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Abstract. In this paper, we propose and analyze a new asynchronous
rumor spreading protocol to deliver a rumor to all the nodes of a large-
scale distributed network. This spreading protocol relies on what we call
a k-pull operation, with k ≥ 2. Specifically during a k-pull operation,
an uninformed node i contacts k − 1 random nodes in the network, and
if at least one of them knows the rumor, then node i learns it. We per-
form a thorough study of Tk,n, the total number of k-pull operations
needed for all the nodes to learn the rumor. We prove that the mean
number of interactions needed for all the nodes to be informed is in
O (n ln(n)/(k − 1)), which generalizes the standard case k = 2 for the
push-pull, push and pull protocols. We also analyze the tail of Tk,n and
prove that Tk,n < cE(Tk,n) almost surely for any c ∈ (0, 1) when n
tends to infinity. Finally, we prove that when k > 2, our new protocol re-
quires less operations than the traditional push-pull or push (resp. pull)
protocols by using stochastic dominance arguments.

Keywords: Rumor spreading · pull protocol · Markov chain · Asymp-
totic analysis

1 Introduction

This paper focuses on the dissemination of information from users to users in
a decentralized manner. Peer-to-peer (P2P) networks allow users or more gen-
rally nodes to exchange information by relying on gossip protocols, also called
randomized rumor spreading protocols. A randomized spreading rumor protocol
describes the rules required for one or more pieces of information known to an
arbitrary node in the network to be spread to all the nodes of the network. The
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push and pull protocols are the basic operations nodes use to propagate an in-
formation over the entire network [6, 9]. With the push operation, an informed
node contacts some randomly chosen node and sends it the rumor, while with
the pull operation, an uninformed node contacts some random node and asks for
the rumor. The same node can perform both operations according to whether
it knows or not the rumor, which corresponds to the push-pull protocol, or per-
forms only one, either a pull or push operation, which corresponds to the pull
or push protocols respectively. One of the important questions raised by these
protocols is the spreading time, that is the time it needs for the rumor to be
known by all the nodes of the network.

Several models have been considered to answer this question. The most stud-
ied one is the synchronous model. This model assumes that all the nodes of the
network act in synchrony, which allows the algorithms designed in this model to
divide time in synchronized rounds. During each synchronized round, each node
i of the network selects at random one of its neighbor j and either sends to j
the rumor if i knows it (push operation) or gets the rumor from j if j knows
the rumor (pull operation). In the synchronous model, the spreading time of a
rumor is defined as the number of synchronous rounds necessary for all the nodes
to know the rumor. When the underlying graph is complete, it has been shown
by Frieze [13] that the ratio of the number of rounds over log2(n) converges
in probability to 1 + ln(2) when the number n of nodes in the graph tends to
infinity. Further results have been established (see for example [19, 24] and the
references therein), the most recent ones resulting from the observation that the
rumor spreading time is closely related to the conductance of the graph of the
network, see [15]. Investigations have also been done in different topologies of
the network as in [2,5,12,22], in the presence of link or nodes failures as in [11],
in dynamic graphs as in [3] and spreading with node expansion as in [16]. An-
other alternative consists for the nodes to make more than one call during the
push or pull operations [23]. This alternative is of particular interest since it
does not require any particular network structure. The synchronous case has
been tackled in [23] where the authors show that the push-pull protocol takes
O (log n/ log log n) rounds in expectation assuming that nodes can connect to
a random number neighbor following a specific power law during each single
round.

In large scale distributed systems, assuming that all nodes act synchronously
is a very strong assumption. Several authors, including [1, 8, 17, 20, 25]) suppose
that nodes asynchronously trigger operations with randomly chosen nodes. Note
that in [25], the authors model a multiple call by tuning the clock rate of each
node with a given probability distribution. Moreover, some authors have focused
on the message complexity by optimizing the network structure [7, 9, 17, 21].
For instance, in [7], the authors show that the asynchronous push-pull protocol
spreading time in a preferential attachment graph is in O

(√
log n

)
. Another

way of limiting the number of interactions is by finely tuning the push and pull
operations to take advantage of both of them as achieved for example in [6,10],
or by relying on a central authority to coordinate the work (e.g, [4]).
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The pull algorithm attracted very little attention because this operation was
long considered inefficient to spread a rumor within a network [27]. It is actually
very useful in systems fighting against message saturation (see for instance [29]).
The ineffectiveness of the pull protocol stems from the fact that it takes some
time before the rumour reaches a phase of exponential growth. Conversely, the
push protocol initiates the rumor very quickly but then struggles to reach the
few uninformed nodes. In this paper, we sought to counterbalance the slow ini-
tiation of rumour spreading by increasing the chances of learning the rumour
with each call. Hence, in Section 2, we propose an asynchronous pull protocol
during which the initiator of the operation calls the rumor from multiple nodes
in parallel, and perform a thorough study Tk,n the total number of pull opera-
tions needed for all the nodes to learn the rumor. We prove in Section 3 that
the mean number of interactions needed to inform all the nodes of the system,
assuming that one node knows initially the rumor, is in O (n ln(n)/(k − 1)). We
then analyze the tail distribution of Tk,n and prove that Tk,n < cE (Tk,n) almost
surely for any c ∈ (0, 1) when n tends to infinity. In Section 4, we prove that
when k ≥ 3, our new protocol requires less interactions than the push-pull proto-
col [20] or the standard push (resp. pull) protocol by using stochastic dominance
argument. Moreover, this efficiency increases strictly with k. Finally, we show
that depending on the number of nodes that initially knows the rumor, the pull
protocol always performs better than the push-pull one.

2 The k-pull protocol

2.1 Algorithm

We consider a complete network of size n in which each node may be asked
for a piece of information (pull event). The algorithm starts with a single node
informed of the rumor. At each time t, a uninformed node i contacts k−1 distinct
nodes, chosen at random uniformly among the n− 1 other nodes. If at least one
of these contacted nodes knows the rumor, node i learns it. Pseudo-code of the
algorithm is given in Algorithm 1. In the sequel, we analyze the distribution of
the number of pull operations needed such that all the nodes are informed, and
compare it to the standard (i.e. k = 2) asynchronous push, pull and push-pull
protocols.

Algorithm 1 pull operation run by any uninformed node i

1: v(i) = 0
2: upon event pull . pull is triggered only if v(i) = 0
3: select randomly k − 1 nodes i1 . . . , ik−1

4: if ∃ v(ij) = 1 then
5: v(i)← 1
6: end if
7: end upon event
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2.2 Discrete time Markov chain model

To analyze our k-pull algorithm, we introduce the stochastic process Y :=
(Yt)t≥0 where Yt represents the number of informed nodes at discrete instant t.
Stochastic process Y is a homogeneous Markov chain with n states where states
1, . . . , n− 1 are transient and state n is absorbing.
From the algorithm, we deduce that when the Markov chain Y is in state i at
time t, then at time t + 1, either it remains in state i if none of the chosen
nodes were informed or it transits to state i + 1 otherwise. We denote by P its
transition probability matrix. The non zero entries of matrix P are thus given
for any i = 1, . . . , n− 1, by Pi,i and Pi,i+1. Probability Pi,i+1 is given by

Pi,i+1 =

min{i,k−1}∑
j=max{1,k−n+i}

(
i

j

)(
n− 1− i
k − 1− j

)
(
n− 1

k − 1

) .

This is the probability that a random variable, with the hypergeometric dis-
tribution with parameters i, k− 1, n− 1, is greater than or equal to 1. It follows
easily using the Vandermonde equality that, for any i = 1, . . . , n− 1,

Pi,i+1 =


1−

(
n− 1− i
k − 1

)
(
n− 1

k − 1

) if i ≤ n− k

1 otherwise.

Obviously, we get, for any i = 1, . . . , n− 1,

Pi,i =



(
n− 1− i
k − 1

)
(
n− 1

k − 1

) if i ≤ n− k

0 otherwise.

We denote by Tk,n the random variable defined by

Tk,n := inf{t ≥ 0 | Yt = n}

which represents the spreading time, i.e. the total number of pull operations
needed for all the nodes in the network to know the rumor.

As illustrated in Figure 1, when the Markov chain Y reaches state i, for
i = 1, . . . , n−k, it either transits to state i+1 with probability Pi,i+1 or remains
in state i with probability Pi,i. In contrast, when Y reaches state i = n− k + 1,
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1 2 n− k n− k + 1 n− 1 n

Fig. 1. Transition graph of Markov chain Y

an uninformed node almost surely selects at least one informed node among
the k − 1 nodes drawn from a population composed of n − k + 1 informed
ones and k − 2 uninformed nodes (Pn−k+1,n−k+1 = 0). This remains true for
i = n − k + 1, . . . , n − 1. The spreading time distribution Tk,n can thus be
expressed as a sum of independent random variables Sk,n(i), where Sk,n(i) is
the sojourn time of process Y in state i. For all i = 1, . . . , n− k, Sk,n(i) follows
a geometric distribution with parameter pk,n(i), where

pk,n(i) := 1− Pi,i = 1−
k−1∏
h=1

(
1− i

n− h

)
, (1)

and Sk,n(i) = 1, for i = n− k + 1, . . . , n− 1. Thus Tk,n verifies

Tk,n =

n−1∑
i=1

Sk,n(i) = k − 1 +

n−k∑
i=1

Sk,n(i). (2)

In the sequel, we analyze the two first moments of the discrete spreading
time Tk,n when n goes to infinity (Section 3), and compare our results with the
standard push-pull, pull (case k = 2) and push protocols (Section 4). These
analyses rely on a deep analysis of the sojourn times Sk,n(i), i = 1, . . . , n− k.

3 Moments of the asymptotic spreading time

In this section, we analyze the two first moments of the spreading time Tk,n
when n goes to infinity. For this purpose, we first look for bounds as tight as
possible for the probabilities pk,n(i), i = 1, . . . , n− k.

We introduce the function Pk,n(x) defined for all x ∈ R, the set of real
numbers, for every n ≥ 3 and k = 1, . . . , n− 1, by

Pk,n(x) := 1−
k∏
h=1

(
1− x

n− h

)
. (3)

Note that
pk,n(i) = Pk−1,n(i). (4)
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Lemma 1 For all x ∈ R, we have

d

dx
Pk,n(x) =

(−1)k+1k∏k
h=1(n− h)

k−1∏
h=1

(x− µh),

where, for all h = 1, . . . , k−1, µh are positive real numbers such that n−(h+1) <
µh < n− h.

Proof. Note that for all h = 1, . . . , k, we have Pk,n(n − h) = 1. Since Pk,n(x)
is a continuous function, it follows that there exists necessarily at least one
local extremum point, denoted by µh, in each interval (n−h− 1, n−h), for h =
1, . . . , k−1. The point µh is therefore a root of the polynomial dPk,n(x)/dx. Note
also that since the polynomial 1− Pk,n(x) has only simple roots, we necessarily
have µh 6= n − h − 1 and µh 6= n − h. Using the fact that Pk,n(x) is a k-degree
polynomial, we deduce that dPk,n(x)/dx is a (k − 1)-degree polynomial. The
number of extremum µh being at least equal to k − 1, this implies that the µh
are unique. We thus first conclude that

d

dx
Pk,n(x) = K

k−1∏
h=1

(x− µh),

where K is a constant. We then conclude using the fact that the factor of the
term xk of polynomial Pk,n(x) is equal to (−1)k+1/

∏k
h=1(n− h).

Lemma 2 For all x ∈ [1, n− k], we have

Pk,n(x) ≤ kx

n− k
.

Proof. From Lemma 1 and using the fact that Pk,n(0) = 0, we deduce that, for
all x ≥ 0,

Pk,n(x) =
(−1)k+1k∏k
h=1(n− h)

∫ x

0

k−1∏
h=1

(s− µh)ds =
k∏k

h=1(n− h)

∫ x

0

k−1∏
h=1

(µh − s)ds.

Since n− k < µk−1 < · · · < µ1, we get for all x ∈ [1, n− k],

Pk,n(x) ≤ kx∏k
h=1(n− h)

max
s∈[0,x]

k−1∏
h=1

(µh − s) =
kx∏k

h=1(n− h)

k−1∏
h=1

µh.

Since µh < n−h, for all h = 1, . . . , k− 1, we conclude that, for all x ∈ [1, n− k],

Pk,n(x) ≤ kx

n− k
,

which completes the proof.
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We now turn to the lower bound of polynomial Pk,n(x).

Lemma 3 For all x ∈ [1, n− k], we have

kx

n+ kx
≤ Pk,n(x).

Proof. We first prove by recurrence that, for all integers k ≥ 1, for all x ∈
[1, n− k],

(n+ kx)

k∏
h=1

(n− h− x) ≤
k∏
h=0

(n− h). (5)

Relation (5) is true for k = 1, since for all x ∈ [1, n−1], we have (n+x)(n−1−x) =
n(n− 1)− x− x2 ≤ n(n− 1). Suppose now that Relation (5) is true at rank k.
At rank k + 1, using (5), we get, for all x ∈ [1, n− k − 1],

(n+ (k + 1)x)

k+1∏
h=1

(n− h− x) = (n− k − 1− x)(n+ (k + 1)x)

k∏
h=1

(n− h− x)

≤ (n− k − 1− x)

[
1 +

x

n+ kx

] k∏
h=0

(n− h)

=

[
n− k − 1− (k + 1)

x2 + x

n+ kx

] k∏
h=0

(n− h)

≤ (n− k − 1)

k∏
h=0

(n− h) =

k+1∏
h=0

(n− h),

which proves Relation (5). Using now this relation, we obtain

1− Pk,n(x) =

k∏
h=1

(
1− x

n− h

)
=
n
∏k
h=1(n− h− x)∏k
h=0(n− h)

≤ n

n+ kx
.

This implies that (kx)/(n+ kx) ≤ Pk,n(x), which ends the proof.

The expected value E(Tk,n) is then easily obtained by

E(Tk,n) = k − 1 +

n−k∑
i=1

1

1− Pi,i
= k − 1 +

n−k∑
i=1

1

pk,n(i)
. (6)

Theorem 4 (Asymptotic mean spreading time).

E(Tk,n) ∼
n−→∞

n ln(n)

k − 1
.
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Proof. Combining Relations (4) and (6), we get

E(Tk,n) = k − 1 +

n−k∑
i=1

1

Pk−1,n(i)
.

Applying now Lemmas 2 and 3, we obtain

k − 1 +
n− k + 1

k − 1

n−k∑
i=1

1

i
≤ E(Tk,n) ≤ n− 1 +

n

k − 1

n−k∑
i=1

1

i
. (7)

The fact that, for every k ≥ 0, we have

n−k∑
i=1

1

i
∼

n−→∞
ln(n),

completes the proof.

Concerning the variance, which is given by

Var(Tk,n) =

n−k∑
i=1

Var(Sk,n(i)) =

n−k∑
i=1

1− pk,n(i)

(pk,n(i))
2

=

n−k∑
i=1

1

(pk,n(i))
2 − (E(Tk,n)− k + 1) , (8)

we have the following equivalent.

Theorem 5 (Asymptotic spreading time variance).

Var(Tk,n) ∼
n−→∞

n2

(k − 1)2
π2

6
.

Proof. Applying Lemma 3, we get, from Relation (8),

Var(Tk,n) ≤
n−k∑
i=1

1

(pk,n(i))
2 ≤

n−k∑
i=1

(n+ (k − 1)i)
2

(k − 1)2i2

=
n2

(k − 1)2

n−k∑
i=1

1

i2
+

2n

k − 1

n−k∑
i=1

1

i
+ n− k ∼

n−→∞

n2

(k − 1)2
π2

6

Using Lemma 2 and applying Theorem 4, we obtain

Var(Tk,n) ≥ (n− k + 1)2

(k − 1)2

n−k∑
i=1

1

i2
−E(Tk,n) + k − 1 ∼

n−→∞

n2

(k − 1)2
π2

6
,

which completes the proof.
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3.1 Bounds of the distribution Tk,n and asymptotic analysis

Following the approach used in [20], we apply the bounds for the tail probabilities
of a sum of independent, but not necessarily identically distributed, geometric
random variables provided in [18] to deduce tail bounds for Tk,n, both for all n
(Theorem 6) and when n tends to infinity (Theorem 7). We denote by Hn the
Harmonic series defined, for every n ≥ 1, by Hn :=

∑n
i=1 1/i.

Theorem 6. 1. For any c ≥ 1,

P {Tk,n ≥ cE (Tk,n)} ≤ exp

(
− (k − 1)2 + (n− k)Hn−k

n− 1
(c− 1− ln(c))

)
,

2. For any c ≤ 1

P {Tk,n > cE (Tk,n)} ≥ 1−exp

(
− (k − 1)2 + (n− k)Hn−k

n− 1
(c− 1− ln(c))

)
.

Proof. It is easily checked from Relation (1) that, for every i = 1, . . . , n− k, we
have

pk,n(i) ≥ pk,n(1) = 1−
k−1∏
h=1

(
1− 1

n− h

)
=
k − 1

n− 1
.

We can now apply Theorem 11 (see Appendix) and deduce that for any c ≥ 1,

P {Tk,n ≥ cE (Tk,n)} ≤ exp

(
−k − 1

n− 1
E (Tk,n) (c− 1− ln(c))

)
.

Note that c− 1− ln(c) ≥ 0 for any c > 0. Using Relation (7), that is E (Tk,n) ≥
k − 1 + (n− k)Hn−k/(k − 1), we obtain, for any c ≥ 1,

P {Tk,n ≥ cE (Tk,n)} ≤ exp

(
− (k − 1)2 + (n− k)Hn−k

n− 1
(c− 1− ln(c))

)
,

which concludes the first part of the proof.
From Theorem 12 (see Appendix), we deduce that for any c ≤ 1,

P {Tk,n ≤ cE (Tk,n)} ≤ exp

(
−k − 1

n− 1
E (Tk,n) (c− 1− ln(c))

)
.

Since c− 1− ln(c) ≥ 0 for c > 0, the same lower bound of E (Tk,n) used for the
case c ≥ 1, yields the same result.

Corollary 7 For every k ≥ 2, we have

lim
n−→+∞

P {Tk,n > cE (Tk,n)} =


0, if c > 1

1, if c < 1.
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Proof. First, note that c − 1 − ln(c) > 0 for any c ∈ (0, 1) ∪ (1,∞) and that
limn−→+∞Hn−k = +∞. Hence,

lim
n−→∞

exp

(
− (k − 1)2 + (n− k)Hn−k

n− 1
(c− 1− ln(c))

)
= 0.

Applying Theorem 6 concludes the proof.

Corollary 7 implies that when n is large enough, Tk,n distribution is concen-
trated between k−1 and cE (Tk,n) ∼

n−→∞
cn ln(n)/(k−1) for any c > 1 (according

to Theorem 6). In fact, one can observe that for any c 6= 1,

exp

(
− (k − 1)2 + (n− k)Hn−k

n− 1
(c− 1− ln(c))

)
∼

n−→∞
1/nc−1−ln(c)

which indicates that Tk,n distribution becomes closer to its mean at a speed of
1/nc−1−ln(c).
When c = 1, Corollary 7 does not allow us to figure out neither the existence of
limn→+∞P {Tk,n ≥ cE (Tk,n)} nor its value.

4 Comparison of the k-pull with the push, pull and
push-pull protocols

In this section, we compare the spreading time of the k-pull protocol with the
standard (i.e. k = 2) push-pull, pull and push protocols ones. We summarize in
Table 1 some characteristics of the spreading time distribution of each protocol.
Note that the spreading time distributions of push and pull protocols are the
same. In addition, the mean discrete spreading times of all the standard protocols
(push, pull and push-pull) are the same.

Tk,n distribution E (Tk,n)

push-pull
∑n−1

i=1 Geom
(

2i(n−i)
n(n−1)

)
(n− 1)Hn−1 ∼

n−→∞
n lnn

push
∑n−1

i=1 Geom
(

n−i
n−1

)
(n− 1)Hn−1 ∼

n−→∞
n lnn

pull
∑n−1

i=1 Geom
(

i
n−1

)
(n− 1)Hn−1 ∼

n−→∞
n lnn

k-pull k − 1 +
∑n−k

i=1 Geom (pk,n(i)) ∼
n−→∞

n ln(n)/(k − 1)

Table 1. Asynchronous push, pull and push-pull spreading time distributions. The
push-pull spreading time distribution is fully characterized in [20]. We detail the push
case in Appendix A.

In this section, we denote by T pushn , T push−pulln and T pullk,n for k ≥ 2 the spread-
ing time associated with respectively the push, push-pull and k-pull protocols.
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4.1 Stochastic dominance of the k-pull protocol

To compare the spreading time distribution of each protocol, we use stochastic
dominance tools. We recall the following definition (see [14]):

Definition 8 (Stochastic dominance definition) Let X and Y two inde-
pendent random variables.

a) X strictly stochastically dominates Y if ∀x ∈ R P{X > x} > P{Y > x}.
We then write X

s.t.
� Y .

b) X stochastically dominates Y if ∀x ∈ R P{X > x} ≥ P{Y > x}. We then

write X
s.t.
� Y .

Comparing the spreading time distributions of each protocol amounts in com-
paring geometric distributions together. We thus first start by the following
proposition.

Proposition 9 (Stochastic dominance for geometric law) Let G1 and G2

two independent geometric random variables with parameters g1 and g2 respec-
tively. We suppose that g1 > g2. Hence, G1 is strictly stochastically dominated
by G2.

Proof. Since g1 > g2, we have (1−g1)` < (1−g2)` for every integer ` ≥ 0. Hence,

P {G1 > `} = (1− g1)` < (1− g2)` = P {G2 > `} ,

which implies that G1 is strictly stochastically dominated by G2.

Theorem 10. For all n ≥ k − 1,

T pullk,n

s.t.
≺ T pullk−1,n

s.t.
≺ . . .

s.t.
≺ T pull3,n

s.t.
≺ T pull2,n

L
= T pushn

and

T pull3,n

s.t.
≺ T push−pulln .

Proof. We first show that pk,n(i) > pk−1,n(i) for all i. Note that for all i =
1, . . . , n− k

1− pk,n(i) =

k−1∏
h=1

(
1− i

n− h

)
<

k−2∏
h=1

(
1− i

n− h

)
= 1− pk−1,n(i)

which implies that for all i = 1, . . . , n− k, pk,n(i) > pk−1,n(i). If i = n− k + 1,
pk−1,n(n− k + 1) < 1 and pk,n(n− k + 1) = 1.

Applying Proposition 9, we deduce Geom(pk,n(i))
s.t.
≺ Geom(pk−1,n(i)) for all

i = 1, . . . , n− k. Summing from i = 1 to n− (k − 1), we have

n−k+1∑
i=1

Geom (pk,n(i))
s.t.
≺

n−k+1∑
i=1

Geom (pk−1,n(i)) .
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Adding k − 2 and since pk,n(n− k + 1) = 1, we conclude that

T pullk,n

s.t.
≺ T pullk−1,n

s.t.
≺ . . .

s.t.
≺ T pull2,n .

Note that from Table 1, the random variables T pull2,n and T pushn have the same
distribution.

We turn now to the second part of the proof and first compare T pull3,n to

T push−pulln . Note that, for all i = 1, . . . , n− 1,

p2,n(i)− 2i(n− i)
n(n− 1)

=
i

n− 1

(2n− 3− i)n− 2(n− i)(n− 2)

n(n− 2)
=

i(n+ i(n− 4))

n(n− 1)(n− 2)
.

It is obvious that n+ i(n− 4) ≥ 0 for all i = 1, . . . , n− 2 when n ≥ 4. If n = 3,
then n+ i(n− 4) ≤ 3 + 1(3− 4) = 2 > 0. Hence, we deduce from Proposition 9
that for all i = 1, . . . , n− 1,

Geom (p2,n(i))
s.t.
≺ Geom

(
2i(n− i)
n(n− 1)

)
.

Summing from i = 1, . . . , n − 1, we conclude that T pull3,n

s.t.
≺ T push−pulln , which

ends the proof.

Theorem 10 shows that our k-pull protocol requires significantly less opera-
tions than the other standard protocols.

Figure 2 illustrates the fact that T pull2,n , T pushn and T push−pulln cannot be or-
dered with stochastic dominance arguments. Figure 2 shows that there is a
threshold value t(n) such that for all t < t(n), P{T pull2,n > t} > P{T push−pulln > t}
and for all t > t(n), P{T pull2,n > t} < P{T push−pulln > t}.

4.2 Choosing between push and pull

We now show that depending on the number of nodes that initially knows the
rumor, the pull protocol always performs better than the push-pull one. This is
again achieved by studying a particular combination of the sojourn times. Let i
be the initial number of nodes knowing the rumor.

– If i = 1, . . . , bn/2c − 1, then p2,n(i) = i/(n − 1) < 2i(n − i)/(n(n − 1)).
In addition, p2,n(i) = 2i(n − i)/(n(n − 1)) when i = bn/2c. Following the
approach used in the proof of Theorem 10, we have

bn/2c∑
i=1

Geom(p2,n(i))
s.t.
�
bn/2c∑
i=1

Geom(2
i(n− i)
n(n− 1)

).

– If i = bn/2c+ 1, . . . , n− 1, then p2,n(i) ≥ 2i(n− i)/(n(n− 1)). We have

n−1∑
i=bn/2c+1

Geom(p2,n(i))
s.t.
≺

n−1∑
i=dn/2e

Geom(2i(n− i)/(n(n− 1))).
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Fig. 2. Stochastic dominance illustration. Applying the algorithm detailed in Ap-
pendix B, we compute for the pull, push, push-pull and our k-pull protocols the tail
probability P {Tk,n > t} for n = 100.

In other words, if more than a half the nodes are initially aware of the rumor,
then the 2-pull protocol, and thus the k-pull protocol, will require significantly
less operations than the push-pull protocol. The result is unclear when initially
less than half of the nodes are aware of the rumor.

5 Conclusion

In this paper, we have proposed a new rumor spreading protocol that allows each
node to asynchronously interact with k − 1 other nodes during each operation.
We have shown that this protocol generalizes the standard pull protocol and
improves it when k > 2. Further research would allow us to manage competing
rumours more finely. For instance, the initiator of the k-pull operation might
take advantage of this interaction scheme to decide which rumor(s) to learn
when different rumors compete. Dissemination of a rumor in a population pre-
contaminated by two different rumors A and B has recently been studied by the
Team-Rocket [26] in the context of blockchain protocols. In particular, assuming
that rumor A (resp. B) is initially known by nA nodes (resp. nB nodes) with
nA + nB < n, they leave as an open question the final proportion pA of nodes
knowing A (resp. pB of nodes knowing B) with pA + pB = 1.
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Appendix

Let X1, . . . , Xn be n independent geometric random variables with possibly dif-
ferent distributions: Xi ∼ G(pi) with pi ∈ (0, 1]. Let X = X1 + · · · + Xn,
µ = E(X) and p∗ = mini=1,...,n pi. Using these notations, the following result
have been proved in Theorem 2.3 and Theorem 3.2 of [18] respectively.

Theorem 11. For any p1, . . . , pn ∈ (0, 1] and any λ ≥ 1,

P{X ≥ λµ} ≤ e−p∗µ(λ−1−ln(λ)).

Theorem 12. For any p1, . . . , pn ∈ (0, 1] and any λ ≤ 1,

P{X ≤ λµ} ≤ e−p∗µ(λ−1−ln(λ)).

A Push protocol

The continuous spreading time of the asynchronous push protocol has been com-
puted in [14]. We quickly detail here the computation for the discrete spreading
time.
We introduce a stochastic process Z := (Zt)t≥0 where Zt corresponds to the
number of informed nodes at discrete time t. Just as the process studied in [20]
or our process (see Section 2.2), starting from state i = 1, . . . , n − 1, Markov
chain Z either transits to state i + 1 with probability PZi,i+1 = (n − i)/(n − 1)

or stays in state i with probability PZi,i = 1 − (n − i)/(n − 1). T pushn can thus

be expressed as the sum of the independent sojourn times SZn (i), where SZn (i)
follows a geometric distribution of parameter PZi,i+1. We deduce that

E[T pushn ] =

n−1∑
i=1

E[SZn (i)] =

n−1∑
i=1

n− 1

n− i
= (n− 1)Hn−1.

B Algorithm for the spreading time tail distribution

It is well-known, see for instance [28], that the distribution of Tk,n is given, for
every integer t ≥ 0, by

P{Tk,n > t} = αQt1, (9)

where α is the row vector containing the initial probabilities of states 1, . . . , n−1,
that is αi = P{Y0 = i} = 1{i=1}, Q is the matrix obtained from the transition
matrix P containing the transition probabilities between transient states and 1
is the column vector of dimension n− 1 with all its entries equal to 1. Note that
the submatrix Q of the transition probability matrix P , is upper triangular with
a single non zero upper-diagonal, that is Qi,j = 0 for all i = 1, . . . , n − 1 and
j 6= i, i+ 1.
Following [20], we can propose an algorithm to compute the tail distribution of
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Tk,n. Let V (t) = (V1(t), . . . , Vn−1(t)) be the column vector defined by Vi(t) =
P{Tk,n > t | Y0 = i}. From Relation (9), we have V (t) = Qt1. Since V (0) = 1,
writing V (t) = QV (t− 1) for t ≥ 1, we get for any t ≥ 1:{

Vi(t) = Pi,iVi(t− 1) + (1− Pi,i)Vi+1(t− 1), i = 1, . . . , n− 2
Vn−1(t) = Pn−1,n−1Vn−1(t− 1).

The computation can be done using the following algorithm.

Input : integer `
Output : P{Tk,n > 1}, . . . ,P{Tk,n > `}
Initialization :
For i = 0 to ` do

Vold[i]← (Pn−1,n−1)i

EndFor
For i = n− 2 to 1 do

Vnew[0]← 1 // corresponds to P{Tk,n > 0} = 1
For t = 1 to ` do

Vnew[t]← Pi,iVnew[t− 1] + (1− Pi,i)Vold[t− 1]
EndFor
For t = 0 to ` do

Vold[t]← Vnew[t]
EndFor

EndFor
Return V
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