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Abstract—Denoising algorithms via sparse representation are
among the state-of-the art for image restoration. On previous
work, we proposed SPADE - a sparse- and prior-based method for
3D-image denoising. In this work, we extend this idea to learning
approaches and propose a novel residual-U-Net prior-based
(ResPrU-Net) method that exploits a prior image. The proposed
ResPrU-Net architecture has two inputs, the noisy image and
the prior image, and a residual connection that connects the
prior image to the output of the network. We compare ResPrU-
Net to U-Net and SPADE on human knee data acquired on
a spectral computerized tomography scanner. The prior image
is built from the noisy image by combining information from
neighbor slices and it is the same for both SPADE and ResPrU-
Net. For deep learning approaches, we use four knee samples
and data augmentation for training, one knee for validation and
two for test. Results show that for high noise, U-Net leads to
worst results, with images that are excessively blurred. Prior-
based methods, SPADE and ResPrU-Net, outperformed U-Net,
leading to restored images that present similar image quality
than the target. ResPrU-Net provides slightly better results than
SPADE. For low noise, methods present similar results.

Index Terms—Image denoising, deep learning, U-Net

I. INTRODUCTION

Sparse methods have been among the state-of-the art denois-
ing methods for many years. Total variation (TV) preserves
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edges and was termed as a ”proper norm” for images [1].
However, TV leads to the so called ”staircase artefacts” when
images are highly corrupted by noise. To mitigate these effects
generalizations of TV, such as total generalized variation [2]
and nonlocal TV [3], and patch-based [4] and dictionary
learning (DL) [5] methods were proposed.

Recently, a previous work presented a new paradigm for 3D
image denoising based on adding a regularization functional
that promoted sparsity with respect to a prior image that
contained information from several slices in the 3D volume
[6]. Authors showed that an implementation of this approach,
named SPADE, which was a modification of TV with the addi-
tional prior term, led to restored images without the ”staircase
artefacts”. The prior image has two important benefits. First,
it allows the restored image to preserve the image texture of
the prior image. Second, the prior image guides the algorithm
leading to a more stable convergence. This stability permits to
highly iterate the algorithm in order to recover finer details in
the image without introducing artefacts.

In the last years, deep convolutional neural networks (CNN)
have shown outstanding results in several image processing
tasks, including classification and segmentation [7]. CNNs
have been also proposed for learning several inverse problems,
including image denoising and image reconstruction [8]–[10].
Among the diverse CNN configurations, U-net has shown
outstanding results for image segmentation [11] and has been
applied to postprocessing CT images [10], [12].

The goal of this work is to propose a residual-U-Net prior-
based (ResPrU-Net) architecture for 3D image denoising and
to validate it on human knee data acquired on a spectral com-



puterized tomography (SCT) scanner. The proposed ResPrU-
Net architecture has two inputs, the noisy image and the
prior image, and a residual connection that connects the prior
image to the output of the network. By adding the residual
connection, the network learns the difference with respect to
the prior image, and by including the prior in the input, the
network is guided by the prior image in the restoration process.
The idea is to extend to learning approaches the prior guidance
seen in SPADE method [6]. ResPrU-Net is compared to U-Net
and SPADE methods. For simplicity, denoising is done in 2D
for all methods, but the prior image for each slice is computed
as a running average of neighbor slices, which contains 3D
information and has a high signal-to-noise ratio. The same
prior image is used for all methods.

II. METHODS

A. SPADE denoising

Let ũi be a 2D noisy slice in the 3D image, upi its corre-
sponding prior image that is assumed to be known and ui the
denoised image, SPADE imposes both spatial regularization
and sparsity with respect to a prior image by solving the
following problem:

min
u

(1− α)‖Ψui‖1 + α‖Φ(ui − upi )‖1

such that ‖ui − ũi‖22 ≤ σ2, for i = 1, . . . , I, (1)

where I is the number of slices in the image volume. Operators
Ψ and Φ are chosen to be equal to the gradient as in [6]
(∇x,y here), so SPADE minimizes a combination of TV (ui)
and TV(ui−upi ). The last term in (1) constrains the denoised
image to lie close to the noisy image, assuming that noise
follows a Gaussian distribution.

To choose the prior image, we follow the method used in
previous work [6]. The prior image is obtained by combining
information from neighbor slices by using a running average
to provide a specific prior image for each slice. Each prior
slice upi is built from the 3D noisy image as follows

upi =

M∑
j=1

θij ũj =

M∑
j=1

exp(−γ|j − i|)ũj , (2)

where γ = 0.04 as set in previous work, j = 1, . . . ,M is the
index of the slice and M is the number of slices along the z-
dimension in the stack used for computing the prior (M = 10
here). The prior image, which is a low-pass filtered version of
the noisy image, has low noise but it is obviously blurred.

B. Deep learning denoising with ResPrU-Net

Deep learning has been recently proposed for learning
inverse problems [13]–[15]. In this work, we aim to learn
the mapping from a noisy image ũi to a restored image ui,
knowing the prior image upi , given by

h(ũi;β|upi ) = ui, (3)

where β indicates the parameters of the neural network. With
this framework, we learn the mapping conditioned on the prior
image.

To achieve this, we propose a residual-U-Net prior-based
(ResPrU-Net) architecture that exploits the knowledge of a
prior image. To build ResPrU-Net, we start with a U-Net
[11] architecture with two inputs, the noisy image and the
prior image, and modify it by adding a residual connection
that connects the prior image directly to the output. With this
design we gain from both the multi-scale nature of U-Net
and the prior image. The starting U-net consists of 14 hidden
layers. The contracting path comprises 3 × 3 convolutions
(’same’ padding convolutions) each followed by a rectified
linear unit (ReLU) and alternated with a 2 × 2 max pooling
operation with stride 2 for downsampling by half every two
convolution operations. At each downsampling the number of
feature channels is doubled, with 32 channels in the first level
and 128 channels in the last level. The expansive path com-
prises same convolution operations as in the contracting path
but alternated with upsampling by two every two convolution
operations. The final layer is a 1× 1 convolution used to map
the 32 channel layer to the output, which is a 2D slice. A
sketch of ResPrU-Net architecture is given in figure 1.

Learning means finding the parameters β that minimizes the
following loss function

L(β) =

N∑
n=1

‖h(ũi
(n);β|up,(n)i )− u(n)i ‖

2, (4)

where (ũ(n), up,(n);u(n)) are input-output image pairs of size
(P × P ) and N is the number of image pairs in the training
set. Minimization of (4) was done with Adam [16] under
TensorFlow [17], with learning rate 10−5 and batch size of
32. Training and test losses were computed during training and
early stopping was adopted to avoid overfitting. We selected
50 epochs for training on both U-Net and ResPrU-Net.

C. Data sets and image analysis
Methods were tested on a numerical phantom of the hu-

man knee and on experimental knee data. Experimental data
consisted of excised human knee (n = 7) images acquired
at Philips prototype SCT scanner, at CERMEP, Lyon [18].
Knee samples were taken from the Institut d’Anatomie Paris
Descartes and provided by B2OA (Bioingénierie et Bioim-
agerie ostéo-articulaire) CNRS 7052, Paris Diderot University.
The study was approved by the ethics committee of Descartes
University, Paris. To get a ground truth, we applied SPADE
to the acquired SCT image at 60 keV, using 40 iterations
and µ = λ = 1 as described in [6]. Images were of size
640 × 640 × 400. Numerical phantoms were built by adding
additive Gaussian noise to the original data sets. We considered
two levels of noise: 2 % and 5% of the maximum of the image.
In the case of experimental data, no additional noise was added
to the images provided by the scanner. We used 4 data sets
for training, 1 for validation and 2 for test. Training data
consisted of 1600 images that have been randomly shuffled
and normalized to its maximum value. Data augmentation
was done using several strategies. During learning, we apply
random crop to a final size of 256 × 256, mirroring in two
dimensions and added noise during training.



Fig. 1. ResPrU-Net architecture for image denoising. Input is the concatenation of the noisy image and the prior image, the output is the restored image, and
the prior image is directly connected to the output for residual learning.

We remark that for experimental data (noiseless case), deep
learning strategies are learning the output of SPADE but for
the noisier case, they have the potential to improve SPADE
result.

Fig. 2. Two experimental SCT images at 60 keV of human knee. Left: control.
Right: patient with advanced osteoarthritis.

We compare ResPrU-Net, U-Net and SPADE methods.
Restored images are assessed in terms of structural similarity
(SSIM) with respect to the ground truth image, streak artefact
measure (SAM), and noise. SAM is the total variation of
the denoised image subtracted to the ground truth image,
so it provides an estimate of how well edges are recovered
[19]. SAM accounts for noise, artefacts and texture recovery.
Noise is computed as the standard deviation (SD) on a small
homogeneous region.

III. RESULTS

A. Numerical knee phantom data

Fig. 3 shows denoising results for a knee phantom for 2 %
and 5 % additive Gaussian noise. For low noise, all methods
provide satisfactory results, removing noise while maintaining
image details and borders. There is a slight difference between
variational methods and deep learning strategies, as SPADE
presents noisy texture that is not present neither in U-Net nor
in ResPrU-Net results. For high noise, U-Net leads to worse
results, providing excessively blurred images. On the other
hand, prior-based methods (SPADE and ResPrU-Net) are able
to remove noise while maintaining image quality, as they are

guided by the prior image. Between SPADE and ResPrU-
Net, SPADE presents more noise while ResPrU-Net does
remarkably well. In all cases, ResPrU-Net not only recovers
similar image quality to the target but even seems to remove
the noise pattern present in the target image. With regard to
the noise pattern in SPADE, it is due to the fact that a large
number of iterations have been used to recover well image
details (20 iterations for high noise and 40 for low noise).

Metrics for the different methods are shown in Table I.
In terms of image noise, Unet leads to the lowest noise
level, followed by ResPrU-Net. In terms of SSIM and SAM,
ResPrU-Net and SPADE provide best results.

TABLE I
METRICS FOR KNEE PHANTOM. LEFT: LOW NOISE. RIGHT: HIGH NOISE

SSIM SAM SD SSIM SAM SD

SPADE 0.98 309 0.018 0.91 599 0.029
U-Net 0.96 404 0.010 0.87 645 0.006
ResPrU-Net 0.98 325 0.015 0.91 541 0.015
Prior 0.91 491 0.014 0.88 620 0.022

B. Experimental data

Fig. 4 shows the denoising results by all methods applied
to the experimental SCT image without extra additive noise
added to it. All methods provide similar results in terms of
noise removal, as expected, as the target for deep learning
methods are the results provided by SPADE.

C. Computation time

The code was run on a Windows computer with a 64-bit
operating system, Intel Xeon(R) E5-1650 v4 3.60 GHz CPU
and 128 GB RAM. Training for deep learning methods was
performed using GeForce NVIDIA GTX 1080 Ti graphics card
and required 4.2 min per epoch and 6 hours to complete 50
epochs (evaluation error increased after 50 epochs). Image
prediction to restore one data set of size 640 × 640 × 400
took 8.6 min on CPU and 13 s on GPU, for deep learning
approaches, and 5.2 min on CPU for SPADE using straight-
forward parallelization with four cores.



Fig. 3. Denoising results for knee phantom with low (left) and high (right) noise (2 % and 5 % additive Gaussian noise, respectively). a) Detail of knee
phantom, b) noisy image, and denoised images by c) SPADE, d) U-Net and e) ResPrU-Net. f) Prior image used by SPADE and ResPrU-Net.

IV. DISCUSSION

We have proposed a novel deep residual learning method
for 3D image denoising that allows to exploit a prior image
and has been validated on spectral CT data. The proposed
architecture - ResPrU-Net - builds from U-Net and includes
a residual connection from the input prior image to the out-
put, inspired on the previously proposed prior-based method
SPADE [6]. ResPrU-Net is compared to U-Net and SPADE.

ResPrU-Net outperforms both U-Net and SPADE when the
image is highly corrupted by noise. In this case, U-Net leads
to significantly worse results, providing excessively blurred
images. We remark that for the same level of noise other
state-of-the art methods, such as TV and dictionary learning
methods provided poor results as presented in [6]. We also
remark that U-Net is a 2D denoising method and we did not
compare to 3D-U-Net with 3D convolutions. Nevertheless, in
[6] it was shown that neither 2D-TV nor 3D-TV provided
similar image quality as SPADE method. SPADE is guided by
the prior image, which provides two benefits. On the one hand,
it allows SPADE to preserve the image quality of the prior
image, and, on the other hand, it stabilizes the convergence
allowing to SPADE to do further iterations than TV in order
to further recover details without leading to TV spurious
artefacts. In the current work, we show that ResPrU-Net not

only presents similar results than SPADE in terms of removing
noise and recovering image details, but it also leads to images
with lower noise than SPADE. SPADE can present slight noise
pattern when it is highly iterated. This result was unexpected
as the target for ResPrU-Net is the output of SPADE denoising
on the acquired image. This could be explained by the fact that
ResPrU-Net is learning the probability distribution of the target
conditioned to the given prior image, which does not have
noise. Another possible explanation is that we are using a early
stopping criterion on a encoder-decoder network. For instance,
U-Net provide extremely blurred images at the first epochs
and images with refined details before 50 epochs. ResPrU-
Net provides images similar to prior image at the first epochs
and well restored images that are different from the prior at
higher epoch number.

For low noise, all methods provided very similar results, as
deep learning methods have the output of SPADE denoising as
target and in this case SPADE did not present the noise pattern
that appeared in the high noise case. We expect that deep
learning strategies would lead to superior results if a better
target is provided. We will explore this in future work. The
easiest solution is to acquire some new samples with higher
dose if possible. Nevertheless, recent work has provided an
alternative solution that can provide further improvement by



(a) Acquired image (b) SPADE

(c) U-Net (d) ResPrU-Net

Fig. 4. Experimental data. a) Detail of a slice of acquired data set and denoised
results by b) SPADE, c) Unet and d) ResPrU-Net.

learning from noisy images [20].
This work is subject to few limitations. The prior image

used for both SPADE and ResPrU-Net has not been optimized.
It could be improved, for instance, by learning the weights
used for the running average for a specific application. The
prior could be also learned by another network. Another
obvious improvement is to use a 3D U-Net architecture to
further exploit 3D information. There is also the possibility
of incorporating the proposed framework based on a prior
image and residual connection on previously proposed network
configurations [10], [12].

In conclusion, we have proposed a novel residual deep learn-
ing architecture that can exploit a prior image for 3D image de-
noising and have validated it on spectral CT images. Restored
images by the proposed method provide better visualization
of bone and cartilage tissue, which is relevant for diagnosis
of knee osteoarthritis. Given the significant improvement with
respect to U-Net, we can expect this architecture to be widely
used for image denoising and for other image processing tasks.
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