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In this paper, we prove the global existence and the large time decay estimate of solutions to Prandtl system with small initial data, which is analytical in the tangential variable. The key ingredient used in the proof is to derive sufficiently fast decay-in-time estimate of some weighted analytic energy estimate to a quantity, which consists of a linear combination of the tangential velocity with its primitive one, and which basically controls the evolution of the analytical radius to the solutions. Our result can be viewed as a globalin-time Cauchy-Kowalevsakya result for Prandtl system with small analytical data.

Introduction

Describing the behavior of boundary layers is one of the most challenging and important problem in the mathematical fluid mechanics. The governing equations of the boundary layer obtained by vanishing viscosity of Navier-Stokes system with Dirichlet boundary condition, was proposed by Prandtl [START_REF] Prandtl | Ü ber Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlung des III Intern[END_REF] in 1904 in order to explain the disparity between the boundary conditions verified by ideal fluid and viscous fluid with small viscosity. Heuristically, these boundary layers are of amplitude O(1) and of thickness O( √ ν) where there is a transition from the interior flow governed by Euler equation to the Navier-Stokes flow with a vanishing viscosity ν > 0. One may check [START_REF]Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF][START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF] and references therein for more introductions on boundary layer theory. Especially we refer to [START_REF] Guo | A note on Prandtl boundary layers[END_REF] for a comprehensive recent survey.

One of the key step to rigorously justify this inviscid limit of Navier-Stokes system with Dirichelt boundary condition is to deal with the well-posedness of the following Prandtl system, (1.1)

       ∂ t U + U ∂ x U + V ∂ y U -∂ 2 y U + ∂ x p = 0, (t, x, y) ∈ R + × R × R + , ∂ x U + ∂ y V = 0, U | y=0 = V | y=0 = 0 and lim y→+∞ U (t, x, y) = w(t, x), U | t=0 = U 0 ,
where U and V represent the tangential and normal velocities of the boundary layer flow. (w(t, x), p(t, x)) are the traces of the tangential velocity and pressure of the outflow on the boundary, which satisfy Bernoulli's law:

(1.2) ∂ t w + w∂ x w + ∂ x p = 0.
Since there is no horizontal diffusion in the U equation of (1.1), the nonlinear term V ∂ y U (which almost behaves like -∂ x U ∂ y U ) loses one horizontal derivative in the process of energy estimate, and therefore the question of whether or not the Prandtl system with general data is well-posed in Sobolev spaces is still open. In fact, E and Enquist [START_REF] Enquist | Blow up of solutions of the unstaedy Prandtl's equation[END_REF] constructed a class of initial data which generate solutions with finite time singularities in case the solutions Date: February 1, 2020.

exist locally in time. Gérard-Varet and Dormy [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF] proved the ill-posedness in Sobloev spaces for the linearized Prandtl system around non-monotonic shear flows. The nonlinear ill-posedness was also established in [START_REF] Gérard-Varet | Remarks on the ill-posedness of the Prandtl equation[END_REF][START_REF] Guo | A note on Prandtl boundary layers[END_REF] in the sense of non-Lipschtiz continuity of the flow. Nevertheless, we have the following positive results for two classes of special data.

• Under a monotonic assumption on the tangential velocity of the outflow, Oleinik [START_REF] Oleinik | Mathematical models in boundary layer theory[END_REF] first introduced Crocco transformation and then proved the local existence and uniqueness of classical solutions to (1.1). With the additional "favorable" condition on the pressure, Xin and Zhang [START_REF] Xin | On the global existence of solutions to the Prandtl's system[END_REF] obtained the global existence of weak solutions to this system. Recently, by ingenious use of the cancelation property of the bad terms containing the tangential derivative, the authors of [START_REF] Alexandre | Well-posedness of the Prandtl equation in Sobolev spaces[END_REF] and [START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] succeeded in proving the existence of local smooth solution to (1.1) in Sobolev space via performing energy estimates in weighted Sobolev spaces.

• For the data which is analytic in both x and y variables, Sammartino and Caflisch [START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF] established the local well-posedness result of (1.1). The analyticity in y variable was removed by Lombardo, Cannone and Sammartino in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF]. The main argument used in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF][START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF] is to apply the abstract Cauchy-Kowalewskaya (CK) theorem. Lately, Gérvard-Varet and Masmoudi [START_REF] Gérard-Varet | Well-posedness for the Prandtl system without analyticity or monotonicity[END_REF] proved the well-posedness of (1.1) for a class of data with Gevrey regularity. This result was improved to be optimal in sense of [START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF] in [START_REF] Dietert | Well-posedness of the Prandtl equation without any structural assumption[END_REF] by Dietert and Gérvard-Varet. The question of the long time existence for Prandtl system with small analytic data was first addressed in [START_REF] Zhang | Long time well-posedness of Prandtle system with small data[END_REF] and an almost global existence result was provided in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF].

In this paper, we investigate the global existence and the large time decay estimates of the solutions to Prandtl system with small data which is analytic in the tangential variable. For simplicity, here we take w(t, x) in (1.1) to be εf (t) with f (0) = 0, which along with (1.2) implies ∂ x p = -εf ′ (t). Let us take a cut-off function 

χ ∈ C ∞ [0, ∞) with χ(y) = { 1 if y ≥ 2 0 if y ≤ 1, we denote W def = U -εf (t)χ(y). Then W solves (1.3)        ∂ t W + (W + εf (t)χ(y)) ∂ x W + V ∂ y (W + εf (t)χ(y)) -∂ 2 y W = εm, ∂ x W + ∂ y V = 0, (t, x, y) ∈ R + × R 2 + , W | y=0 = V | y=0 =
       ∂ t u + (u + u s + εf (t)χ(y)) ∂ x u + v∂ y (u + u s + εf (t)χ(y)) -∂ 2 y u = 0, ∂ x u + ∂ y v = 0, (t, x, y) ∈ R + × R 2
+ , u| y=0 = v| y=0 = 0 and lim y→∞ u(t, x, y) = 0,

u| t=0 = u 0 def = U 0 .
On the other hand, due to ∂ x u+∂ y v = 0, there exists a potential function φ so that u = ∂ y φ and v = -∂ x φ. Then by integrating the u equation of (1.5) with respect to y variable over [y, ∞), we obtain

∂ t φ + (u + u s + εf (t)χ(y)) ∂ x φ + 2 ∫ ∞ y ( ∂ y ( u + u s + εf (t)χ(y ′ ) ) ∂ x φ ) dy ′ -∂ 2 y φ = Q(t, x),
for some function Q(t, x). Yet since we assume that φ decays to zero sufficiently fast as y approaching to +∞, we find that Q(t, x) = 0. Therefore, by virtue of (1.5), φ satisfies (1.6)

       ∂ t φ + (u + u s + εf (t)χ(y)) ∂ x φ +2
∫ ∞ y (∂ y (u + u s + εf (t)χ(y ′ )) ∂ x φ) dy ′ -∂ 2 y φ = 0, ∂ y φ| y=0 = 0 and lim y→+∞ φ(t, x, y) = 0, φ| t=0 = φ 0 .

In order to globally control the evolution of the analytic band to the solutions of (1.5), we introduce the following key quantity:

(1. [START_REF] Dietert | Well-posedness of the Prandtl equation without any structural assumption[END_REF])

G def = u + y 2⟨t⟩ φ and g def = ∂ y G = ∂ y u + y 2⟨t⟩ u + φ 2⟨t⟩ .
We emphasize that the introduction of those quantities G and g in (1.7) is in fact inspired by the function g def = ∂ y u + y 2⟨t⟩ u, which was introduced by Ignatova and Vicol in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF], where the authors of [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF] basically proved that the weighted analytical norm of g(t) decays like ⟨t⟩ -( 54 ) -, which decays faster than the weighted analytical norm of u itself. We observe that gg = φ 2⟨t⟩ . One novelty of this paper is to prove that the analytical norm of g is almost decays like ⟨t⟩ - 7 4 . At the beginning of Section 7, we shall show that G verifies (1.8)

             ∂ t G -∂ 2 y G + ⟨t⟩ -1 G + (u + u s + εf (t)χ(y)) ∂ x G + v∂ y G +v∂ y (u s + εf (t)χ(y)) -1 2 ⟨t⟩ -1 v∂ y (yφ) + y ⟨t⟩ ∫ ∞ y (∂ y (u + u s + εf (t)χ(y ′ )) ∂ x φ) dy ′ = 0, G| y=0 = 0 and lim y→+∞ G(t, x, y) = 0, G| t=0 = G 0 def = u 0 + y 2 φ 0 .
The main result of this paper states as follows:

Theorem 1.1. Let δ > 0 and f ∈ H 1 (R + ) which satisfies (1.9) C f def = ∫ ∞ 0 ⟨t⟩ 5 4 ( |f (t)| + |f ′ (t)| ) dt + ( ∫ ∞ 0 ⟨t⟩ 7 2 ( f 2 (t) + (f ′ (t)) 2 ) dt ) 1 2 < ∞. Let u 0 = ∂ y φ 0 satisfy u 0 (x, 0) = 0, ∫ ∞ 0 u 0 dy = 0 and e y 2 8 e δ|Dx| (φ 0 , u 0 ) B 1 2 ,0 < ∞. We assume moreover that G 0 = u 0 + y 2 φ 0 satisfies (1.10) e y 2
8 e δ|Dx| G 0 B 1 2 ,0 ≤ c 0 for some c 0 sufficiently small. Then (1.4) has a solution u s and there exists ε 0 > 0 so that for ε ≤ ε 0 , the system (1.5) has a unique global solution u which satisfies (1.11) e

y 2 8⟨t⟩ e δ 2 |Dx| u L ∞ (R + ;B 1 2 ,0 ) + e y 2 8⟨t⟩ e δ 2 |Dx| ∂ y u L 2 (R + ;B 1 2 ,0 ) ≤ C e y 2 8 e δ|Dx| u 0 B 1 2 ,0 .
Furthermore, for any t > 0, there hold for any γ ∈ (0, 1).

The anisotropic Besov spaces B 1 2 ,0 will be recalled in Section 2. Here and all in that follows, we always denote

⟨t⟩ def = 1 + t. Remark 1.1.
(1) In the previous results concerning the long time well-posedness of the Prandtl system in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF][START_REF] Zhang | Long time well-posedness of Prandtle system with small data[END_REF], only a lower bound of the lifespan to the solution was obtained. We also mention that similar type of result as in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF][START_REF] Zhang | Long time well-posedness of Prandtle system with small data[END_REF] for the lifespan of MHD boundary layer equation was obtained in [START_REF] Xie | Lifespan of solutions to MHD boundary layer equations with analytic perturbation of general shear flow[END_REF].

(2) Our global well-posedness result does not contradict with the blow-up result in [START_REF] Enquist | Blow up of solutions of the unstaedy Prandtl's equation[END_REF].

In fact, Theorem 1.1 of [START_REF] Enquist | Blow up of solutions of the unstaedy Prandtl's equation[END_REF] claims that if u 0 (0, y) = 0 and a 0 (y) = -∂ x u 0 (0, y) is nonnegative and of compact support such that

(1.14) E(a 0 ) < 0 with E(a) def = ∫ ∞ 0 ( 1 
2 (∂ y a(y)) 2 - 1 4 a 3 (y) ) dy < 0.
Then any smooth solution of (1.1) does not exist globally in time.

For small initial data u 0 (x, y) = ηϕ(x, y), we have a 0 (y) = -η∂ x ϕ(0, y) and

E(a 0 ) = η 2 2 ∫ ∞ 0 (∂ x ∂ y ϕ(0, y)) 2 dy - η 3 4 ∫ ∞ 0 (∂ x ϕ(0, y)) 3 dy,
which can not satisfy E(a 0 ) < 0 for η sufficiently small except that ∂ x ∂ y ϕ(0, y) = 0. However, in the later case, due to the fact that the solution decays to zero as y approaching to +∞, we have a 0 (y) = ∂ x ϕ(0, y) = 0, which implies E(a 0 ) = 0 so that (1.14) can not be satisfied in both cases.

(3) We also remark that the exponential weight that appears in the norm of (1.10) excludes the possibility of taking initial data of (1.5) which is slowly varying in the normal variable. Indeed we consider an initial data of the form u ε 0 (x, y) = ηϕ ( x, εy ) with η, ε being sufficiently small such hat

E(a 0 ) = εη 2 2 ∫ ∞ 0 (∂ x ∂ y ϕ(0, y)) 2 dy - η 3 4ε ∫ ∞ 0 (∂ x ϕ(0, y)) 3 dy < 0.
Then it is easy to check that u ε 0 defined above can not verify our smallness condition (1.10).

Remark 1.2.

(1) The idea of closing the analytic energy estimate, (1.11), for solutions of (1.5) goes back to [START_REF] Chemin | Le systme de Navier-Stokes incompressible soixante dix ans aprs Jean Leray[END_REF] where Chemin introduced a tool to make analytical type estimates and controlling the size of the analytic radius simultaneously. It was used in the context of anisotropic Navier-Stokes system [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF] ( see also [START_REF] Paicu | Global regularity for the Navier-Stokes equations with some classes of large initial data[END_REF][START_REF] Paicu | Global well-posedness for the 3D Navier-Stokes equations with ill-prepared initial data[END_REF]), which implies the global well-posedness of three dimensional Navier-Stokes system with a class of "ill prepared data", which is slowly varying in the vertical variable, namely of the form εx 3 , and the B -1 ∞,∞ (R 3 ) norm of which blow up as the small parameter goes to zero. [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] We mention that in our previous paper with Zhang in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we used the weighted analytic norm of ∂ y u to control the analytic band of the solutions, which seems more obvious than the weighted analytic norm of g, which is defined by (1.7). Since in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we worked on Prandt type system in a strip with homogenous boundary condition so that we can use the classical Poincaré inequality to derive the exponential decay estimates for the solutions. Therefore we have a global control for the analytic band.

Here in the upper space, by using another type of Poincaré inequality, (3.1), which yields decay of a sort of weighted analytic norm to ∂ y u like ⟨t⟩ - 5 4 as the time t going to ∞. Yet this estimate can not guarantee the quantity:

∫ ∞ 0 ⟨t⟩ 1 4 ∥e Ψ ∂ y u Φ (t)∥ B 1
2 ,0 dt, to be finite, which will be crucial to globally control the analytic band of the solutions to (1.5).

Let us end this introduction by the notations that we shall use in this context.

For a b, we mean that there is a uniform constant C, which may be different on d-

ifferent lines, such that a ≤ Cb. (a | b) L 2 + def = ∫ R 2 + a(x, y)b(x, y) dx dy (resp. (a | b) L 2 v def = ∫ R + a(y)b(y) dy) stands for the L 2 inner product of a, b on R 2 + (resp. R + ) and L p + = L p (R 2 + ) with R 2 + def = R × R + .
For X a Banach space and I an interval of R, we denote by L q (I; X) the set of measurable functions on I with values in X, such that t -→ ∥f (t)∥ X belongs to L q (I). In particular, we denote by

L p T (L q h (L r v )) the space L p ([0, T ]; L q (R x ; L r (R + y ))).
Finally, (d k ) k∈Z designates a nonnegative generic element in the sphere of ℓ 1 (Z) so that

∑ k∈Z d k = 1.

Littlewood-Paley theory and functional framework

In the rest of this paper, we shall frequently use Littlewood-Paley decomposition in the horizontal variable, x. For the convenience of the readers, we shall collect some basic facts on anisotropic Littlewood-Paley theory in this section. Let us first recall from [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF] that

∆ h k a = F -1 (φ(2 -k |ξ|) a), S h k a = F -1 (χ(2 -k |ξ|) a), (2.1)
where and in all that follows, Fa and a always denote the partial Fourier transform of the distribution a with respect to x variable, that is, a(ξ, y) = F x→ξ (a)(ξ, y), and χ(τ ), φ(τ ) are smooth functions such that

Supp φ ⊂ { τ ∈ R / 3 4 ≤ |τ | ≤ 8 3 } and ∀τ > 0 , ∑ k∈Z φ(2 -k τ ) = 1, Supp χ ⊂ { τ ∈ R / |τ | ≤ 4 3 } and χ(τ ) + ∑ k≥0 φ(2 -k τ ) = 1. Definition 2.1. Let s in R. For u in S ′ h (R 2 + ), which means that u is in S ′ (R 2 + ) and satis- fies lim k→-∞ ∥S h k u∥ L ∞ = 0, we set ∥u∥ B s,0 def = ( 2 ks ∥∆ h k u∥ L 2 + ) k∈Z ℓ 1 (Z) . • For s ≤ 1 2 , we define B s,0 (R 2 + ) def = { u ∈ S ′ h (R 2 + ) ∥u∥ B s,0 < ∞ } . • If ℓ is a positive integer and if ℓ -1 2 < s ≤ ℓ + 1 2 , then we define B s,0 (R 2 + ) as the subset of distributions u in S ′ h (R 2 + ) such that ∂ ℓ x u belongs to B s-ℓ,0 (R 2 + ).
In order to obtain a better description of the regularizing effect of the transport-diffusion equation, we need to use Chemin-Lerner type spaces L p T (B s,0 (R 

) def = ∑ k∈Z 2 ks ( ∫ T T 0 ∥∆ h k a(t)∥ p L 2 + dt ) 1 p
with the usual change if p = ∞. In particular, when T 0 = 0, we shall denote ∥a∥ L p T (B s,0 ) def = ∥a∥ L p (0,T ;B s,0 ) for simplicity.

In order to overcome the difficulty that one can not use Gronwall's type argument in the framework of Chemin-Lerner space L 2 T (B s,0 ), we also need to use the time-weighted Chemin-Lerner type norm, which was introduced by the authors in [START_REF] Paicu | Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces[END_REF].

Definition 2.3. Let f (t) ∈ L 1 loc (R + ) be a nonnegative function and t 0 , t ∈ [0, ∞]. We define (2.2) ∥a∥ L p t 0 ,t;f (B s,0 ) def = ∑ k∈Z 2 ks ( ∫ t t 0 f (t ′ )∥∆ h k a(t ′ )∥ p L 2 + dt ′ ) 1 p .
When t 0 = 0, we simplify the notation ∥a∥ L p 0,t:f (B s,0 ) as ∥a∥ L p t,f (B s,0 ) . We also recall the following anisotropic Bernstein lemma from [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF][START_REF] Paicu | Équation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]:

Lemma 2.1. Let B h be a ball of R h , and C h a ring of R h ; let 1 ≤ p 2 ≤ p 1 ≤ ∞ and 1 ≤ q ≤ ∞.
Then there holds:

If the support of a is included in 2 k B h , then ∥∂ ℓ x a∥ L p 1 h (L q v ) 2 k ( ℓ+ 1 p 2 -1 p 1 ) ∥a∥ L p 2 h (L q v ) .
If the support of a is included in

2 k C h , then ∥a∥ L p 1 h (L q v ) 2 -kℓ ∥∂ ℓ x a∥ L p 1 h (L q v )
. Finally to deal with the estimate concerning the product of two distributions, we shall frequently use Bony's decomposition (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]) in the horizontal variable:

f g = T h f g + T h g f + R h (f, g), (2.3)
where

T h f g def = ∑ k S h k-1 f ∆ h k g, R h (f, g) def = ∑ k ∆ h k f ∆ h k g with ∆ h k f def = ∑ |k-k ′ |≤1 ∆ h k ′ f.
3. Sketch of the proof to Theorem 1.1

We point out that a key ingredient used in the proof of Theorem 1.1 is the following Poincaré type inequality, which is a special case of Treves inequality that can be found in [START_REF] Hörmander | The analysis of linear partial differential equations III[END_REF] (see also Lemma 3.3 of [15]).

Lemma 3.1. Let Ψ(t, y) def = y 2
8⟨t⟩ and d be a nonnegative integer. Let u be a smooth enough function on R d × R + which decays to zero sufficiently fast as y approaching to +∞. Then one has

(3.1) ∫ R d ×R + |∂ y u(X, y)| 2 e 2Ψ dX dy ≥ 1 2⟨t⟩ ∫ R d ×R + |u(X, y)| 2 e 2Ψ dX dy.
Proof. We remark that compared with Lemma 3.3 of [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF], here we do not need any boundary condition for u on the boundary y = 0. For completeness, we outline its proof here. As a matter of fact, for any fixed X ∈ R d , we first get, by using integration by parts, that

∫ R + u 2 (X, y)e y 2 4⟨t⟩ dy = ∫ R + (∂ y y)u 2 (X, y)e y 2 4⟨t⟩ dy = -2 ∫ R + yu(X, y)∂ y u(X, y)e y 2 4⟨t⟩ dy - 1 2⟨t⟩ ∫ R + y 2 u 2 (X, y)e y 2 4⟨t⟩ dy.
By integrating the above inequality over R d with respect to the X variables, we find ∫

R d ×R + u 2 e y 2 4⟨t⟩ dX dy + 1 2⟨t⟩ ∫ R d ×R + y 2 u 2 e y 2 4⟨t⟩ dX dy = -2 ∫ R d ×R + yu∂ y ue y 2 4⟨t⟩ dX dy ≤2 ( 1 2⟨t⟩ ∫ R d ×R + y 2 u 2 e y 2 4⟨t⟩ dX dy ) 1/2 ( 2⟨t⟩ ∫ R d ×R + (∂ y u) 2 e y 2
4⟨t⟩ dX dy

) 1/2 ≤ 1 2⟨t⟩ ∫ R d ×R + y 2 u 2 e y 2 4⟨t⟩ dX dy + 2⟨t⟩ ∫ R d ×R + (∂ y u) 2 e y 2 4⟨t⟩ dX dy.
This leads to (3.1).

By virtue of Lemma 3.1, we get, by using a standard argument of energy estimate to the system (1.4), that

(3.2) ∥e y 2 8⟨t⟩ ∂ y u s (t)∥ L 2 v ≤ C⟨t⟩ -3 4 .
We remark that intuitively the quantity ∥e Ψ ∂ y u s (t)∥ L 2 v is a natural part to control the time evolution of the analytical radius to the analytic solutions of (1.1). Yet it is obvious that (3.2) is not enough to guarantee that the quantity

∫ ∞ 0 ⟨t⟩ 1 4 ∥e y 2 8⟨t⟩ ∂ y u s (t)∥ L 2 v
dt is finite, which will be required to go through our process below.

To overcome the above difficulty, we are going to construct a special solution of (1.4) via its primitive function, that is, u s (t, y) = ∂ y ψ s (t, y). And we define ψ s through y) is supported on the interval [0, 2] with respect to y variable. It is crucial to observe that the quantity

(3.3)    ∂ t ψ s -∂ 2 y ψ s = εM (t, y), (t, y) ∈ R + × R + , ψ s | y=0 = 0 and lim y→+∞ ψ s = 0, ψ s | t=0 = 0, where (3.4) M (t, y) def = - ∫ ∞ y (1 -χ(y ′ )) dy ′ f ′ (t) + f (t)χ ′ (y), so that m in (1.3) equals to ∂ y M. We observe that ∫ ∞ y (1 -χ(y ′ )) dy ′ = 0 for y ≥ 2, that is, M (t,
(3.5) G s def = u s + y 2⟨t⟩ ψ s
decays faster than u s , which is inspired the definition of the function g in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF]. Indeed we first observe from (3.3) that

∂ t ( y 2⟨t⟩ ψ s ) -∂ 2 y ( y 2⟨t⟩ ψ s ) + 1 ⟨t⟩ G s = ε y 2⟨t⟩ M,
from which, (1.4) and (3.5), we find

(3.6)      ∂ t G s -∂ 2 y G s + ⟨t⟩ -1 G s = εH with H def = m + y 2⟨t⟩ M, G s | y=0 = 0 and lim y→+∞ G s (t, y) = 0, G s | t=0 = 0,
With G s being determined by (3.6), by virtue of (3.5) and ψ s | y=0 = 0, we obtain

(3.7) ψ s (t, y) = e -y 2 4⟨t⟩ ∫ y 0 e - (y ′ ) 2
4⟨t⟩ G s (t, y ′ ) dy ′ and u s (t, y)

def = ∂ y ψ s (t, y).
We observe that u s defined above satisfies the boundary condition u s (t, 0) = 0 although the boundary condition in (3.3) does not match with that in (1.4).

As we already mentioned in (3.2), a similar decay estimate for the weighted analytical norm to the solutions of (1.5) can also be derived, which will not be enough to go through our process below. Inspired by the function g def = ∂ y u + y 2⟨t⟩ u, which was introduced by Ignatova and Vicol in [START_REF] Ignatova | Almost global existence for the Prandtl boundary layer equations[END_REF], here we introduce the function G and g in (1.7). It is a crucial observation here that the weighted analytic norm of g can control the evolution of the analytic norm to the solutions of (1.5).

Next as in [START_REF] Chemin | Le systme de Navier-Stokes incompressible soixante dix ans aprs Jean Leray[END_REF][START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF][START_REF] Paicu | Global regularity for the Navier-Stokes equations with some classes of large initial data[END_REF][START_REF] Paicu | Global well-posedness for the 3D Navier-Stokes equations with ill-prepared initial data[END_REF][START_REF] Zhang | Long time well-posedness of Prandtle system with small data[END_REF], for any locally bounded function Φ on R + × R, we define

(3.8) u Φ (t, x, y) = F -1 ξ→x ( e Φ(t,ξ) u(t, ξ, y) ) .
Let G and G s be determined respectively by (1.7) and (3.5), we introduce a key quantity θ(t) to describe the evolution of the analytic band to the solutions of (1.5):

(3.9)

{ θ(t) = ⟨t⟩ 1 4 ( ∥e Ψ ∂ y G s (t)∥ L 2 v + εf (t)∥e Ψ χ ′ ∥ L 2 v + ∥e Ψ ∂ y G Φ (t)∥ B 1 2 ,0
) , θ| t=0 = 0.

Here We present now a more precise statement of our result in this paper.

⟨t⟩ def = 1 + t,
Theorem 3.1. Let Φ and Ψ be defined respectively by (3.10) and (3.11). Then under the assumptions of Theorem 1.1, there exist positive constants c 0 , ε 0 and λ so that for u s determined by (3.7) and ε ≤ ε 0 , the system (1.5) has a unique global solution u which satisfies sup t∈[0,∞) θ(t) ≤ δ 2λ , and

(3.13) e Ψ u Φ L ∞ (R + ;B 1 2 ,0 ) + e Ψ ∂ y u Φ L 2 (R + ;B 1 2 ,0 ) ≤ C e y 2 8 e δ|Dx| u 0 B 1 2 ,0 .
Moreover, for G given by (1.7), there exists a positive constant C so that for any t > 0 and γ ∈ (0, 1), there hold

⟨t ′ ⟩ 3 4 e Ψ u Φ L ∞ (R + ;B 1 2 ,0 ) + ⟨t ′ ⟩ 3 4 e Ψ ∂ y u Φ L 2 (t/2,t;B 1 2 ,0 ) ≤ C∥e y 2 8 e δ|Dx| (φ 0 , u 0 )∥ B 1 2 ,0 , ⟨t ′ ⟩ 5 4 e Ψ G Φ L ∞ (R + ;B 1 2 ,0 ) + ⟨t ′ ⟩ 5 4 e Ψ ∂ y G Φ L 2 (t/2,t;B 1 2 ,0 ) ≤ C∥e y 2 8 e δ|Dx| G 0 ∥ B 1 2 ,0 , ⟨t ′ ⟩ 5 4 e γΨ u Φ L ∞ (R + ;B 1 2 ,0 ) + ⟨t ′ ⟩ 5 4 e γΨ ∂ y u Φ L 2 (t/2,t;B 1 2 ,0 ) ≤ C∥e y 2 8 e δ|Dx| G 0 ∥ B 1 2 ,0 . (3.14)
We remark that one of the crucial step to prove Theorem 3.1 is to control the time evolution of θ(t), which basically determines the analytical radius of the solutions to (1.5).

Let us now sketch the structure of this paper below.

In Section 4, we shall prove the following proposition concerning the large time decay estimate of ∥e Ψ G s (t)∥ L 2 v , which in particular guarantees that Proposition 3.1. Let f (t) ∈ H 1 (R + ) and satisfy (1.9). Then for G s being determined by (3.6), one has

(3.15) ∫ ∞ 0 ⟨t⟩ 1 4 ∥e Ψ ∂ y G s (t)∥ L 2 v dt ≤ CC f ε,
for the constant C f given by (1.9).

In what follows, we shall always assume that t < T * with T * being determined by

(3.16) T * def = sup { t > 0, θ(t) < δ/λ } .
So that by virtue of (3.10), for any t < T * , there holds the following convex inequality

(3.17) Φ(t, ξ) ≤ Φ(t, ξ -η) + Φ(t, η) for ∀ ξ, η ∈ R.
In Section 5, we shall deal with the a priori decay estimates for the analytic solutions of (1.6). Proposition 3.2. Let φ be a smooth enough solution of (1.6). Then there exists a large enough constant λ so that for any nonnegative and non-decreasing function h ∈ C 1 (R + ) and any t 0 ∈ [0, t] with t < T * , one has

(3.18) ∥⟨t ′ ⟩ 1 4 e Ψ φ Φ ∥ L ∞ t (B 1 2 ,0 ) ≤ C∥e y 2 8 e δ|Dx| φ 0 ∥ B 1 2 ,0 , and ∥ 1 2 e Ψ φ Φ ∥ L ∞ (t 0 ,t;B 1 2 ,0 ) + ∥ 1 2 e Ψ ∂ y φ Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) ≤ ∥ 1 2 e Ψ φ Φ (t 0 )∥ B 1 2 ,0 + √ ′ e Ψ φ Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) . (3.19)
Section 6 is devoted to the a priori decay estimates for the analytic solutions of (1.5):

Proposition 3.3. Let u be a smooth enough solution of (1.5). Then there exists a large enough constant λ so that for any t < T * , we have

∥⟨t ′ ⟩ 3 4 e Ψ u Φ ∥ L ∞ t (B 1 2 ,0 ) +∥⟨t ′ ⟩ 3 4 e Ψ ∂ y u Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) ≤ C∥e y 2 8 e δ|Dx| (φ 0 , u 0 ) ∥ B 1 2 ,0 . (3.20)
In Section 7, we shall deal with the a priori decay estimates of G, which will be the most crucial ingredient used in the proof of Theorem 3.1.

Proposition 3.4. Let G be determined by (1.7). Then there exists a large enough constant λ so that for any t < T * , we have

∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L ∞ t (B 1 2 ,0 ) +∥⟨t ′ ⟩ 5 4 e Ψ ∂ y G Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) + ∫ t 0 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 dt ′ ≤ C∥e y 2 8 e δ|Dx| G 0 ∥ B 1 2 ,0 . (3.21)
With the above propositions, we still need the follow lemma concerning the relations between the function G given by (1.7) and the solutions of (1.5) and (1.6), which will be also frequently used in the subsequent sections. Lemma 3.2. Let G and Ψ be defined respectively by (1.7) and (3.11). Let φ and u be smooth enough solution of (1.6) and (1.5) respectively on [0, T ]. Then, for any γ ∈ (0, 1) and t ≤ T, one has

e γΨ ∆ h k u Φ (t) L 2 + e Ψ ∆ h k G Φ (t) L 2 + ; (3.22) e γΨ ∆ h k ∂ y u Φ (t) L 2 + e Ψ ∆ h k ∂ y G Φ (t) L 2 + ; (3.23) ⟨t⟩ -1 ∥e γΨ ∆ h k ∂ y (yφ) Φ (t)∥ L 2 + + ⟨t⟩ -3 4 ∥e γΨ ∆ h k ∂ y (yφ) Φ (t)∥ L ∞ v (L 2 h ) ∥e Ψ ∆ h k ∂ y G Φ ∥ L 2 + . (3.24)
Let us postpone the proof of this lemma till the end of this section. We are now in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. The general strategy to prove the existence result for a nonlinear partial differential equation is first to construct appropriate approximate solutions, then perform uniform estimates for such approximate solution sequence, and finally pass to the limit in the approximate problem. For simplicity, here we only present the a priori estimates for smooth enough solutions of (1.5) in the analytical framework.

Indeed let u and φ be smooth enough solutions of (1.5) and (1.6) respectively on [0, T ⋆ ), where T ⋆ is the maximal time of existence of the solutions. Let G be defined by (1.7). For any t < T * (of course here T * ≤ T ⋆ ) with T * being defined by (3.16), we deduce from (3.9) that

θ(t) ≤ ∫ t 0 ⟨t ′ ⟩ 1 4 ( ∥e Ψ ∂ y G s (t ′ )∥ L 2 v + ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ) dt ′ + ε ∫ t 0 ∥e Ψ(t ′ ) χ ′ ∥ L 2 v ⟨t ′ ⟩ 1 4 f (t ′ ) dt ′ . Notice that Supp χ ′ ⊂ [1, 2], one has ∥e Ψ(t ′ ) χ ′ ∥ L 2 v ≤ e 1 2⟨t ′ ⟩ ∥χ ′ ∥ L 2 v ≤ e 1 2 ∥χ ′ ∥ L 2 v
, from which, Proposition 3.1 and Proposition 3.4, we infer

(3.25) θ(t) ≤ C ( ∥e y 2 8 e δ|Dx| G 0 ∥ B 1 2 ,0 + εC f ) for t < T * ,
where the constant C f is determined by (1.9).

In particular, if we take c 0 in (1.10) and ε 0 so small that

(3.26) C (c 0 + ε 0 C f ) ≤ δ 2λ .
Then we deduce from (3.25) that sup

t∈[0,T * ) θ(t) ≤ δ 2λ for ε ≤ ε 0 .
So that in view of (3.16), we get by a continuous argument that T * = ∞. And Propositions 3.3 and 3.4 ensure the first two inequalities of (3.14). Moreover, (6.11) holds for t = ∞, which implies (3.13). Finally Proposition 3.4 and Lemma 3.2 ensures the last inequality of (3.14). This completes the existence part of Theorem 3.1. The uniqueness part follows from Theorem 1.1 of [START_REF] Zhang | Long time well-posedness of Prandtle system with small data[END_REF]. This concludes the proof of Theorem 3.1.

Let us end this section with the proof of Lemma 3.2.

Poor of Lemma 3.2. As a matter of fact, due to ∂ x u + ∂ y v = 0 and v(t, x, 0) = 0, we find

∂ x ∫ ∞ 0 u(t, x, y) dy = - ∫ ∞ 0 ∂ y v(t, x, y) dy = v(t, x, 0) = 0, which implies ∫ ∞ 0 u(t, x, y) dy = C(t).
Yet since u decays to zero as |x| tends to ∞, we have

C(t) = 0, that is (3.27) ∫ ∞ 0 u(t, x, y) dy = 0. Due to u = ∂ y φ, we deduce that (3.28) φ(t, x, 0) = - ∫ ∞ 0 u(t, x, y) dy = 0.
Thanks to (3.28), we deduce from (1.7) and u = ∂ y φ that

(3.29) φ(t, x, y) = e -y 2 4⟨t⟩ ∫ y 0 e (y ′ ) 2 4⟨t⟩ G(t, x, y ′ ) dy ′ , which implies (3.30) u = ∂ y φ = - y 2⟨t⟩ e -y 2 4⟨t⟩ ∫ y 0 e (y ′ ) 2 4⟨t⟩ G(t, x, y ′ ) dy ′ + G,
and

∂ y u = ∂ 2 y φ = - y 2⟨t⟩ G + ∂ y G(t, y) + ( - 1 2⟨t⟩ + y 2 4⟨t⟩ 2 ) e -y 2 4⟨t⟩ ∫ y 0 e (y ′ ) 2
4⟨t⟩ G(t, x, y ′ ) dy ′ .

(3.31)

In view of (3.11), (3.30) and

(3.32) sup y∈[0,∞) ( e -y 2 ∫ y 0 e z 2 dz ) < ∞,
we infer that

e γΨ ∆ h k u Φ (t) L 2 + e Ψ ∆ h k G Φ (t) L 2 + + ⟨t⟩ -1 ye (γ-2)Ψ ( ∫ y 0 e 2Ψ dy ′ ) 1 2 ( ∫ ∞ 0 |e Ψ ∆ h k G| 2 dy ) 1 2 L 2 + e Ψ ∆ h k G Φ (t) L 2 + + ⟨t⟩ -3 4 ye -(1-γ)Ψ ( ∫ ∞ 0 |e Ψ ∆ h k G| 2 dy ) 1 2 L 2 + ,
from which and γ ∈ (0, 1), we deduce (3.22).

Whereas due to lim y→∞ G(t, x, y) = 0, we write G = -∫ ∞ y ∂ y G dy ′ , and hence, for γ ∈ (0, 1), we infer

∥∆ h k G Φ (t, •, y)∥ L 2 h ≤ ( ∫ ∞ y e -2Ψ dy ′ ) 1 2 ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 ⟨t⟩ 1 4 e -1+γ 2 Ψ ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 ,
from which and (3.31), we infer

e γΨ ∆ h k ∂ y u Φ (t) L 2 + ⟨t⟩ -3 4 e (γ-2)Ψ ∫ y 0 e 3-γ 2 Ψ dy ′ ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 L 2 + + ⟨t⟩ -7 4 y 2 e (γ-2)Ψ ∫ y 0 e 3-γ 2 ψ dy ′ ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 L 2 + + ⟨t⟩ -3 4 ye γ-1 2 Ψ ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 L 2 + e Ψ ∆ h k ∂ y G Φ (t) L 2 + .
(3.33) (3.33) together with the fact that

(3.34) sup y∈R + ( e -3-γ 2 Ψ ∫ y 0 e 3-γ 2 Ψ dy ′ ) ≤ C⟨t⟩ 1 2 , implies (3.23).
Finally, let us turn to the proof of (3.24). We first observe from (3.29) that

(3.35) ∂ y (yφ) = ( 1 - y 2 2⟨t⟩ ) φ + yG.
Then along the same line to the proof of (3.33), we deduce that

e γΨ ( 1 - 1 2 ⟨t⟩ -1 y 2 ) ∆ h k φ Φ (t) L 2 + = e (γ-2)Ψ ( 1 - 1 2 ⟨t⟩ -1 y 2 ) ∫ y 0 e 2Ψ ∫ ∞ y ′ ∆ h k ∂ y G Φ dz dy ′ L 2 + ≤ e (γ-2)Ψ ( 1 - 1 2 ⟨t⟩ -1 y 2 ) ∫ y 0 e 2Ψ ( ∫ ∞ y ′ e -2Ψ dz ) 1 2 ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 dy ′ L 2 + ⟨t⟩ 1 4 e (γ-2)Ψ ( 1 - 1 2 ⟨t⟩ -1 y 2 ) ∫ y 0 e 3-γ 2 Ψ ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 dy ′ L 2 + ⟨t⟩∥e Ψ ∆ h k ∂ y G Φ ∥ L 2 + . While a direct computation ensures that e γΨ y∆ h k G Φ (t) L 2 + e γΨ y ( ∫ y 0 e -2Ψ dy ′ ) 1 2 ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 L 2 + ⟨t⟩ 1 4 ye γ-1 2 Ψ ( ∫ ∞ 0 |e Ψ ∆ h k ∂ y G Φ | 2 dy ) 1 2 L 2 + ⟨t⟩∥e Ψ ∆ h k ∂ y G Φ ∥ L 2 + .
This along with (3.35) ensures that

(3.36) ∥e γΨ ∆ h k ∂ y (yφ) Φ (t)∥ L 2 + ⟨t⟩∥e Ψ ∆ h k ∂ y G Φ ∥ L 2 + .
By exactly the same procedure as that in the proof of (3.36), we find

∥e γΨ ∆ h k ∂ y (yφ) Φ (t)∥ L ∞ v (L 2 h ) ⟨t⟩ 3 4 ∥e Ψ ∆ h k ∂ y G Φ ∥ L 2 +
. This together with (3.36) ensures (3.24). We thus conclude the proof of Lemma 3.2.

The decay-in-time energy estimate of G s

The goal of this section is to present the proof of Proposition 3.1. Especially, we are going to prove in the classical weighted energy space that G s determined by (3.6) decays faster than u s , with the decay rate being given by (3.2). We start the proof of Proposition 3.1 by the following lemma: Lemma 4.1. Let G s (t, y) and Ψ(t, y) be defined respectively by (3.5) and (3.11). Then for any t > 0, one has

(4.1) ⟨t ′ ⟩ 5 4 e Ψ G s L ∞ (R + ;L 2 v ) ≤ Cε∥⟨t ′ ⟩ 5 4 H∥ L 1 (R + ;L 2 v ) , and ∫ t t 2 ⟨t ′ ⟩ 5 4 e Ψ ∂ y G s (t ′ ) 2 L 2 v dt ′ ε 2 ( ∥⟨t ′ ⟩ 5 4 H∥ 2 L 1 (R + ;L 2 v ) + ∥⟨t ′ ⟩ 7 4 H∥ 2 L 2 (R + ;L 2 v ) ) , (4.2)
for H given by (3.6).

Proof. By taking L 2 v inner product of the G s equation of (3.6) with e 2Ψ G s , we obtain

( ∂ t G s |e 2Ψ G s ) L 2 v - ( ∂ 2 y G s |e 2Ψ G s ) L 2 v + ⟨t⟩ -1 e Ψ G s (t) 2 L 2 v = ε ( H|e 2Ψ G s ) L 2 v .
It is easy to observe that

( ∂ t G s |e 2Ψ G s ) L 2 v = 1 2 d dt e Ψ G s (t) 2 L 2 v - ∫ R + e 2Ψ ∂ t Ψ|G s | 2 dy.
Due to G s | y=0 = 0, we get, by using integration by parts and Young's inequality, that

- ( ∂ 2 y G s |e 2Ψ G s ) L 2 v = e Ψ ∂ y G s 2 L 2 v + 2 ∫ R + e 2Ψ ∂ y Ψ∂ y G s G s dy ≥ 1 2 e Ψ ∂ y G s 2 L 2 v -2 ∫ R + e 2Ψ (∂ y Ψ) 2 |G s | 2 dy.
As a result, thanks to (3.12), we obtain

(4.3) 1 2 d dt e Ψ G s (t) 2 L 2 v + 1 2 e Ψ ∂ y G s (t) 2 L 2 v + ⟨t⟩ -1 e Ψ G s (t) 2 L 2 v ≤ ε e Ψ G s (t)∥ L 2 v e Ψ H(t) L 2 v . Applying Lemma 3.1 for d = 0 yields e Ψ ∂ y G s (t) 2 L 2 v ≥ 1 2⟨t⟩ e Ψ G s (t) 2 L 2 v
, so that we deduce from (4.3) that 1 2

d dt e Ψ G s (t) 2 L 2 v + 5 4⟨t⟩ e Ψ G s (t) 2 L 2 v ≤ ε e Ψ G s (t)∥ L 2 v e Ψ H(t) L 2 v , which implies d dt e Ψ G s (t) L 2 v + 5 4⟨t⟩ e Ψ G s (t) L 2 v ≤ ε e Ψ H(t)∥ L 2 v ,
and d dt

( ⟨t⟩ 5 4 e Ψ G s (t) L 2 v ) ≤ ε⟨t⟩ 5 4 e Ψ H(t)∥ L 2 v .
Integrating the above inequality over [0, t] gives rise to (4.1).

On the other hand, we deduce from (4.3) and Young's inequality that

d dt e Ψ G s (t) 2 L 2 v + e Ψ ∂ y G s (t) 2 L 2 v +2⟨t⟩ -1 e Ψ G s (t) 2 L 2 v ≤2ε⟨t⟩ 1 2 e Ψ H(t)∥ L 2 v ⟨t⟩ -1 2 e Ψ G s (t) L 2 v ≤ε 2 ⟨t⟩ e Ψ H(t)∥ 2 L 2 v + ⟨t⟩ -1 e Ψ G s (t) 2 L 2 v . (4.4)
Multiplying the above inequality by ⟨t⟩ 5 2 and then integrating the resulting inequality over [t/2, t], we obtain

∫ t t 2 ⟨t ′ ⟩ 5 4 e Ψ ∂ y G s (t ′ ) 2 L 2 v dt ′ ≤ ⟨t/2⟩ 5 4 e Ψ G s (t/2) 2 L 2 v + 5 2 
∫ t t 2 ⟨t ′ ⟩ 3 2 e Ψ G s (t ′ ) 2 L 2 v dt ′ + ε 2 ∫ t t 2 ⟨t ′ ⟩ 7 2 e Ψ H(t ′ )∥ 2 L 2 v dt ′ ≤ max t ′ ∈[0,t] ⟨t ′ ⟩ 5 4 e Ψ G s (t ′ ) 2 L 2 v ( 1 + 5 ln 2 2 ) + ε 2 ⟨t ′ ⟩ 7 4 e Ψ H 2 L 2 t (L 2 v
) . Inserting (4.1) into the above inequality leads to (4.2). This finishes the proof of Lemma 4.1.

Remark 4.1. By integrating (4.4) over [0, t], we obtain

(4.5) e Ψ ∂ y G s 2 L 2 t (L 2 v ) ≤ ε 2 ∫ ∞ 0 ⟨t⟩ e Ψ H(t)∥ 2 L 2 v dt.
Let us now present the proof of Proposition 3.1.

Proof of Proposition 3.1. In view of (1.3) and (3.4), both m and M are supported in [0, 2] for any t ≥ 0, so that we observe from (3.6) that

∥⟨t⟩ 5 4 H∥ L 1 (R + ;L 2 v ) ∥⟨t⟩ 1 4 yM ∥ L 1 (R + ;L 2 v ) + ∥⟨t⟩ 5 4 m∥ L 1 (R + ;L 2 v ) ≤C ∫ ∞ 0 ⟨t⟩ 5 4 ( |f (t)| + |f ′ (t)| ) dt ≤ CC f ,
and

∥⟨t⟩ 7 4 H∥ L 2 (R + ;L 2 v ) ∥⟨t⟩ 3 4 yM ∥ L 1 (R + ;L 2 v ) + ∥⟨t⟩ 7 4 m∥ L 1 (R + ;L 2 v ) ≤C ( ∫ ∞ 0 ⟨t⟩ 7 2 ( f 2 (t) + (f ′ (t)) 2 ) dt ) 1 2 ≤ CC f ,
for C f given by (1.9). Hence, for any t > 0, we deduce from (4.2) and (4.5) that

(4.6) e Ψ ∂ y G s 2 L 2 t (L 2 v ) + ∫ t t 2 ⟨t ′ ⟩ 5 4 e Ψ ∂ y G s (t ′ ) 2 L 2 v dt ′ ≤ CC 2 f ε 2 .
While for any t > 1, we fix an integer N t so that 2 Nt-1 ≤ t < 2 Nt , which implies t/2 < 2 Nt-1 . Then we deduce from (4.6) that ∫ t

2 N t -1 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G s (t ′ )∥ L 2 v dt ′ ≤ ( ∫ t 2 N t -1 ⟨t ′ ⟩ -2 dt ′ ) 1 2 ( ∫ t t/2 ⟨t ′ ⟩ 5 2 e Ψ ∂ y G s (t ′ ) 2 L 2 v dt ′ ) 1 2 ≤C2 -N t 2 C f ε.
Along the same line, for any j ∈ [0, N t -2], we have

∫ 2 j+1 2 j ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G s (t ′ )∥ L 2 v dt ′ ≤ C2 -j 2 C f ε.
As a a result, it comes out

∫ t 0 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G s (t ′ )∥ L 2 v dt ′ ≤ 2 1 4 ∫ 1 0 ∥e Ψ ∂ y G s (t ′ )∥ L 2 v dt ′ + ∫ t 2 N t -1 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G s (t ′ )∥ L 2 v dt ′ + Nt-2 ∑ j=0 ∫ 2 j+1 2 j ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G s (t ′ )∥ L 2 v dt ′ ≤CC f ε ( 1 + ∞ ∑ j=0 2 -j 2 ) ≤ CC f ε.
This completes the proof of Proposition 3.1.

Motivated by the proof of Lemma 3.2, we have the following corollary of Proposition 3.1:

Corollary 4.1. Let u s be determined by (3.7). Then for any γ ∈ (0, 1), we have

(4.7) ∫ ∞ 0 ⟨t⟩ 1 4 e γΨ ∂ y u s (t ′ )∥ L 2 v dt ′ ≤ CC f ε.
Proof. In view of (3.7), we have

u s (t, y) = ∂ y ψ s (t, y) = - y 2⟨t⟩ e -y 2 4⟨t⟩ ∫ y 0 e (y ′ ) 2 4⟨t⟩ G s (t, y ′ ) dy ′ + G s (t, y)
and

∂ y u s (t, y) = ∂ 2 y ψ s (t, y) = ( - 1 2⟨t⟩ + y 2 4⟨t⟩ 2 ) e -y 2 4⟨t⟩ ∫ y 0 e (y ′ ) 2 4⟨t⟩ G s (t, y ′ ) dy ′ - y 2⟨t⟩ G s (t, y) + ∂ y G s (t, y). (4.8) Since lim y→∞ G s (t, y) = 0, we write G s (t, y) = - ∫ ∞ y ∂ y G s (t, y ′ ) dy ′ .
Then due to γ ∈ (0, 1), we find

|G s (t, y)| ≤ ( ∫ ∞ y e -2Ψ dy ′ ) 1 2 ∥e Ψ ∂ y G s (t)∥ L 2 v ⟨t⟩ 1 4 e -1+γ 2 Ψ ∥e Ψ ∂ y G s (t)∥ L 2 v , and ∫ y 0 e (y ′ ) 2 4⟨t⟩ G s (t, y ′ ) dy ′ ⟨t⟩ 1 4 ∫ y 0 e 3-γ 2 Ψ dy ′ ∥e Ψ ∂ y G s (t)∥ L 2 v .
Hence by virtue of (4.8), we infer

∥e γΨ ∂ y u s (t)∥ L 2 v ( ⟨t⟩ -3 4 e (γ-2)Ψ ∫ y 0 e 3-γ 2 Ψ dy ′ L 2 v + ⟨t⟩ -7 4 y 2 e (γ-2)Ψ ∫ y 0 e 3-γ 2 Ψ dy ′ L 2 v + ⟨t⟩ -3 4 ye -1-γ 2 Ψ L 2 v + 1 ) e Ψ ∂ y G s (t)∥ L 2 v
, which together with (3.34) ensures that

∥e γΨ ∂ y u s (t)∥ L 2 v ( ⟨t⟩ -1 4 e -1-γ 2 Ψ L 2 v + ⟨t⟩ -5 4 y 2 e -1-γ 2 Ψ L 2 v + ⟨t⟩ -3 4 ye -1-γ 2 Ψ L 2 v + 1 
) e Ψ ∂ y G s (t)∥ L 2 v e Ψ ∂ y G s (t)∥ L 2 v , (4.9) 
from which and (3.15), we conclude the proof of (4.7).

Analytic energy estimate to the primitive function of u

The goal of this section is to present the a priori weighted analytic energy estimate to the primitive function φ to the solution of (1.5), namely, the proof of Proposition 3.2. The key ingredient lies in the following proposition: Proposition 5.1. Let φ be a smooth enough solution of (1.6). Let Φ(t, ξ) and Ψ(t, y) be given by (3.10) and (3.11) respectively. Then for any nonnegative and non-decreasing function h ∈ C 1 (R + ), there exits a large enough constant λ so that

∥ 1 2 e Ψ ∆ h k φ Φ ∥ 2 L ∞ (t 0 ,t;L 2 + ) + 2cλ2 k ∫ t t 0 θ(t ′ )∥ 1 2 ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ + ∥ 1 2 e Ψ ∆ h k ∂ y φ Φ ∥ 2 L 2 (t 0 ,t;L 2 + ) ≤ ∥ 1 2 e Ψ ∆ h k φ Φ (t 0 )∥ 2 L 2 + + ∫ t t 0 ′ (t ′ )∥e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ + Cd 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) , (5.1) 
for any t 0 ∈ [0, t] with t < T * , which is defined by (3.16).

Proof. In view of (1.6) and (3.8), we write

∂ t φ Φ -∂ yy φ Φ + λ θ(t)|D h |φ Φ + [(u + u s + εf (t)χ(y))∂ x φ] Φ + 2 ∫ ∞ y [ ∂ y (u + u s + εf (t)χ(y ′ ))∂ x φ ] Φ dy ′ = 0. (5.2)
Here and in all that follows, we shall always denote |D h | to be the Fourier multiplier in the x variable with symbol |ξ|. By applying the dyadic operator ∆ h k to (5.2) and then taking the L 2 + inner product of the resulting equation with (t)e 2Ψ ∆ h k φ Φ , we find (t)

( e Ψ ∆ h k (∂ t φ Φ -∂ yy φ Φ ) | e Ψ ∆ h k φ Φ ) L 2 + + λ θ(t) (t) ( e Ψ |D h |∆ h k φ Φ | e Ψ ∆ h k φ Φ ) L 2 + + (t) ( e Ψ ∆ h k [(u + u s + εf (t)χ(y))∂ x φ] Φ | e Ψ ∆ h k φ Φ ) L 2 + + 2 (t) ( e Ψ ∫ ∞ y ∆ h k [ ∂ y (u + u s + εf (t)χ(y ′ ))∂ x φ ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + = 0.
(5.3)

In the rest of this section, we shall always assume that t < T * with T * being determined by (3.16) so that by virtue of (3.10), for any t < T * , there holds the convex inequality (3.17).

Then the proof of Proposition 5.1 relies on the following lemmas:

Lemma 5.1. Under the assumptions of Proposition 5.1, for any t 0 ∈ [0, t] with t < T * , we have

∫ t t 0 (t ′ ) ( e Ψ ∆ h k (∂ t φ Φ -∂ yy φ Φ ) | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ≥ 1 2 ( ∥ 1 2 e Ψ ∆ h k φ Φ (t)∥ 2 L 2 + -∥ 1 2 e Ψ ∆ h k φ Φ (t 0 )∥ 2 L 2 + - ∫ t t 0 ′ (t ′ )∥e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ + ∥e Ψ ∆ h k ∂ y φ Φ ∥ 2 L 2 (t 0 ,t;L 2 + )
) .

(5.4) Lemma 5.2. Under the assumptions of Proposition 5.1, for any t 0 ∈ [0, t] with t < T * , we have

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [(u + u s + εf (t ′ )χ(y))∂ x φ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t)
(B 1,0 ) .

(5.5)

Lemma 5.3. Under the assumptions of Proposition 5.1, for any t 0 ∈ [0, t] with t < T * , we have

(5.6) ∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [∂ y u∂ x φ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
Let us admit the above lemmas for the time being and continue our proof of Proposition 5.1.

Indeed it follows from Lemma 2.1 that

(5.7) λ θ(t) ( e Ψ |D h |∆ h k φ Φ | e Ψ ∆ h k φ Φ ) L 2 + ≥ cλ θ(t)2 k ∥e Ψ ∆ h k φ Φ (t)∥ 2 L 2 + .
While it is easy to observe that

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ ∂ y (u s + εf (t ′ )χ(y ′ ))∂ x φ ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∫ t t 0 (t ′ ) ∫ R 2 + e -3 4 Ψ ∫ ∞ y e 7 4 Ψ |∂ y (u s + εf (t ′ )χ(y ′ ))||∂ x ∆ h k φ Φ | dy ′ |e Ψ ∆ h k φ Φ | dx dy dt ′ 2 k ∫ t t 0 (t ′ )∥e -3 4 Ψ ∥ L 2 v ( ∥e 3 4 Ψ ∂ y u s ∥ L 2 + εf (t ′ )∥e Ψ ∂ y χ∥ L 2 v ) ∥e Ψ ∆ h k φ Φ ∥ 2 L 2 + dt ′ ,
from which, (3.9), (4.9) and Definition 2.3, we infer

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ ∂ y (u s + εf (t ′ )χ(y ′ ))∂ x φ ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ 2 k ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
(5.8)

By integrating (5.3) over [t 0 , t] and then inserting the estimates, (5.4-5.8) into the resulting inequality, we obtain (5.1). This completes the proof of Proposition 5.1.

With Proposition 5.1, we now present the proof of Proposition 3.2

Proof of Proposition 3.2. we first observe from (3.1) that 1 2

∫ t 0 ⟨t ′ ⟩ -1 2 ∥e Ψ ∆ h k φ Φ ∥ 2 L 2 + dt ′ ≤ ∫ t 0 ∥⟨t ′ ⟩ 1 4 e Ψ ∆ h k ∂ y φ Φ ∥ 2 L 2 + dt ′ .
So that by taking t 0 = 0 and (t) = ⟨t⟩ 1 2 in (5.1), we obtain

∥⟨t ′ ⟩ 1 4 e Ψ ∆ h k φ Φ ∥ 2 L ∞ t (L 2 + ) + 2cλ2 k ∫ t 0 θ(t ′ )∥⟨t ′ ⟩ 1 4 ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ ≤ e y 2 8 e δ|Dx| ∆ h k φ 0 2 L 2 + + Cd 2 k 2 -k ∥⟨t⟩ 1 4 e Ψ φ Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
By taking square root of the above inequality and then multiplying the resulting one by 2

k 2
and finally summing over k ∈ Z, we find for any

t < T * ∥⟨t ′ ⟩ 1 4 e Ψ φ Φ ∥ L ∞ t (B 1 2 ,0 ) + √ 2cλ∥⟨t ′ ⟩ 1 4 e Ψ φ Φ ∥ L 2 t, θ(t) (B 1,0 ) ≤ ∥e y 2 8 e δ|Dx| φ 0 ∥ B 1 2 ,0 + √ C∥⟨t ′ ⟩ 1 4 e Ψ φ Φ ∥ L 2 t, θ(t) (B 1,0 ) .
(5.9)

By taking λ in (5.9) to be so large that cλ ≥ C, we achieve (3.18). On the other hand, in view of (5.1), we get, by using a similar derivation of (5.9), that

∥ 1 2 e Ψ φ Φ ∥ L ∞ (t 0 ,t;B 1 2 ,0 ) + √ 2cλ∥ 1 2 e Ψ φ Φ ∥ L 2 t 0 ,t; θ(t) (B 1,0 ) + ∥ 1 2 e Ψ ∂ y φ Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) ≤ ∥ 1 2 e Ψ φ Φ (t 0 )∥ B 1 2 ,0 + √ ′ e Ψ φ Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) + √ C∥ 1 2 e Ψ φ Φ ∥ L 2 t 0 ,t; θ(t) (B 1,0 ) .
Taking cλ ≥ C in the above inequality gives rise to (3.19). This concludes the proof of Proposition 3.2.

Let us end this section by the proofs of Lemmas 5.1-5.3.

Proof of Lemma 5.1. We first get, by using integration by parts, that

( e Ψ ∂ t ∆ h k φ Φ | e Ψ ∆ h k φ Φ ) L 2 + = ( ∂ t (e Ψ ∆ h k φ Φ ) | e Ψ ∆ h k φ Φ ) L 2 + - ( ∂ t Ψe Ψ ∆ h k φ Φ | e Ψ ∆ h k φ Φ ) L 2 + .
By multiplying the above equality by (t) and then integrating the resulting one over [t 0 , t], we find

∫ t t 0 (t ′ ) ( e Ψ ∂ t ∆ h k φ Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ = 1 2 ∥ 1 2 e Ψ ∆ h k φ Φ (t)∥ 2 L 2 + - 1 2 ∥ 1 2 e Ψ ∆ h k φ Φ (t 0 )∥ 2 L 2 + - 1 2 
∫ t t 0 ′ (t ′ )∥e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ - ∫ t t 0 ∫ R 2 + ∂ t Ψ|e Ψ ∆ h k φ Φ | 2 dx dy dt ′ .
(5.10)

Whereas due to ∂ y φ| y=0 = 0, by using integration by parts and Young's inequality, we achieve

- ∫ t t 0 ( e Ψ ∂ yy ∆ h k φ Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ = ∥e Ψ ∆ h k ∂ y φ Φ ∥ 2 L 2 (t 0 ,t;L 2 + ) + 2 ∫ t t 0 ∫ R 2 + ∂ y Ψe 2Ψ ∆ h k φ Φ ∆ h k ∂ y φ Φ dx dy dt ′ ≥ 1 2 ∥e Ψ ∆ h k ∂ y φ Φ ∥ 2 L 2 (t 0 ,t;L 2 + ) -2 ∫ t t 0 ∫ R 2 + (∂ y Ψ) 2 |e Ψ ∆ h k φ Φ | 2 dx dy dt ′ ,
which together with (3.12) and (5.10) ensures (5.4). This finishes the proof of Lemma 5.1.

Proof of Lemma 5.2. By applying Bony's decomposition (2.3) in the horizontal variable to u∂ x φ, we write

u∂ x φ = T h u ∂ x φ + T h ∂xφ u + R h (u, ∂ x φ).
Considering (3.17) and the support properties to the Fourier transform of the terms in

T h u ∂ x φ, we write ∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h u ∂ x φ ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t t 0 ∥S h k ′ -1 u Φ (t ′ )∥ L ∞ + ∥ 1 2 e Ψ ∆ h k ′ ∂ x φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ .
While it follows from (3.23) and (3.32) that

∥e 3 4 Ψ ∆ h k u Φ (t ′ )∥ L ∞ v (L 2 h ) e 3 4 Ψ ∫ ∞ y ∆ h k ∂ y u Φ (t ′ ) dy ′ L ∞ v (L 2 h ) e 3 4 Ψ ( ∫ ∞ y e -3 2 Ψ dy ) 1 2 L ∞ v ∥e 3 4 Ψ ∆ h k ∂ y u Φ (t ′ )∥ L 2 + d k (t ′ )2 -k 2 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 , (5.11) 
where { d k (t ′ ) } k∈Z designates a non-negative generic element in the unit sphere of ℓ 1 (Z) for any t ′ > 0. Then we get, by applying Lemma 2.1, that

∥S h k-1 u Φ (t ′ )∥ L ∞ + ∑ k ′ ≤k-2 2 k 2 ∥∆ h k u Φ (t ′ )∥ L ∞ v (L 2 h ) ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ,
which together with (3.9) ensures that

∥S h k ′ -1 u Φ (t ′ )∥ L ∞ + θ(t ′ ).
Whence in view of Definition 2.3, by applying Lemma 2.1 and Hölder's inequality, we obtain

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h u ∂ x φ ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t)
(B 1,0 ) .

(5.12)

Similarly, we have

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂xφ u ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t t 0 ∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ L 2 v (L ∞ h ) ∥∆ h k ′ u Φ (t ′ )∥ L ∞ v (L 2 h ) ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ ,
from which and (5.11), we infer

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂xφ u ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ L 2 v (L ∞ h ) ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ 2 L 2 v (L ∞ h ) dt ′ ) 1 2 × ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 .
Yet it follows from Lemma 2.1 and Definition 2.3 that

( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ 2 L 2 v (L ∞ h ) dt ′ ) 1 2 ∑ j≤k ′ -2 2 3j 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h j φ Φ (t ′ )∥ 2 L 2 dt ′ ) 1 2 d k ′ 2 k ′ 2 ∥ 1 2 e Ψ φ Φ ∥ L 2 t 0 ,t; θ(t) (B 1,0 ) .
(5.13)

As a result, it comes out (5.14)

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂xφ u ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
Finally again due to (5.11) and the support properties to the Fourier transform of the terms in R h (u, ∂ x φ), we get, by applying Lemma 2.1, that

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ R h (u, ∂ x φ) ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 ∫ t t 0 ∥ ∆ h k ′ u Φ (t ′ )∥ L ∞ v (L 2 h ) ∥ 1 2 e Ψ ∆ h k ′ ∂ x φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ,
which together with Definition 2.3 ensures that

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ R h (u, ∂ x φ) ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d k 2 -k 2 ( ∑ k ′ ≥k-3 d k ′ 2 -k ′ 2 ) ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
(5.15)

By summing up (5.12), (5.14) and (5.15), we achieve (5.16)

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [u∂ x φ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
Whereas it is easy to observe that

∫ t t 0 ( e Ψ ∆ h k [(u s + εf (t)χ(y))∂ x φ] Φ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ = 1 2 
∫ t t 0 ∫ R + e 2Ψ (u s + εf (t)χ(y)) ∫ R ∂ x ( ∆ h k φ Φ ) 2 dx dy dt ′ = 0.
(5.17)

Combining (5.16) with (5.17) leads to (5.5). This finishes the proof of Lemma 5.2.

Proof of Lemma 5.3. By applying Bony's decomposition in the horizontal variable (2.3) to ∂ y u∂ x φ, we write

∂ y u∂ x φ = T h ∂yu ∂ x φ + T h ∂xφ ∂ y u + R h (∂ y u, ∂ x φ).
Considering (3.17) and the support properties to the Fourier transform of the terms in

T h ∂yu ∂ x φ, we write ∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ T h ∂yu ∂ x φ ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∫ t t 0 (t ′ ) ∫ R 2 + e -3 4 Ψ ∫ ∞ y e 7 4 Ψ ∆ h k [ T h ∂yu ∂ x φ ] Φ dy ′ | e Ψ |∆ h k φ Φ | dx dy dt ′ ∑ |k ′ -k|≤4 ∫ t t 0 ∥e -3 4 Ψ(t ′ ) ∥ L 2 v ∥e 3 4 Ψ S h k ′ -1 ∂ y u Φ (t ′ )∥ L 2 v (L ∞ h ) × ∥ 1 2 e Ψ ∆ h k ′ ∂ x φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ ∫ t t 0 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ∥ 1 2 e Ψ ∆ h k ′ φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ ,
where we used Lemma 2.1 and (3.23) in the last step so that

∥e 3 4 Ψ S h k ′ -1 ∂ y u Φ (t ′ )∥ L 2 v (L ∞ h ) ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 .
Then we get, by applying Hölder's inequality and (3.9), that

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ T h ∂yu ∂ x φ ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
Along the same line, by virtue of (3.23), we infer

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ T h ∂xφ ∂ y u ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t t 0 ⟨t ′ ⟩ 1 4 ∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ L 2 v (L ∞ h ) ∥e 3 4 Ψ ∆ h k ′ ∂ y u Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ∫ t t 0 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ L 2 v (L ∞ h ) ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ S h k ′ -1 ∂ x φ Φ (t ′ )∥ 2 L 2 v (L ∞ h ) dt ′ ) 1 2 × ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ,
from which, and (5.13), we deduce that

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ T h ∂xφ ∂ y u ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
Finally due to the support properties to the Fourier transform of the terms in R h (u, ∂ x φ), we get, by applying Lemma 2.1 and (3.23), that

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ R h (∂ y u, ∂ x φ) ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 ∫ t t 0 ⟨t ′ ⟩ 1 4 ∥e 3 4 Ψ ∆ h k ′ ∂ y u Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k ′ ∂ x φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ φ Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k φ Φ (t ′ )∥ L 2 + dt.
Then a similar derivation of (5.15) leads to

∫ t t 0 (t ′ ) ( e Ψ ∫ ∞ y ∆ h k [ R h (∂ y u, ∂ x φ) ] Φ dy ′ | e Ψ ∆ h k φ Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ φ Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
As a consequence, we arrive at (5.6). This finishes the proof of Lemma 5.3.

Analytic energy estimate of u

In this section, we are going to present the weighted analytic energy estimate of u and to obtain its decay-in-time estimate, namely, we shall present the proof of Proposition 3.3. The key ingredient will be the following proposition: Proposition 6.1. Let Φ(t, ξ) and Ψ(t, y) be given by (3.10) and (3.11) respectively. Let u be a smooth enough solution of (1.5). Then for any nonnegative and non-decreasing function h ∈ C 1 (R + ), there exits a large enough constant λ so that

∥ 1 2 e Ψ u Φ ∥ L ∞ (t 0 ,t;B 1 2 ,0 ) +∥ 1 2 e Ψ ∂ y u Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) ≤ ∥ 1 2 e Ψ u Φ (t 0 )∥ B 1 2 ,0 + ∥ √ ′ e Ψ u Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) , (6.1)
for any t 0 ∈ [0, t] with t < T * , which is defined by (3.16).

Proof. In view of (1.5), we get, by a similar derivation of (5.3), that

(t) ( e Ψ ∆ h k (∂ t u Φ -∂ yy u Φ ) | e Ψ ∆ h k u Φ ) L 2 + + λ θ(t) (t) ( e Ψ |D h |∆ h k u Φ | e Ψ ∆ h k u Φ ) L 2 + + (t) ( e Ψ ∆ h k [(u + u s + εf (t)χ(y)) ∂ x u] Φ | e Ψ ∆ h k u Φ ) L 2 + + (t) ( e Ψ ∆ h k [ v∂ y (u + u s + εf (t)χ(y)) ] Φ | e Ψ ∆ h k u Φ ) L 2 + = 0. (6.2)
In what follows, we shall always assume that t < T * with T * being determined by (3.16) so that by virtue of (3.10), for any t < T * , there holds the convex inequality (3.17).

Let us now handle term by term in (6.2).

Firstly due to u| y=0 = 0, we get, by a similar proof of Lemma 5.1, that

∫ t t 0 (t ′ ) ( e Ψ ∆ h k (∂ t u Φ -∂ yy u Φ ) | e Ψ ∆ h k u Φ ) L 2 + dt ′ ≥ 1 2 ( ∥ 1 2 e Ψ ∆ h k u Φ (t)∥ 2 L 2 + -∥ 1 2 e Ψ ∆ h k u Φ (t 0 )∥ 2 L 2 + - ∫ t t 0 ′ (t ′ )∥e Ψ ∆ h k u Φ (t ′ )∥ 2 L 2 + dt ′ + ∥ 1 2 e Ψ ∆ h k ∂ y u Φ ∥ 2 L 2 t (L 2 + )
) .

(6.3)

While it follows from Lemma 5.2 that

∫ t t 0 ( e Ψ ∆ h k [(u + u s + εf (t)χ(y)) ∂ x u] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) . ( 6.4) 
To deal with the estimate of

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ v∂ y u ] Φ | e Ψ ∆ h k u Φ ) L 2 +
dt ′ , we need the following lemma, the proof of which will be postponed at the end of this section. Lemma 6.1. Under the assumptions of Proposition 6.1, for any t 0 ∈ [0, t] with t < T * , we have (6.5)

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [v∂ y u] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
On the other hand, due to

∂ x u + ∂ y v = 0, we have v = - ∫ ∞ y ∂ y v dy ′ = ∫ ∞ y ∂ x u dy ′ ,
so that it follows from Lemma 2.1 that for any γ ∈ (0, 1)

e γΨ ∆ h k v Φ (t ′ ) L ∞ v (L 2 h ) 2 k e γΨ ( ∫ ∞ y e -2Ψ dy ′ ) 1 2 ( ∫ ∞ 0 |e Ψ ∆ h k u Φ (t ′ )| 2 dy ) 1 2 L ∞ v (L 2 h ) 2 k ′ ⟨t ′ ⟩ 1 4 ∥e -1-γ 2 Ψ ∥ L ∞ v ∥e Ψ ∆ h k u Φ (t ′ )∥ L 2 + 2 k ′ ⟨t ′ ⟩ 1 4 ∥e Ψ ∆ h k u Φ (t ′ )∥ L 2 + . (6.6) 
Then we deduce from (4.9) and (6.6) that

∫ t t 0 (t ′ ) ( e Ψ ∆ h k v Φ ∂ y (u s + εf (t)χ(y)) | e Ψ ∆ h k u Φ ) L 2 + dt ′ ≤ ∫ t t 0 (t ′ ) ( ∥e 3 4 Ψ ∂ y u s ∥ L 2 v + εf (t ′ )∥e Ψ χ ′ ∥ L 2 v ) e Ψ 4 ∆ h k v Φ ∥ L ∞ v (L 2 h ) ∥e Ψ ∆ h k u Φ ∥ L 2 + dt ′ 2 k ∫ t t 0 (t ′ )⟨t ′ ⟩ 1 4 ( ∥e Ψ ∂ y G s ∥ L 2 v + εf (t ′ )∥e Ψ χ ′ ∥ L 2 v ) ∥e Ψ ∆ h k u Φ ∥ 2 L 2 + dt ′ .
As a result, thanks to (3.9) and Definition 2.3, we achieve

∫ t t 0 (t ′ ) ( e Ψ ∆ h k v Φ ∂ y (u s + εf (t)χ(y)) | e Ψ ∆ h k u Φ ) L 2 + dt ′ 2 k ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k u Φ ∥ 2 L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) . ( 6.7) 
Whereas it follows from Lemma 2.1 that

(6.8) λ θ(t) ( e Ψ |D h |∆ h k u Φ | e Ψ ∆ h k u Φ ) L 2 + ≥ cλ θ(t)2 k ∥e Ψ ∆ h k u Φ (t)∥ 2 L 2 + .
By integrating (6.2) over [t 0 , t] and then inserting the estimates, (6.3), (6.4), (6.5), (6.7) and (6.8), into the resulting inequality, we conclude that

∥ 1 2 e Ψ ∆ h k u Φ ∥ 2 L ∞ (t 0 ,t;L 2 + ) + 2cλ2 k ∫ t t 0 θ(t ′ )∥e Ψ 1 2 ∆ h k u Φ (t ′ )∥ 2 L 2 + dt ′ + ∥ 1 2 e Ψ ∆ h k ∂ y u Φ ∥ 2 L 2 (t 0 ,t;L 2 + ) ≤ ∥ 1 2 e Ψ ∆ h k u Φ (t 0 )∥ 2 L 2 + + ∫ t t 0 ′ (t ′ )∥e Ψ ∆ h k u Φ (t ′ )∥ 2 L 2 + dt ′ + Cd 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) . (6.9)
By taking square root of (6.9) and then multiplying the resulting inequality by 2 k 2 and finally summing over k ∈ Z, we find for any t < T * that

∥ 1 2 e Ψ u Φ ∥ L ∞ (t 0 ,t;B 1 2 ,0 ) + √ 2cλ∥ 1 2 e Ψ u Φ ∥ L 2 t 0 ,t; θ(t) (B 1,0 ) + ∥ 1 2 e Ψ ∂ y u Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) ≤ ∥ 1 2 e Ψ u Φ (t 0 )∥ B 1 2 ,0 + ∥ √ ′ e Ψ u Φ ∥ L 2 (t 0 ,t;B 1 2 ,0 ) + √ C∥ 1 2 e Ψ u Φ ∥ L 2 t 0 ,t; θ(t) (B 1,0 ) . ( 6.10) 
By taking λ in (6.10) to be a large enough positive constant so that cλ ≥ C, we deduce (6.1). This completes the proof of Proposition 6.1.

Now we are in a position to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Taking (t) = 1 and t 0 = 0 in (6.1) gives rise to

(6.11) ∥e Ψ u Φ ∥ L ∞ t (B 1 2 ,0 ) + ∥e Ψ ∂ y u Φ ∥ L 2 t (B 1,0 ) ≤ C∥e y 2 8 e δ|Dx| u 0 ∥ B 1 2 ,0 .
While by taking (t) = (t -t 0 ) and t 0 = t 2 in (6.1), we find

∥t 1 2 e Ψ u Φ (t)∥ B 1 2 ,0 ∥(t ′ -t/2) 1 2 e Ψ u Φ ∥ L ∞ (t/2,t;B 1 2 ,0 ) ∥e Ψ u Φ ∥ L 2 (t/2,t;B 1 2 ,0 )
.

Note that u = ∂ y φ, by virtue of (3.18) and (3.19), we achieve

∥t 1 2 e Ψ u Φ (t)∥ B 1 2 ,0 ∥e Ψ φ Φ (t/2)∥ B 1 2 ,0 ≤ C∥e y 2 8 e δ|D| φ 0 ∥ B 1 2 ,0 ⟨t⟩ -1 4 , (6.12)
Finally thanks to (6.12), we get, by taking (t) = t and then t 0 = t 2 in (6.1), we obtain

∥(t ′ ) 1 2 e Ψ u Φ ∥ L ∞ (t/2,t;B 1 2 ,0 ) +∥(t ′ ) 1 2 e Ψ ∂ y u Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) ≤∥(t/2) 1 2 e Ψ u Φ (t/2)∥ B 1 2 ,0 + ∥e Ψ u Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) ≤C∥e y 2 8 e δ|D| φ 0 ∥ B 1 2 ,0 ⟨t⟩ -1 4
which together with (6.11) and (6.12) ensures (3.20). This ends the proof of Proposition 3.3. Proposition 6.1 has been proved provided that we present the proof of Lemma 6.1.

Proof of Lemma 6.1. Once again we first get, by applying Bony's decomposition in the horizontal variable (2.3) to v∂ y u, that (6.13)

v∂ y u = T h v ∂ y u + T h ∂yu v + R h (v, ∂ y u).
Considering (3.17) and the support properties to the Fourier transform of the terms in T h v ∂ y u, and thanks to (3.23), we get

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h v ∂ y u ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t t 0 1 2 e Ψ 4 S h k ′ -1 v Φ (t ′ ) L ∞ + ∥e 3 4 Ψ ∆ h k ′ ∂ y u Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ∫ t t 0 1 2 e Ψ 4 S h k ′ -1 v Φ (t ′ ) L ∞ + ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ L 2 + dt ′ ,
from which and (3.9), we infer

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h v ∂ y u ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ( ∫ t t 0 ⟨t ′ ⟩ -1 2 θ(t ′ ) 1 2 e Ψ 4 S h k ′ -1 v Φ (t ′ ) 2 L ∞ + dt ′ ) 1 2 × ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 .
Whereas in view of Definition 2.3 and (6.6), we get, by applying Lemma 2.1, that

( ∫ t t 0 ⟨t ′ ⟩ -1 2 θ(t ′ ) 1 2 e Ψ 4 S h k ′ -1 v 2 L ∞ + dt ′ ) 1 2 ∑ ℓ≤k ′ -2 2 3 2 ℓ ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h ℓ u Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 d k ′ 2 k ′ 2 ∥ 1 2 e Ψ u Φ ∥ L 2 t 0 ,t; θ(t) (B 1,0 ) .
Whence we obtain

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h v ∂ y u ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
By the same manner, in view of (3.23) and (6.6), we infer

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂yu v ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t t 0 ∥e 3 4 Ψ S h k ′ -1 (∂ y u Φ (t ′ ))∥ L 2 v (L ∞ h ) × e Ψ 4 1 2 ∆ h k ′ v Φ (t ′ ) L ∞ v (L 2 h ) ∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ ∫ t t 0 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ⟨t ′ ⟩ 1 4 ∥ 1 2 e Ψ ∆ h k ′ u Φ (t ′ )∥ L 2 ∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ L 2 + dt ′ ,
from which, we get, by a similar derivation of (5.12), that

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂yu v ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
Finally, considering the support properties to the Fourier transform of the terms in R h (v, ∂ y u), we deduce from Lemma 2.1 that

∫ t t 0 ( e Ψ ∆ h k [ R h (v, ∂ y u) ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 ∫ t t 0 1 2 e Ψ 4 ∆ h k ′ v Φ (t ′ ) L ∞ v (L 2 h ) ∥e 3 4 Ψ ∆ h k ′ ∂ y u Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ L 2 + dt ′ ,
from which, (3.23) and (6.6), we get, by a similar derivation of (5.15), that

∫ t t 0 (t ′ ) ( e Ψ ∆ h k [ R h (v, ∂ y u) ] Φ | e Ψ ∆ h k u Φ ) L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ∫ t t 0 ⟨t ′ ⟩ 1 4 ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ∥ 1 2 e Ψ ∆ h k ′ u Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ u Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ( ∫ t t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k u Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 d 2 k 2 -k ∥ 1 2 e Ψ u Φ ∥ 2 L 2 t 0 ,t; θ(t) (B 1,0 ) .
As a consequence, we achieve (6.5). This finishes the proof of Lemma 6.1.

The analytic energy estimate of the good quantity G

One key observation of this paper is that the weighted analytical norm of the function g = ∂ y G introduced in (1.7) can control the evolution of the analytic radius to the solutions of (1.5). In order to have a globally in time estimate of the loss to the analytic radius of u, we need the weighted analytical norm of ∂ y G to decay fast enough as time goes to ∞. The goal of this section is to derive such a decay estimate of G, namely, (3.21).

Before preceding, we first derive the equation satisfied by G, which is defined by (1.7). Indeed we observe from (1.6) that

∂ t [ y 2⟨t⟩ φ ] -∂ 2 y [ y 2⟨t⟩ φ ] + ⟨t⟩ -1 [ u + y 2⟨t⟩ φ ] + (u + u s + εf (t)χ(y)) ∂ x [ y 2⟨t⟩ φ ] + y ⟨t⟩ ∫ ∞ y ( ∂ y ( u + u s + εf (t)χ(y ′ ) ) ∂ x φ ) dy ′ = 0. (7.1)
Then by summing up the u equation of (1.5) with (7.1), we obtain the G equation of (1.8). Moreover, due to u| y=0 = 0, we find G| y=0 = 0. As a consequence, G verifies (1.8).

The key ingredient used in the proof Proposition 3.4 lies in the following proposition:

Proposition 7.1. Let Φ(t, ξ) and Ψ(t, y) be given by (3.10) and (3.11) respectively. Let the function G be defined by (1.7). Then for any nonnegative and non-decreasing function h ∈ C 1 (R + ), there exits a large enough constant λ so that

1 2 ∥ 1 2 e Ψ ∆ h k G Φ ∥ 2 L ∞ t (L 2 ) + ∥⟨t ′ ⟩ -1 2 1 2 e Ψ ∆ h k G Φ ∥ 2 L 2 t (L 2 ) + 1 2 ∥ 1 2 e Ψ ∆ h k ∂ y G Φ ∥ 2 L 2 t (L 2 ) + cλ2 k ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 dt ′ ≤ 1 2 ∥ 1 2 e Ψ ∆ h k G Φ (0)∥ 2 L 2 + 1 2 ∥ √ ′ e Ψ ∆ h k G Φ ∥ 2 L 2 t (L 2 ) + Cd 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) , (7.2)
for any t < T * , which is defined by (3.16).

Proof. In view of (1.8), we get, by a similar derivation of (5.3), that

(t) ( e Ψ ∆ h k ( ∂ t G Φ -∂ yy G Φ + ⟨t⟩ -1 G Φ ) | e Ψ ∆ h k G Φ ) L 2 + + λ θ(t) (t) ( e Ψ |D h |∆ h k G Φ | e Ψ ∆ h k G Φ ) L 2 + + (t) ( e Ψ |D h |∆ h k [v∂ y G] Φ | e Ψ ∆ h k G Φ ) L 2 + + (t) ( e Ψ ∆ h k [ (u + u s + εf (t)χ(y)) ∂ x G ] Φ | e Ψ ∆ h k G Φ ) L 2 + + (t) ( e Ψ ∆ h k [ ∂ y (u s + εf (t)χ(y)) v - 1 2 ⟨t⟩ -1 v∂ y (yφ) ] Φ | e Ψ ∆ h k G Φ ) L 2 + + ⟨t⟩ -1 (t) ( e Ψ y ∫ ∞ y ∆ h k [ ∂ y ( u + u s + εf (t)χ(y ′ ) ) ∂ x φ ] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + = 0. (7.3)
In what follows, we shall always assume that t < T * with T * being determined by (3.16) so that by virtue of (3.10), for any t < T * , there holds the convex inequality (3.17).

Next let us handle term by term in (7.3).

Due to G| y=0 = 0, it follows from a similar proof of Lemma 5.1 that

∫ t 0 (t ′ ) ( e Ψ ∆ h k (∂ t G Φ -∂ yy G Φ ) | e Ψ ∆ h k G Φ ) L 2 + dt ′ ≥ 1 2 ( ∥ 1 2 e Ψ ∆ h k G Φ (t)∥ 2 L 2 + -∥ 1 2 e Ψ ∆ h k G Φ (0)∥ 2 L 2 + - ∫ t 0 ′ (t ′ )∥e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 + dt ′ + ∥e Ψ ∆ h k ∂ y G Φ ∥ 2 L 2 t (L 2 + )
) .

(7.4)

Whereas by applying Lemma 5.2, we find

∫ t 0 (t ′ ) ( e Ψ ∆ h k [(u + u s + εf (t)χ(y)) ∂ x G] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ (t) 
(B 1,0 ) .

(7.5)

On the other hand, we observe from the proof of(6.6) that

e Ψ 2 ∆ h k v Φ (t ′ ) L ∞ v (L 2 h ) 2 k ′ ⟨t ′ ⟩ 1 4 ∥e 7 8 Ψ ∆ h k u Φ (t ′ )∥ L 2 + ,
which together with (3.22) implies that

(7.6) e Ψ 2 ∆ h k v Φ (t ′ ) L ∞ v (L 2 h ) ⟨t⟩ 1 4 2 k ∥e Ψ ∆ h k G Φ (t)∥ L 2 + . As a result, it comes out ∫ t 0 (t ′ ) ( e Ψ ∂ y (u s + εf (t)χ(y)) ∆ h k v Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∫ t 0 (t ′ )∥e 3 4 Ψ ∂ y (u s + εf (t)χ(y)) ∥ L 2 v ∥e Ψ 4 ∆ h k v Φ (t ′ )∥ L ∞ v (L 2 h ) ∥e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ 2 k ∫ t 0 (t ′ )⟨t ′ ⟩ 1 4 ∥e 3 4 Ψ ∂ y (u s + εf (t)χ(y)) ∥ L 2 v ∥e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 + dt ′ .
This together with (3.9), (4.9) and Definition 2.3 ensures that

∫ t 0 (t ′ ) ( e Ψ ∂ y (u s + εf (t)χ(y)) ∆ h k v Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ 2 k ∫ t 0 θ(t ′ )∥ √ e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) . (7.7)
The estimate of the remaining terms in (7.3) relies on the following lemmas:

Lemma 7.1. For any t < T * , there holds

(7.8) ∫ t 0 (t ′ ) ( e Ψ ∆ h k [ v∂ y G ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ (t) 
(B 1,0 ) . Lemma 7.2. For any t < T * , there holds (7.9)

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [v∂ y (yφ)] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ (t) 
(B 1,0 ) . Lemma 7.3. For any t < T * , there holds

∫ t 0 ⟨t ′ ⟩ -1 (t ′ ) ( e Ψ y∆ h k [ ∫ ∞ y ∆ h k [∂ y ( u + u s + εf (t ′ )χ(y ′ ) ) v] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ (t) 
(B 1,0 ) .

(7.10)

The proof of the above lemmas involves tedious calculations, which we shall postpone in the Appendix A. Now we admit Lemmas 7.1-7.3 for the time being and continue the proof of Proposition 7.1.

As a matter of fact, by integrating (7.3) over [0, t] and then inserting the estimates (7.4-7.10) into the resulting inequality, we achieve (7.2). This completes the proof of Proposition 

2 ∥⟨t ′ ⟩ -1 2 1 2 e Ψ ∆ h k G Φ ∥ 2 L 2 t (L 2 ) ≤ ∥ 1 2 e Ψ ∆ h k ∂ y G Φ ∥ 2 L 2 t (L 2
) . Inserting the above inequality into (7.2) and taking (t) = ⟨t⟩ 5 2 in the resulting inequality, we find for any t < T *

2 k ∥⟨t ′ ⟩ 5 4 e Ψ ∆ h k G Φ ∥ 2 L ∞ t (L 2 ) + cλ2 2k ∫ t 0 θ(t ′ )∥⟨t ′ ⟩ 5 4 e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 dt ′ ≤ 2 k ∥e Ψ ∆ h k G Φ (0)∥ 2 L 2 + Cd 2 k ∥⟨t ′ ⟩ 5 4 e Ψ ∆ h k G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Taking square root of the above inequalities and then summing up the resulting ones gives rise

∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L ∞ t (B 1 2 ,0 ) + √ cλ∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L 2 t, θ(t) (B 1,0 ) ≤ ∥e y 2 8 e δ|D h | G 0 ∥ B 1 2 ,0 + C∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L 2 t, θ(t) (B 1,0 ) . (7.11)
In particular, taking λ in (7.11) so large that cλ ≥ C, we achieve (7.12)

∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L ∞ t (B 1 2 ,0 ) ≤ ∥e y 2 8 e δ|D h | G 0 ∥ B 1 2 ,0
for any t < T * .

While by taking (t) = 1 in (7.2), we get, by a similar derivation of (7.11), that

√ cλ∥e Ψ G Φ ∥ L 2 t, θ(t) (B 1,0 ) + ∥e Ψ ∂ y G Φ ∥ L 2 t (B 1 2 ,0 ) ≤ ∥e y 2 8 e δ|D h | G 0 ∥ B 1 2 ,0 + C∥e Ψ G Φ ∥ L 2 t, θ(t) (B 1,0 ) .
By taking λ so large that cλ ≥ C in the above inequality, we obtain

(7.13) ∥e Ψ ∂ y G Φ ∥ L 2 t (B 1 2 ,0 ) ≤ ∥e y 2 8 e δ|D h | G 0 ∥ B 1 2 ,0
for any t < T * .

On the other hand, exactly along the same line to the proof of (7.2), for any t ∈ (0, T * ), we can show that 1 2

∥⟨t ′ ⟩ 5 4 e Ψ ∆ h k G Φ (t)∥ 2 L 2 + 1 2 ∫ t t 2 ∥⟨t ′ ⟩ 5 4 e Ψ ∆ h k ∂ y G Φ ∥ 2 L 2 dt ′ + cλ2 k ∫ t t 2 θ(t ′ )∥⟨t ′ ⟩ 5 4 e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 dt ′ ≤ 1 2 ∥⟨t/2⟩ 5 4 e Ψ ∆ h k G Φ (t/2)∥ 2 L 2 + 1 4 ∫ t t 2 ⟨t ′ ⟩ 3 2 ∥e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 dt ′ + Cd 2 k 2 -k ∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ 2 L 2 t/2,t; θ(t) (B 1,0 ) ,
from which and (7.12), we get, by a similar derivation of (7.11), that

∥⟨t⟩ 5 4 e Ψ G Φ (t)∥ B 1 2 ,0 + √ 2cλ∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L 2 t/2,t; θ(t) (B 1,0 ) + ∥⟨t ′ ⟩ 5 4 e Ψ ∂ y G Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) ≤ ∥e y 2 8 e δ|D h | G(0)∥ B 1 2 ,0 + ∥⟨t ′ ⟩ 3 4 e Ψ G Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) + √ C∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L 2 t/2,t; θ(t) (B 1,0 ) .
Yet it follows from (7.12) that for any t ∈ (0, T * ) 

∥⟨t ′ ⟩ 3 4 e Ψ G Φ ∥ L 2 (t/2,t;B 1 2 ,0 ) ∥⟨t ′ ⟩ 5 4 e Ψ G Φ ∥ L ∞ t (B 1 
∫ t 0 ⟨t ′ ⟩ 1 4 e Ψ ∂ y G Φ (t ′ ) B 1 2 ,0 dt ′ ≤ C∥e y 2 8 e δ|D h | G 0 ∥ B 1 2 ,0 .
Indeed for any t < T * and t > 1, there exists a unique integer N t so that 2 Nt-1 < t ≤ 2 Nt . Then we have t 2 ≤ 2 Nt-1 , so that there holds ∫ t

2 N t -1 ⟨t ′ ⟩ 1 4 e Ψ ∂ y G Φ (t ′ ) B 1 2 ,0 dt ′ ≤ ( ∫ t 2 N t -1 ⟨t ′ ⟩ -2 dt ′ ) 1 2 × ( ∫ t t/2 ( ⟨t ′ ⟩ 5 4 e Ψ ∂ y G Φ (t ′ ) B 1 2 ,0 ) 2 dt ′ ) 1 2 ≤C2 -N t 2 ∥⟨t ′ ⟩ 5 4 ∂ y G Φ ∥ L 2 (t/2,t;B 1 2 ,0 )
.

Along the same line for any j ∈ [0, N t -2], we find ∫ 2 j+1

This leads to (7.15). We thus complete the proof of Proposition 3.4.

Appendix A. The proof of Lemmas 7.1-7.3

In this appendix, we shall present the proof of Lemmas 

v∂ y G = T h v ∂ y G + T h ∂yG v + R h (v, ∂ y G).
Considering (3.17) and the support properties to the Fourier transform of the terms in

T h v ∂ y G, we write ∫ t 0 (t ′ ) ( e Ψ ∆ h k [ T h v ∂ y G ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 ∥ 1 2 S h k ′ -1 v Φ (t ′ )∥ L ∞ + ∥e Ψ ∆ h k ′ ∂ y G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ∫ t 0 ∥ 1 2 S h k ′ -1 v Φ (t ′ )∥ L ∞ + ∥e Ψ ∂ y G Φ (t ′ )∥ B 1 2 ,0 ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ .
Then in view of (3.9), by applying Hölder's inequality, we find

∫ t 0 (t ′ ) ( e Ψ ∆ h k [ T h v ∂ y G ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ( ∫ t 0 θ(t ′ )⟨t ′ ⟩ -1 2 ∥ 1 2 S h k ′ -1 v Φ (t ′ )∥ 2 L ∞ + dt ′ ) 1 2 × ( ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 .
Yet in view of (7.6), we get, by a similar derivation of (5.13), that (A.1)

( ∫ t 0 θ(t ′ )⟨t ′ ⟩ -1 2 ∥ 1 2 S h k ′ -1 v Φ (t ′ )∥ 2 L ∞ + dt ′ ) 1 2 d k ′ 2 k ′ 2 ∥ 1 2 e Ψ G Φ ∥ L 2 t, θ(t) (B 1,0 ) .
As a result, we deduce from Definition 2.3 that

∫ t 0 (t ′ ) ( e Ψ ∆ h k [ T h v ∂ y G ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 )
.

Along the same line, we de deduce from (3.9) and (7.6) that

∫ t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂yG v ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 ∥e Ψ S h k ′ -1 ∂ y G Φ (t ′ )∥ L 2 v (L ∞ h ) ∥ 1 2 ∆ h k ′ v Φ (t ′ )∥ L ∞ v (L 2 h ) ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ,
Then a similar derivation of (5.12) yields

∫ t 0 (t ′ ) ( e Ψ ∆ h k [ T h ∂yG v ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Finally again due to (7.6) and the support properties to the Fourier transform of the terms in R h (v, ∂ y G), we get, by applying Lemma 2.1, that

∫ t 0 (t ′ ) ( e Ψ ∆ h k [ R h (v, ∂ y G) ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 ∫ t 0 ∥ 1 2 ∆ h k ′ v Φ (t ′ )∥ L ∞ v (L 2 h ) ∥e Ψ ∆ h k ′ ∂ y G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ,
from which, we get, by a similar derivation of (5.15), that

∫ t 0 (t ′ ) ( e Ψ ∆ h k [ R h (v, ∂ y G) ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Summing up the above estimates gives rise to (7.8). This finishes the proof of Lemma 7.1.

Proof of Lemma 7.2. Applying Bony's decomposition (2.3) in the horizontal to v∂ y (yφ) yields v∂ y (yφ) = T h v ∂ y (yφ) + T h ∂y(yφ) v + R h (v, ∂ y (yφ)).

In view of (3.17) and (3.24), we infer

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [T h v ∂ y (yφ)] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 (t ′ )⟨t ′ ⟩ -1 ∥e Ψ 2 S h k ′ -1 v Φ (t ′ )∥ L ∞ + ∥e Ψ 2 ∆ h k ′ ∂ y (yφ Φ )(t ′ )∥ L 2 + ∥e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 (t ′ )∥e Ψ 2 S h k ′ -1 v Φ (t ′ )∥ L ∞ + ∥e Ψ ∆ h k ′ ∂ y G Φ (t ′ )∥ L 2 + ∥e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ( ∫ t 0 θ(t ′ )⟨t ′ ⟩ -1 2 ∥ 1 2 e Ψ 2 S h k ′ -1 v Φ (t ′ )∥ 2 L ∞ + dt ′ ) 1 2 × ( ∫ t 0 θ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ 2 L 2 + dt ′ ) 1 2 ,
which together with Definition 2.3 and (A.1) ensures that

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [T h v ∂ y (yφ)] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Similarly, by virtue of (3.24) and (7.6), we have

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [T h ∂y(yφ) v] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 (t ′ )⟨t ′ ⟩ -1 ∥e Ψ 2 S h k ′ -1 ∂ y (yφ Φ )(t ′ )∥ L 2 v (L ∞ h ) × ∥e Ψ 2 ∆ h k ′ v Φ (t ′ )∥ L ∞ v (L 2 h ) ∥e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ 2 ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ .
As a result, we deduce, by a similar derivation of (5.12), that

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [T h ∂y(yφ) v] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k ′ 2 -k ′ ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ (t) 
(B 1,0 ) .

Finally again thanks to (3.24) and (7.6) , we get, by applying Lemma 2.1, that

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [R h (v, ∂ y (yφ))] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ 2 k ′ 2 ∑ k ′ ≥k-3 ∫ t 0 (t ′ )⟨t ′ ⟩ -1 ∥e Ψ 2 ∆ h k ′ v Φ (t ′ )∥ L ∞ v (L 2 h ) × ∥e Ψ 2 ∆ h k ′ ∂ y (yφ Φ )(t ′ )∥ L 2 + ∥e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ 2 k ′ 2 ∑ k ′ ≥k-3 2 k ′ 2 ∫ t 0 (t ′ ) θ(t ′ )∥e Ψ ∆ h k ′ G Φ (t ′ )∥ L 2 ∥e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ .
Then it follows from a similar derivation of (5.15) that ∫ t 0

(t ′ )⟨t ′ ⟩ -1 ( e Ψ ∆ h k [R h (v, ∂ y (yφ))] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k ′ 2 -k ′ ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
By summarizing the above estimates, we conclude the proof of (7.9). This ends the proof of Lemma 7.2.

Proof of Lemma 7.3. We first observe from In view of (3.9), (4.9) and (A.2), we infer

∂ x u + ∂ y v = 0 that v = ∫ ∞ y ∂ x u
∫ t 0 ⟨t ′ ⟩ -1 (t ′ ) ( e Ψ y ∫ ∞ y ( ∂ y u s + εf (t ′ )χ ′ (y ′ ) ) ∆ h k v Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∫ t 0 (t ′ )⟨t ′ ⟩ -1 ∥e -Ψ 4 y∥ L 2 v ∥e 3 4 Ψ ( ∂ y u s + εf (t ′ )χ ′ (y ′ ) ) ∥ L 2 v ∥e Ψ 2 ∆ h k v Φ ∥ L 2 + ∥∆ h k G Φ ∥ L 2 + dt ′ ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k G Φ ∥ 2 L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ (t) 
(B 1,0 ) ,

(A.3)
where in the last step, we used Definition 2.3. On the other hand, due to (3.17), (3.23), (A.2) and the support properties to the Fourier transform of the terms in T h ∂yu v, we find

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [ T h ∂yu v ] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 ⟨t ′ ⟩ -1 ∥e -Ψ 4 y∥ L 2 v ∥e 3 4 Ψ S h k ′ -1 ∂ y u Φ (t ′ )∥ L 2 v (L ∞ h ) × ∥ 1 2 e Ψ 2 ∆ h k ′ v Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 k ′ ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ .
Then a similar derivation of (5.12) yields

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [ T h ∂yu v ] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Again thanks to (3.23), we get, by a similar procedure, that

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [ T h v ∂ y u ] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ ∑ |k ′ -k|≤4 ∫ t 0 ⟨t ′ ⟩ -1 ∥e -Ψ 4 y∥ L 2 v ∥ 1 2 e Ψ 2 S h k ′ -1 v Φ (t ′ )∥ L 2 v (L ∞ h ) × ∥e 3 4 Ψ ∆ h k ′ ∂ y u Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ∑ |k ′ -k|≤4 2 -k ′ 2 ∫ t 0 ⟨t ′ ⟩ -1 2 θ(t ′ )∥ 1 2 e Ψ 2 S h k ′ -1 v Φ (t ′ )∥ L 2 v (L ∞ h ) ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ .
Yet in view of (A.2), we get, by a similar derivation of (5.13), that

( ∫ t 0 ⟨t ′ ⟩ -1 θ(t ′ )∥ 1 2 e Ψ 2 S h k ′ -1 v Φ (t ′ )∥ 2 L 2 v (L ∞ h ) dt ′ ) 1 2 d k ′ 2 k ′ 2 ∥ 1 2 e Ψ G Φ ∥ L 2 t, θ(t) (B 1,0 ) .
As a result, it comes out

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [ T h v ∂ y u ] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Finally again due to (3.23), (A.2) and the support properties to the Fourier transform of the terms in R h (∂ y u, ∂ x φ), we get, by applying Lemma 2.1, that

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [ R h (∂ y u, ∂ x G) ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 ∫ t 0 ⟨t ′ ⟩ -1 ∥e -Ψ 4 y∥ L 2 v ∥e 3 4 Ψ ∆ h k ′ ∂ y u Φ (t ′ )∥ L 2 + × ∥ 1 2 e Ψ 2 ∆ h k ′ v Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ 2 k 2 ∑ k ′ ≥k-3 2 k ′ 2 ∫ t 0 θ(t ′ )∥ 1 2 e Ψ ∆ h k ′ G Φ (t ′ )∥ L 2 + ∥ 1 2 e Ψ ∆ h k G Φ (t ′ )∥ L 2 + dt ′ ,
from which and a similar derivation of (5.15), we obtain

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [ R h (∂ y u, ∂ x G) ] Φ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
Therefore, by virtue of (6.13), we conclude that

∫ t 0 (t ′ )⟨t ′ ⟩ -1 ( e Ψ y ∫ ∞ y ∆ h k [∂ y uv] Φ dy ′ | e Ψ ∆ h k G Φ ) L 2 + dt ′ d 2 k 2 -k ∥ 1 2 e Ψ G Φ ∥ 2 L 2 t, θ(t) (B 1,0 ) .
This together with (A.3) ensures (7.10). We thus finishes the proof of Lemma 7.3.

  0 and lim y→+∞ W (t, x, y) = 0,W | t=0 = U 0 , where R 2 + def = R × R + and m(t, y) def = (1 -χ(y))f ′ (t) + f (t)χ ′′ (y).In order to get rid of the source term in the W equation of (1.3), we introduce u s via (1.4)   ∂ t u s -∂ 2 y u s = εm(t, y), (t, y) ∈ R + × R + , u s | y=0 = 0 and lim y→+∞ u s (t, y) = 0, u s | t=0 = 0.With u s being determined by (1.4), we set u def = W -u s and v def = V. Then (u, v) verifies(1.5) 

7 . 1 .

 71 Now we present the proof of Proposition 3.4. Proof of Proposition 3.4. It follows from Lemma 3.1 that 1

  dy ′ , so that one has

	|∆ h k v Φ (t)| ≤ e -5 8 Ψ	∫ ∞	e -1 8 Ψ × e	3 4 Ψ |∆ h k ∂ x u Φ (t)| dy ′ ,
			y	
	from which, (3.22) and Lemma 2.1, we infer
	∥e	Ψ 2 ∆ h k v Φ (t)∥ L 2 ≤∥e -Ψ 8 ∥ 2 L 2 v ∥e	3 4 Ψ ∆ h k ∂ x u Φ (t)∥ L 2 +
	(A.2)			2 k ⟨t⟩	1 2 ∥e	3 4 Ψ ∆ h k u Φ (t)∥ L 2 +
				2 k ⟨t⟩	1 2 ∥e Ψ ∆ h k G Φ (t)|∥ L 2 + .

Acknowledgments

Both authors are supported by K.C.Wong Education Foundation. M. Paicu was partially supported by the Agence Nationale de la Recherche, Project IFSMACS, grant ANR-15-CE40-0010. P. Zhang is partially supported by NSF of China under Grants 11371347 and 11688101, and innovation grant from National Center for Mathematics and Interdisciplinary Sciences.