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Abstract

Rational solutions to the Boussinesq equation are constructed as a
quotient of two polynomials in x and t. For each positive integer N , the
numerator is a polynomial of degree N(N + 1) − 2 in x and t, while the
denominator is a polynomial of degree N(N +1) in x and t. So we obtain
a hierarchy of rational solutions depending on an integer N called the
order of the solution. We construct explicit expressions of these rational
solutions for N = 1 to 4.
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1 Introduction

We consider the Boussinesq equation (B) which can be written in the form

utt − uxx + (u2)xx +
1

3
uxxxx = 0, (1)

where the subscripts x and t denote partial derivatives.
This equation first appears first in 1871, in a paper written by Boussinesq [1, 2].
It is well known that the Boussinesq equation (1) is an equation solvable by
inverse scattering [3, 4]. It gives the description of the propagation of long
waves surfaces in shallow water. It appears in several physical applications as
one-dimensional nonlinear lattice-waves [5], vibrations in a nonlinear string [6]
and ion sound waves in a plasma [7].
The first solutions were founded in 1977 by Hirota [8] by using Bäcklund trans-
formations. Among the various works concerning this equation, we can mention
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the following studies. Ablowitz and Satsuma constructed non singular rational
solutions in 1978 by using the Hirota bilinear method [9]. Freemann and Nimmo
expressed solutions in terms of wronskians in 1983 [10]. An algebro-geometrical
method using trigonal curve was given by Matveev et al. in 1987 [11]. The same
author constructed other types of solutions using Darboux transformation [12].
Bogdanov and Zakharov in 2002 constructed solutions by the ∂ dressing method
[13]. In 2008 − 2010, Clarkson obtained solutions in terms of the generalized
Okamoto, generalised Hermite or Yablonski Vorob’ev polynomials [14, 15].
Recently, in 2017, Clarkson et al. constructed new solutions as second deriva-
tives of polynomials of degree n(n+ 1) in x and t in [16].

In this paper, we study rational solutions of the Boussinesq equation. We present
rational solutions as a quotient of two polynomials in x and t. These following
solutions belong to an infinite hierarchy of rational solutions written in terms
of polynomials for each positive integer N . The study here is limited to the
simplest cases where N = 1, 2, 3, 4.

2 First order rational solutions

We consider the Boussinesq equation

utt − uxx + (u2)xx +
1

3
uxxxx = 0,

We have the following result at order N = 1 :

Theorem 2.1 The function v defined by

v(x, t) =
−2

(−x+ t+ a1)2
, (2)

is a solution to the Boussinesq equation (1) with a1 an arbitrarily real parameter.

Proof It is straightforward.
2

The parameter a1 is only a translation parameter; it is not crucial. In the
following solutions we will omit it.
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Figure 1. Solution of order 1 to (1), on the left a1 = 0; on the right a1 = 100.

In the figures (1), the singulariy lines of respective equations t = x and t = x+a1
are clearly shown.

3 Second order rational solutions

The Boussinesq equation defined by (1) is always considered. We obtain the
following solutions :

Theorem 3.1 The function v defined by

v(x, t) = −2
n(x, t)

d(x, t)(2)
, (3)

with
n(x, t) = 3x4 + (−12 t − 4)x3 + (18 t2 + 2 + 12 t)x2 + (−12 t2 + 8 t − 12 t3)x −

4 t+ 4 t3 − 10 t2 + 3 t4

and
d(x, t) = −x3 + (3 t+ 1)x2 + (−3 t2 − 2 t)x+ t3 + t2 + 2 t
is a rational solution to the Boussinesq equation (1), quotient of two polynomials
with numerator of order 4 in x and t, denominator of degree 6 in x and t.

Proof It is sufficient to replace the expression of the solution given by (3) and
check that (1) is verified.
2
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Figure 2. Solution of order 2 to (1).

This figure (2) shows clearly the singularity in (0; 0).
The previous solution (3) can be rewritten as

−2
3 (t− x)4 + 4 (t− x)3 − 4 (t− x)2 − 6 t2 + 6x2

− 4 t

((t− x)3 + (t− x)2 + 2 t)2
.

So, with this expression, it is obvious to show that (0; 0) is a singularity as it
can be seen in the figure (2).

4 Rational solutions of order three

We obtain the following rational solutions to the Boussinesq equation defined
by (1) :

Theorem 4.1 The function v defined by

v(x, t) = −2
n(x, t)

d(x, t)(2)
, (4)

with
n(x, t) = 6x10 +(−40− 60 t)x9 +(270 t2 +110+360 t)x8 +(−1440 t2 − 720 t3 −
160−880 t)x7+(1260 t4+100+3080 t2+1120 t+3360 t3)x6+(−740 t−1512 t5−
5040 t4 − 3360 t2 − 6160 t3)x5 + (200 t + 5040 t5 + 3100 t2 + 1260 t6 + 5600 t3 +
7700 t4)x4+(−6160 t5−720 t7−3360 t6−7000 t3−3200 t2−5600 t4)x3+(2000 t2+
1440 t7 + 3080 t6 + 270 t8 + 8300 t4 + 8400 t3 + 3360 t5)x2 + (−880 t7 − 5200 t3 −
8000 t4−60 t9−360 t8−4900 t5−1120 t6)x+3200 t4+2600 t5+800 t3+160 t7+
6 t10 + 40 t9 + 110 t8 + 1140 t6

and
d(x, t) = x6+(−6 t−4)x5+(15 t2+20 t+5)x4+(−20 t3−40 t2−30 t)x3+(15 t4+
40 t3+60 t2+20 t)x2+(−6 t5−20 t4−50 t3−40 t2)x+t6+4 t5+15 t4+20 t3−20 t2

is a rational solution to the Boussinesq equation (1), quotient of two polynomials
with numerator of order 10 in x and t, denominator of degree 12 in x and t.
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Proof Replacing the expression of the solution given by (3), we check that the
relation (1) is verified.
2

Figure 3. Solution of order 3 to (1).

The figure 3 clearly shows the singularity in (0; 0).

5 Rational solutions of fourth order

The following solutions of order 4 to the Boussinesq equation defined by (1) are
obtained :

Theorem 5.1 The function v defined by

v(x, t) = −2
n(x, t)

d(x, t)(2)
, (5)

with
n(x, t) = 10x18+(−180 t− 180)x17+(1460+3060 t+1530 t2)x16+(−23600 t−
8160 t3−6960−24480 t2)x15+(30600 t4+21200+108000 t+122400 t3+178800 t2)x14+
(−781200 t2−842800 t3−428400 t4−321300 t−41300−85680 t5)x13+(1113840 t5+
2254000 t2+48300+2766400 t4+632800 t+3494400 t3+185640 t6)x12+(−9703400 t3−
4447800 t2−10810800 t4−318240 t7−805000 t−2227680 t6−29400−6704880 t5)x11+
(18972800 t3+28644000 t4+3500640 t7+24504480 t5+630000 t+12412400 t6+
6013000 t2 + 437580 t8 + 7350)x10 + (−4375800 t8 − 17903600 t7 − 5467000 t2 −
26383000 t3−42042000 t6−54785500 t4−61345900 t5−294000 t−486200 t9)x9+
(98313600 t6+20334600 t8+113097600 t5+24822000 t3+4375800 t9+55598400 t7+
3228750 t2+73500 t+75778500 t4+437580 t10)x8+(−318240 t11−3500640 t10−
18246800 t9−57142800 t8−1176000 t2−150603600 t5−12544000 t3−67662000 t4−
119790000 t7 − 171771600 t6)x7 + (−882000 t3 + 45645600 t9 + 2227680 t11 +
185640 t12+119128800 t5+213150000 t6+111526800 t8+12892880 t10+294000 t2+
194409600 t7 + 19379500 t4)x6 + (−78963500 t9 − 217182000 t7 − 85680 t13 +
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3920000 t3−1113840 t12−7098000 t11−140238000 t6−28108080 t10+32928000 t4−
164033100 t8 + 1528800 t5)x5 + (13104000 t11 + 41857200 t10 + 158560500 t8 −

39690000 t4− 980000 t3+30600 t14+111132000 t7+101948000 t9+428400 t13+
2984800 t12 − 115395000 t5 − 49808500 t6)x4 + (−58107000 t8 − 45383800 t10 +
19600000 t4+78400000 t7−122400 t14−4477200 t12+186984000 t6−16109800 t11+
113680000 t5−926800 t13−81081000 t9−8160 t15)x3+(−146510000 t6−52920000 t5+
13708800 t11+1530 t16+1058400 t13−59057250 t8+4256000 t12+27617800 t10+
18942000 t9+200400 t14−4900000 t4+24480 t15−161994000 t7)x2+(89376000 t7+
7840000 t5 − 690900 t13 − 3389400 t10 − 154800 t14 − 180 t17 + 50960000 t6 −

2519300 t12 +72912000 t8 − 26960 t15 +22778000 t9 − 3060 t16 − 5635000 t11)x−
16660000 t7−980000 t6−21070000 t8−13450500 t9+10 t18−1960000 t5+180 t17+
1700 t16+10560 t15+52000 t14+212800 t13+521500 t12+238000 t11−3618650 t10

and
d(x, t) = x10+(−10 t−10)x9+(45 t2+90 t+40)x8+(−120 t3−360 t2−350 t−
70)x7+(210 t4 +840 t3 +1330 t2 +700 t+35)x6 +(−252 t5 − 1260 t4 − 2870 t3 −
2730 t2 − 700 t)x5 + (210 t6 + 1260 t5 + 3850 t4 + 5600 t3 + 2975 t2 + 350 t)x4 +
(−120 t7−840 t6−3290 t5−6650 t4−5600 t3−1400 t2)x3+(45 t8+360 t7+1750 t6+
4620 t5+5425 t4+2100 t3+700 t2)x2+(−10 t9−90 t8−530 t7−1750 t6−2660 t5−
1400 t4−2800 t3)x+ t10+10 t9+70 t8+280 t7+525 t6+350 t5+2100 t4+1400 t3

is a rational solution to the Boussinesq equation (1), quotient of two polynomials
with numerator of order 18 in x and t, denominator of degree 20 in x and t.

Proof We have to check that the relation (1) is verified when we replace the
expression of the solution given by (5).
2

Figure 4. Solution of order 4 to (1).

As in the preceding cases, the figure 4 clearly shows the singularity in (0; 0).
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6 Conclusion

Rational solutions to the Boussinesq equation of order 1, 2, 3, 4 have been
constructed here. The following asymptotic behavior has been highlighted :
limt→∞ v(x, t) = 0, limx→±∞ v(x, t) = 0.
It will relevant to construct rational solutions to the Boussinesq equation at
order N and to give a representation of these solutions in terms of determi-
nants. Namely, for every integer N these solutions can be written as a quotient
of determinants of order N , where the numerator is a polynomial of degree
N(N + 1)− 2 in x, t and the denominator is a polynomial of degree N(N + 1)
in x, t.
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