Marius Paicu 
email: marius.paicu@math.u-bordeaux.fr
  
And Ning Zhu 
  
ON THE STRIATED REGULARITY FOR THE 2D ANISOTROPIC BOUSSINESQ SYSTEM

Keywords: 2010 Mathematics Subject Classification. 35Q30, 76D03, 76D05 anisotropic Boussinesq equations, Littlewood-Paley theory, striated regularity

In this paper, we investigate the global existence and uniqueness of strong solutions to the 2D anisotoropic Boussinesq system for rough initial data with striated regularity. We prove the global well-posedness of the Boussinesq system with anisotropic thermal diffusion with initial vorticity being discontinuous across some smooth interface. In the case of an anisotropic horizontal viscosity, we study the propagation of the striated regularity for the smooth temperature patches problem. The proofs relies on the idea of Chemin to solve the 2-D vortex patch problem for ideal fluids, namely the striated regularity can help to bound the gradient of the velocity.

introduction

The Boussinesq system is a classical model in geophysical fluid dynamics which describes the large-scale atmospheric and oceanic flows and also plays an important role in the study of Rayleigh-Bénard convection (see [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF] for example). This system describes the phenomenon of convection in an incompressible viscous fluid, under the effect of the upward buoyancy force induced by the temperature. In the present paper, we investigate the 2D anisotropic Boussinesq equations with horizontal temperature diffusion or horizontal velocity dissipation. These are derivative models from the classical Boussinesq system for geophysical fluid where the vertical dimension of the domain is very small compared with the horizontal dimension of the domain. In this case, after rescaling the domain, the dissipation is not isotropic and we have to deal with the anisotropic problem. More precisely, we study the following system which is the Euler equations coupled with a transport-diffusion temperature equation with diffusion only in the horizontal direction, 2 1 θ = 0, ∇ • u = 0, u(0, x) = u 0 (x), θ(0, x) = θ 0 (x), (1.1) and a system where the Navier-Stokes equations with no vertical viscosity couples with a transport temperature equation,

           ∂ t u + u • ∇u = -∇p + θe 2 , x ∈ R 2 , t > 0 ∂ t θ + u • ∇θ -κ∂
           ∂ t u + u • ∇u -ν∂ 2 1 u = -∇p + θe 2 , x ∈ R 2 , t > 0 ∂ t θ + u • ∇θ = 0, ∇ • u = 0,
u(0, x) = u 0 (x), θ(0, x) = θ 0 (x).

(1.2)

Here u = (u 1 (x, t), u 2 (x, t)) denotes the velocity field, p = p(x, t) is a scalar function denoting the pressure. θ = θ(x, t) is a scalar representing the temperature in the content of thermal convection and the density in the modeling of geophysical fluids. e 2 = (0, 1) is the vertical unit vector field, and the forcing term θe 2 on behalf of the buoyancy force due to the gravity field. The parameters κ and ν denote the molecular diffusion and the viscosity respectively. These anisotropic systems are important , modeling dynamics of geophysical flows (see e.g. [START_REF] Chemin | Mathematical geophysics. an introduction to rotating fluids and the navier-stokes equations[END_REF][START_REF] Chemin | Fluids with anisotropic viscosity[END_REF][START_REF] Iftimie | A uniqueness result for the navier-stokes equations with vanishing vertical viscosity[END_REF][START_REF] Paicu | Anisotropic Navier-Stokes equation in critical spaces[END_REF]).

The general 2D anisotropic Boussinesq equations can be read as,

           ∂ t u + u • ∇u -ν 1 ∂ 2 1 u -ν 2 ∂ 2 2 u = -∇p + θe 2 , ∂ t θ + u • ∇θ -κ 1 ∂ 2 1 θ -κ 2 ∂ 2 2 θ = 0, ∇ • u = 0,
u(0, x) = u 0 (x), θ(0, x) = θ 0 (x). (1.3) where ν 1 , ν 2 , κ 1 and κ 2 are real parameters. Systems (1.1) and (1.2) are two special cases for (1.3). When ν 1 = ν 2 > 0, κ 1 = κ 2 > 0, the global well-posedness theory for (1.3) has been established in [START_REF] Cannon | The initial value problem for the boussinesq equations with data in L p[END_REF][START_REF] Guo | Spectral method for solving two-dimensional newton-boussinesq equations[END_REF]. On the contrary, when these four parameters are zero, whether (1.3) has an unique global solution is a challenging problem and still unsolved. This system has many similarities with the classical 3D incompressible Euler equations such as the vortex stretching mechanism (which will be explained later). So it has both physical motivation and mathematical significance to investigate the intermediate cases (only partial dissipation) and some improvements has been made in the past few years.

The global regularity for the case when ν 1 = ν 2 > 0 and κ 1 = κ 2 = 0 was proven by Chae in [START_REF] Chae | Global regularity for the 2D boussinesq equations with partial viscosity terms[END_REF] and by Hou and Li in [START_REF] Hou | Global well-posedness of the viscous boussinesq equations[END_REF] with smooth initial data. Later, Abidi and Hmidi studied this system in the Besov space in [START_REF] Abidi | On the global well-posedness for boussinesq system[END_REF]. The global weak solution with finite energy has been constructed in [START_REF] Hmidi | On the global well-posedness of the two-dimensional boussinesq system with a zero diffusivity[END_REF] and has been proved to be unique later in [START_REF] Danchin | Les théorèmes de leray et de fujita-kato pour le système de boussinesq partiellement visqueux[END_REF]. For the case ν 1 = ν 2 = 0 and κ 1 = κ 2 > 0, Chae in [START_REF] Chae | Global regularity for the 2D boussinesq equations with partial viscosity terms[END_REF] also studied the global regularity for smooth data. This result was improved by Hmidi and Keraani in [START_REF] Hmidi | On the global well-posedness of the boussinesq system with zero viscosity[END_REF], Danchin and the first author in [START_REF] Danchin | Global well-posedness issues for the inviscid boussinesq system with Yudovich's type data[END_REF] for rough initial data. The global well-posedness for (1.1) and (1.2) was considered by Danchin and the first author in [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF], and they established the global existence and uniqueness theory. Then the global well-posedness for the anisotropic Boussinesq equations with vertical dissipation, namely (1.3) with only ν 2 , κ 2 > 0, was studied by Cao and Wu in [START_REF] Cao | Global regularity for the two-dimensional anisotropic boussinesq equations with vertical dissipation[END_REF]. Later, Adhikaria et. al. investigated other mixed dissipation cases [START_REF] Adhikari | Global regularity results for the 2d boussinesq equations with partial dissipation[END_REF]. Other interesting recent results on the 2D anisotropic Boussinesq equations and other related systems can be found in [START_REF] Adhikari | The 2d boussinesq equations with vertical viscosity and vertical diffusivity[END_REF][START_REF] Adhikari | Global regularity results for the 2d boussinesq equations with vertical dissipation[END_REF][START_REF] Jiu | Global-wellposedness of 2D Boussinesq equations with mixed partial temperaturedependent viscosity and thermal diffusivity[END_REF][START_REF] Larios | Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion[END_REF][START_REF] Li | Initial boundary value problem for 2d boussinesq equations with temperature-dependent diffusion[END_REF][START_REF] Li | Global well-posedness of the 2D Boussinesq equations with vertical dissipation[END_REF][START_REF] Xu | Global well-posedness for the 2D Boussinesq equations with partial temperaturedependent dissipative terms[END_REF].

Our main goal in this paper is to study the vortex patch problem for the 2D Boussinesq system with anisotropic viscosity and to study the propagation of a smooth front of temperature for the 2D Boussinesq system with anisotropic thermal diffusion. Also, for both systems we improve the global well-posedness results obtained in [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF].

We denote by the quantity ω ∂ 1 u 2 -∂ 2 u 1 , the vorticity of the flow which measures how fast the fluid rotates. This quantity is widely utilized in the literature we have mentioned above. Taking curl operator to the first equation of (1.1) we obtain the corresponding vorticity equation,

∂ t ω + u • ∇ω = ∂ 1 θ.
(1.4)

Similarly, the vorticity form of system (1.2),

∂ t ω + u • ∇ω -∂ 2 1 ω = ∂ 1 θ. (1.5)
The forcing term ∂ 1 θ is making this system become more complex than the 2D Euler system. Considering to the formal analogy between the 2D Boussinesq system and the 3D axisymmetric swirling flows we can refer to the forcing term ∂ 1 θ as a "vortex-stretching" term (see [START_REF] Majda | Vorticity and incompressible flow[END_REF]). Another part of our paper is devoted to study the vortex (temperature) patches problem. Before we describe this problem, we need first to introduce some notations. Let us denote by ψ(•, t) the flow associated with the vector field u, that is    d dt ψ(x, t) = u(ψ(t, x), t), ψ(0, x) = x.

(1.6)

The classical vortex patch problem is associated to the 2D Euler equations: if the initial vorticity is given by the characteristic function supported in some connected bounded domain, whether the regularity of the boundary can be preserved through the evolution of the flow ψ? It has been proved by Chemin that the regularity of the boundary is preserved for all the time in some Hölder class (see [START_REF] Chemin | Persistance de structures géométriques dans les fluides incompressibles bidimensionnels[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF] for details). Other results about the vortex (temperature) patch problems corresponding to the Euler equations, homogeneous (inhomogeneous) Navier-Stokes equations and other fluid models can be found in [6, 14-18, 22-27, 29, 30, 43, 44, 47] and the references therein.

We introduce now the notion of striated regularity which generalizes the classical vortex patch problem. This more general geometric structure means that the vorticity is more regular along some special directions, given by a non degenerate family of vector fields. In order to understand the striated regularity clearly, we need first to introduce some notations and definitions which will be used to describe the boundary regularity. Let X 0 be a vector field defined on D 0 (a connected bounded domain), X is the evolution of X 0 along the flow ψ defined as follows,

X(x, t) ∂ X 0 ψ(ψ -1 (x, t), t), (1.7) 
where ∂ X 0 f X 0 • ∇f denoting the standard directional derivative.

Taking the time derivative of (1.7), we see that X satisfies the following transport equation,

∂ t X + u • ∇X = ∂ X u, X(0, x) = X 0 (x). (1.8) It is not hard to check that ∂ X satisfies, [∂ X , D t ] = 0, (1.9) 
where [A, B] AB -BA represents the standard commutator, and D t ∂ t + u • ∇ denotes the material derivative.

We need also the following two definitions, which can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF].

Definition 1.1. Let 0 < s < 1 and Ω be a bounded domain in R 2 . We say that Ω is of class C 1+s if there exists a compactly supported function f ∈ C 1+s (R 2 ) and a neighborhood V of ∂Ω such that

∂Ω = f -1 ({0}) ∩ V and ∇f (x) = 0 ∀ x ∈ V.
Definition 1.2. A family (X λ ) λ∈Λ of vector fields over R 2 is said to be non-degenerate whenever I(X) inf

x∈R d sup λ∈Λ |X λ (x)| > 0.
Let r ∈ (0, 1) and (X λ ) λ∈Λ be a non-degenerate family of C r vector fields over R 2 . A bounded function f is said to be in the function space C r X if it satisfies

f C r X sup λ∈Λ f L ∞ X λ C r + ∇ • (X λ f ) C r-1 I(X) < ∞.
Next we present the main results for our paper. Since the concrete values of the constants κ in system (1.1) and ν in (1.2) play no role in our discussion, for this reason, we shall assume κ = ν = 1 throughout this paper.

The main result pertaining to system (1.1) can be stated as follows.

Theorem 1.1. Assume u 0 ∈ L 2 be a divergence-free vector field and the corresponding vorticity

ω 0 ∂ 1 u 2 0 -∂ 2 u 1 0 ∈ L ∞ . Let (ω 0 , θ 0 ) ∈ H s × H 1+s with 0 < s < 1.
Then system (1.1) has a unique global solution (u, θ) satisfying:

u ∈ L ∞ ([0, T ]; H 1+s ), ω ∈ L ∞ ([0, T ]; L ∞ ), θ ∈ L ∞ ([0, T ]; H 1+s ), ∂ 1 θ ∈ L 2 ([0, T ]; H 1+s ),
for any T > 0. Furthermore, for any non-degenerate vector field

X 0 ∈ C s such that ∂ X 0 ω 0 ∈ L p (f or some 2 < p < ∞), there exists a unique global solution X ∈ L ∞ ([0, T ]; C s ) to equation (1.8) and we have ∂ X ω ∈ L ∞ ([0, T ]; L p ), ∇u ∈ L 1 ([0, T ]; L ∞ ).
As a direct application, this theorem can be used to deal with the so called "vortex patch" problem as follows. For

ω 0 (x) = χ D 0 (x) 1 x ∈ D 0 , 0 x / ∈ D 0 , (1.10) 
where D 0 is a connected bounded domain, χ D 0 is the standard characteristic function of

D 0 . Let ω(x, t) = ω 1 (x, t) + ω 2 (x, t)
where ω 1 is the solution of the system

∂ t ω 1 + u • ∇ω 1 = 0, ω 1 (x, 0) = ω 0 (x), (1.11) 
and ω 2 is the solution of the system

∂ t ω 2 + u • ∇ω 2 = ∂ 1 θ, ω 2 (x, 0) = 0. (1.12)
Then the main result can be stated as follows.

Corollary 1.1. Assume ω 0 defined as in (1.10) and D 0 be a connected bounded domain with its boundary ∂D 0 in Hölder class C 1+s (0 < s < 1). Then system (1.1) has a unique global solution that satisfies the properties shown in Theorem 1.1. Moreover, the solution of systems (1.11) and (1.12) satisfies:

ω 1 = χ Dt , ∂ X ω 2 ∈ L ∞ ([0, T ]; C s-1 ),
with D t ψ(D 0 , t) and the boundary of the domain remains in the class C 1+s .

Then we present our main result pertaining to system (1.2).

Theorem 1.2. Assume u 0 ∈ L 2 be a divergence-free vector field and the corresponding vorticity

ω 0 ∂ 1 u 2 0 -∂ 2 u 1 0 ∈ √ L. Let (ω 0 , θ 0 ) ∈ H s × H β with 1 2 < s < β. Then system (1.
2) has a unique global solution (u, θ) which satisfies:

u ∈ L ∞ ([0, T ]; H 1+s ), ∂ 1 u ∈ L 2 ([0, T ]; H 1+s ), ∇u ∈ L 1 ([0, T ]; L ∞ ), θ ∈ L ∞ ([0, T ]; H s ).
Furthermore, for any vector field X 0 ∈ H s , there exists a unique global solution

X ∈ L ∞ ([0, T ]; H s ) to equation (1.8). Moreover, X ∈ L ∞ ([0, T ]; H s ) for s > 1 if provided ω 0 ∈ Ẇ 1,p ∩ H s , θ 0 ∈ Ẇ 1,p ∩ H s with some 2 < p < ∞ and X 0 ∈ H s . Remark 1.
Compared with the result of the paper of Danchin and the first author [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF] where the velocity was only Log-Lipschitz, here we obtain that the velocity u is Lipschitz. Remark 2. In the critical case s = 1/2, we can prove the global well-posedness and obtain the Lipschitz norm of the velocity with ω 0 ∈ B 1 2

2,1 and θ 0 ∈ H β , 1/2 < β. We can even obtain the control of the Lipschitz norm of the velocity with initial vorticity ω 0 in anisotropic Besov space B 0, 1 2 through a similar idea. Here B 0, 1 2 is the space given by the norm f

B 0, 1 2 = q∈Z 2 q 2 ∆ v q f L 2 and ∆ v q = F -1 (ϕ(2 -q ξ 2 ) f (ξ))
is the dyadic bloc in the vertical Fourier variable and the definition of ϕ(ξ) will be given in the next section. Because the proof is more complicated, we left it in the Appendix.

The above result can be used to solve the smooth "temperature patch" problem. Defining

θ ε 0 (x) = χ D 0 * η ε (x) = 1 x ∈ D - ε , 0 x ∈ D + ε , (1.13) 
where χ D 0 is the characteristic function of the domain D 0 . η ε is the standard mollified function. D - ε and D + ε are two domains defined by

D - ε {x ∈ D 0 : dist(x, ∂D 0 ) > ε}, D + ε {x ∈ R 2 : dist(x, D 0 ) > ε}.
We denote by d(t) the distance between ψ(D - ε , t) and ψ(D + ε , t), which are the evolution by the flow at time t > 0 of the initial domains D - ε and D + ε , with d(0) = 2ε. Then the following result hold true.

Corollary 1.2. Let 1 2 < s < 1, assume θ 0 = θ ε 0 defined as in (1.13) with ∂D 0 ∈ H 1+s , ω 0 ∈ L ∞ ∩ H s .
Then there exists a unique solution (u, θ) to system (1.2) satisfying the properties listed in Theorem 1.2. Furthermore, θ(x, t) satisfies the same form as θ 0 that

θ(x, t) = 1 x ∈ ψ(D - ε , t), 0 x ∈ ψ(D + ε , t
), and the distance d(t) satisfies,

2εe -t 0 ∇u(τ ) L ∞ dτ ≤ d(t) ≤ 2εe t 0 ∇u(τ ) L ∞ dτ . (1.14)
Moreover, the flow ψ(•, t) ∈ H 1+s and the boundary ∂D - ε , ∂D + ε ∈ H 1+s for all t ≥ 0.

Remark: We can propagate higher regularity of the boundary for the temperature patch if we improve the regularity condition of the initial data. The rest of this paper is divided into three sections and an appendix. In section 2, we provide some definitions and lemmas which will be used in the next sections. Section 3 is devoted to the study of system (1.1) which is divided into three subsections. The first one gives some regularity estimates, the second subsection shows the estimate for striated regularity and the last subsection gives the proof of Corollary 1.1. Section 4 deals with system (1.2) which is divided into five subsections. 4.1 obtains the estimate for the Lipschitz norm of the velocity and 4.2 gives the estimate of X. In 4.3 and 4.4, we investigate the higher order estimates for (ω, θ) and X. Then in subsection 4.5, we deal with the temperature patch problem. Finally, Appendix A provides the technical proof for some lemmas presented in the second section.

Preparations

In this section, we will give some definitions and lemmas which will be used in the next several sections. First we give some notations. Throughout this paper, C stands for some real positive constant which may vary from line to line. We denote by C(t) a generic continuous function depending on time and on various norms on (u 0 , θ 0 ), the initial data which arbitrarily but fixed. {b q } stands for a generic sequence in a 1 which may be different in each occurrence. Here, we have denoted by a p the space of summable sequences with the norm {b q } q p = ( q |b q | p ) 1/p < +∞. and |D| (-∆) 1 2 denotes the Zygmund operator which is defined through the Fourier transform that

|D|f = |ξ| f , (2.1) 
where

f F(f ) = 1 (2π) 2 R 2 e -ix•ξ f (x) dx.
Similarly, we can define

|D| s f = |ξ| s f , |∂ 1 | s f = |ξ 1 | s f . (2.2)
Next we present the classical Littlewood-Paley theory in R d which plays an important role in the proof of our result. Let χ be a smooth function supported on the ball B {ξ ∈ R d : |ξ| ≤ 4 3 } and ϕ be a smooth function supported on the ring

C {ξ ∈ R d : 3 4 ≤ ξ ≤ 8 3 } such that χ(ξ) + q≥0 ϕ(2 -q ξ) = 1, for all ξ ∈ R d , q∈Z ϕ(2 -q ξ) = 1, for all ξ ∈ R d \ {0}.
Then for every u ∈ S (tempered distributions), we define the non-homogeneous Littlewood-Paley operators as follows,

∆ q u = 0 for q ≤ -2, ∆ -1 u = χ(D)u = F -1 (χ(ξ) u(ξ)), ∆ q u = ϕ(2 -q D)u = F -1 (ϕ(2 -q ξ) u(ξ)), ∀ q ≥ 0, S q u = q-1 j=-1 ∆ j u.
Next we state the definition of non-homogeneous Besov spaces through the dyadic decomposition.

Definition 2.1. For s ∈ R and 1 ≤ p, r ≤ ∞, the non-homogeneous Besov space B s p,r is defined by B s p,r = {f ∈ S ; f B s p,r < ∞}, where

f B s p,r =        q≥-1 (2 qs ∆ q f r L p ) 1 r f or r ≤ ∞, sup q≥-1 2 qs ∆ q f L p f or r = ∞.
We point out that when p = r = 2, for all s ∈ R, we have

B s 2,2 (R d ) = H s (R d ).
Lemma 2.1. (Bernstein inequality [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF]

) Let k ∈ N ∪ {0}, 1 ≤ a ≤ b ≤ ∞. Assume that supp f ⊂ ξ ∈ R d : |ξ| ≤ 2 q C ,
for some integer q, then there exists a constant C 1 such that

∇ α f L b ≤ C 1 2 q k+d 1 a -1 b f L a , k = |α|. If f satisfies supp f ⊂ ξ ∈ R d : |ξ| = 2 q C ,
for some integer q, then

C 2 2 qk f L b ≤ ∇ α f L b ≤ C 3 2 q k+d 1 a -1 b f L a , k = |α|,
where C 2 and C 3 are constants depending on α, a and b only.

Notice that if u is a divergence-free vector field in R 2 , then it can be recovered from the corresponding vorticity ω by means of the following Biot-Savart law u = ∇ ⊥ ∆ -1 ω.

(2.3)

Combining the classical Calderón-Zygmund estimate and (2.3) can lead to the following lemma [START_REF] Chemin | Perfect incompressible fluids[END_REF].

Lemma 2.2. For any smooth divergence-free vector field u with its vorticity ω ∈ L p and p ∈ (1, ∞), there exists a constant C such that

∇u L p ≤ C p 2 p -1 ω L p . (2.4)
The next lemma shows the Hölder estimate for the transport equation, which is useful in the estimate of the striated regularity. The proof can be found in [START_REF] Chemin | Perfect incompressible fluids[END_REF].

Lemma 2.3. Let v be a smooth divergence-free vector field, r ∈ (-1, 1). Consider two functions f ∈ L ∞ loc (R; C r ) and g ∈ L 1 loc (R; C r ), such that f satisfies the transport equation

∂ t f + u • ∇f = g.
Then we have

f (t) C r ≤ C f (0) C r e C t 0 ∇u(τ ) L ∞ dτ + C t 0 g(τ ) C r e C t τ ∇u(s) L ∞ ds dτ,
and the constant C depends only on r.

The following logarithmic inequality plays an important role in the proof of the Lipschitz norm for the velocity of system (1.1). The proof of this lemma can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF].

Lemma 2.4. Let r ∈ (0, 1) and (X λ ) λ∈Λ be a non-degenerate family of C r vector fields over R 2 . Let u be a divergence-free vector field over R 2 with vorticity ω ∈ C r X . Assume, in addition that u ∈ L q for some q ∈ [1, +∞] or that ∇u ∈ L p for some finite p. Then there exists a constant C depending on p and r such that

∇u L ∞ ≤ C min( u L q , ω L p ) + ω L ∞ log e + ω C r X ω L ∞ . (2.5)
Then we give the definition of the space √ L and LL

1 2 .
Definition 2.2. The space √ L stands for the space of functions f in 2≤p<∞ L p such that

f √ L sup p≥2 f L p √ p -1 < ∞.
And the space LL

1 2 denotes by LL 1 2 f ∈ S : f LL 1 2 sup j≥0 S j f L ∞ √ j + 1 < ∞ ,
where S j f denotes the "low frequencies" part given by

S j f = F -1 (χ(2 -j ξ) f (ξ)). Remark: It is not hard to check that √ L → LL 1 2 .
The following lemma plays a significant role in the estimate of the convection term. The proof of this lemma shall be shown in the Appendix.

Lemma 2.5. Assume u is a smooth divergence free vector field with u ∈ L 2 , ∇u ∈ L ∞ , f ∈ H s with s ∈ (0, 1), then we have

- R 2 ∆ q (u • ∇f )∆ q f dx ≤Cb q 2 -2qs ∇u L ∞ f 2 H s , (2.6 
)

with b q ∈ 1 . Moreover, if ω, ∂ 1 ω ∈ L 2 , ∂ 1 f ∈ H s , then we have - R 2 ∆ q (u • ∇f )∆ q f dx ≤Cb q 2 -2qs ( u L 2 + ω L 2 + ∂ 1 ω L 2 ) × ( f 2 H s + f H s ∂ 1 f H s + f 3 2 H s ∂ 1 f 1 2 H s ), (2.7) 
where ω is the corresponding vorticity of u.

Then we give a lemma which shows the classical losing regularity estimate for the transport equation, and result can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF]. For the sake of completeness, we will give the proof in the Appendix. Lemma 2.6 (Losing regularity estimate for transport equation). Let ρ satisfies the transport equation

∂ t ρ + v • ∇ρ = f, ρ(0, x) = ρ 0 (x), (2.8 
)

where ρ 0 ∈ B s 2,r , f ∈ L 1 ([0, T ]; B s 2,r ) with r ∈ [1, ∞].
Here v ∈ L 2 is a divergence free vector field and for some

V (t) ∈ L 1 ([0, T ]), v satisfies sup N ≥0 ∇S N v(t) L ∞ √ 1 + N ≤ V (t).
Then for all s > 0, ε ∈ (0, s) and t ∈ [0, T ], we have the following estimate,

ρ(t) B s-ε 2,r ≤ C ρ 0 B s 2,r + T 0 f (τ ) B s 2,r dτ e C ε T 0 V (τ ) dτ 2 ,
where C is a constant independent of T and ε.

The following Lemma gives the classical Kato-Ponce type inequality, which can be found in [START_REF] Kato | Liapunov functions and monotonicity in the Euler and Navier-Stokes equations[END_REF][START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF][START_REF] Kenig | Well-posedness of the initial value problem for the Korteweg-de-Vries equation[END_REF].

Lemma 2.7. Assume s > 0 and p ∈ (1, +∞). Let f satisfies f ∈ L p 1 , ∇f ∈ L p 1 , |D| s f ∈ L p 3 , g satisfies |D| s-1 g ∈ L p 2 , |D| s g ∈ L p 2 , g ∈ L p 4 , then we have [|D| s , f ]g L p ≤ C( ∇f L p 1 |D| s-1 g L p 2 + |D| s f L p 3 g L p 4 ),
(2.9)

|D| s (f g) L p ≤ C( f L p 1 |D| s g L p 2 + |D| s f L p 3 g L p 4 ), (2.10) 
where p 2 , p 3 ∈ (1, +∞) satisfies

1 p = 1 p 1 + 1 p 2 = 1 p 3 + 1 p 4 .

The Case of Horizontal Diffusivity

This section is devoted to study the first model (1.1). In the first subsection we will give some regularity estimates for (ω, θ). Then we will the Hölder estimate of X and prove Corollary 1.1.

3.1.

A priori estimates for ω and θ. Before we give the regularity estimate for (ω, θ), we need first to give the definition of strong solutions for the system (1.1).

Definition 3.1. Let (u 0 , θ 0 ) ∈ H σ , σ > 0 and T > 0. We say that (u, θ) is strong solution to (1.1) on the interval [0, T ] if u ∈ L ∞ ([0, T ]; H σ ) and θ ∈ L ∞ ([0, T ]; H σ ) with ∂ 1 θ ∈ L 2 ([0, T ]; H σ )
and verify the system (1.1) in the sense of distributions on the interval [0, T ].

We recall the following existence and uniqueness result in [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF] about system (1.1).

Theorem 3.1. Let 1 < s < 3 2 and θ 0 ∈ H 1 such that |∂ 1 | s θ 0 ∈ L 2 .
Let u 0 ∈ H 1 be a divergence-free vector field and the corresponding vorticity ω 0 in L ∞ . Then system (1.1) with initial data (θ 0 , u 0 ) admits a global unique solution

(θ, u) in C w (R + ; H 1 ) such that θ ∈ L ∞ (R + ; H 1 ), ∂ 1 θ ∈ L 2 (R + ; H 1 ∩ L ∞ ), ω ∈ L ∞ loc (R + ; L ∞ ), |∂ 1 | s θ ∈ L ∞ (R + ; L 2 ), |∂ 1 | 1+s θ ∈ L 2 loc (R + ; L 2 ). Remark 3.1.
In the following of the paper, we only present formal a priori estimates on the strong solutions of the system. In order to construct the global solution, We can begin by generating an approximate sequence of solutions by adding an artificial vertical viscosity -∆(u, θ) on the system (1.1) and by regularizing the initial data. For this fully parabolic system with smooth initial data we have a unique global solution by classical result on the Boussinesq system. We shall prove here bellow, a priori estimates that we obtained herebellow, which are uniform in the parameter > 0. By the classical Aubin compactness theorem, we show that the sequence of approximate solutions has a subsequence converging to a limit in appropriate function spaces. Passing to the limit in the weak formulation of the regularized Boussinesq system when is converging to zero, w obtain that the limit is a strong solution for the system (1.1). Because this step is classical, we will not give all the details about the construction of the solution but we will let them for the reader. Also, we will not mention the proof of the uniqueness because is a consequence of the result from [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF] Then we give a proposition which shows the regularity estimate of (ω, θ). Proposition 3.1. Let 0 < s < 1, assume the initial data ω 0 ∈ L 2 ∩ L ∞ ∩ H s and θ 0 ∈ H 1+s . Then the following estimate holds true,

ω(t) 2 H s + θ(t) 2 H 1+s + t 0 ∂ 1 θ(τ ) 2 H 1+s dτ ≤ C(t)e t 0 ∇u(τ ) L ∞ dτ . (3.1)
Proof. We first estimate ω. Applying ∆ q to (1.4), we get

∂ t ∆ q ω + ∆ q (u • ∇ω) = ∂ 1 ∆ q θ. (3.2)
Taking L 2 inner product with ∆ q ω, one can deduce 1 2

d dt ∆ q ω(t) 2 L 2 = - R 2 ∆ q (u • ∇ω)∆ q ω dx + R 2 ∂ 1 ∆ q θ∆ q ω dx N 1 + N 2 . (3.3)
For N 1 , making use of Lemma 2.5,

N 1 ≤ Cb q 2 -2qs ∇u L ∞ ω 2 H s . (3.4) 
Then we estimate N 2 , by Hölder inequality and Young's inequality,

N 2 ≤C ∂ 1 ∆ q θ L 2 ∆ q ω L 2 ≤ Cb q 2 -2qs ∂ 1 θ H s ω H s ≤ Cb q 2 -2qs ( θ 2 H 1+s + ω 2 H s ). (3.5)
Inserting the estimate (3.4) and (3.5) into (3.3), then multiplying both side by 2 2qs and summing up over q ≥ -1, we obtain 1 2

d dt ω(t) 2 H s ≤ C(1 + ∇u L ∞ ) × ( ω 2 H s + θ 2 H 1+s ). (3.6) 
Then we estimate θ. Applying ∆ q to the second equation of (1.1), we obtain

∂ t ∆ q θ + ∆ q (u • ∇θ) -∂ 2 1 ∆ q θ = 0. (3.7)
Multiplying (3.7) by ∆ q θ and integrating over R 2 with respect to x, after integration by parts, one can deduce 1 2

d dt ∆ q θ(t) 2 L 2 + ∂ 1 ∆ q θ 2 L 2 = - R 2 ∆ q (u • ∇θ)∆ q θ dx = - |k-q|≤2 R 2 ∆ q (S k-1 u • ∇∆ k θ)∆ q θ dx - |k-q|≤2 R 2 ∆ q (∆ k u • ∇S k-1 θ)∆ q θ dx - k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u • ∇∆ k+l θ)∆ q θ dx Θ 1 + Θ 2 + Θ 3 . (3.8)
For Θ 1 , along the same method as in the proof of Lemma 2.5 which showed in the Appendix, we can obtain

Θ 1 ≤ Cb q 2 -2q(1+s) ∇u L ∞ θ 2 H 1+s . (3.9)
For Θ 2 , we can write it explicitly,

Θ 2 = - |k-q|≤2 R 2 ∆ q (∆ k u • ∇S k-1 θ)∆ q θ dx = - |k-q|≤2 R 2 ∆ q (∆ k u 1 ∂ 1 S k-1 θ)∆ q θ dx - |k-q|≤2 R 2 ∆ q (∆ k u 2 ∂ 2 S k-1 θ)∆ q θ dx Θ 21 + Θ 22 .
(3.10)

We will use overall that ∆ q is bounded operator in any L p so we can get ride of it in the following. Making use of Hölder inequality, Θ 21 can be bounded by

Θ 21 ≤ C |k-q|≤2 ∆ k u 1 L 2 ∂ 1 θ L ∞ ∆ q θ L 2 ≤ C |k-q|≤2 ∆ k ∂ 2 ∆ -1 ω L 2 ∂ 1 θ L ∞ ∆ q θ L 2 ≤ C |k-q|≤2 2 -k 2 -sk 2 sk ∆ k ω L 2 ∂ 1 θ L ∞ 2 -(1+s)k 2 (1+s)k ∆ q θ L 2 ≤ C2 -2(1+s)q b q ∂ 1 θ L ∞ ω H s θ H 1+s ,
where we have used the Biot-Savart law (2.3). Also making use of (2.3), combining with integration by parts, we can write Θ 22 as

Θ 22 = - |k-q|≤2 R 2 ∆ q (∆ k u 2 ∂ 2 S k-1 θ)∆ q θ dx = - |k-q|≤2 R 2 ∆ q (∆ k ∂ 1 ∆ -1 ω∂ 2 S k-1 θ)∆ q θ dx = |k-q|≤2 R 2 ∆ q (∆ k ∆ -1 ω∂ 2 S k-1 θ)∂ 1 ∆ q θ dx + |k-q|≤2 R 2 ∆ q (∆ k ∆ -1 ω∂ 1 ∂ 2 S k-1 θ)∆ q θ dx Θ 221 + Θ 222 .
For Θ 221 , by Hölder inequality and Bernstein inequality in Lemma 2.1,

Θ 221 ≤ C |k-q|≤2 ∆ k ∆ -1 ω L ∞ ∂ 2 S k-1 θ L 2 ∂ 1 ∆ q θ L 2 ≤ C |k-q|≤2 2 -2k ∆ k ω L ∞ θ H 1 2 -(1+s)q 2 (1+s)q ∂ 1 ∆ q θ L 2 ≤ C |k-q|≤2 2 -2k 2 k ∆ k ω L 2 θ H 1 2 -(1+s)q 2 (1+s)q ∂ 1 ∆ q θ L 2 ≤ C2 -2(1+s)q b q θ H 1 ω H s ∂ 1 θ H 1+s .
Next we bound Θ 222 , by Hölder inequality and Bernstein inequality,

Θ 222 ≤ C |k-q|≤2 ∆ k ∆ -1 ω L 2 ∂ 1 ∂ 2 S k-1 θ L ∞ ∆ q θ L 2 ≤ C |k-q|≤2 2 -2k ∆ k ω L 2 k ≤k-2 ∂ 1 ∂ 2 ∆ k θ L ∞ ∆ q θ L 2 ≤ C |k-q|≤2 2 -2k ∆ k ω L 2 2 (1-s)q k ≤k-2 2 (k -k)(1-s) 2 sk ∂ 1 ∂ 2 ∆ k θ L 2 ∆ q θ L 2 ≤ C2 -2(1+s)q b q ω L 2 θ H s ∂ 1 θ H 1+s ,
where we have used the discrete Young's inequality in the last step.

Then inserting the estimates of Θ 21 , Θ 221 and Θ 222 into (3.10), one can obtain

Θ 2 ≤ C2 -2(1+s)q b q ∂ 1 θ L ∞ ω H s θ H 1+s + C2 -2(1+s)q b q ( ω H s + θ H 1+s ) ∂ 1 θ H 1+s . (3.11) 
Finally we estimate Θ 3 , by Hölder inequality and Bernstein inequality,

Θ 3 = - k≥q-1 |k-l|≤1 R 2 ∆ q ∇ • (∆ k u∆ l θ)∆ q θ dx ≤ C k≥q-1 2 q ∆ k u L ∞ ∆ k θ L 2 ∆ q θ L 2 ≤ C k≥q-1, k≥0 2 q-k ∆ k ∇u L ∞ ∆ k θ L 2 ∆ q θ L 2 + C ∆ -1 u L ∞ ∆ -1 θ 2 L 2 ≤ C2 -2(1+s)q b q (1 + ∇u L ∞ ) θ 2 H 1+s .
(3.12)

Inserting the estimates (3.9), (3.11) and (3.12) into (3.8), and making use of Young's inequality, we obtain 1 2

d dt ∆ q θ(t) 2 L 2 + ∂ 1 ∆ q θ 2 L 2 ≤ C2 -2(1+s)q (1 + ∇u L ∞ + ∂ 1 θ L ∞ ) × ( ω 2 H s + θ 2 H 1+s ) + ε b q 1 b q 2 -2(1+s)q ∂ 1 θ 2 H 1+s .
Multiplying both sides by 2 (1+s)q and summing up from -1 to ∞ with respect to q, choosing ε = 1 2 , one can deduce

d dt θ(t) 2 H 1+s + ∂ 1 θ 2 H 1+s ≤ C(1 + ∇u L ∞ + ∂ 1 θ L ∞ ) × ( ω 2 H s + θ 2 H 1+s ). (3.13)
Combining (3.6) with (3.13) and by Grönwall's Lemma, because

∂ 1 θ ∈ L 2 t (L ∞ x ) (see Theorem 3.1), we obtain ω(t) 2 H s + θ(t) 2 H 1+s + t 0 ∂ 1 θ(τ ) 2 H 1+s dτ ≤ C(t)e t 0 ∇u(τ ) L ∞ dτ ,
which complete the proof of this proposition.

3.2.

A priori estimates for the striated regularity.

In this subsection, we will give the estimates of tangential derivatives of ω and the regularity estimates of X. The first lemma gives

L p (p ∈ [1, ∞]) estimate of X. Lemma 3.1. Let r ∈ [1, ∞], X 0 ∈ L r and (ω 0 , θ 0 ) satisfies the assumption in Lemma 4.1.
Then the solution X of equation (1.8) satisfies

X 0 L r e -t 0 ∇u(τ ) L ∞ dτ ≤ X(t) L r ≤ X 0 L r e t 0 ∇u(τ ) L ∞ dτ . (3.14)
Proof. Multiplying both side of equation (1.8) by |X| r-2 X (1 < r < ∞) and integrating over R 2 with respect to x, we can obtain

1 r d dt X(t) r L r ≤ C ∇u L ∞ X r L r , (3.15) 
which implies the right hand side inequality of (3.14). Using the time reversibility of this equation and the same L r estimate, we can obtain the first inequality of (3.14). Then taking r → ∞, we can deduce the result for the case r = ∞, which complete the proof of this lemma.

Applying ∂ X to the vorticity equation, according to (1.9), we get ∂ X ω satisfies the following equation

∂ t ∂ X ω + u • ∇∂ X ω = ∂ X (∂ 1 θ) = X • ∇∂ 1 θ. (3.16)
The next lemma deals with the L p estimate of ∂ X ω.

Lemma 3.2. Let ∂ X 0 ω 0 ∈ L p (2 ≤ p < ∞)
, and (ω, θ) satisfies the assumptions in Proposition 3.1, then we have

∂ X ω(t) L p ≤ ∂ X 0 ω 0 L p + C(t)e 2 t 0 ∇u(τ ) L ∞ dτ .
Proof. Multiplying the equation (3.16) by |∂ X ω| p-2 ∂ X ω (2 ≤ p < ∞), and integrating over R 2 with respect to x, because u satisfies the divergence-free condition, by Hölder inequality,

1 p d dt ∂ X ω(t) p L p ≤ X L ∞ ∂ 1 ∇θ L p ∂ X ω p-1 L p .
Because of the embedding H s → L p with 2 p = 1 -s, we obtain

d dt ∂ X ω(t) L p ≤ X L ∞ ∂ 1 ∇θ H s .
Then integrating in time and combining with the results of Lemma 3.1 and Proposition 3.1,

∂ X ω(t) L p ≤ ∂ X 0 ω 0 L p + t 0 X(τ ) L ∞ ∂ 1 ∇θ(τ ) H s dτ ≤ ∂ X 0 ω 0 L p + X L ∞ t,x t 0 ∂ 1 ∇θ(τ ) H s dτ ≤ ∂ X 0 ω 0 L p + C(t)e 2 t 0 ∇u(τ ) L ∞ dτ ,
which complete the proof of this lemma.

Then we give the Hölder estimate for X. The next proposition obtain the Lipschitz information of the velocity u and the C s norm of X simultaneously. Proposition 3.2. Let 0 < s < 1, assume X 0 ∈ C s , ∂ X 0 ω 0 ∈ L p and (ω 0 , θ 0 ) satisfies the assumptions in Proposition 3.1, then we have the velocity u satisfies

∇u ∈ L 1 ([0, t]; L ∞ ).
(3.17)

Moreover,

X ∈ L ∞ ([0, t]; C s ), ω ∈ L ∞ ([0, t];H s ), ∂ X ω ∈ L ∞ ([0, t]; L p ). θ ∈ L ∞ ([0, t]; H 1+s ), ∂ 1 θ ∈ L 2 ([0, t]; H 1+s ). (3.18)
Proof. Firstly, we compute the Hölder estimate of X. Applying Lemma 2.3 to (1.8), we obtain

X(t) C s ≤ C X 0 C s e C t 0 ∇u(τ ) L ∞ dτ + C t 0 ∂ X u(τ ) C s e C t τ ∇u(s) L ∞ ds dτ ≤ Ce C t 0 ∇u(τ ) L ∞ dτ ( X 0 C s + t 0 ∂ X u(τ ) C s e -C τ 0 ∇u(s) L ∞ ds dτ ), (3.19) 
where we can choose C > 2. In order to estimate Hölder norm of ∂ X u, we need the following estimate which proof can be found in [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF],

∂ X u C s ≤ C( ∇u L ∞ X C s + ∂ X ω C s-1 ). (3.20) 
By Sobolev embedding L p → C s-1 (1 -s = 2 p ) and Lemma 3.2, we obtain 

∂ X ω C s-1 ≤ C ∂ X ω L p ≤ C ∂ X ω 0 L p + C(t)e 2 t 0 ∇u(τ ) L ∞ dτ . ( 3 
X(t) C s ≤ Ce C t 0 ∇u(τ ) L ∞ dτ X 0 C s + t 0 (C(τ ) + ∇u(τ ) L ∞ X(τ ) C s e -C τ 0 ∇u(s) L ∞ ds ) dτ .
Denoting

F (t) X(t) C s e -C t 0 ∇u(τ ) L ∞ dτ .
Then according to the above estimates, we obtain

F (t) ≤ CF (0) + t 0 C(τ )( ∇u(τ ) L ∞ + 1)(F (τ ) + 1) dτ.
By Grönwall's Lemma,

F (t) ≤ C(F (0) + 1)e t 0 C(τ )( ∇u(τ ) L ∞ +1) dτ .
According to the definition of F (t), we obtain the Hölder estimate of X that,

X(t) C s ≤ C(t)e C t 0 ∇u(τ ) L ∞ dτ . (3.22)
Recalling the logarithmic inequality in Lemma 2.4 that

∇u L ∞ ≤ C ω L 2 + ω L ∞ log e + ω C s X ω L ∞ , (3.23) 
where ω C s X is defined in Definition 1.2. Because ω L 2 ∩L ∞ is bounded, inserting the estimates (3.21), (3.22) into (3.23), we obtain

∇u L ∞ ≤ C 1 + log e + C(t)e C t 0 ∇u(τ ) L ∞ ≤ C 1 + t 0 C(t)(1 + ∇u(τ ) L ∞ ) dτ .
Then by Grönwall's Lemma, 

∇u(t) L ∞ ≤ C(t), ∀t > 0. ( 3 
ω 0 = χ D 0 (x) 1 x ∈ D 0 , 0 x / ∈ D 0 ,
where D 0 is a connected bounded domain with ∂D 0 ∈ C 1+s for 0 < s < 1. Then according to Definition 1.1, there exist a real function f 0 ∈ C 1+s and a neighborhood V 0 such that ∂D 0 = V 0 ∩ f -1 (0) and ∇f 0 = 0 on V 0 . Noticing that at time t, the boundary

∂D t = ψ(D 0 , t) is the level set of the function f (•, t) = f 0 (ψ -1 (•, t))
, where ψ is the flow map associated with the velocity u defined in (1.6) and f being transported by ψ as:

∂ t f + u • ∇f = 0, f (x, 0) = f 0 (x). (3.25)
Setting the vector field X ∇ ⊥ f with initial data X 0 ∇ ⊥ f 0 , it is not hard to verify that X satisfies (1.7) and the corresponding system (1.8). Then we can parametrize ∂D 0 as γ 0 :

S 1 → ∂D 0 , via σ → γ 0 (σ), with ∂ σ γ 0 = X 0 (γ 0 (σ)), ∀ σ ∈ S 1 , γ 0 (0) = x 0 ∈ ∂D 0 . (3.26) 
In order to conclude the proof of Corollary 1.1, we observe that a parametrization for ∂D t is given by γ t (σ) ψ(γ 0 (σ), t) and by differentiating with respect to the parameter σ, we get

∂ σ γ t (σ) = X(γ t (σ)), ∀ σ ∈ S 1 , γ t (0) = ψ(x 0 , t) ∈ ∂D t . (3.27) According to Theorem 1.1, X ∈ L ∞ ([0, T ]; C s ), thus γ t ∈ C 1+s (S 1
) for all t ≥ 0. This completes the proof of Corollary 1.1.

The Case of Horizontal Viscosity

In this section, we focus on system (1.2). We start by recalling the definition of strong solutions for (1.2).

Definition 4.1. Let (u 0 , θ 0 ) ∈ H σ , σ > 0 and T > 0. We say that (u, θ) is strong solution to (1.1) on the interval [0, T ] if u ∈ L ∞ ([0, T ]; H σ ) with ∂ 1 u ∈ L 2 ([0, T ]; H σ ) and θ ∈ L ∞ ([0, T ]; H σ ) verify the system (1.1) in the sense of distributions on the interval [0, T ].
Before we begin to prove the result in Theorem 1.2, we need to review the following existence and uniqueness result for system (1.2) which can be found in [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF].

Theorem 4.1. Let s ∈ ( 1 2 , 1]. For all functions θ 0 ∈ H s ∩ L ∞ and divergence-free vector field u 0 ∈ H 1 with vorticity ω 0 ∈ √ L. System (1.2) with data (u 0 , θ 0 ) admits a unique global solution (u, θ) such that θ ∈ C w (R + ; L ∞ ) ∩ C(R + ; H s-ε ) for all ε > 0 and u ∈ C w (R + ; H 1 ), ω ∈ L ∞ loc (R + ; √ L) and ∇u ∈ L ∞ loc (R + ; √ L). (4.1)
In the following we obtain, formal a priori estimates on the strong solutions of the system, the construction of the solution is obtained as usual, by regularizing the initial data and by adding an artificial vertical viscosity -∆(u, θ) on the system (1.2). By using classical results for 2D Boussinesq system with positive viscosity and positive thermal diffussion, we can construct a sequences of smooth solutions for the regularized system and using classical compactness theorem we can pass to the limit and obtain s strong solution for the system (1.2). Also, we don't give the proof of the uniqueness as it is a consequence of the result from [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF]. We let this details for the reader.

In the rest of this section, we will first show that the solution u of system (1.2) actually can be in L 1 ([0, t]; L ∞ ) in the first subsection. Then we estimate the striated regularity in the second subsection. In subsections 4.3-4.4, we exam the higher regularity estimate of (ω, θ) and the vector field X. The proof of Corollary 1.2 will be given in the last subsection.

4.1.

A priori estimates for the Lipschitz norm of the velocity field. In this subsection, we will give the estimates for the Lipschitz norm of the velocity field and H s ( 1 2 < s < 1) norm of (ω, θ). Those estimate will be based on the results of Theorem 4.1.

First we give the estimate for ∇u L ∞ , which plays an important role in the estimate for striated regularity in the next subsections. The main results can be stated as follows.

Lemma 4.1. Assume ω 0 ∈ H s and θ 0 ∈ H β with β > s > 1 2 , then the solution (ω, θ) satisfies

ω 2 L ∞ t (H s ) + ∂ 1 ∇ω 2 L 2 t (H s ) ≤ C(t), θ 2 L ∞ t (H s ) ≤ C, moreover, ∇u L 2 t (L ∞ ) ≤ C(t).
Proof. Because of Theorem 4.1, we already know ∇u ∈ √ L. Then according to the definition of space √ L and Lemma 2.6, we know

θ L ∞ ([0,t];H s ) ≤ C. (4.2)
Then we give the estimate of ω. Applying ∆ q to the vorticity equation (1.5) and taking L 2 inner product with ∆ q ω, one can obtain 1 2

d dt ∆ q ω(t) 2 L 2 + ∂ 1 ∆ q ω 2 L 2 = R 2 ∂ 1 ∆ q θ∆ q ω dx - R 2 ∆ q (u • ∇ω)∆ q ω dx. (4.3) 
After integration by parts, according to Hölder inequality and Young's inequality, 1 2

d dt ∆ q ω(t) 2 L 2 + 1 2 ∂ 1 ∆ q ω 2 L 2 ≤ C ∆ q θ 2 L 2 - R 2 ∆ q (u • ∇ω)∆ q ω dx. (4.4) 
For the last term in (4.4), by Lemma 2.5 and Young's inequality,

- R 2 ∆ q (u • ∇ω)∆ q ω dx ≤Cb q 2 -2qs ( u L 2 + ω L 2 + ∂ 1 ω L 2 ) × ( ω 2 H s + ω H s ∂ 1 ω H s + ω 3 2 H s ∂ 1 ω 1 2 H s ) ≤Cb q 2 -2qs ω 2 H s + 1 4 b q 1 b q 2 -2qs ∂ 1 ω 2 H s . (4.5) 
According to the bound (4.2),

∆ q θ 2 L 2 ≤ Cb q 2 -2qs θ 2 H s , (4.6 
)

with b q = 2 2qs ∆qθ 2 L 2 θ 2
H s ∈ 1 . Inserting (4.5), (4.6) into (4.4) and taking summation of q, after calculation we obtain

d dt ω(t) 2 H s + ∂ 1 ω 2 H s ≤ C(1 + ω(t) 2 H s ).
Then by Grönwall's Lemma, we get

ω(t) 2 H s + t 0 ∂ 1 ω(τ ) 2 H s dτ ≤ C(t).
According to trace theory, we know

f (x 1 , x 2 ) L ∞ x 2 (H α-1 2 x 1 ) ≤ C f (x 1 , x 2 ) H α , for α > 1 2 .
Thus by Sobolev embedding,

t 0 ω(τ ) 2 L ∞ dτ ≤ t 0 ω(τ ) 2 L ∞ x 2 (H s+ 1 2 x 1 ) dτ ≤ t 0 ∂ 1 ω(τ ) L ∞ x 2 (H s-1 2 x 1 ) ω(τ ) L ∞ x 2 (H s-1 2 x 1 ) dτ ≤ t 0 ∂ 1 ω(τ ) H s ω(τ ) H s dτ ≤ t 0 ∂ 1 ω(τ ) 2 H s dτ 1 2 t 0 ω(τ ) 2 H s dτ 1 2 ≤ C(t).
Noticing that ∂ 1 ω = ∆u 2 and ∂ 1 u 1 + ∂ 2 u 2 = 0, we have

t 0 ∂ i u j (τ ) 2 H s+1 dτ ≤ C(t), for i, j = 1, 2, (i, j) = (2, 1).
Then by Sobolev embedding,

t 0 ∂ i u j (τ ) 2 L ∞ dτ ≤ C(t), for i, j = 1, 2, (i, j) = (2, 1).
As for (i, j) = (2, 1), according to the definition of vorticity ω,

∂ 2 u 1 = ∂ 1 u 2 -ω, so t 0 ∂ 2 u 1 (τ ) 2 L ∞ dτ ≤ t 0 ∂ 1 u 2 (τ ) 2 L ∞ dτ + t 0 ω(τ ) 2 L ∞ dτ ≤ C(t).
Thus we obtain ∇u L 2 t (L ∞ ) is bounded, which completes the proof of this lemma. 4.2. A priori estimates for striated regularity. In this section, we will give some estimates about the vector field X. Along the same method of Lemma 3.14 and combining with Lemma 4.1, one can deduce for any r ∈ [1, ∞],

X(t) L r ≤ C X 0 L r e t 0 ∇u(τ ) L ∞ dτ ≤ C(t). (4.7) 
The next lemma shows the

H s ( 1 2 < s < 1) estimate for X. Lemma 4.2. Let s > 1 2 , X 0 ∈ H s and (ω 0 , θ 0 ) ∈ H s × H β with β > s. Then the solution X of (1.8) satisfies X ∈ L ∞ ([0, t]; H s ),
for any t > 0.

Proof. Applying operator ∆ q to (1.8),

∂ t ∆ q X + ∆ q (u • ∇X) = ∆ q ∂ X u. (4.8)
Taking the L 2 inner product of the above equality with ∆ q X, we get 1 2

d dt ∆ q X(t) 2 L 2 = - R 2 ∆ q (u • ∇X) • ∆ q X dτ + R 2 ∆ q ∂ X u • ∆ q X dτ. (4.9)
For the first term of the right hand side in (4.9). By Lemma 2.5, we have

- R 2 ∆ q (u • ∇X)∆ q X dx ≤Cb q 2 -2qs ∇u L ∞ X 2 H s . (4.10)
Then we estimate the last term of (4.9), by Hölder inequality,

R 2 ∆ q ∂ X u • ∆ q X dτ ≤ ∆ q ∂ X u L 2 ∆ q X L 2 ≤ Cb q 2 -2qs ∂ X u H s X H s .
For H s norm of ∂ X u, we can bound it by

∂ X u H s = X • ∇u H s ≤ C( X L ∞ ∇u H s + X H s ∇u L ∞ ).
By Lemma 4.1 and Lemma 3.1, we see that

X L ∞ ≤ C(t), ∇u H s ≤ C ω H s ≤ C(t).
Thus we obtain

t 0 ∆ q ∂ X u • ∆ q X dτ ≤ C(t)b q 2 -2qs ( X H s + ∇u L ∞ X 2 H s ). (4.11)
Inserting the estimates (4.10) and (4.11) into (4.9) then multiplying both sides by 2 2qs and taking summation over q ≥ -1, we obtain

1 2 d dt X(t) 2 H s ≤ C(t)( X H s + ∇u L ∞ X 2 H s ). (4.12)
Then by Grönwall's Lemma and combining with Lemma 4.1, we obtain

X H s ≤ C(t),
which completes the proof of this lemma.

4.3.

A priori estimates for ω and θ.

In this subsection, we will give some regularity estimates for (ω, θ) based on the Lipschitz information ∇u L 1 t (L ∞

x ) . The following lemma gives the H 1 estimate of (ω, θ). Lemma 4.3. Assume ω 0 ∈ H 1 and θ 0 ∈ H 1 , then the solution (ω, θ) satisfies

∇ω 2 L ∞ t (L 2 ) + ∇θ 2 L ∞ t (L 2 ) + ∂ 1 ∇ω 2 L 2 t (L 2 ) ≤ C(t).
(4.13)

Proof. Applying ∂ k (k = 1, 2) to the vorticity equation (1.5), we can note that ∂ k ω satisfies

∂ t ∂ k ω + u • ∇∂ k ω + ∂ k u • ∇ω -∂ 2 1 ∂ k ω = ∂ 1 ∂ k θ. (4.14)
Multiplying ∂ k ω to (4.14) and integrating over R 2 with respect to x, we have 1 2

d dt ∂ k ω(t) 2 L 2 + ∂ 1 ∂ k ω 2 L 2 = R 2 ∂ 1 ∂ k θ∂ k ω dx - R 2 ∂ k u • ∇ω∂ k ω dx N 1 + N 2 .
(4.15)

After integration by parts and using Hölder inequality and Young's inequality, one can deduce

N 1 ≤ 1 2 ∂ 1 ∇ω 2 L 2 + 1 2 ∇θ 2 L 2 . (4.16)
For N 2 , by Hölder inequality,

N 2 ≤ ∇u L ∞ ∇ω 2 L 2 . (4.17)
Applying ∂ k (k = 1, 2) to the temperature equation of (1.2), we deduce ∂ k θ satisfies

∂ t ∂ k θ + u • ∇∂ k θ + ∂ k u • ∇θ = 0. (4.18)
Similarly, we can prove 1 2 

d dt ∂ k θ(t) 2 L 2 ≤ C ∇u L ∞ ∇θ 2 L 2 . ( 4 
d dt ( ∇ω(t) 2 L 2 + ∇θ(t) 2 L 2 ) + ∂ 1 ∇ω(t) 2 L 2 ≤ C ∇u L ∞ ( ∇ω 2 L 2 + ∇θ 2 L 2 )
. Then by virtue of the Grönwall's Lemma and Lemma 4.1,

∇ω 2 L ∞ t (L 2 ) + ∇θ 2 L ∞ t (L 2 ) + ∂ 1 ∇ω 2 L 2 t (L 2 ) ≤ C(t),
which completes the proof of this lemma.

The following lemma establishes the L p estimate of (∇ω, ∇θ). 

Lemma 4.4. Assume ω 0 ∈ H s , θ 0 ∈ H β with β > s > 1 2 . ∇ω 0 , ∇θ 0 ∈ L p (2 < p < ∞), then the solution (ω, θ) satisfies ∇ω 2 L ∞ t (L p ) + ∇θ 2 L ∞ t (L p ) ≤ C(t). ( 4 
d dt ∂ k ω(t) p L p + (p -1) R 2 |∂ 1 ∂ k ω| 2 |∂ k ω| p-2 dx = R 2 ∂ 1 ∂ k θ|∂ k ω| p-2 ∂ k ω dx - R 2 ∂ k u • ∇ω|∂ k ω| p-2 ∂ k ω dx = -(p -1) R 2 ∂ k θ|∂ k ω| p-2 ∂ 1 ∂ k ω dx - R 2 ∂ k u • ∇ω|∂ k ω| p-2 ∂ k ω dx ≤ p -1 2 R 2 |∂ 1 ∂ k ω| 2 |∂ k ω| p-2 dx + C R 2 |∂ k θ| 2 |∂ k ω| p-2 dx + ∇u L ∞ ∇ω p L p ≤ p -1 2 R 2 |∂ 1 ∂ k ω| 2 |∂ k ω| p-2 dx + C ∇θ 2 L p ∇ω p-2 L p + ∇u L ∞ ∇ω p L p .
Thus we obtain 

d dt ∇ω(t) 2 L p ≤ C ∇θ 2 L p + ∇u L ∞ ∇ω 2 L p . ( 4 
d dt ( ∇ω(t) 2 L p + ∇θ(t) 2 L p ) ≤ C(1 + ∇u L ∞ )( ∇ω 2 L p + ∇θ 2 L p ).
Then by virtue of the Grönwall's Lemma and Lemma 4.1,

∇ω 2 L p + ∇θ 2 L p ≤ C(t),
which completes the proof of this lemma.

Next we discuss the higher order regularity estimate for (ω, θ). Applying |D| s (s > 0) to the vorticity equation (1.5) and temperature equation of (1.2), we can get (|D| s ω, |D| s θ) satisfies the following system,

∂ t |D| s ω + u • ∇|D| s ω -∂ 2 1 |D| s ω = ∂ 1 |D| s θ -[|D| s , u • ∇]ω, ∂ t |D| s θ + u • ∇|D| s θ = -[|D| s , u • ∇]θ. (4.23)
The follow lemma gives the H s (s > 1) estimate of (ω, θ).

Lemma 4.5. Assume ω 0 ∈ Ẇ 1,p ∩ H s and θ 0 ∈ Ẇ 1,p ∩ H s (2 < p < ∞, s > 1), then the solution (ω, θ) satisfies

|D| s ω 2 L ∞ t (L 2 ) + |D| s θ 2 L ∞ t (L 2 ) + ∂ 1 |D| s ω 2 L 2 t (L 2 ) ≤ C(t). (4.24)
Proof. Taking L 2 inner product with (|D| s ω, |D| s θ) and adding them up, we

1 2 d dt ( |D| s ω(t) 2 L 2 + |D| s θ(t) 2 L 2 ) + ∂ 1 |D| s ω 2 L 2 = R 2 ∂ 1 |D| s θ|D| s ω dx - R 2 [|D| s , u • ∇]ω|D| s ω dx - R 2 [|D| s , u • ∇]θ|D| s θ dx K 1 + K 2 + K 3 . (4.25)
For K 1 , after integration by parts and Young's inequality,

K 1 ≤ 1 2 |D| s θ L 2 + 1 2 ∂ 1 |D| s ω L 2 . (4.26)
For K 2 , by virtue of the Hölder inequality and inequality (2.9) in Lemma 2.7,

K 2 ≤ [|D| s , u • ∇]ω L 2 |D| s ω L 2 ≤ C( ∇u L ∞ |D| s-1 ∇ω L 2 + |D| s u L p ∇ω L p ) |D| s ω L 2 , with 1 p + 1 p = 1 2 , p ∈ (2, ∞). By interpolation f L p ≤ C f 2 p L 2 ∇f 1-2 p L 2 , then we can obtain |D| s u L p ≤ C |D| s u 2 p L 2 ∇|D| s u 1-2 p L 2 ≤ C( u L 2 + |D| s ω L 2 ). Thus we have K 2 ≤ C( ∇u L ∞ + ∇ω L p ) × ( |D| s ω 2 L 2 + 1). (4.27)
Similarly, 

K 3 ≤ C( ∇u L ∞ + ∇θ L p ) × ( |D| s ω 2 L 2 + |D| s θ 2 L 2 + 1). ( 4 
|D| s ω 2 L ∞ t (L 2 ) + |D| s θ 2 L ∞ t (L 2 ) + ∂ 1 |D| s ω 2 L 2
t (L 2 ) ≤ C(t), which complete the proof of this lemma.

4.4.

A priori estimates for the higher order striated regularity. In this subsection, we will give the higher order estimates of the vector field X. The first lemma asserts the H 1 estimate of X. Lemma 4.6. Let ω 0 ∈ H 1 , θ 0 ∈ H 1 and X 0 ∈ H 1 , then we have

∇X 2 L ∞ t (L 2 ) ≤ C(t).
(4.29)

Proof. Applying ∂ k (k = 1, 2) to the first equation of (1.8), we can obtain ∂ k X satisfies

∂ t ∂ k X + u • ∇∂ k X + ∂ k u • ∇X = ∂ k ∂ X u (4.30)
Multiplying ∂ k X to (4.30) and integrating over R 2 with respect to x, we have 1 2

d dt ∂ k X(t) 2 L 2 = R 2 ∂ k ∂ X u • ∂ k X dx - R 2 ∂ k u • ∇X • ∂ k X dx = R 2 ∂ k X • ∇u • ∂ k X dx + R 2 X • ∇∂ k u • ∂ k X dx - R 2 ∂ k u • ∇X • ∂ k X dx B 1 + B 2 + B 3 . (4.31)
By Hölder inequality, B 1 can be bounded by

B 1 = R 2 ∂ k X • ∇u • ∂ k X dx ≤ ∇u L ∞ ∇X 2 L 2 . (4.32)
Similarly,

B 3 = - R 2 ∂ k u • ∇X • ∂ k X dx ≤ ∇u L ∞ ∇X 2 L 2 . (4.33)
Then by virtue of anisotropic Hölder inequality,

B 2 = R 2 X • ∇∂ k u • ∂ k X dx ≤ C X L ∞ x 2 (L 2 x 1 ) ∂ k ∇u L 2 x 2 (L ∞ x 1 ) ∂ k X L 2 (R 2 ) ≤ C X 1 2 L 2 ∂ 2 X 1 2 L 2 ∇ω 1 2 L 2 ∂ 1 ∇ω 1 2 L 2 ∂ k X L 2 ≤ C( ∇ω L 2 + ∂ 1 ∇ω L 2 ) × ( X 2 L 2 + ∇X 2 L 2 ). (4.34)
After substituting (4.32), (4.34) and (4.33) into (4.31), we find that

d dt ∇X(t) 2 L 2 ≤ C( ∇u L ∞ + ∇ω L 2 + ∂ 1 ∇ω L 2 ) × ( X 2 L 2 + ∇X 2 L 2 ). (4.35) 
Combining with the estimates (4.7) and (4.35), using Gronwall's Lemma and by Lemma 4.1 and Lemma 4.15, we can deduce

∂ X u 2 L ∞ t (L 2 ) + ∂ 1 ∂ X u 2 L 2 t (L 2 ) + ∇X 2 L ∞ t (L 2 ) ≤ C(t)
, which complete the proof of this lemma.

The next lemma shows the H s (s > 1) estimate for X.

Lemma 4.7. Assume ω 0 ∈ Ẇ 1,p ∩ H s , θ 0 ∈ Ẇ 1,p ∩ H s , X 0 ∈ H s (2 < p < ∞, s > 1), then we have |D| s X 2 L ∞ t (L 2 ) ≤ C(t). (4.36) 
Proof. Applying |D| s to the first equation of (1.8), making use of the definition of commutator, we can obtain |D| s X satisfies the follow equation

∂ t |D| s X + u • ∇|D| s X = -[|D| s , u • ∇]X + |D| s (X • ∇u). (4.37) 
Taking L 2 inner product with |D| s X,

1 2 d dt ( |D| s X(t) 2 L 2 = - R 2 [|D| s , u • ∇]X • |D| s X dx + R 2 |D| s (X • ∇u) • |D| s X dx M 1 + M 2 . (4.38) 
For M 1 , by Hölder inequality and inequality (2.9) in Lemma 2.7,

M 1 ≤ [|D| s , u • ∇]X L 2 |D| s X L 2 ≤ C( ∇u L ∞ |D| s-1 ∇X L 2 + |D| s u L p ∇X L p ) |D| s X L 2 , with 1 p + 1 p = 1 2 , p ∈ (2, ∞). Choosing p such that ∇X L p ≤ C |D| s X L 2 ,
and noticing that by interpolation

|D| s u L p ≤ C |D| s u 2 p L 2 |D| s+1 u 1-2 p L 2 ≤ C( u L 2 + |D| s ω L 2
), then we have

M 1 ≤ C( ∇u L ∞ + |D| s ω L 2 + 1) |D| s X 2 L 2 . (4.39) 
Next we estimate M 2 , making use of the Hölder inequality and inequality (2.10) in Lemma 2.7,

M 2 ≤ |D| s (X • ∇u) L 2 |D| s X L 2 ≤ C( X L ∞ |D| s ∇u L 2 + |D| s X L 2 ∇u L ∞ ) |D| s X L 2 .
By Sobolev embedding,

X L ∞ ≤ C |D| s X L 2 , for s > 1.
Thus we have

M 2 ≤ C( |D| s ω L 2 + ∇u L ∞ ) |D| s X 2 L 2 . (4.40) 
Inserting (4.39) and (4.40) into (4.38), using Grönwall's Lemma, we can deduce

|D| s X 2 L ∞ t (L 2 )
≤ C(t), which complete the proof of this lemma. 4.5. The temperature patch problem. This subsection is devoted to the proof of Corollary 1.2. Because most of the proof is the same as Corollary 1.1, we just need to verify the inequality (1.14). Choosing two points arbitrarily so that

x 1 ∈ D - ε , x 2 ∈ D + ε , consider the difference |x 1 -x 2 | ∇ψ -1 L ∞ ≤ |ψ(x 1 , t) -ψ(x 2 , t)| ≤ ∇ψ L ∞ |x 1 -x 2 |, for any t > 0. (4.41) 
Noticing that from (1.6), we have

∇ψ ± L ∞ ≤ e t 0 ∇u(τ ) L ∞ dτ . (4.42) 
Then inserting the estimate (4.42) into (4.41) and taking infimum of x 1 , x 2 , we can obtain

2εe -t 0 ∇u(τ ) L ∞ dτ ≤ |d(t)| ≤ 2εe t 0 ∇u(τ ) L ∞ dτ .
which is the desired bound (1.14).

Appendix

The first two parts of this appendix is to give the proof of Lemma 2.5 and Lemma 2.8. Then we show the proof of the results given in Remark 2 in the last of this appendix.

Proof of Lemma 2.5. The proof of (2.6) can be found in [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF] which used the standard Bony's decomposition (see [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Chemin | Perfect incompressible fluids[END_REF]). Here we focus on proving (2.7) using the anisotropic idea. Firstly, we divide the first term of (2.7) into two terms,

- R 2 ∆ q (u • ∇f )∆ q f dx = - R 2 ∆ q (u 1 ∂ 1 f )∆ q f dx - R 2 ∆ q (u 2 ∂ 2 f )∆ q f dx P + Q.
For P , by Bony's decomposition, we can divide it into the following three terms,

- R 2 ∆ q (u 1 ∂ 1 f )∆ q f dx = - |k-q|≤2 R 2 ∆ q (S k-1 u 1 ∆ k ∂ 1 f )∆ q f dx - |k-q|≤2 R 2 ∆ q (∆ k u 1 S k-1 ∂ 1 f )∆ q f dx - k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u 1 ∆ l ∂ 1 f )∆ q f dx P 1 + P 2 + P 3 .
(5.1)

For P 1 , we can rewrite it as

P 1 = - |q-k|≤2 R 2 ∆ q (S k-1 u 1 ∂ 1 ∆ k f )∆ q f dx = - |q-k|≤2 R 2 [∆ q , S k-1 u 1 ∂ 1 ]∆ k f ∆ q f dx - |q-k|≤2 R 2 S k-1 u 1 ∂ 1 ∆ q ∆ k f ∆ q f dx = - |q-k|≤2 R 2 [∆ q , S k-1 u 1 ∂ 1 ]∆ k f ∆ q f dx - |q-k|≤2 R 2 (S k-1 u 1 -S q u 1 )∂ 1 ∆ q ∆ k f ∆ q f dx - R 2 S q u 1 ∂ 1 ∆ q f ∆ q f dx P 11 + P 12 + P 13 ,
where we have used the fact |q-k|≤2 ∂ 1 ∆ q ∆ k f = ∂ 1 ∆ q f . For P 11 , by Hölder inequality,

|P 11 | ≤ |q-k|≤2 R 2 [∆ q , S k-1 u 1 ∂ 1 ]∆ k f ∆ k f dx ≤ C |q-k|≤2 [∆ q , S k-1 u 1 ∂ 1 ]∆ k f L 2 ∆ q f L 2 .
According to the definition of ∆ q ,

[∆ q , S k-1 u 1 ∂ 1 ]∆ k f = R 2 φ q (x -y)(S k-1 u 1 (y)∂ 1 ∆ k f (y)) dy -S k-1 u 1 (x) R d φ q (x -y)∂ 1 ∆ k f (y) dy = R 2 φ q (x -y)(S k-1 u 1 (y) -S k-1 u 1 (x))∂ 1 ∆ k f (y) dy = R 2 φ q (x -y) 1 0 (y -x) • ∇S k-1 u 1 (sy + (1 -s)x) ds∂ 1 ∆ k f (y) dy = R 2 1 0 φ q (z)z • ∇S k-1 u 1 (x -sz)∂ 1 ∆ k f (x -z) dsdz,
where φ j (x)

2 jd F -1 (ϕ)(2 j x).
Thus we have by Hölder inequality and Bernstein inequality,

[∆ q , S k-1 u 1 ∂ 1 ]∆ k f L 2 = R 2 1 0 φ q (z)z • ∇S k-1 u 1 (x -sz)∂ 1 ∆ k f (x -z) dsdz L 2 ≤ C R 2 φ q (z) |z| dz ∇S k-1 u 1 (x -sz) L ∞ ∂ 1 ∆ k f (x -z) L 2 ≤ C R 2 φ q (z) |z| dz ∇S k-1 u 1 L ∞ ∂ 1 ∆ k f L 2 ≤ C2 -q 2 k ∇S k-1 u 1 L 2 ∂ 1 ∆ k f L 2 ≤ C2 k-q ω L 2 ∂ 1 ∆ k f L 2 .
Then we obtain

|P 11 | ≤ C |q-k|≤2 [∆ q , S k-1 u 1 ∂ 1 ]∆ k f L 2 ∆ q f L 2 ≤ C |q-k|≤2 2 k-q ω L 2 ∂ 1 ∆ k f L 2 ∆ q f L 2 ≤ Cb q 2 -2qs ω L 2 f H s ∂ 1 f H s .
For P 12 , by Hölder inequality and Bernstein inequality,

|P 12 | = |q-k|≤2 R 2 ((S k-1 u 1 -S q u 1 )∂ 1 ∆ q ∆ k f )∆ q f dx ≤ C |q-k|≤2 (S k-1 u 1 -S q u 1 )∂ 1 ∆ q ∆ k f L 1 ∆ q f L ∞ ≤ C |q-k|≤2 ∆ k u 1 L 2 ∆ q ∆ k ∂ 1 f L 2 2 q ∆ q f L 2 .
For the case k = -1, by Bernstein inequality,

|P 12 | ≤ C ∆ -1 u 1 L 2 2 -1 ∆ q ∆ -1 f L 2 2 -1 ∆ q f L 2 ≤ Cb q 2 -2qs u 1 L 2 f 2 H s . For the case k ≥ 0, by Bernstein inequality, |P 12 | ≤ C |q-k|≤2 2 -k ∇∆ k u 1 L 2 ∆ q ∆ k ∂ 1 f L 2 2 q ∆ q f L 2 ≤ C |q-k|≤2 2 -k ω L 2 2 q ∆ q ∂ 1 f L 2 ∆ q f L 2 ≤ Cb q 2 -2qs ω L 2 f H s ∂ 1 f H s .
Thus,

|P 1 | ≤ Cb q 2 -2qs ( u L 2 + ω L 2 )( f 2 H s + f H s ∂ 1 f H s ).
(5.2)

For P 2 , we can bound it by Hölder inequality that

|P 2 | ≤ C |q-k|≤2 ∆ k u 1 L 2 ∂ 1 S k-1 f L ∞ ∆ q f L 2 .
Applying Bernstein inequality, similar as P 12 ,

|P 2 | ≤ C |q-k|≤2 ∆ k u 1 L 2 m≤k-2 2 m ∆ m ∂ 1 f L 2 ∆ q f L 2 ≤ C |q-k|≤2 ∆ k u 1 L 2 m≤q-2 2 m ∆ m f L 2 ∆ q f L 2 ≤ C |q-k|≤2 2 q ∆ k u 1 L 2 m≤q-2 2 m-q ∆ m f L 2 ∆ q f L 2 ≤ C2 -qs |q-k|≤2 2 q-k 2 k ∆ k u 1 L 2 m≤q-2 2 (m-q)(1-s) 2 ms ∆ m f L 2 ∆ q f L 2 ≤ Cb q 2 -2qs ( u 1 L 2 + ω L 2 ) f H s ∂ 1 f H s , (5.3) 
where we have used discrete Young's inequality in the last step.

Next we estimate P 3 . By Hölder inequality and Bernstein inequality,

|P 3 | ≤ k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u 1 ∂ 1 ∆ q f )∆ q f dx ≤ C k≥q-1 |k-l|≤1 ∆ q (∆ k u 1 ∆ l ∂ 1 f ) L 1 ∆ q f L ∞ ≤ C2 q k≥q-1 2 -k 2 k ∆ k u 1 L 2 ∆ k ∂ 1 f L 2 ∆ q f L 2 ≤ C2 -qs k≥q-1 2 (q-k)(1+s) 2 ks ∆ k ∂ 1 f L 2 ( u 1 L 2 + ω L 2 ) ∆ q f L 2 ≤ Cb q 2 -2qs ( u 1 L 2 + ω L 2 ) f H s ∂ 1 f H s , (5.4) 
where discrete Young's inequality have been used in the last two line.

For Q, we can also divide it into three parts,

- R 2 ∆ q (u 2 ∂ 2 f )∆ q f dx = Q 1 + Q 2 + Q 3 , (5.5) 
with

Q 1 = - |k-q|≤2 R 2 ∆ q (S k-1 u 2 ∆ k ∂ 2 f )∆ q f dx, Q 2 = - |k-q|≤2 R 2 ∆ q (∆ k u 2 S k-1 ∂ 2 f )∆ q f dx and Q 3 - k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u 2 ∆ l ∂ 2 f )∆ q f dx.
Similar as P 1 , we can rewrite Q 1 as

Q 1 = - |q-k|≤2 R 2 [∆ q , S k-1 u 2 ∂ 2 ]∆ k f ∆ q f dx - |q-k|≤2 R 2 (S k-1 u 2 -S q u 2 )∂ 2 ∆ q ∆ k f ∆ q f dx - R 2 S q u 2 ∂ 2 ∆ q f ∆ q f dx Q 11 + Q 12 + Q 13 .
Here we should notice that P 13 + Q 13 = 0 because of the divergence free condition of u, so we do not need to estimate these two terms. For Q 11 , by Hölder inequality,

|Q 11 | ≤ |q-k|≤2 R 2 [∆ q , S k-1 u 2 ∂ 2 ]∆ k f ∆ k f dx ≤ C |q-k|≤2 [∆ q , S k-1 u 2 ∂ 2 ]∆ k f L 2 ∆ q f L 2 .
According to the definition of ∆ q and similar as P 11 ,

[∆ q , S k-1 u 2 ∂ 2 ]∆ k f = R 2 1 0 φ q (z)z • ∇S k-1 u 2 (x -sz)∂ 2 ∆ k f (x -z) dsdz.
Making use of the anisotropic Hölder inequality and Bernstein inequality,

[∆ q , S k-1 u 2 ∂ 2 ]∆ k f L 2 = R 2 1 0 ϕ q (z)z • ∇S k-1 u 2 (x -sz)∂ 2 ∆ k f (x -z) dsdz L 2 ≤ C R 2 ϕ q (z) |z| dz ∇S k-1 u 2 (x -sz) L ∞ x 2 (L 2 x 1 ) ∂ 2 ∆ k f (x -z) L 2 x 2 (L ∞ x 1 ) ≤ C2 -q ∇S k-1 u 2 1 2 L 2 ∂ 2 ∇S k-1 u 2 1 2 L 2 ∂ 2 ∆ k f 1 2 L 2 ∂ 1 ∂ 2 ∆ k f 1 2 L 2 .
Noticing that by Biot-Savart law u 2 = ∂ 1 ∆ -1 ω, and combining with the boundedness of Riesz transform in L 2 ,

[∆ q , S k-1 u 2 ∂ 2 ]∆ k f L 2 ≤ C2 k-q ω 1 2 L 2 ∂ 2 ∇∂ 1 ∆ -1 ω 1 2 L 2 ∆ k f 1 2 L 2 ∂ 1 ∆ k f 1 2 L 2 ≤ C2 k-q ω 1 2 L 2 ∂ 1 ω 1 2 L 2 ∆ k f 1 2 L 2 ∂ 1 ∆ k f 1 2 L 2 . Then Q 11 is bounded by |Q 11 | ≤ C |q-k|≤2 [∆ q , S k-1 u 2 ∂ 2 ]∆ k f L 2 ∆ q f L 2 ≤ C |q-k|≤2 2 k-q ω 1 2 L 2 ∂ 1 ω 1 2 L 2 ∆ k f 1 2 L 2 ∂ 1 ∆ k f 1 2 L 2 ∆ q f L 2 ≤ Cb q 2 -2qs ω 1 2 L 2 ∂ 1 ω 1 2 L 2 f 3 2 H s ∂ 1 f 1 2 H s .
For Q 12 , by the anisotropic Hölder inequality and interpolation inequality,

|Q 12 | = |q-k|≤2 R 2 ((S k-1 u 2 -S q u 2 )∂ 2 ∆ q ∆ k f )∆ q f dx ≤ C |q-k|≤2 (S k-1 u 2 -S q u 2 )∂ 2 ∆ q ∆ k f L 2 ∆ q f L 2 ≤ C |q-k|≤2 ∆ k u 2 L ∞ x 2 (L 2 x 1 ) ∆ q ∆ k ∂ 2 f L 2 x 2 (L ∞ x 1 ) ∆ q f L 2 ≤ C |q-k|≤2 ∆ k u 2 1 2 L 2 ∆ k ∂ 2 u 2 1 2 L 2 ∆ q ∆ k ∂ 2 f 1 2 L 2 ∆ q ∆ k ∂ 1 ∂ 2 f 1 2 L 2 ∆ q f L 2
For the case k = -1, by Bernstein inequality,

|Q 12 | ≤ C ∆ -1 u 2 L 2 ∆ q ∆ -1 f L 2 ∆ q f L 2 ≤ Cb q 2 -2qs u 2 L 2 f 2 H s .
For the case k ≥ 0, by Bernstein inequality and the relation

u 2 = ∂ 1 ∆ -1 ω, |Q 12 | ≤ C |q-k|≤2 2 q-k ∇∆ k u 2 1 2 L 2 ∇∆ k ∂ 1 ∆ -1 ω 1 2 L 2 ∆ q ∂ 1 f 1 2 L 2 ∆ q f 3 2 L 2 ≤ C |q-k|≤2 2 q-k ω 1 2 L 2 ∂ 1 ω 1 2 L 2 ∆ q ∂ 1 f 1 2 L 2 ∆ q f 3 2 L 2 ≤ Cb q 2 -2qs ω 1 2 L 2 ∂ 1 ω 1 2 L 2 f H s ∂ 1 f H s .
Thus,

|Q 1 | ≤ Cb q 2 -2qs ( u L 2 + ω 1 2 L 2 ∂ 1 ω 1 2 L 2 )( f 2 H s + f H s ∂ 1 f H s ). (5.6) 
Similar as Q 12 , applying anisotropic Hölder inequality and Bernstein inequality, Q 2 can be bounded by

|Q 2 | ≤ C |q-k|≤2 ∆ k u 2 L ∞ x 2 (L 2 x 1 ) ∂ 2 S k-1 f L 2 x 2 (L ∞ x 1 ) ∆ q f L 2 ≤ C |q-k|≤2 ∆ k u 2 1 2 L 2 ∆ k ∂ 2 u 2 1 2 L 2 ∂ 2 S k-1 f 1 2 L 2 ∂ 1 ∂ 2 S k-1 f 1 2 L 2 ∆ q f L 2 ≤ Cb q 2 -2qs u L 2 f 2 H s + C ω 1 2 L 2 ∂ 1 ω 1 2 L 2 m≤q-2 2 m-q ∆ m f L 2 1 2 × n≤q-2 2 n-q ∆ n ∂ 1 f L 2 1 2 ∆ q f L 2 ≤ Cb q 2 -2qs ( u L 2 + ω 1 2 L 2 ∂ 1 ω 1 2 L 2 )( f 2 H s + f 3 2 H s ∂ 1 f 1 2
H s ).

(5.7)

Finally we estimate Q 3 . By Hölder inequality and Bernstein inequality,

|Q 3 | ≤ k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u 2 ∂ 2 ∆ q f )∆ q f dx ≤ C k≥q-1 |k-l|≤1 ∆ q (∆ k u 2 ∆ l ∂ 2 f ) L 1 ∆ q f L ∞ ≤ C2 q k≥q-1 ∆ k u 2 L 2 ∆ k ∂ 2 f L 2 ∆ q f L 2 ≤ C2 q k≥q-1 ( u L 2 + ∂ 1 ω L 2 )2 -2k 2 k ∆ k f L 2 ∆ q f L 2 ≤ Cb q 2 -2qs ( u L 2 + ∂ 1 ω L 2 ) f 2 H s .
(5.8)

Taking all these estimates into account, we can obtain

- R 2 ∆ q (u • ∇f )∆ q f dx ≤Cb q 2 -2qs ( u L 2 + ω L 2 + ∂ 1 ω L 2 ) × ( f 2 H s + f 1 2 H s ∂ 1 f 1 2 H s + f 3 2 H s ∂ 1 f 1 2
H s ), which complete the proof of this lemma.

Lemma 5.1 (Losing regularity estimate for transport equation). Let ρ satisfies the transport equation

∂ t ρ + v • ∇ρ = f, ρ(0, x) = ρ 0 (x), (5.9) 
where

ρ 0 ∈ B s 2,r , f ∈ L 1 ([0, T ]; B s 2,r ) with r ∈ [1, ∞].
Here v ∈ L 2 is a divergence free vector field and for some

V (t) ∈ L 1 ([0, T ]), v satisfies sup N ≥0 ∇S N v(t) L ∞ √ 1 + N ≤ V (t).
Then for all s > 0, ε ∈ (0, s) and t ∈ [0, T ], we have the following estimate,

ρ(t) B s-ε 2,r ≤ C ρ 0 B s 2,r + T 0 f (τ ) B s 2,r dτ e C ε T 0 V (τ ) dτ 2 ,
where C is a constant independent of T and ε.

Proof. The case r = ∞ has been shown in [START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF], here we just discuss 1 ≤ r < ∞. Applying ∆ q to (2.8), we obtain

∂ t ∆ q ρ + ∆ q (v • ∇ρ) = ∆f.
(5.10)

Taking L 2 inner product with ∆ q ρ, 1 2

d dt ∆ q ρ 2 L 2 = - R 2 ∆ q (v • ∇ρ)∆ q ρ dx + R 2 ∆ q f ∆ q ρ dx I + II. (5.11)
For II, by Hölder inequality,

II = R 2 ∆ q f ∆ q ρ ≤ ∆ q f L 2 ∆ q ρ L 2 .
(5.12)

For I, along a similar argument as Lemma 2.5, we can divide it as

I = - R 2 ∆ q (u • ∇ρ)∆ q ρ dx = - |k-q|≤2 R 2 ∆ q (S k-1 u • ∆ k ∇ρ)∆ q ρ dx - |k-q|≤2 R 2 ∆ q (∆ k u • ∇S k-1 ρ)∆ q ρ dx - k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u • ∇∆ l ρ)∆ q ρ dx L 1 + L 2 + L 3 .
For L 1 , we can rewrite it as

L 1 = - |q-k|≤2 R 2 [∆ q , S k-1 u • ∇]∆ k ρ∆ q ρ dx - |q-k|≤2 R 2 (S k-1 u -S q u) • ∇∆ q ∆ k ρ∆ q ρ dx - R 2 S q u • ∇∆ q ρ∆ q f dx L 11 + L 12 + L 13 ,
According to divergence-free condition of u, it is not difficult to find that L 13 = 0. For L 11 , by Hölder inequality,

|L 11 | ≤ |q-k|≤2 R 2 [∆ q , S k-1 u • ∇]∆ k ρ∆ k ρ dx ≤ C |q-k|≤2 [∆ q , S k-1 u • ∇]∆ k ρ L 2 ∆ q ρ L 2 .
According to the definition of ∆

q , [∆ q , S k-1 u • ∇]∆ k ρ = R 2 φ q (x -y)(S k-1 u(y) • ∇∆ k ρ(y)) dy -S k-1 u(x) • R d φ q (x -y)∇∆ k ρ(y) dy = R 2 φ q (x -y)(S k-1 u(y) -S k-1 u(x)) • ∇∆ k ρ(y) dy = R 2 φ q (x -y) 1 0 (y -x) • ∇S k-1 u(sy + (1 -s)x) ds • ∇∆ k ρ(y) dy = R 2 1 0 φ q (z)z • ∇S k-1 u(x -sz) • ∇∆ k ρ(x -z) dsdz. Thus we have [∆ q , S k-1 u • ∇]∆ k ρ L 2 = R 2 1 0 φ q (z)z • ∇S k-1 u(x -sz) • ∇∆ k ρ(x -z) dsdz L 2 ≤ C R 2 φ q (z) |z| dz ∇S k-1 u(x -sz) L ∞ ∇∆ k ρ(x -z) L 2 ≤ C2 -q R 2 φ q (z) |z| dz ∇S k-1 u L ∞ ∇∆ k ρ L 2 ≤ C2 -q ∇S k-1 u L ∞ 2 k ∆ k ρ L 2 .
Then we obtain

|L 11 | ≤ C |q-k|≤2 [∆ q , S k-1 u • ∇]∆ k ρ L 2 ∆ q ρ L 2 ≤ C |q-k|≤2 2 k-q ∇S k-1 u L ∞ ∆ q ρ 2 L 2 ≤ C √ qV (t) ∆ q ρ 2 L 2 ≤ Cd q 2 -σq √ qV (t) ρ B σ 2,r ∆ q ρ L 2 ,
where d q ∈ r . For L 12 , by Hölder inequality,

|L 12 | = |q-k|≤2 R 2 ((S k-1 u -S q u) • ∇∆ q ∆ k ρ)∆ q ρ dx ≤ C |q-k|≤2 2 q-k ∇∆ k u L ∞ ∆ q ρ 2 L 2 + u L 2 ∆ q ρ 2 L 2 ≤ C( q + 2V (t) + u L 2 ) ∆ q ρ 2 L 2 ≤ Cd q 2 -σq ( q + 2V (t) + u L 2 ) ρ B σ 2,r ∆ q ρ L 2 .
For L 2 , we can bound it by Hölder inequality that

|L 2 | ≤ C |q-k|≤2 ∆ k u L ∞ ∇S k-1 ρ L 2 ∆ q ρ L 2 .
According to Bernstein inequality,

|L 2 | ≤ C |q-k|≤2 ∆ k u L ∞ m≤q-2 2 m ∆ m ρ L 2 ∆ q ρ L 2 ≤ C |q-k|≤2 2 q ∆ k u L ∞ m≤q-2 2 m-q ∆ m ρ L 2 ∆ q ρ L 2 ≤ C |q-k|≤2 2 q ∆ k u L ∞ m≤q-2 2 m-q ∆ m ρ L 2 ∆ q ρ L 2 ≤ C( q + 2V (t) + u L 2 ) m≤q-2 2 m-q ∆ m ρ L 2 ∆ q ρ L 2 ≤ Cd q 2 -σq ( q + 2V (t) + u L 2 ) ρ B σ 2,r ∆ q ρ L 2 .
Then we bound L 3 . By Hölder inequality and Bernstein inequality,

|L 3 | ≤ k≥q-1 |k-l|≤1 R 2 ∆ q (∆ k u • ∇∆ q ρ) ∆ q ρ L 2 dx ≤ C k≥q-1 |k-l|≤1 ∆ q ∇ • (∆ k u∆ l ρ) L 2 ∆ q ρ L 2 ≤ C2 q k≥q-1 ∆ k u L ∞ ∆ k ρ L 2 ∆ q ρ L 2 ≤ C( q + 2V (t) + u L 2 ) k≥q-1 2 q-k ∆ k ρ L 2 ∆ q ρ L 2 ≤ Cd q 2 -σq ( q + 2V (t) + u L 2 ) ρ B σ 2,r ∆ q ρ L 2 .
Thus we obtain I can be bounded by

I ≤ Cd q 2 -σq ( q + 2V (t) + 1) ρ B σ 2,r ∆ q ρ L 2 .
(5.13) Inserting (5.12) and (5.13) into (5.11), one can obtain

d dt ∆ q ρ(t) L 2 ≤ ∆ q f L 2 + Cd q 2 -σq ( q + 2V (t) + 1) ρ B σ 2,r . (5.14) 
Denoting s t s -η t 0 V (τ ) dτ for t ∈ [0, T ] with η = ε T 0 V (τ ) dτ -1
. Choosing σ = s t and integrating (5.14) from 0 to t with respect to time variable and then multiplying by 2 stq ,

2 stq ∆ q ρ(t) L 2 ≤ d q ρ 0 B s t 2,r + d q t 0 f (τ ) B s t 2,1 dτ + Cd q t 0 2 -η t τ V (s)ds q ( q + 2V (τ ) + 1) ρ B sτ 2,r dτ.
(5.15)

Choosing q 0 > 0 is the smallest integer such that

4C 2 d q 2 r (log 2) 2 η 2 ≤ q 0 + 2.
Then for q ≥ q 0 , we have

C t 0 2 -η t τ V (s)ds q q + 2V (τ ) dτ ≤ 1 2 b q r . ( 5.16) 
Inserting these result into (5.15) and taking r norm of q, on can deduce

ρ(t) B s t 2,r ≤ C ρ 0 B s 2,r + C t 0 f (τ ) B s 2,r dτ + C q≥q 0 d q t 0 2 -η t τ V (s)ds q q + 2V (τ ) ρ B sτ 2,r dτ r 1 r + C 1≤q<q 0 d q t 0 2 -η t τ V (s)ds q q + 2V (τ ) ρ B sτ 2,r dτ r 1 r ≤ C ρ 0 B s 2,r + C t 0 f (τ ) B s 2,r dτ + 1 2 sup t∈[0,T ] ρ B s t 2,r + C q 0 + 1 t 0 V (τ ) ρ B sτ 2,r dτ.
(5.17)

Taking supremum of time t from 0 to T and applying the Grönwall's Lemma, we deduce sup

t∈[0,T ] ρ(t) B s t 2,r ≤ C ρ 0 B s 2,r + T 0 f (τ ) B s 2,r dτ e √ q 0 +1 T 0 V (τ ) dτ .
According to the definition of q 0 , finally we obtain

sup t∈[0,T ] ρ(t) B s t 2,r ≤ C ρ 0 B s 2,r + T 0 f (τ ) B s 2,r dτ e C ε T 0 V (τ ) dτ 2 ,
which entails the desired inequality given that s ≥ s t ≥ s -ε for all t ∈ [0, T ].

The next Proposition gives the estimate for Lipschitz norm of the velocity with anisotropic initial data ω 0 ∈ B 0, 1 2 for system (1.2), which shows the proof of Remark 2.

Proposition 5.1. Assume u 0 is a divergence-free vector in

H 1 , ω 0 ∈ √ L ∩ B 0, 1 2 and θ 0 ∈ L ∞ ∩ H s with s ∈ ( 1 2 , 1], then the solution u of Theorem 4.1 satisfies ∇u ∈ L 2 loc (R + ; L ∞ ).
Proof. Applying ∆ v q to (1.5), and taking L 2 inner product with ∆ v q ω, one can obtain 1 2

d dt ∆ v q ω(t) 2 L 2 + ∂ 1 ∆ v q ω 2 L 2 = - R 2 ∆ v q θ∂ 1 ∆ v q ω dx - R 2
∆ v q (u • ∇ω)∆ v q ω dx. (5.18) For the first term in the right hand side of (5.18), by Hölder inequality, Young's inequality and the definition of the space B 0, 1 2 , we obtain

- R 2 ∆ v q θ∂ 1 ∆ v q ω dx ≤ ∆ v q θ L 2 ∂ 1 ∆ v q ω L 2 ≤ 1 2 ∆ v q θ 2 L 2 + 1 2 ∂ 1 ∆ v q ω 2 L 2 ≤ 1 2 2 -q (2 q 2 ∆ v q θ L 2 ) 2 + 1 2 ∂ 1 ∆ v q ω 2 L 2 ≤ C2 -q a q θ 2 B 0, 1 2 + 1 2 ∂ 1 ∆ v q ω 2 L 2 .
(5. [START_REF] Danchin | Les théorèmes de leray et de fujita-kato pour le système de boussinesq partiellement visqueux[END_REF] where φ j (x) 2 2j F -1 (ϕ)(2 j x). By anisotropic Hölder inequality and Bernstein inequality, we can bound Y 111 by

|Y 111 | ≤ C |q-k|≤2 [∆ v q , S v k-1 u 1 ∂ 1 ]∆ v k ω L 2 ∆ v q ω L 2 ≤ C |q-k|≤2 2 -q ∂ 2 S v k-1 u 1 L 2 x 2 L ∞ x 1 ∂ 1 ∆ v k ω L ∞ x 2 L 2 x 1 ∆ v q ω L 2 ≤ C |q-k|≤2 2 -q+ q 2 ∂ 2 S v k-1 u 1 1 2 L 2 ∂ 1 ∂ 2 S v k-1 u 1 1 2 L 2 ∂ 1 ∆ v q ω L 2 ∆ v q ω L 2 ≤ C |q-k|≤2 2 k-q 2 ω L 2 ∂ 1 ∆ v q ω L 2 ∆ v q ω L 2 ≤ C |q-k|≤2 2 -q a q ω L 2 ∂ 1 ω B 0, 1 2 ω B 0, 1 2 .
For Y 112 , by anisotropic Hölder inequality and Bernstein inequality,

Y 112 = - |q-k|≤2 R 2 ((S v k-1 u 1 -S v q u 1 )∂ 1 ∆ v q ∆ v k ω)∆ v q ω dx ≤ C |q-k|≤2 ∆ v k u 1 L 2 x 2 L ∞ x 1 ∂ 1 ∆ v k ∆ v q ω L 2 ∆ v q ω L ∞ x 2 L 2 x 1 ≤ C |q-k|≤2 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v q ω L 2 2 q 2 ∆ v q ω L 2 ≤ C |q-k|≤2 2 q-k 2 ∂ 2 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v q ω L 2 ∆ v q ω L 2 ≤ C2 -q a q ω L 2 ω B 0, 1 2 ∂ 1 ω B 0, 1 2 .
Next we estimate Y 12 , using anisotropic Hölder inequality and Bernstein inequality,

Y 12 = - |k-q|≤2 R 2 ∆ v q (∆ v k u 1 S v k-1 ∂ 1 ω)∆ v q ω dx ≤ C |q-k|≤2 ∆ v k u 1 L ∞ x 2 L 2 x 1 S v k-1 ∂ 1 ω L 2 ∆ v q ω L 2 x 2 L ∞ x 1 ≤ C |q-k|≤2 2 k 2 ∆ v k u 1 L 2 S v k-1 ∂ 1 ω L 2 ∆ v q ω 1 2 L 2 ∆ v q ∂ 1 ω 1 2 L 2 ≤ C |q-k|≤2 2 q-k 2 ∂ 2 ∆ v k u 1 L 2 ∂ 1 ω L 2 2 -q 2 ∆ v q ω 1 2 L 2 ∆ v q ∂ 1 ω 1 2 L 2 + C ∆ v -1 u 1 L 2 ∆ v -1 ∂ 1 ω L 2 ∂ 1 ∆ v q ω L 2 ∆ v q ω L 2 ≤ C2 -q a q ∂ 1 ω L 2 ω 3 2 B 0, 1 2 ∂ 1 ω 1 2 B 0, 1 2 + u L 2 ∂ 1 ω L 2 ω B 0, 1 2 ∂ 1 ω B 0, 1 2 .
Similarly for Y 13 ,

Y 13 = - k≥q-1 |k-l|≤1 R 2 ∆ v q (∆ v k u 1 ∆ v l ∂ 1 ω)∆ v q ω dx ≤ C k≥q-1 ∆ v k u 1 L ∞ x 1 L 2 x 2 ∆ v k ∂ 1 ω L 2 ∆ v q ω L 2 x 1 L ∞ x 2 ≤ C k≥q-1 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v k u 1 1 2 L 2 ∆ v k ∂ 1 ω L 2 2 q 2 ∆ v q ω L 2 ≤ C |q-k|≤2 2 q-k 2 ∂ 2 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v k u 1 1 2 L 2 ∂ 1 ∆ v q ω L 2 ∆ v q ω L 2 + C ∆ v -1 u 1 1 2 L 2 ∂ 1 ∆ v -1 u 1 1 2 L 2 ∂ 1 ∆ v q ω L 2 ∆ v q ω L 2 ≤ C( u L 2 + ω L 2 )2 -q a q ω B 0, 1 2 ∂ 1 ω B 0, 1 2 .
(5. [START_REF] Danchin | Global well-posedness issues for the inviscid boussinesq system with Yudovich's type data[END_REF] where discrete Young's inequality have been used in the last two line. Then we estimate Y 2 . Similar as Y 1 , we can also divide it into the following three terms by the Bony's decomposition,

Y 2 = - R 2 ∆ v q (u 2 ∂ 2 ω)∆ v q ω dx = - |k-q|≤2 R 2 ∆ v q (S v k-1 u 2 ∆ v k ∂ 2 ω)∆ v q ω dx - |k-q|≤2 R 2 ∆ v q (∆ v k u 2 S v k-1 ∂ 2 ω)∆ v q ω dx - k≥q-1 |k-l|≤1 R 2 ∆ v q (∆ v k u 2 ∆ v l ∂ 2 ω)∆ v q ω dx Y 21 + Y 22 + Y 23 .
(

For Y 21 , we can write it as,

Y 21 = - |q-k|≤2 R 2 ∆ v q (S v k-1 u 2 ∂ 2 ∆ v k ω)∆ v q ω dx = - |q-k|≤2 R 2 [∆ v q , S v k-1 u 2 ∂ 2 ]∆ v k ω∆ v q ω dx - |q-k|≤2 R 2 (S v k-1 u 2 -S v q u 2 )∂ 2 ∆ v q ∆ v k ω∆ v q ω dx - R 2 S v q u 2 ∂ 2 ∆ v q ω∆ v q ω dx Y 211 + Y 212 + Y 213 ,
Here we should notice that Y 113 + Y 213 = 0 because of the divergence free condition of u, so we do not need to estimate these two terms. For Y 211 , similar as Y 111 , the commutator can be written as, Thus by anisotropic Hölder inequality and Biot-Savart law u 2 = ∂ 1 ∆ -1 ω,

[∆ v q , S v k-1 u 2 ∂ 2 ]∆ v k ω = R φ q (x 1 , x 2 -y)
|Y 211 | ≤ C |q-k|≤2 2 -q ∂ 2 S v k-1 u 2 L ∞ x 2 L 2 x 1 ∆ v k ∂ 2 ω L 2 x 2 L ∞ x 1 ∆ v q ω L 2 ≤ C |q-k|≤2 2 k-q ∂ 2 S v k-1 u 2 1 2 L 2 ∂ 2 ∂ 2 S v k-1 u 2 1 2 L 2 ∆ v k ω 1 2 L 2 ∆ v k ∂ 1 ω 1 2 L 2 ∆ v q ω L 2 ≤ C2 -q a q ( ω L 2 + ∂ 1 ω L 2 ) ω 3 2 B 0, 1 2 ∂ 1 ω 1 2 B 0, 1 2 .
Similarly, Y 212 can be bounded by

|Y 212 | ≤ C2 -q a q ( u L 2 + ω L 2 + ∂ 1 ω L 2 ) ω 3 2 B 0, 1 2 ∂ 1 ω 1 2 B 0, 1 2 .
Next we estimate Y 22 , by the anisotropic Hölder inequality and discrete Young's inequality,

Y 22 = - |k-q|≤2 R 2 ∆ v q (∆ v k u 2 S v k-1 ∂ 2 ω)∆ v q ω dx ≤ C |q-k|≤2 ∆ v k u 2 L ∞ x 2 L 2 x 1 S v k-1 ∂ 2 ω L 2 x 2 L ∞ x 1 ∆ v q ω L 2 ≤ C |q-k|≤2 ∆ v k u 2 1 2 L 2 ∂ 2 ∆ v k u 2 1 2 L 2 S v k-1 ∂ 2 ω 1 2 L 2 ∂ 1 S v k-1 ∂ 2 ω 1 2 L 2 ∆ v q ω L 2 ≤ C |q-k|≤2 2 q 2 ∆ v k u 2 1 2 L 2 ∂ 2 ∆ v k u 2 1 2 L 2 m≤q-2
Then using Grönwall's Lemma, we deduce

ω(t) 2 B 0, 1 2 + t 0 ∂ 1 ω 2 B 0, 1
2 dτ ≤ C(t).

(5.23)

According to Biot-Savart law (2.3), divergence free condition of the velocity u and Besov embedding, we have

t 0 ∂ 1 u 1 , ∂ 1 u 2 , ∂ 2 u 2 2 L ∞ dτ ≤ C(t).
Also, using inequality f 2

L ∞ x 1 ≤ C f L 2 x 1 ∂ 1 f L 2
x 1 and the estimate (5.23), we have

t 0 ω 2 L ∞ dτ ≤ C t 0 ω B 0, 1 2 ∂ 1 ω B 0, 1 2 dτ ≤ C(t). Thus t 0 ∂ 2 u 1 2 L ∞ dτ ≤ t 0 ω 2 L ∞ dτ + t 0 ∂ 1 u 2 2 L ∞ dτ ≤ C(t).
Finally, we obtain the estimate

t 0 ∇u 2 L ∞ dτ ≤ C(t),
which completes the proof of this proposition.

. 24 ) 3 . 3 .

 2433 Combining the estimates(3.22) and (3.24), we can obtain the desired Hölder norm of X, Then inserting the estimate (3.22) into Proposition 3.1 and Lemma 3.2, we can complete the proof of this proposition. The vortex patch problem. In this subsection, we devote to prove Corollary 1.1, which solving the vortex patch problem. Because

1 0

 1 (y -x 2 )∂ 2 S v k-1 u 2 (sy + (1 -s)x 2 ) ds∂ 2 ∆ v k ω(x 1 , y) dy.
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with a q = (2 q/2 ∆ v q θ L 2 ) 2 θ 2 B 0, 1 2 ∈ 1 2 . For the last term of (5.18), we divide it as, -

For Y 1 , by Bony's decomposition,we can divide it into the following three terms, -

(5.20)

For Y 11 , we can rewrite it as

where we have used the fact |q-k|≤2

For Y 111 , the commutator can be written as,

(y -x 2 )∂ 2 S v k-1 u 1 (sy + (1 -s)x 2 ) ds∂ 1 ∆ v k ω(x 1 , y) dy.