ 0 B 1-1 r + 1 p p,r ≤ C θ 0 B 2-2 r p,r . For the case 1 p + 1 r > 1. Taking 1 σ = 1 p + 2 r -1 (which implies σ > 1) and by Proposition A.1, θ 0 B 1-1 σ 2p,2σ = θ 0 B 2-1 p -2 r 2p,2σ ≤ C θ 0 B 2-2 r p,r
.

Then we estimate F 1 . Making use of Lemma 2.2 and Hölder inequality, we can bound

F 1 by F 1 ≤ t 0 ∇ 2 e (t-τ )∆ (uθ) dτ L 2σ t (L 2p x ) ≤ uθ L 2σ t (L 2p x ) ≤ u L ∞ t (L ∞ x ) θ L 2σ t (L 2p 
x ) .

(3.10)

For u L ∞ t (L ∞
x ) , by interpolation and Lemma 2.1,

u L ∞ (R 2 ) ≤ C u p-1 2p-1 L 2 (R 2 ) ∇u p 2p-1 L 2p (R 2 ) ≤ C u p-1 2p-1 L 2 (R 2 ) ω p 2p-1 L 2p (R 2 )
for any 2 < p < ∞.

Combining with (3.2) and (3.4), we obtain

u L ∞ t (L ∞ x ) ≤ C(t)( ω 0 p 2p-1 L 2p + ∂ 1 θ p 2p-1 L 1 t (L 2p 
x ) ).

(3.11)

Inserting (3.11) into (3.10), we deduce that

F 1 ≤ C(t)(1 + ∇θ p 2p-1 L 2σ t (L 2p x ) ) θ L ∞ t (L 2p x ) . (3.12) Because θ 0 ∈ B 2-2 r p,r , by Proposition A.1 in the Appendix, it is not hard to see θ 0 ∈ L 2p .
Combining with the estimate (3.5), we have θ

L ∞ t (L 2p 
x ) is bounded. Then making use of Young's inequality, we get F 1 is bounded by

F 1 ≤ C(t) + 1 4 ∇θ L 2σ t (L 2p x ) . (3.13) 
For F 2 , also by Lemma 2.2,

F 2 ≤ t 0 ∇ 2 e (t-τ )∆ ((κ(θ) -1)∇θ))dτ L 2σ t (L 2p x ) ≤ C (κ(θ) -1)∇θ L 2σ t (L 2p x ) ≤ C κ(θ) -1 L ∞ ∇θ L 2σ t (L 2p 
x ) .

(3.14)

According to (1.12), we obtain

F 2 ≤ 1 4 ∇θ L 2σ t (L 2p x ) . (3.15) 
Inserting the estimates (3.9), (3.13) and (3.15) into (3.8), one can deduce

∇θ L 2σ t (L 2p x ) ≤ C(t). (3.16) 
Then we give the estimate of ∇ 2 θ. According to (3.6),

θ(t) = e t∆ θ 0 + t 0 e (t-τ )∆ (-u • ∇θ + κ (θ)(∇θ) 2 + (κ(θ) -1)∆θ)dτ. (3.17)
Then we have

∇ 2 θ L σ t (L p x ) ≤ ∇ 2 e t∆ θ 0 L σ t (L p x ) + t 0 ∇ 2 e (t-τ )∆ (u • ∇θ) dτ L σ t (L p x ) + t 0 ∇ 2 e (t-τ )∆ ((κ (θ)(∇θ) 2 ))dτ L σ t (L p x ) + t 0 ∇ 2 e (t-τ )∆ ((κ(θ) -1)∆θ)dτ L σ t (L p x ) G 0 + G 1 + G 2 + G 3 . (3.18) 
According to Lemma A.1 in the Appendix,

G 0 = ∇ 2 e t∆ θ 0 L σ t (L p x ) ≤ C ∇ 2 θ Ḃ-2 σ p,σ ≤ C θ 0 B 2-2 σ p,σ . (3.19) 
In the case 1 p + 1 r ≤ 1, we take σ = r, so we have

G 0 ≤ C θ 0 B 2-2 r p,r . For 1 p + 1 r > 1. Noticing that 1 σ = 1 p + 2 r -1, that is 1 < σ < r. Then by Proposition A.1, G 0 ≤ C θ 0 B 2-2 σ p,σ ≤ C θ 0 B 2-2 r p,r .
Next we estimate G 1 , by Lemma 2.2 and Hölder inequality and estimate

G 1 = t 0 ∇ 2 e (t-τ )∆ (u • ∇θ) dτ L σ t (L p x ) ≤ u • ∇θ L σ t (L p x ) ≤ C u L 2σ t (L 2p x ) ∇θ L 2σ t (L 2p x ) . (3.20) By interpolation u L 2p (R 2 ) ≤ C u 1 p L 2 (R 2 ) ∇u 1-1 p L 2 (R 2 ) ≤ C u 1 p L 2 (R 2 ) ω 1-1 p L 2 (R 2 ) ,
and combining with the estimate (3.2), (3.3), (3.16) and (3.20), we can deduce

G 1 ≤ C(t) u 1 p L ∞ t (L 2 x ) ω 1-1 p L ∞ t (L 2 x ) ∇θ L 2σ t (L 2p
x ) ≤ C(t).

(3.21)

Similarly,

G 2 = t 0 ∇ 2 e (t-τ )∆ ((κ (θ)(∇θ) 2 ))dτ L σ t (L p x ) ≤ C κ (θ) L ∞ ∇θ 2 L 2σ t (L 2p x ) ≤ C(t). (3.22) G 3 = t 0
∇ 2 e (t-τ )∆ ((κ(θ) -1)∆θ)dτ 

L σ t (L p x ) ≤ C κ(θ) -1 L ∞ ∇ 2 θ L σ t (L p x ) . ( 3 
∇ 2 θ L σ t (L p
x ) ≤ C(t), which complete the proof of this proposition.

Then according to Sobolev embedding and estimate (3.4), we can obtain

∇θ ∈ L 1 ((0, t); L ∞ ), ω ∈ L ∞ ((0, t); L ∞ ), (3.24) 
With these regularity estimates of (u, θ), it is enough to derive the existence and uniqueness results for system (1.2). For the proof of the existence, we make use of the Friedrichs method. First we define the spectral cut-off as follows:

J N f (ξ) = χ B(0,N ) (ξ) f (ξ),
where

N > 0, B(0, N ) = {ξ ∈ R 2 : |ξ| ≤ N }, χ B(0,N )
is the characteristic function on B(0, N ). We define

L 2 N f ∈ L 2 (R 2 ) : supp f ⊂ B(0, N ) .
Let P denote the Leray projector over divergence free vector fields. Now we consider the following approximate system

∂ t u N + PJ N (PJ N u N • ∇PJ N u N ) = P(J N θ N e 2 ), ∂ t θ N + J N (PJ N u N • ∇J N θ N ) -J N ∇ • (κ(J N θ N )∇J N θ N ) = 0. (3.25)
with smooth initial data

u N (x, 0) = J N u 0 (x), θ N (x, 0) = J N θ 0 (x).
From the Cauchy-Lipschitz Theorem, we can get a unique smooth solution (u

N , θ N ) in C 1 ([0, T * ); L 2 N )
. Due to P 2 = P, J 2 N = J N and PJ N = J N P, we can discover that (Pu N , θ N ) and (J N u N , J N θ N ) are also solutions to the approximate system (3.25) with the same initial condition. Thanks to the uniqueness, we deduce

Pu N = u N , J N u N = u N , J N θ N = θ N .
Thus the approximate system (3.25) reduces to

∂ t u N + PJ N (u N • ∇u N ) = P(θ N e 2 ), ∂ t θ N + J N (u N • ∇θ N ) -J N ∇ • (κ(θ N )∇θ N ) = 0. (3.26)
According to the previous a priori estimates, we have for any T > 0,

• {u N } N ∈N ⊂ L ∞ ([0, T ]; L 2 ), • {ω N } N ∈N ⊂ L ∞ ([0, T ]; L 2 ∩ L ∞ ), • {θ N } N ∈N ⊂ L ∞ ([0, T ]; L 2 ) ∩ L 2 ([0, T ]; Ḣ1 ) ∩ L r ([0, T ]; W 2,p ) ∩ L 1 ([0, T ]; Ẇ 1,∞ ),
and the bounds are uniformly in N . According to the first equation of (3.26), it is not hard to verify that ∂ t u N ∈ L ∞ ([0, T ]; L 2 ) uniformly in N . Similarly, by the second equation of (3.26),

∂ t θ N ∈ L 2 ([0, T ]; H -1 ).
Because L 2 is (locally) compactly embedded in H -1 . Then by the standard Aubin-Lions theorem and Cantor diagonal process, we can prove there exists a subsequence of (u N , θ N ) N ∈N strong convergence to its limit (u, θ) in L ∞ ([0, T ]; H -1 ). Moreover,

u ∈ L ∞ ([0, T ]; L 2 ), ω ∈ L ∞ ([0, T ]; L 2 ∩ L ∞ ), θ ∈ L ∞ ([0, T ]; L 2 ) ∩ L 2 ([0, T ]; Ḣ1 ) ∩ L r ([0, T ]; W 2,p ) ∩ L 1 ([0, T ]; Ẇ 1,∞ ).
Then with these results, it is enough to pass the limit in (3.26) to obtain the existence result for (1.2).

For the proof of uniqueness part, we make use of the Yudovich method. Let (u 1 , θ 1 , p 1 ) and (u 2 , θ 2 , p 2 ) are two solutions to system (1.2) with the same initial data. Denote δu u 2 -u 1 , δθ θ 2 -θ 1 and δp p 2 -p 1 , then we can get the system for (δu, δθ) that

∂ t δu + u 2 • ∇δu = -∇δp -δu • ∇u 1 + δθe 2 , ∂ t δθ + u 2 • ∇δθ -∇ • (κ(θ 2 )∇δθ) = -δu • ∇θ 1 + ∇ • ((κ(θ 2 ) -κ(θ 1 ))∇θ 1 ). (3.27)
Standard L 2 estimate combined with Hölder inequality yields for all q ∈ [2, ∞),

1 2 δu(t) 2 L 2 ≤ ∇u 1 L q δu 2 L 2q + δu L 2 δθ L 2 with q = q q -1 .
Then by interpolation, this inequality can be written as:

1 2 d dt δu(t) 2 L 2 ≤ q ∇u 1 L δu 2 q L ∞ δu 2 q L 2 + δθ L 2 δu L 2 . (3.28)
with

∇u 1 L := sup 2≤q<∞ ∇u 1 L q q .
Noticing that in (3.3) and (3.24), we have

ω 1 ∈ L ∞ ([0, T ]; L 2 ∩ L ∞ ), so the term ∇u 1 (t) L is locally bounded. Of course, combining the fact that u i ∈ L ∞ ([0, T ]; L 2 ) and ω i ∈ L ∞ ([0, T ]; L ∞ ) for i = 1, 2, implies that δu ∈ L ∞ ([0, T ]; L ∞ ).
Next we deal with δθ. Also from L 2 estimate, 1 2

d dt δθ(t) 2 L 2 + C -1 0 ∇δθ 2 L 2 ≤ ∇θ 1 L ∞ δθ L 2 δu L 2 + κ(θ 2 ) -κ(θ 1 ) L 2p ∇θ 1 L 2p ∇δθ L 2 ≤ ∇θ 1 L ∞ δθ L 2 δu L 2 + C δθ L 2p ∇θ 1 L 2p ∇δθ L 2 , with 1 p + 1 p = 1.
Then by interpolation and Young's inequality, we get 1 2

d dt δθ(t) 2 L 2 + C -1 0 ∇δθ 2 L 2 ≤ ∇θ 1 L ∞ δθ L 2 δu L 2 + C δθ 1-1 p L 2 ∇θ 1 L 2p ∇δθ 1+ 1 p L 2 ≤ ∇θ 1 L ∞ δθ L 2 δu L 2 + C δθ 2 L 2 ∇θ 1 2p p-1 L 2p + C -1 0 2 ∇δθ 2 L 2 .
Thus we have

d dt δθ(t) 2 L 2 + C -1 0 ∇δθ 2 L 2 ≤ ∇θ 1 L ∞ δθ L 2 δu L 2 + C δθ 2 L 2 ∇θ 1 2p p-1 L 2p . (3.29) 
Let ε be a small parameter (tend to 0). Denote

X ε (t) := δθ(t) 2 L 2 + δu(t) 2 L 2 + ε 2 .
Putting inequalities (3.28) and (3.29) together gives

d dt X ε ≤ q ∇u 1 L δu 2 q L ∞ X 1-2 q ε + C 1 + ∇θ 1 L ∞ + ∇θ 1 2p p-1 L 2p X ε . Let γ(t) C 1 + ∇θ 1 (t) L ∞ + ∇θ 1 2p p-1 L 2p
. Recalling that from (3.24), ∇θ 1 (t) belongs to L 1 [0, T ], and according to Proposition 3.1,

∇θ 1 ∈ L 2r ([0, T ]; L 2p ) with 1 p + 1 r ≤ 1.

Noticing that 2p

p-1 ≤ 2r, so these ensure that the function γ is in L 1 [0, T ]w. Therefore, setting Y ε := e -t 0 γ(τ )dτ X ε , the previous inequality is rewritten:

2 q Y 2 q -1 ε d dt Y ε ≤ C ∇u 1 L δu 2 q
L ∞ e -2 q t 0 γ(τ )dτ .

Performing a time integration yields

Y ε (t) ≤ ε 2 p + C t 0 ∇u 1 L δu 2 q L ∞ dτ q 2
Having ε tend to 0, we end up with

δθ(t) 2 L 2 + δu(t) 2 L 2 ≤ δu 2 L ∞ t (L ∞ ) t 0 ∇u 1 L dτ q , (3.30) 
for all t > 0.

Because ∇u 1 (t) L is locally bounded. Hence one may find a positive time T * such that

T * 0 ∇u 1 L dτ < 1 2 .
Taking q tend to infinity in (3.30) entails that (δθ, δu) ≡ 0 on [0, T * ]. Then by standard connectivity argument, we can conclude the uniqueness for [0, T ] with all T > 0.

A priori estimates for the striated regularity

In this subsection, we will give the estimates of tangential derivatives of ω and regularity estimates of X. The first lemma gives

L p (p ∈ [1, ∞]) estimate of X. Lemma 4.1. Let r ∈ [1, ∞], X 0 ∈ L r .
Then the solution X of equation (1.9) satisfies

X 0 L r e -t 0 ∇u(τ ) L ∞ dτ ≤ X(t) L r ≤ X 0 L r e t 0 ∇u(τ ) L ∞ dτ , (4.1) 
for any t > 0.

Proof. Multiplying (1.9) by |X| p-2 X (1 ≤ r < ∞) and integrating over R 2 with respect to x, by Hölder inequality, we obtain 1 r

d dt X(t) r L r ≤ C ∇u L ∞ X r L r .
Then by Grönwall's Lemma, we deduce the second inequality of (4.1). The first equality can be obtained by the time reversibility. And taking r → ∞ to obtain the result for the case r = ∞.

Then we give a proposition which alerting the C s (0 < s < 1) estimate for X. As a by-product, we can also obtain the Lipschitz information for the velocity u. Proposition 4.1. Assume (u 0 , θ 0 ) and X 0 satisfy the assumptions in Theorem 1.1, then for any t > 0, we have the velocity u satisfies

∇u ∈ L 1 ([0, t]; L ∞ ). (4.2) 
Moreover,

X ∈ L ∞ ([0, t]; C s ), ∂ X ω ∈ L ∞ ([0, t]; L p ). (4.3) 
Before we prove this proposition, we need firstly give the L p estimate of ∂ X ω. Applying ∂ X to the vorticity equation (1.3), according to (1.10), we get ∂ X ω satisfies the following equation

∂ t ∂ X ω + u • ∇∂ X ω = ∂ X (∂ 1 θ) = X • ∇∂ 1 θ. (4.4) 
Multiplying the equation (4.4) by |∂ X ω| p-2 ∂ X ω (2 ≤ p < ∞), and integrating over R 2 with respect to x, because u satisfies the divergence-free condition, by Hölder inequality, 1 p

d dt ∂ X ω(t) p L p ≤ X L ∞ ∂ 1 ∇θ L p ∂ X ω p-1 L p .
Then integrating in time and combining with the results of Proposition 3.1 and Lemma 4.1,

∂ X ω(t) L p ≤ ∂ X 0 ω 0 L p + t 0 X(τ ) L ∞ ∇ 2 θ(τ ) L p dτ ≤ ∂ X 0 ω 0 L p + X L ∞ t (L ∞ x ) t 0 ∇ 2 θ(τ ) L p dτ ≤ ∂ X 0 ω 0 L p + C(t)e t 0 ∇u(τ ) L ∞ dτ , (4.5) 
Then we give the proof of Proposition 4.1.

Proof of Proposition 4.1. Firstly, making use of Lemma 2.3 to (1.9), we can get the Hölder norm of X satisfies that

X(t) C s ≤ C X 0 C s e C t 0 ∇u(τ ) L ∞ dτ + C t 0 ∂ X u(τ ) C s e C t τ ∇u(s) L ∞ ds dτ ≤ Ce C t 0 ∇u(τ ) L ∞ dτ ( X 0 C s + t 0 ∂ X u(τ ) C s e -C τ 0 ∇u(s) L ∞ ds dτ ), (4.6) 
where we can choose C > 2. In order to estimate Hölder norm of ∂ X u, we need the following estimate which proof can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF],

∂ X u C s ≤ C( ∇u L ∞ X C s + ∂ X ω C s-1 ). (4.7)
By Sobolev embedding L p → C s-1 (1 -s = 2 p ) and estimate (4.5), we obtain

∂ X ω C s-1 ≤ C ∂ X ω L p ≤ C ∂ X ω 0 L p + C(t)e 2 t 0 ∇u(τ ) L ∞ dτ . (4.8) 
Inserting (4.7) and (4.8) into (4.6), one can deduce that

X(t) C s ≤ Ce C t 0 ∇u(τ ) L ∞ dτ X 0 C s + t 0 (C(τ ) + ∇u(τ ) L ∞ X(τ ) C s e -C τ 0 ∇u(s) L ∞ ds ) dτ .
Denoting

F (t) X(t) C s e -C t 0 ∇u(τ ) L ∞ dτ .
Then according to the above estimates, we obtain

F (t) ≤ CF (0) + t 0 C(τ )( ∇u(τ ) L ∞ + 1)(F (τ ) + 1) dτ.
By Grönwall's Lemma,

F (t) ≤ C(F (0) + 1)e t 0 C(τ )( ∇u(τ ) L ∞ +1) dτ .
According to the definition of F (t), we obtain the Hölder estimate of X that,

X(t) C s ≤ C(t)e C t 0 ∇u(τ ) L ∞ dτ . (4.9) 
Recalling the logarithmic inequality in Lemma 2.4 that

∇u L ∞ ≤ C ω L 2 + ω L ∞ log e + ω C s X ω L ∞ , (4.10) 
where ω C s X is defined in Definition 1.1. Noticing that ω L 2 ∩L ∞ has been proven to be boundedness in section 3. Then inserting the estimates (4.8), (4.9) into (4.10), it follows that

∇u L ∞ ≤ C 1 + log e + C(t)e C t 0 ∇u(τ ) L ∞ ≤ C 1 + t 0 C(t)(1 + ∇u(τ ) L ∞ ) dτ .
Making use of Grönwall's Lemma, one can deduce

∇u(t) L ∞ ≤ C(t), ∀t > 0. (4.11)
Combining the estimates (4.9) and (4.11), we can obtain the desired Hölder norm of X, Then inserting the estimate (4.11) into (4.5), we can conclude

∂ X ω L ∞ t (L p x ) is bounded,
which completes the proof of this proposition.

Remark 4.1. For the case divX 0 = 0, which implies divX = 0. (4.7) should be changed to

∂ X u C s ≤ C( ∇u L ∞ X C s + div (Xω) C s-1 ).
The equation that div(Xω) satisfies is 

∂ t div(Xω) + u • ∇div(Xω) = div(X∂ 1 θ) = X • ∇∂ 1 θ + divX∂ 1 θ. ( 4 
divX C s ≤ C divX 0 C s e C t 0 ∇u(τ ) L ∞ dτ .
Then insert this estimate in (4.5), one can deduce

div(Xω)(t) L p ≤ div(X 0 ω 0 ) L p + C(t)e t 0 ∇u(τ ) L ∞ dτ ,
which share a similar structure with (4.5), so the other estimates are the same as Proposition 4.1.

Then we give a proposition about the Ẇ 1,p estimate for X.

Proposition 4.2. Let (u 0 , θ 0 ) satisfies the assumptions in Theorem 1.1, X 0 ∈ Ẇ 1,p , then we have

X ∈ L ∞ ([0, t]; Ẇ 1,p ) for any t > 0. ( 4.13) 
Proof. Applying ∂ i (i = 1, 2) to (1.9), we can obtain ∂ i X satisfies the following equation,

∂ t ∂ i X + u • ∇∂ i X = -∂ i u • ∇X + ∂ i X • ∇u + ∂ X (∂ i u). (4.14) 
Multiplying by |∂ i X| p-2 ∂ i X and integrating over R 2 with respect to x, according to the divergence-free condition of u and Hölder inequality,

1 p d dt ∂ i X(t) p L p ≤ ∇u L ∞ ∇X p L p + R 2 ∂ X (∂ i u)|∂ i X| p-2 ∂ i X dx. (4.15)
Noticing that by equation (2.1),

∂ X (∂ i u) = ∂ X (∂ i ∇ ⊥ ∆ -1 ω) = [∂ X , R i R ⊥ ]ω + R i R ⊥ (∂ X ω).
Then we can write

R 2 ∂ X (∂ i u)|∂ i X| p-2 ∂ i X dx = R 2 [∂ X , R i R ⊥ ]ω |∂ i X| p-2 ∂ i X dx + R 2 R i R ⊥ (∂ X ω) |∂ i X| p-2 ∂ i X dx M 1 + M 2 .
For M 1 , by Hölder inequality,

M 1 ≤ [∂ X , R i R ⊥ ]ω L p ∇X p-1 L p .
Making use of Lemma 2.5,

[∂ X , R i R ⊥ ]ω L p ≤ C ∇X L p ω L ∞ .
Thus we have M 1 can be bounded by

M 1 ≤ ω L ∞ ∇X p L p . (4.16) 
For M 2 , by Hölder inequality and the boundedness of Riesz transform in

L p (1 < p < ∞), M 2 ≤ ∂ X ω L p ∂ i X p-1 L p . (4.17) 
Inserting estimates (4.16) and (4.17) into (4.15),

d dt ∇X(t) L p ≤ ( ∇u L ∞ + ω L ∞ ) ∇X L p + ∂ X ω L p .
According to the estimate of (3.24), Proposition 4.1 and then making use of Grönwall's Lemma, we obtain

∇X L p ≤ C for any t > 0, p ∈ [2, ∞),
which completes the proof of this proposition.

The vortex patch problem

In this section, we devote to prove Corollary 1.1, which solving the vortex patch problem. Because

ω 0 = χ D 0 (x) 1 x ∈ D 0 , 0 x / ∈ D 0 ,
where D 0 is a connected bounded domain with ∂D 0 ∈ C 1+s for 0 < s < 1. Then according to Definition 1.2, there exist a real function f 0 ∈ C 1+s and a neighborhood V 0 such that ∂D 0 = V 0 ∩ f -1 (0) and ∇f 0 = 0 on V 0 . Noticing that at time t, the boundary ∂D t = ψ(D 0 , t) is the level set of the function f (•, t) = f 0 (ψ -1 (•, t)) with f being transported by the flow ψ:

∂ t f + u • ∇f = 0, f (x, 0) = f 0 (x).
(5.1)

Setting the vector field X ∇ ⊥ f with initial data X 0 ∇ ⊥ f 0 , it is not hard to verifies that X satisfying (1.8) and the corresponding system (1.9). Then we can parametrize ∂D 0 as γ 0 : S 1 → ∂D 0 , via σ → γ 0 (σ), with ∂ σ γ 0 = X 0 (γ 0 (σ)), ∀ σ ∈ S 1 , γ 0 (0) = x 0 ∈ ∂D 0 .

(5.2)

In order to conclude the proof of Corollary 1.1, we observe that a parametrization for ∂D t is given by γ t (σ) ψ(γ 0 (σ), t) and by differentiating with respect to the parameter σ, we get ∂ σ γ t (σ) = X(γ t (σ)), ∀ σ ∈ S 1 , γ t (0) = ψ(x 0 , t) ∈ ∂D t .

(5.3)

According to Theorem 1.1, X ∈ L ∞ ([0, T ]; C s ), thus γ t ∈ C 1+s (S 1 ) for all t ≥ 0. This completes the proof of Corollary 1.1.

A. Appendix

This appendix provides the definitions of Besov space and some related facts are used in the previous sections. Firstly we present the classical Littlewood-Paley theory in R d which plays an important role in the proof of our result. Let χ be a smooth function support on the ball B {ξ ∈ R d : |ξ| ≤ 4 3 } and ϕ be a smooth function support on the ring C {ξ ∈ R d : 3 4 ≤ ξ ≤ 8 3 } such that χ(ξ) + q≥0 ϕ(2 -q ξ) = 1, for all ξ ∈ R d , q∈Z ϕ(2 -q ξ) = 1, for all ξ ∈ R d \ {0}.

Then for every u ∈ S (tempered distributions), we define the non-homogeneous Littlewood-Paley operators as follows, ∆ q u = 0 for q ≤ -2, ∆ -1 u = χ(D)u = F -1 (χ(ξ) u(ξ)), ∆ q u = ϕ(2 -q D)u = F -1 (ϕ(2 -q ξ) u(ξ)), ∀ q ≥ 0.

Here F(•), (•) represent the Fourier transform and F -1 (•) the inverse Fourier transform.

Meanwhile, we define the homogeneous dyadic blocks as ∆q u = ϕ(2 -q D)u = F -1 (ϕ(2 -q ξ) u(ξ)), ∀ q ∈ Z.

Next we state the definition of homogeneous and non-homogeneous Besov spaces through the dyadic decomposition, more details can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF]. (2 qs ∆ q f r L p )

1 r
for r < ∞, sup q≥-1

2 qs ∆ q f L p for r = ∞.

The following proposition lists some useful equivalence and embedding relations.

Proposition A.1. For any s ∈ R,

B s 2,2 (R d ) H s (R d ).
For any s ∈ R, 1 < p < ∞, B s p,min{p,2} → W s,p → B s p,max{p,2} .

For any s ∈ R,

1 ≤ p 1 ≤ p 2 ≤ ∞, 1 ≤ r 1 ≤ r 2 ≤ ∞, B s p 1 ,r 1 (R d ) → B s-d( 1 p 1 -1 p 1 ) p 2 ,r 2 (R d ).
The above properties also valid for homogeneous Besov space.

For Besov space with negative index, we have the following equivalent definition. 

Definition A. 1 .

 1 For s ∈ R and 1 ≤ p, r ≤ ∞, the homogeneous Besov space Ḃs p,r and non-homogeneous Besov space B s p,r are defined by Ḃs p,r = {f ∈ S h S\P; f Ḃs p,r < ∞}, B s p,r = {f ∈ S ; f B s p,r < ∞}, where P is the set of polynomials,

Lemma A. 1 . 2 e

 12 Let s > 0, (p, r) ∈ [1, ∞] 2 . A constant C exists such that C -1 f Ḃ-s p,r ≤ t s t∆ f L p L r (R + ; dt t ) ≤ C f Ḃ-s p,r .
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