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Abstract

Rational solutions to the Boussinesq equation are constructed as a
quotient of two polynomials in x and t. For each positive integer N, the
numerator is a polynomial of degree N(N + 1) — 2 in x and ¢, while the
denominator is a polynomial of degree N(N +1) in z and ¢. So we obtain
a hierarchy of rational solutions depending on an integer N called the
order of the solution. We construct explicit expressions of these rational
solutions for N =1 to 4.
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1 Introduction

We consider the Boussinesq equation (B) which can be written in the form

1
Upt — Ugg + (u2)ww + guwwaxr = 07 (1)

where the subscripts  and ¢ denote partial derivatives.

This equation first appears first in 1871, in a paper written by Boussinesq [1, 2].
It is well known that the Boussinesq equation (1) is an equation solvable by
inverse scattering [3, 4]. It gives the description of the propagation of long
waves surfaces in shallow water. It appears in several physical applications as
one-dimensional nonlinear lattice-waves [5], vibrations in a nonlinear string [6]
and ion sound waves in a plasma [7].

The first solutions were founded in 1977 by Hirota [8] by using Bécklund trans-
formations. Among the various works concerning this equation, we can mention



the following studies. Ablowitz and Satsuma constructed non singular rational
solutions in 1978 by using the Hirota bilinear method [9]. Freemann and Nimmo
expressed solutions in terms of wronskians in 1983 [10]. An algebro-geometrical
method using trigonal curve was given by Matveev et al. in 1987 [11]. The same
author constructed other types of solutions using Darboux transformation [12].
Bogdanov and Zakharov in 2002 constructed solutions by the @ dressing method
[13]. In 2008 — 2010, Clarkson obtained solutions in terms of the generalized
Okamoto, generalised Hermite or Yablonski Vorob’ev polynomials [14, 15].
Recently, in 2017, Clarkson et al. constructed new solutions as second deriva-
tives of polynomials of degree n(n + 1) in « and ¢ in [16].

In this paper, we study rational solutions of the Boussinesq equation. We present
rational solutions as a quotient of two polynomials in  and ¢. These following
solutions belong to an infinite hierarchy of rational solutions written in terms
of polynomials for each positive integer IN. The study here is limited to the
simplest cases where N =1, 2, 3, 4.

2 First order rational solutions

We consider the Boussinesq equation

1
Ut — Ugg + (u2)rz + gumzzm = 07

We have the following result at order N =1 :
Theorem 2.1 The function v defined by

—2

)= —
’U(.’Ea ) (*$+t+a1)27

(2)

is a solution to the Boussinesq equation (1) with ay an arbitrarily real parameter.

Proof It is straightforward.

O

The parameter a; is only a translation parameter; it is not crucial. In the
following solutions we will omit it.



Figure 1. Solution of order 1 to (1), on the left a; = 0; on the right a; = 100.

In the figures (1), the singulariy lines of respective equations t = z and t = z+a,
are clearly shown.

3 Second order rational solutions

The Boussinesq equation defined by (1) is always considered. We obtain the
following solutions :

Theorem 3.1 The function v defined by

n(x,t)

’U(CL‘,t) = -2 m, (3)

with

n(x,t) = 3zt + (=12t — 4)23 + (1842 + 2 + 12¢)2? + (124> + 8t — 1213)x —
4t+4t3—10¢% 4 3¢

and

d(z,t) = =23+ (3t + 1)a® + (=31 — 2t)z + 3 + 12 + 2t

is a rational solution to the Boussinesq equation (1), quotient of two polynomials
with numerator of order 4 in x and t, denominator of degree 6 in x and t.

Proof It is sufficient to replace the expression of the solution given by (3) and
check that (1) is verified.
O



Figure 2. Solution of order 2 to (1).

This figure (2) shows clearly the singularity in (0;0).
The previous solution (3) can be rewritten as

3t—a)t+4t—2) —4(t—2)?-6t2+622 -4t

—2 ((t— )3 + (t —x)2 + 21)2

So, with this expression, it is obvious to show that (0;0) is a singularity as it
can be seen in the figure (2).

4 Rational solutions of order three

We obtain the following rational solutions to the Boussinesq equation defined
by (1) :

Theorem 4.1 The function v defined by

n(x,t)

v(z,t) = =2 PRI

(4)
with

n(x,t) = 6219+ (=40 — 60 ¢)2° + (270 % + 110 + 360 t)2® + (14402 — 7203 —
160—880¢)z" + (1260 t* + 100+ 3080 ¢2 + 1120 t +3360 ¢3) 2 + (— 740t — 1512 ¢5 —
5040 ¢* — 33602 — 6160 t3)x> + (200t + 5040 t5 + 3100 ¢? + 1260 t° + 5600 > +
7700 t*)2* +(—6160 > — 7207 —3360 5 —7000 3 —3200 ¢2 — 5600 t*) x>+ (2000 2 +
14407 + 30805 + 270t + 8300 t* + 84003 + 3360 t°)x? + (—880¢" — 52003 —
8000t* — 60t — 3603 —4900¢> — 1120 t%)2 + 3200 t* + 2600 > + 8003 + 160t +
6t'94+40t7 +110¢° + 1140¢°

and

d(z,t) = 20+ (—6t—4)25+ (15> +20t+5) 2zt +(—203—40 > —30 )23 + (15 1 +
4013 4+6012+20t)2% +(—61°>—20t* —50 1> —40t2)x+15 445+ 1514 +203 —20¢2
is a rational solution to the Boussinesq equation (1), quotient of two polynomials
with numerator of order 10 in x and t, denominator of degree 12 in x and t.



Proof Replacing the expression of the solution given by (3), we check that the
relation (1) is verified.
O

Figure 3. Solution of order 3 to (1).

The figure 3 clearly shows the singularity in (0;0).

5 Rational solutions of fourth order

The following solutions of order 4 to the Boussinesq equation defined by (1) are
obtained :

Theorem 5.1 The function v defined by

n(x,t)

’U(l’,t) =2 m, (5)

with

n(z,t) = 1028 4+ (=180 ¢ — 180)z'7 + (1460 + 3060 ¢ + 1530 £2)x1¢ + (—23600 t —
8160 3 —6960—24480 t2)21°+ (30600 t4+21200-+108000 £ 4122400 ¢3+178800 ¢2)z 14+
(—781200 ¢2—842800 > —428400 t* —321300 t—41300—85680 ¢°) 213+ (1113840 t°+
2254000 t2448300+2766400 t* 4632800 t4-3494400 ¢3+185640 ¢5) 2124 (—9703400 > —
4447800 2 —10810800 t*—318240 " —805000 t—2227680 5 —29400—6704880 t°)z 11 +
(18972800 3 + 28644000 t* + 3500640 t7 + 24504480 t° + 630000 ¢ + 12412400 ¢° +
6013000 t2 + 437580 ¢® + 7350)x1% + (—4375800 ¢3 — 17903600 ¢” — 5467000 ¢ —
26383000 ¢ — 42042000 t° — 54785500 t* — 61345900 > — 294000 ¢ — 486200 )z +
(98313600 ¢5+20334600 t3+113097600 ¢°+24822000 ¢3+4375800 ¢*+55598400 ¢+
32287502 + 73500 ¢ + 75778500 t* + 437580 ¢10) 28 4 (—318240 11 — 3500640 £10 —
18246800 t°—57142800 ¢ —1176000 2 —150603600 > — 12544000 > —67662000 t*—
1197900007 — 171771600 5)z” + (—882000¢3 + 45645600¢° + 2227680 ¢! +
185640 t12+119128800 54213150000 t5+111526800 ¢5+12892880 ¢1°+294000 2+
1944096007 + 19379500 t1)2® + (—78963500¢° — 2171820007 — 856803 +



3920000 ¢3—1113840 ¢'2 7098000 ¢! —140238000 5 28108080 ¢'°+32928000 ¢ —
1640331008 + 1528800¢°)2° + (13104000 ¢! + 41857200¢'° + 158560500 5 —
39690000 t* — 980000 £ + 30600 14 4- 111132000 ¢7 + 101948000 ° 4 428400 '3 +
2984800 t12 — 115395000 ¢5 — 49808500 t5)z* + (—58107000t® — 45383800 ¢1° +
19600000 £44-78400000 7 —122400 4 —4477200 t'24-186984000 5 — 16109800 ¢ +
113680000 > —926800 ¢ 3 —81081000 +° —8160 )23 +(—146510000 5 52920000 > +-
13708800 ¢! + 1530 £16 +1058400 ¢'3 — 59057250 8 44256000 ¢12 427617800 t1° +
18942000 ¢? 4200400 ¢4 —4900000 ¢*+24480 t1°—161994000 7 )22+ (89376000 ¢ "+
7840000¢> — 690900¢'3 — 338940010 — 154800 ¢4 — 180¢!7 + 50960000¢° —
2519300 12 + 72912000 3 — 26960 ¢1° + 22778000 t? — 3060 t¢ — 5635000 t'1)x —
16660000 7 —980000 ¢5—21070000 5 — 13450500 ° +10 ¢'8 — 1960000 > +180 17+
1700 $16+10560 1 +52000 14 +212800 13 + 521500 12 4238000 11 — 3618650 ¢1°
and

d(z,t) = 294+ (=10t — 10)2° + (452 + 90 t + 40)2® + (—120¢> — 360 ¢* — 350 t —
70)x” + (210 t* + 8403 + 1330 % + 700 ¢ 4 35)2°® + (—252¢° — 1260 t* — 2870 ¢> —
27302 — 700 t)a® + (210¢° + 1260 > + 3850 t* + 56003 + 29752 + 350 t)z* +
(—120#"—8405—3290 > —6650 t* —5600 t3—1400 t2) 23+ (4534360 ' +1750 5+
4620° 45425 t4 42100 3 +700t2) 22 4+ (—101° —90 8 — 530 t” — 1750 t° — 2660 > —
1400 t* — 2800 ¢3)x +t10 + 102 + 708 + 280 7 + 5255 + 350 t° +2100 t* + 1400 ¢3
is a rational solution to the Boussinesq equation (1), quotient of two polynomials
with numerator of order 18 in x and t, denominator of degree 20 in x and t.

Proof We have to check that the relation (1) is verified when we replace the
expression of the solution given by (5).
]

Figure 4. Solution of order 4 to (1).

As in the preceding cases, the figure 4 clearly shows the singularity in (0;0).



6 Conclusion

Rational solutions to the Boussinesq equation of order 1, 2, 3, 4 have been
constructed here. The following asymptotic behavior has been highlighted :
lim; o0 v(z,t) = 0, limy 400 v(z, t) = 0.

It will relevant to construct rational solutions to the Boussinesq equation at
order N and to give a representation of these solutions in terms of determi-
nants. Namely, for every integer N these solutions can be written as a quotient
of determinants of order N, where the numerator is a polynomial of degree
N(N +1)—2in z, ¢t and the denominator is a polynomial of degree N(N + 1)
in z, t.
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