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Commutative Hilbertian Frobenius algebras are those commutative semigroup objects in the monoidal category of Hilbert spaces, for which the Hilbert adjoint of the multiplication satisfies the Frobenius compatibility relation, that is, this adjoint is a bimodule map. In this note we prove that they split as an orthogonal direct sum of two closed ideals, their Jacobson radical which in fact is nothing but their annihilator, and the closure of the linear span of their group-like elements. As a consequence such an algebra is semisimple if, and only if, its multiplication has a dense range. In particular every commutative special Hilbertian algebra, that is, with a coisometric multiplication, is semisimple. Extending a known result in the finite-dimensional situation, we prove that the structures of such Frobenius algebras on a given Hilbert space are in one-one correspondence with its bounded above orthogonal sets. We show, moreover, that the category of commutative Hilbertian Frobenius algebras is dually equivalent to a category of pointed sets. Thus, each semigroup morphism between commutative Hilbertian Frobenius semigroups arises from a unique base-point preserving map (of some specific kind), from the set of minimal ideals of its codomain to the set of minimal ideals of its domain, both with zero added.

Introduction

Frobenius algebras have deep connections with various mathematical objects: they appear of course in module theory since each finite-dimensional selfinjective algebra over a field is Morita equivalent to a Frobenius algebra [START_REF] Skowroński | Frobenius algebras[END_REF]Corollary 3.11,p. 351], but also in representation theory because of their similarity with group algebras [START_REF] Curtis | Representation theory of finite groups and associative algebras[END_REF], in mathematical physics as their category is equivalent to that of 2-dimensional topological quantum field theories [START_REF] Abrams | Two-dimensional topological quantum field theories and Frobenius algebras[END_REF], in (categorical) quantum computing since they provide an algebraic characterization of orthonormal bases and observables [START_REF] Coecke | Quantum measurements without sums[END_REF][START_REF] Coecke | A new description of orthogonal bases[END_REF] or also in the theory of Hopf algebras in particular because their relation with weak Hopf algebras [START_REF] Böhm | Hopf algebras and their generalizations from a category theoretical point of view[END_REF].

As is well-known the Hilbert space 2 (X) of square-summable functions on X is by no means free over X. However in this note we prove that X -or more precisely X plus a new point added -freely generates a (non-unital, when X is not finite) commutative Frobenius algebra, whose underlying space is (unitarily isomorphic to)

2 (X). More generally we show that every commutative Frobenius algebra (H, µ), where (H, µ) is a semigroup in the category of Hilbert space and for which µ † satisfies the Frobenius compatibility relation, splits into an orthogonal direct sum of two ideals 2 (X) ⊕ 2 A(H, µ), where A(H, µ) is the annihilator of (H, µ) and X is a set equipotent to that of minimal ideals of (H, µ). The free Frobenius algebras, that is, those of the form 2 (X), are precisely the semisimple ones. Before describing in more detail the content of this note, let us put it into perspective.

A Frobenius algebra may be described in several equivalent ways ([9, Theorem 61.3, p. 414]), for instance it is a unital algebra over some base field which as a left module over itself is isomorphic to its algebraic (right) dual. This definition implies directly that the algebra must be finite-dimensional or at least finitely generated projective if base rings were allowed [START_REF] Eilenberg | On the Dimension of Modules and Algebras, II (Frobenius Algebras and Quasi-Frobenius Rings)[END_REF].

Not all equivalent characterizations are equally suitable for the applications or generalizations we have in mind, for instance if one expects to extend this notion to not necessarily finite-dimensional algebras. Thus alternatively a Frobenius algebra is a finite-dimensional unital algebra together with a non-degenerate and associative bilinear form. Dropping the finiteness condition leads to infinite-dimensional Frobenius algebras studied in [START_REF] Jans | On Frobenius algebras[END_REF]. At this point one may add that under this form the Frobenius algebras are substantially similar to a class of (non unital) algebras combining Banach algebras and Hilbert spaces, called H * -algebras [START_REF] Ambrose | Structure theorems for a special class of Banach algebras[END_REF], where operators of right multiplication are the Hilbert adjoints of the operators of left multiplication.

More recently another way to characterize Frobenius algebras appears in [1, Theorem 1, p. 572] in a commutative situation. A Frobenius algebra is a finite-dimensional unital algebra which at the same time is a counital coalgebra such that both structures interact nicely. More precisely the compatibility condition between the algebra and the coalgebra of a Frobenius algebra -the so-called Frobenius relation -asserts that the comultiplication of the latter is a morphism of bimodules over the former.

Because the above compatibility relation is stated entirely using only tensor products and linear maps, the former description has the advantage over others to allow for talking about Frobenius algebras in the realm of monoidal categories. This is precisely the point of view adopted in the recent book [START_REF] Kock | Frobenius algebras and 2-d topological quantum field theories[END_REF]. This approach is used with success in [START_REF] Coecke | A new description of orthogonal bases[END_REF][START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF] where the authors take advantage of the presence of the Hilbertian adjoint to define a comultiplication from a multiplication. More precisely they consider commutative †-Frobenius monoids, that is, Frobenius algebras (H, µ, η, δ, ) over a finite-dimensional Hilbert space H, where δ = µ † and = η † .

In what follows "Hilbertian Frobenius" stands for " †-Frobenius", to recall the fact that the comultiplication is the Hilbert adjoint of the multiplication, because no other kinds of Frobenius semigroups in the category of Hilbert spaces are considered here. To summarize the coalgebra structure of a Hilbertian Frobenius algebra is the Hilbert adjoint of its algebra structure.

Most notably the main result in [START_REF] Coecke | A new description of orthogonal bases[END_REF] is the statement that orthogonal bases on a given finite-dimensional Hilbert space and its structures of commutative (unital and counital) Hilbertian Frobenius algebras are in a one-one correspondence.

In an effort to extend this result to arbitrary Hilbert spaces, a notion of nonunital Frobenius algebra is proposed in [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF], referred to as (commutative) Hilbertian Frobenius semigroups (or algebras) in what follows, obtained by dropping the unital and counital assumptions. More precisely, these are Hilbertian Frobenius semigroups (H, µ) (in the monoidal category (Hilb, ⊗2 , C) of Hilbert spaces and bounded linear maps), that is, H ⊗2 H µ → H is commutative and associative, and its adjoint H µ † → H ⊗2 H satisfies the Frobenius condition.

While the authors only partially achieve their goal, that is, the characterization of arbitrary orthonormal bases by means of Frobenius structures, one of their merit is a clarification of the relation between commutative special Hilbertian Frobenius semigroups, that is, those Hilbertian Frobenius semigroups (H, µ) with an isometric comultiplication (µ ○ µ † = id), and Ambrose's H * -algebras, relation which was further analyzed in [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] for special Hilbertian algebras which are not necessarily of the Frobenius kind.

It is precisely the intention of this note to provide a better understanding of the relations between orthogonal bases or better orthogonal sets, and algebraic structures of commutative Hilbertian Frobenius semigroups over not necessarily finitedimensional Hilbert spaces.

We, hence, provide a structure theorem for commutative Hilbertian Frobenius semigroups (Theorem 30): it is an easy fact that they split as an orthogononal direct sum of their Jacobson radical and the topological closure of the linear span of their group-like elements, that is, those non zero elements x sent to x ⊗ x by the comultiplication µ † . But what is less immediate is that in fact, the orthogonal complement of the Jacobson radical is a subalgebra, that is, that the set of grouplike elements is closed under multiplication. In fact it is not difficult to notice that the product of two distinct group-like elements is equal to zero, but what is not as immediate is that the square of a group-like element belongs to the onedimensional space spanned by the element (to be fair this observation is free when the comultiplication is assumed isometric as in [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF], which is not the case in what follows), which by the way turns this space into a minimal ideal.

A similar result is claimed in [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF] for the particular case of commutative Hilbertian Frobenius semigroups with an isometric comultiplication, but its proof is not completely correct (see the introduction of [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] for more details). Furthermore our structure theorem is completed by the observation that the radical is precisely the annihilator of the algebra, which is a direct consequence unnoticed elsewhere, of the Frobenius condition (see Proposition 29) which forces the multiplication operators to be normal, that is, that they commute with their own adjoint.

Thus, clearly, a commutative Hilbertian Frobenius semigroup (H, µ) not only splits into an orthogonal direct sum of a subalgebra and an ideal, but actually of two (closed) ideals, one being radical while the other is semisimple. As becomes clear the question of semisimplicity of such an algebra is completely governed by this structure theorem: a necessary and sufficient condition for a commutative Hilbertian Frobenius algebra to be semisimple is that its regular representation is faithful, or equivalently that its multiplication H ⊗2 H µ → H has a dense range or using the Hilbert adjoint, that its comultiplication is one-to-one (Theorem 33). (In particular every commutative special Hilbertian Frobenius algebra is semisimple.) It is a remarkable fact that in the finite-dimensional situation this may be interpreted as the existence of a unit (Corollary 35). Consequently is recovered (with a proof free of a C * -argument) the result of [START_REF] Coecke | A new description of orthogonal bases[END_REF] that finite-dimensional commutative Hilbertian Frobenius monoids are semisimple.

By the way, because group-like elements of a commutative Hilbertian Frobenius semigroup, are non-zero and pairwise orthogonal (even orthonormal when furthermore the algebra is special, that is, when the comultiplication is an isometry) several bijective correspondences (Theorem 37) between structures of Frobenius semigroups of certain kinds available on a given Hilbert space, and some of its orthogonal (or orthonormal) sets are obtained, which extend the main result of [START_REF] Coecke | A new description of orthogonal bases[END_REF]. It is worth mentioning that contrary to the finite-dimensional situation, not all orthogonal sets correspond to a structure of a commutative Hilbertian Frobenius semigroup but only those which are bounded above (or below by a strictly positive constant), including the empty set; in fact one cannot expect unbounded orthogonal families to be in the range of the above bijections as boundedness of the norm of the group-like elements, is a direct consequence of the fact that in a Banach algebra, the multiplication as a bilinear map, is jointly continuous.

Besides the above structure theorem also has some important consequences at the level of the category c FrobSem(Hilb) of commutative Hilbertian Frobenius semigroups and semigroup morphisms. Most notably it is shown that every semigroup morphism between commutative Hilbertian Frobenius semigroups arises from a unique set-theoretic base-point preserving map (of some specific kind), from the set of minimal ideals of its codomain to the set of minimal ideals of its domain, both with zero added as base-point. Among others one proves that 1. c FrobSem(Hilb) is equivalent to the product semisimple,c FrobSem(Hilb)×Hilb (Proposition 46) where the first factor is the full subcategory of c FrobSem(Hilb)

spanned by the semisimple algebras. The splitting into a semisimple Hilbertian Frobenius semigroup and the radical (which is essentially a Hilbert space as its multiplication is trivial) provides the equivalence.

2. semisimple,c FrobSem(Hilb) is dually equivalent to a category of pointed weighted sets (Theorem 56). The functor whose object component sends a semisimple commutative Hilbertian Frobenius semigroup to its set of minimal ideals (with the trivial ideal added), implements the equivalence. Its equivalence inverse is similar to the 2 • -functor introduced in [START_REF] Poinsot | Hilbertian (function) algebras[END_REF]. The paper is organized as follows: Section 1 is mainly devoted to the introduction of the terminology, definitions, names of categories and notions used in this note. Here in particular are recalled among others the notions of group-like elements and of Hilbertian Frobenius semigroups.

The short Section 2 provides an example of a commutative Hilbertian Frobenius semigroup which is of great interest since in fact the orthogonal complement of the Jacobson radical of any commutative Hilbertian Frobenius semigroup is unitarily isomorphic to such an algebra (Proposition 34).

Section 3 may be seen as a continuation of [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] and does not concern Frobenius algebras. We provide a structure theorem (Theorem 11) for commutative Hilbertian algebras with an isometric comultiplication which are not necessarily of the Frobenius kind.

Section 4 discusses the case of commutative Hilbertian Frobenius semigroups and in particular the conditions under which they are semisimple. In Section 4.3 is stated the structure theorem for commutative Hilbertian Frobenius semigroups (Theorem 30) and the resulting conditions for semisimplicity (Theorem 33).

In Section 5 are explored some of the immediate consequences of the structure theorem. Thus here is provided Theorem 37 about the bijective correspondences between bounded orthogonal sets and some structures of Hilbertian Frobenius algebras on a Hilbert space, Proposition 39 about the logical equivalence between commutative H * -algebras and commutative Hilbertian Frobenius semigroups and a reduction of semisimplicity to the existence of approximate (co)units (Corollary 41).

Section 6 concerns the reformulation of the structure theorem as an equivalence of categories (item 1 above).

Section 7 deals with the equivalence of categories from point 2 above. Section 8 treats the case of other equivalences obtained by considering other kinds of morphisms, for instance it deals with ambidextrous morphisms (Section 8.2), that is, maps which are simultaneously morphisms of algebras and coalgebras, and with proper morphisms (Section 8.3). Section 9 discusses an example of a non-commutative non-semisimple Hilbertian Frobenius semigroup whose merit is to show that the Frobenius condition does not govern anymore semisimplicity in the non-commutative situation.

Preliminaries

Let us begin with some words about the terminology used in this note:

1. Every vector space is over the field of complex numbers, and unless stated otherwise, all algebras are over C, associative and commutative, but not necessarily unital, so one usually refers to them solely as algebras. Consequently in this note one usually -but not always -drops the adjective commutative and, when commutativity is not assumed, we write it explicitly. An algebra map or morphism of algebras is not required to preserve a unit.

2. Let H be a Hilbert space. Let X ⊆ H be a set of pairwise orthogonal vectors, that is, ∀x, y ∈ H, x = y ⇒ ⟨x, y⟩ = 0. X is an orthogonal set when moreover 0 ∈ X, that is, an orthogonal set is a set of pairwise non-zero orthogonal vectors. It follows that every orthogonal set in linearly independent, and that ∅ is an orthonormal set, while (0) is not. An orthogonal basis is an orthogonal set X such that X ⊥ = 0.

3. Recall from the Introduction that in this note the only kind of Frobenius algebras we deal with are those for which the coalgebra structure is adjoint in the Hilbert sense of the algebra structure. Rather than calling them " †-Frobenius" one says "Hilbertian Frobenius".

Let us now summarize some notations and results from [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] as far as they are needed hereafter.

Hilbert spaces

When E is Banach space, B(E) stands for the Banach space of all bounded linear endomorphism of E with the operator normop . The obvious forgetful functor from Hilbert spaces to Banach spaces, with bounded linear maps as morphisms for both categories, is denoted U but there is no risk to identify -as we shall do hereafter -a Hilbert space H with its underlying Banach space as U is injective on objects. 1 The inner product (linear in its first variable) of a Hilbert space H is denoted ⟨⋅, ⋅⟩ H or simply ⟨⋅, ⋅⟩. Basic properties about the Hilbertian tensor product ⊗2 are provided in [START_REF] Kadison | Fundamentals of the theory of operator algebras -Volume 1 Elementary theory[END_REF]. Given a bounded linear map µ∶ H ⊗2 K → L, where H, K, L are Hilbert spaces, µ bil ∶ H × K → L denotes its (unique) associated bounded bilinear map. For a bounded multilinear or linear map f , f op stands for its usual operator norm. The Hilbert direct sum (or orthogonal direct sum) of Hilbert spaces

H, K is denoted H ⊕ 2 K. Finally given a closed subspace V of H, p V ∶ H → H denotes the orthogonal projection onto V , that is, p V = i V ○π V , where π V ∶ H → V is the canonical projection H ≃ V × V ⊥ → V and i V ∶ V ↪ H is the canonical inclusion.
1 Lemma Let H, K be Hilbert spaces and V, W be closed subspaces of respectively

H and K. Let H f → K be a bounded linear map. f (V ) ⊆ W if, and only if, f † (W ⊥ ) ⊆ V ⊥ .

Categories

Let Hilb ∶= (Hilb, ⊗2 , C) be the symmetric monoidal category of complex Hilbert spaces and bounded linear maps together with the usual Hilbertian tensor product. The associaitivity constraint α H,K,L ∶ (H ⊗2 K) ⊗2 L ≃ H ⊗2 (K ⊗2 L) and the symmetry constraint σ H,K ∶ H ⊗2 K ≃ K ⊗2 H are unitary transformations. Let FdHilb ∶= (FdHilb, ⊗ 2 , C) be its monoidal subcategory of finite-dimensional Hilbert spaces and necessarily bounded linear maps.

H ⊗ 2 K thus is just the finite-dimensional vec- tor space H ⊗ C K together with the inner product ⟨u ⊗ v, u ′ ⊗ v ′ ⟩ = ⟨u, u ′ ⟩ H ⟨v, v ′ ⟩ K , u, u ′ ∈ H, v, v ′ ∈ K.
A semigroup object (H, µ) in Hilb has an underlying Banach algebra (H, µ bil ). Note that µ bil (x, y) ≤ M x y for some constant M , whereis the norm induced by the inner product on H. So it may happen that strictly speaking, (H, µ bil ) is not a Banach algebra (i.e., -is not submultiplicative). However x ′ ∶= max{ 1, µ bil op } x defines a submultiplicative norm, that is, µ bil (x, y) ′ ≤ x ′ y ′ , equivalent to -. In other words ((H, -′ ), µ bil ) is a usual Banach algebra, which is the underlying Banach algebra of (H, µ).

An ideal I of (H, µ) is defined as an ideal of the underlying Banach algebra (H, µ bil ). When I is closed, this is equivalent to the requirement that µ(( [START_REF] Poinsot | Hilbertian (function) algebras[END_REF]Lemma 12,p. 13]).

I ⊥ ⊗2 I ⊥ ) ⊥ ) ⊆ I. Note that (I ⊥ ⊗2 I ⊥ ) ⊥ = (I ⊗2 I ⊥ ) ⊕ 2 (I ⊗2 I) ⊕ 2 (I ⊥ ⊗2 I) (see
By Sem(C), c Sem(C), and coc Cosem(C) are meant respectively the categories of semigroups, commutative semigroups, and cocommutative cosemigroups in a symmetric monoidal category C. One observes that c Sem(FdHilb) is nothing but the full subcategory of c Sem(Hilb) spanned by those commutative semigroups whose underlying vector space is finite-dimensional. A Hilbertian (co)algebra (or (co)semigroup) is an object of c Sem(Hilb) (resp., coc Cosem(Hilb)) while by special is meant a Hilbertian (co)algebra (H, µ) (resp. (H, δ)) with a coisometric multiplication (resp. isometric comultiplication), that is, µ ○ µ † = id (resp. δ † ○ δ = id). † c Sem(Hilb) is the full subcategory of c Sem(Hilb) spanned by the special Hilbertian algebras.

The dagger functor Hilb op (-) † → Hilb lifts to an isomorphism from the category coc Cosem(Hilb) op to c Sem(Hilb). This is still true after the substitution of Hilb by FdHilb. By a subalgebra V of a Hilbertian algebra (H, µ) is meant a closed subspace V of H such that µ(V ⊗2 V ) ⊆ V , where here V ⊗2 V is identified with the range

of V ⊗2 V i V ⊗2 i V → H ⊗2 H. (V, µ V ) is a Hilbertian algebra on its own right with multiplication V ⊗2 V µ V → V the restriction and co-restriction of H ⊗2 H µ → H. By a subcoalgebra V of (H, µ) is meant a closed subspace V of H such that µ † (V ) ⊆ V ⊗2 V . (Alternatively V could be called a subcoalgebra of (H, µ † ).) (V, (µ † ) V )
is a Hilbertian coalgebra on its own right with comultiplication

V (µ † ) V → V ⊗2 V the restriction and co-restriction of H ⊗2 H µ † → H.
When (H, µ) is a Hilbertian algebra, xy stands for µ(x ⊗ y) and x 2 for µ(x ⊗ x), x, y ∈ H.

2 Lemma Let (H, µ), (K, γ) be Hilbertian algebras. Let f ∶ H → K be a bounded linear map. 

1. For all u, v ∈ H, f (uv) = f (u)f (v) if,
f ∶ H → K has a bounded inverse f -1 ∶ K → H. Now let u, v ∈ K. Then, f (f -1 (uv)) = uv = f (f -1 (u))f (f -1 (v)) = f (f -1 (u)f -1 (v)) so that f -1 (uv) = f -1 (u)f -1 (v).
One concludes using the first point above.

3. By combining the first and second points.

◻ 1.3 Semisimplicity 1.3.

The Jacobson radical

The Jacobson radical or radical J(A), or J when there is no risk of confusion, of a not necessarily commutative algebra A is the intersection of all its maximal modular left (or right) ideals [22, p. 166] and thus if A is unital, then J(A) is the intersection of all maximal left (or right) ideals [START_REF] Farb | Noncommutative algebra[END_REF] since in this case every ideal is modular.

Observe that every maximal modular left, right or two-sided ideal is closed ([20, Theorem 2.4.7, p. 236]) in a complex (unital or not, commutative or not) Banach algebra. J(A) may equivalently be defined as the intersection of all non-trivial characters of A, that is, (necessarily continuous) non-zero algebra maps from A to C, if in addition A is commutative [START_REF] Kaniuth | A course in commutative Banach algebras[END_REF]Theorem 2.1.8,p. 49] because in this case there is a one-one correspondence between maximal modular ideals and non-trivial characters. Note also in passing that the set char(A) of all non-trivial characters of a commutative Banach algebra A when equipped with the weakest topology with respect to which all maps char(A)

x → C, x( ) ∶= (x), x ∈ A, are continuous, is locally compact and even compact when A furthermore is unital (see [16, Theorem 2.2.3, p. 52]). char(A) topologized as above is the character space of A.

The Jacobson radical J(A) of a commutative Banach algebra A and that J(A 1 ) of its unitarization A 1 (see e.g., [16, p. 6]) are related as follows.

3 Lemma (See also [START_REF] Palmer | Banach Algebras and the General Theory of * -Algebras: Volume 1, Algebras and Banach Algebras[END_REF]Theorem 4.3.2.(a), p. 474]2 .) Let A be a complex commutative Banach algebra. Then, J(A) = J(A 1 ).

Call semisimple an algebra with a trivial radical, and radical when it coincides with its own radical. (This choice is consistent with the common terminology from the theory of Banach algebras. In classical algebra the term Jacobson semisimple or semiprimitive corresponds to what we call "semisimple" while semisimple means "Jacobson semisimple and Artinian", see e.g., [START_REF] Farb | Noncommutative algebra[END_REF].) The only algebra which is both semisimple and radical is the zero algebra 0 (which is unital!).

Group-like elements

The Jacobson radical J(H, µ) of a Hilbertian algebra (H, µ) is defined as the Jacobson radical J(H, µ bil ) of its underlying Banach algebra ((H, -′ ), µ bil ). (H, µ) is semisimple (resp. radical) when so is the Banach algebra ((H, -′ ), µ bil ).

J(H, µ) also has an intrinsic description: Let G(H, µ) ∶= { x ∈ H ∖{ 0 }∶ µ(x⊗x) = x } be the set of all group-like elements of (H, µ). Then, J(H, µ) = G(H, µ) ⊥ and ⟨G(H, µ)⟩ = J(H, µ) ⊥ , where here and elsewhere ⟨X⟩ denotes the linear span, and X the closure, of a subset X of H.

(H, µ) is semisimple when G(H, µ) ⊥ = (0) and (H, µ) is radical when G(H, µ) = ∅.

As a consequence of the Riesz representation theorem, the map G(H, µ) Lemma 19,p. 17]). G(H, µ) becomes a locally compact space under the weakest topology associated to the family of maps ([21, p. 19]) so that under R, G(H, µ) and char(H, µ bil ) are homeomorphic.

R → char(H, µ bil ), x ↦ ⟨⋅, x⟩ is bijective ([21,
(G(H, µ) R → char(H, µ bil ) x → C) x∈H
4 Lemma Let (H, µ) be a Hilbertian algebra and let V be a closed subspace of H which is both a subalgebra and a subcoalgebra. Then, (µ 

V ) † = (µ † ) V and G(V, µ V ) = G(H, µ) ∩ V . Proof: By definition of µ V , i V ○µ V = µ○(i V ⊗2 i V ) so that µ V = π V ○µ○(i V ⊗2 i V ) and thus (µ V ) † = (π V ⊗2 π V )○µ † ○i V = (µ † ) V , the last equality holds because by definition of (µ † ) V , (i V ⊗2 i V ) ○ (µ † ) V = µ † ○ i V . It is then clear that G(V, µ V ) = G(H, µ) ∩ V . ◻ 5 Lemma Let (H, µ), (K, γ) be Hilbertian algebras. Let f ∶ H → K be a bounded linear map. If f ∶ (H, µ † ) → (K, γ † ) is a coalgebra map, then f (G(H, µ)) ⊆ G(K, γ) ∪ { 0 }. When (H,
H ⊗2 H µ ( ( µ † ⊗2 id id ⊗2 µ † / / H ⊗2 (H ⊗2 H) α -1 H,H,H ( ( (H ⊗2 H) ⊗2 H α H,H,H ( ( H µ † ( ( (H ⊗2 H) ⊗2 H µ ⊗2 id H ⊗2 (H ⊗2 H) id ⊗2 µ / / H ⊗2 H (1)
One says that (H, µ) satisfies the †-Frobenius condition (or simply the Frobenius condition) -or that (H, µ) is Frobenius -when the top and the bottom cells of Diag.(1) commute. In this case, the surrounding diagram commutes too.

By a Hilbertian Frobenius semigroup is meant a Hilbertian algebra which satisfies the †-Frobenius condition. (Such objects are referred to as commutative †-Frobenius semigroups in [START_REF] Coecke | A new description of orthogonal bases[END_REF].) A Hilbertian Frobenius semigroup (H, µ) is said to be special when furthermore µ ○ µ † = id.

1 Example Any Hilbert space with the zero multiplication is a Hilbertian Frobenius semigroup.

1 Remark Since (H, µ) is assumed commutative, it is not difficult to check that the Frobenius condition actually reduces to the commutativity of only one of the two cells of Diag. [START_REF] Abrams | Two-dimensional topological quantum field theories and Frobenius algebras[END_REF]. One thus recovers the definition of a Frobenius algebra in Hilb provided in [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF].

Let c FrobSem(Hilb) and † c FrobSem(Hilb) be respectively the full subcategories of c Sem(Hilb) spanned by the Hilbertian Frobenius semigroups and by the special Hilbertian Frobenius semigroups.

One obtains corresponding categories after the replacement of Hilb by FdHilb. Still in the finite-dimensional situation one may as well consider †-Frobenius monoids, that is, commutative monoid objects (H, µ, η) in FdHilb such that (H, µ) is a finitedimensional †-Frobenius semigroup. Let c FrobMon(FdHilb) be the full subcategory of the category c Mon(FdHilb) of monoid objects of FdHilb, they generate.

Finally let us call a (cocommutative) comonoid (H, δ, ) in FdHilb a finitedimensional Hilbertian Frobenius comonoid when (H, δ † , † ) is a Hilbertian Frobenius monoid. The full subcategory coc FrobComon(FdHilb) of the category of comonoid objects coc Comon(FdHilb) in FdHilb, they generate is of course isomorphic to c FrobMon(FdHilb) op under the dagger functor.

2 Example Let X be a set. Let x ∈ X and let δ x ∶ X → C be the map which takes the value zero at each member of X except at x where it is equal to 1, that is,

δ x (x ′ ) is the usual Kronecker delta symbol δ x,x ′ (x ′ ∈ X). Let µ X ∶ 2 (X) ⊗2 2 (X) → 2 (X) be given by µ X (δ x ⊗ δ x ′ ) = δ x,x ′ δ x , that is, 2 (X) × 2 (X) (µ X ) bil → 2 (X) is the point- wise multiplication of maps. Then, ( 2 (X), µ X ) is a special Hilbertian Frobenius semigroup. If X is finite, then e X ∶ C → 2 (X)
given by e X (1) ∶= ∑ x∈X δ x , is a unit for ( 2 (X), µ X ) so that ( 2 (X), µ X , e X ) thus is a finite-dimensional special Hilbertian Frobenius monoid.

Weighted Hilbert spaces

Let X be a non empty set, and let w∶ X → [C, +∞[ be a map, where

C > 0. Let 2 w (X) ∶= { f ∈ C X ∶ ∑ x∈X w(x) f (x) 2 < +∞ }. With inner product ⟨f, g⟩ w ∶= ∑ x∈X w(x)f (x)g(x)
this provides a Hilbert space. The corresponding norm is denotedw . For x ∈ X, let us identify

δ x ∶ X → C with x itself. Under this identifi- cation, { x w(x) 1 2 ∶ x ∈ X } forms a Hilbertian basis of 2 w (X). Note that ⟨f, x w(x) 1 2 ⟩ w = w(x) 1 2 f (x), x ∈ X. The next result is clear. 6 Lemma 2 w (X) ⊆ 2 (X)
, the inclusion is bounded and 2 w (X) = 2 (X). Furthermore if w is also bounded above, then 2 w (X) = 2 (X) as vector spaces and the norms w andare equivalent.

Let m X ∶ 2 w (X) × 2 w (X) → 2
w (X) be given by m X (f, g) ∶= f g where by juxtaposition is denoted the pointwise product of maps. m X is a weak Hilbert-Schmidt mapping ( [START_REF] Kadison | Fundamentals of the theory of operator algebras -Volume 1 Elementary theory[END_REF]) as ∑ x,y∈X ⟨m X ( x w(x)

1 2 , x w(x) 1 2 ), f ⟩ w 2 ≤ 1 C f 2 w for each f ∈ 2 w (X). Let µ X ∶ 2 w (X) ⊗2 2 w (X) → 2 w (X) be the corresponding bounded linear map, that is, µ X (f ⊗ g) = f g (see [15, Theorem 2.6.4, p. 132]). In details, µ X (f ⊗ g) = ∑ x∈X f (x)g(x)x.
It is clear by its very definition that µ X is commutative and associative making

( 2 w (X), µ X ) a Hilbertian semigroup. Moreover µ X op ≤ 1 C 1 2
. Such a semigroup

( 2 w (X), µ X ) was already considered in [21, pp. 11-12] in the situation where C = 1.

By direct computations one obtains

7 Proposition G( 2 w (X), µ X ) = { x w(x) ∶ x ∈ X } and ( 2 w (X), µ X ) is a semisimple Hilbertian Frobenius semigroup. Letting w ≡ 1 one observes that ( 2 (X), µ X ) is also a (special) Hilbertian Frobe- nius semigroup, with G( 2 (X), µ X ) = X (Example 2). 8 Lemma ( 2 w (X), m X ) is a not necessarily closed ideal of ( 2 (X), m X ). In fact ( 2 w (X), m X ) = ( 2 (X), m X ) if, and only if, 2 w (X) is closed in 2 (X) if, and only if, w is bounded above. Proof: Let f ∈ 2 w (X) and let g ∈ 2 (X). Then for each finite subset F ⊆ X, ∑ x∈F f (x) 2 g(x) 2 ≤ 1 C ∑ x∈F w(x) f (x) 2 g(x) 2 ≤ 1 C f 2 w g 2 , that is, f g ∈ 2 (X)
. The first equivalence in the second statement is clear by Lemma 6. Let us prove the second equivalence. If w is bounded above, then by Lemma 6, 2 w (X) = 2 (X). So let us assume that w is not bounded above. Then, for each k ∈ N ∖ { 0 }, there exists

x k ∈ X with w(x k ) ≥ k 2 . Let X k ∶= { x ∈ X∶ k 2 ≤ w(x) }. So X k = ∅ for each k ≥ 1. It is clear that (X k ) k≥1
is a decreasing sequence of non-void sets. Moreover this sequence cannot stabilize, i.e., for no i ≥ 1,

X i = X i+n , for all n ≥ 0, for if it would mean that if w(x) ≥ i 2 , then w(x) ≥ k 2 for all k ≥ i. So for each i ≥ 1, there exists n ≥ 1 such that X i+n ⊊ X i . It follows that for each i ≥ 1, { i ≤ k∶ X i = X k } is finite and non-void (it contains i). For each i ≥ 1, let M i ∶= max{ i ≤ k∶ X i = X k } + 1. Whence M i ≥ i + 1 and X M i ⊊ X i . Choose x 1 ∈ X 1 and for each n ≥ 1, choose x n+1 ∈ X Mn . It follows that x i = x j , i = j, and w(x i ) ≥ i 2 . Define f (x n ) ∶= 1 n and f (x) = 0 when x = x n , n ≥ 1. It follows that f ∈ 2 (X). But w 1 2 f ∈ 2 (X) since for each n ≥ 1, w(x n ) f (x n ) 2 ≥ n 2 n 2 = 1. ◻ Let us also provide a description of ( 2 w (X), µ X ) under another disguise. Under the unitary transformation Φ∶ f ↦ f from 2 w (X) to 2 (X), with f (x) ∶= ⟨f, x w(x) 1 2 ⟩ w = w(x) 1 2 f (x), x ∈ X, one may transport the multiplication µ X on 2 (X). In detail, the inverse Φ † of Φ is given by Φ † (f ) ∶= w -1 2 f , that is, (Φ † (f ))(x) = 1 w(x) 1 2 f (x), x ∈ X,
and then one may define

µ w,X ∶ 2 (X) ⊗2 2 (X) → 2 (X) by Φ ○ µ X ○ (Φ † ⊗2 Φ † ), so for each f, g ∈ 2 (X), µ w,X (f ⊗ g) = w -1 2 f g, that is, for each x ∈ X, (µ w,X (f ⊗ g))(x) = w(x) -1 2 f (x)g(x). (Note that as C ≤ w(x), 1 w(x) 1 2 ≤ 1 C 1 2
for each x ∈ X, and thus pointwise multiplication of functions by w -1 2 is an operator on 2 (X), and as 2 (X)

is closed under pointwise product, given f, g ∈ 2 (X), w -1 2 f g ∈ 2 (X).) It is clear that ( 2 (X), µ w,X ) is a semisimple Frobenius semigroup, unitarily isomorphic to ( 2 w (X), µ X ). Note that G( 2 (X), µ w,X ) = { x w(x) 1 2 ∶ x ∈ X }.
2 Remark Everything becomes trivial if X = ∅ (and thus w is the empty map), that is, w (X) thus is the zero algebra, which is Frobenius, semisimple and radical.

Structure theorem for special Hilbertian algebras

This section serves as a sequel to [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] by providing new results about special Hilbertian algebras.

The general situation

Given a non necessarily unital algebra A, E(A) denotes the set of all its idempotent elements, that is, the members e of A such that e 2 = e. It is well-known that when A is a commutative Banach algebra, then 9 Corollary Let (H, µ) be a special Hilbertian algebra. Then, the orthogonal complement J ⊥ of the Jacobson radical of (H, µ) is a (closed) subalgebra of (H, µ).

E(A) ∩ J(A) = (0) (see for instance
More precisely for x, y ∈ G(H, µ), xy = δ x,y x. As a consequence J is a coideal, that is, µ † (J) ⊆ (J ⊥ ⊗2 J ⊥ ) ⊥ = (J ⊗2 J ⊥ ) ⊕ 2 (J ⊗2 J) ⊕ 2 (J ⊥ ⊗2 J).
Proof: One knows from [21, Corollary 28, p. 22] that xy ∈ J for each x, y ∈ G(H, µ) with x = y. But xy is idempotent by commutativity of µ, as both x and y are idempotents

(x = µ(µ † (x)) = µ(x ⊗ x) = x 2
). Whence by the above, xy = 0. That J ⊥ is a subalgebra now follows from the fact that it is the closure of the linear span of the group-like elements G(H, µ) ([21, Theorem 22, p. 17]). Since µ(J

⊥ ⊗2 J ⊥ ) ⊆ J ⊥ , it follows by Lemma 1 that µ † (J) ⊆ (J ⊥ ⊗2 J ⊥ ) ⊥ = (J ⊥ ⊗2 J ⊥ ) ⊥ = (J ⊗2 J ⊥ ) ⊕ 2 (J ⊗2 J) ⊕ 2 (J ⊥ ⊗2 J). ◻
10 Corollary Under the same assumptions as Corollary 9, J ⊥ is a semisimple special Hilbertian algebra under the restrictions of µ and of µ † .

Proof: J ⊥ is a special Hilbertian algebra by [21, Lemma 13, p. 13] since J ⊥ is both a (closed) subcoalgebra and a subalgebra of (H, µ).

By Lemma 4, G(J ⊥ , µ J ⊥ ) = G(H, µ) which shows that (J ⊥ , µ J ⊥ ) is semisimple. ◻
The above may be summarized into the following structure theorem which is a specialization of [START_REF] Poinsot | Hilbertian (function) algebras[END_REF]Theorem 22,p. 17] for special Hilbertian algebras.

11 Theorem (Structure theorem for special Hilbertian algebras.) Let (H, µ) be a special Hilbertian algebra. Then, H = J ⊕2 J ⊥ (orthogonal direct sum of Hilbert spaces) and J ⊥ is a closed subalgebra and subcoalgebra of (H, µ).

The unital case

Let (H, µ) be a special Hilbertian algebra which is assumed to have a unit C η → H identified with the member e ∶= η(1) of H. Thus char(H, µ bil ), and so G(H, µ) too, is compact as is the character space of any commutative and unital Banach algebra [16, Theorem 2.2.3, p. 52]. But G(H, µ) is discrete (see Section 1.3.2). Therefore it is finite. As it is an orthonormal basis of J(H, µ) ⊥ , the latter is finite-dimensional with dim C J ⊥ = G(H, µ) . One may even explicitly describes the unit of (H, µ).

12 Lemma Let (H, µ) be a special Hilbertian algebra with a unit e. Then, E(H, µ bil ) ⊆ J ⊥ and in particular e ∈ J ⊥ . More precisely, e = ∑ x∈G(H,µ) x.

Proof: The first assertion follows from [4, Lemma 3.3, p. 112] in view of Corollary 9. The second thus is immediate. Since (H, µ) is unital, one already knows that

G(H, µ) = dim C J ⊥ < +∞. As 1 = ⟨x, x⟩ = ⟨ex, x⟩ = ⟨e ⊗ x, x ⊗ x⟩ = ⟨e, x⟩⟨x, x⟩, whence ⟨e, x⟩ = 1 for each x ∈ G(H, µ). So e = ∑ x∈G(H,µ) ⟨e, x⟩x = ∑ x∈G(H,µ) x. ◻ If (H, µ) is a finite-dimensional special Hilbertian algebra, then it is unital [10, Corollary 3.3, p. 47] as H 2 ∶= µ(H ⊗ C H) = H (because µ ○ µ † = id).
One so obtains 13 Proposition Let (H, µ) be a special Hilbertian algebra.

1. If (H, µ) has a unit, then J(H, µ) ⊥ is finite-dimensional.

2. If (H, µ) is finite-dimensional, then it has a unit.

3. Let us assume (H, µ) semisimple. (H, µ) has a unit if, and only if, it is finitedimensional.

Incidentally Proposition 13 shows that a special Hilbertian algebra of finite dimension fails to be radical if non-zero (since the unit is contained in no maximal ideals.)

Semisimplicity of commutative Hilbertian Frobenius semigroups

The main results of this section are Theorem 30 and Theorem 33. The former states that both the Jacobson radical of a Hilbertian Frobenius semigroup, and its orthogonal complement are subalgebras and subcoalgebras, and that the Jacobson radical actually coincides with the annihilator of the semigroup. The latter provides the explicit conditions on the multiplication (or comultiplication) of a Hilbertian Frobenius semigroup for it to be semisimple. Theorem 30 is obtained in two steps: at first it is proved that the orthogonal complement of the Jacobson radical is a subalgebra, by analyzing precisely how the product of two group-like elements behaves, and secondly that the operators of multiplication by an element in a Frobenius algebra are forced to be normal operators, which in turn forces the Jacobson radical to be equal to the annihilator.

Commutative Hilbertian Frobenius algebras

In this current section, (H, µ) stands for a commutative Hilbertian Frobenius algebra and one denotes J ∶= J(H, µ).

Let us recall the following result from [START_REF] Coecke | A new description of orthogonal bases[END_REF]. Recall that in our terminology an orthogonal family does not contain 0.

14 Lemma G(H, µ) is an orthogonal family, that is, for each x, y ∈ G(H, µ), x = y ⇒ ⟨x, y⟩ = 0. In particular G(H, µ) is an orthogonal basis of J ⊥ . Lemma 14 has the important consequences listed below.

15 Corollary 1. Let x, y ∈ G(H, µ) such that x = y. Then, xy ∈ J. 2. Let x ∈ G(H, µ). Then, p J ⊥ (x 2 ) = x 2 x.
Proof:

1. Let x, y ∈ G(H, µ) such that x = y. Let z ∈ G(H, µ). Then, ⟨xy, z⟩ = ⟨µ(x ⊗ y), z⟩ = ⟨x ⊗ y, µ † (z)⟩ = ⟨x ⊗ y, z ⊗ z⟩ = ⟨x, z⟩⟨y, z⟩ = x 2 δ x,z y 2 δ y,z
(by Lemma 14) = 0 as by assumption x = y. Whence p J ⊥ (xy) = 0 and thus xy ∈ J. 

2. Let x ∈ G(H, µ). Let z ∈ G(H, µ). Then, ⟨x 2 , z⟩ = ⟨µ(x ⊗ x), z⟩ = ⟨x ⊗ x, µ † (z)⟩ = ⟨x ⊗ x, z ⊗ z⟩ = ⟨x, z⟩ 2 = x 4 δ x,z according to Lemma 14. As a result, p J ⊥ (x 2 ) = ⟨x 2 , x x ⟩ x x = x 2 x. ◻ 3 
, v ∈ H, uv = ∑ x∈G(H,µ) 1 x ⟨u, x⟩⟨v, x⟩ x x as ⟨uv, x⟩ = ⟨u ⊗ v, x ⊗ x⟩ = ⟨u, x⟩⟨v, x⟩, x ∈ G(H, µ).
16 Lemma Let x ∈ G(H, µ). x 2 ∈ J ⊥ if, and only if, x 2 = x 2 x. In this case, 1

x 2 x is an idempotent element which belongs to J ⊥ and x ≤ µ op .

Proof: The first equivalence is due to Corollary 15. The second statement is immediate. Let e be a non-zero idempotent element of (H, µ). Then, e = e 2 = µ(e ⊗ e) ≤ µ op e 2 . If e = 0, then 1 µ op ≤ e . The last statement thus is obtained by taking

e = x x 2 . ◻ Let G ′ (H, µ) ∶= { x ∈ G(H, µ)∶ x 2 ∈ J ⊥ } = { x ∈ G(H, µ)∶ x 2 = x 2
x } (by Lemma 16). 17 Lemma Let x, y ∈ G ′ (H, µ) such that x = y. Then, xy = 0.

Proof: According to Corollary 15 xy ∈ J. As x, y ∈ G ′ (H, µ), x

x 2 and y y 2 both are idempotent elements which belong to J ⊥ by Lemma 16. By commutativity of µ, xy x 2 y 2 is also an idempotent element and it is a member of J by the above. Therefore it reduces to zero (see the beginning of Section 3.1), and thus xy = 0 too.

◻ 18 Lemma G ′ (H, µ) = G(H, µ). Consequently, J ⊥ is a closed subalgebra of (H, µ)
and the map G(H, µ) →]0, +∞[, x ↦ x is bounded above by µ op .

Proof:

Let x ∈ G(H, µ). Using one of the Frobenius conditions, one obtains µ † (x 2 ) = x 2 ⊗ x and with the other,

µ † (x 2 ) = x ⊗ x 2 . Let u, v ∈ H. Then, ⟨µ † (x 2 ), u ⊗ v⟩ = ⟨x⊗x 2 , u⊗v⟩ = ⟨x, u⟩⟨x 2 , v⟩ and also ⟨µ † (x 2 ), u⊗v⟩ = ⟨x 2 ⊗x, u⊗v⟩ = ⟨x 2 , u⟩⟨x, v⟩. In particular given u ∈ J, one has ⟨µ † (x 2 ), u ⊗ x⟩ = ⟨x 2 , x⟩⟨x, u⟩ = 0 and ⟨µ † (x 2 ), u ⊗ x⟩ = ⟨x, x⟩⟨x 2 , u⟩ = x 2 ⟨x 2 , u⟩. Therefore x 2 ∈ J ⊥ , that is, x ∈ G ′ (H, µ).
According to Lemma 16 and Lemma 17, the linear span of G ′ (H, µ) = G(H, µ) is closed under µ. So is its closure, by continuity of µ, which is nothing but J ⊥ . The last assertion is a consequence of the last assertion of Lemma 16. ◻ 4 Remark It is clear from the definition of a group-like element, that µ = 0 ⇒ G(H, µ) = ∅ ⇒ (H, µ) is radical. Actually we will prove below that the converse implications are also true (see Corollary 32).

5 Remark According to Lemma 18 the multiplication of J ⊥ arising from the restriction of µ is as easily described as in Remark 3. G(H, µ) is an orthogonal basis of J ⊥ , and given u, v ∈ H, uv = ∑ x∈G(H,µ)

1 x ⟨u, x⟩⟨v, x⟩ x x + (p J ⊥ (u)p J (v) + p J (u)p J ⊥ (v) + p J (u)p J (v)).
A more precise Structure Theorem for commutative Hilbertian Frobenius semigroups will be provided hereafter (Theorem 30) but it is worth summarizing the above results.

19 Proposition Let (H, µ) be a Hilbertian Frobenius semigroup. Then, H = J⊕ 2 J ⊥ (orthogonal direct sum of Hilbert spaces) and J ⊥ is both a closed subalgebra and subcoalgebra of (H, µ).

20 Corollary Let (H, µ) be a Hilbertian Frobenius semigroup. Under the restriction of µ, J ⊥ is a semisimple Hilbertian Frobenius semigroup.

Multiplication operators

Let (E, * ) be a commutative Banach algebra. The annihilator A(E, * ) of (E, * ) is

{ u ∈ E∶ ∀v ∈ E, u * v = 0 }. For a Hilbertian algebra (H, µ) let A(H, µ) ∶= A(H, µ bil ).
The following result is clear.

21 Lemma A(H, µ) ⊆ J(H, µ).
Let (E, * ) be a complex commutative Banach algebra. Let M ∶ E → B(E) be the regular representation of (E, * ), that is, u ↦ M u , where M u (v) = u * v. One notices that A(E, * ) = ker M .

Let (B, * ) be a not necessarily commutative Banach algebra and let u ∈ B. u is said to be a quasi-nilpotent element when its spectral radius is equal to zero, that is, when u n 22 Lemma Let u ∈ J(H, µ). Then, M u is a quasi-nilpotent operator on H. In other words, M maps the Jacobson radical of (H, µ) into the set of all quasi-nilpotent operators on H. 

Proof: Let v ∈ H. Then, M n u (v) = u n v ≤ µ bil op u n v ≤ u n ′ v so that M n u op ≤ u n ′ for each n ∈ N ∖ { 0 }. Consequently, M n u 1 n op ≤ ( u n ′ ) 1 n → 0 as u is a quasi-nilpotent
f ○ f † = f † ○ f . 23 Corollary Let (H, µ) be a Hilbertian algebra. Let u ∈ J(H). M u is normal if, and only if, u ∈ A(H, µ). So J(H, µ) ∩ { u ∈ H∶ M u is normal } = A(H, µ).
Proof: The converse implication is clear since the zero operator is normal. So let us assume that M u is normal. By Lemma 22, M u is quasi-nilpotent, whence its spectral radius is equal to zero ([20, p. 213]). But for normal operators the spectral radius coincides with the operator norm ([5, II.1.6.3, p. 58]). Whence M u op = 0, that is, M u = 0. The second statement follows from the first one and Lemma 21. ◻

Frobenius algebras revisited: Hilbertian modules

Let (H, µ) be an object of Sem(Hilb) and let K be a Hilbert space. Let g∶ H ⊗2 K → K be a bounded linear map such that the following diagram commutes. (The isomorphism arrow corresponds to the coherence constraint of associativity of Hilb.)

H ⊗2 (H ⊗2 K) id ⊗2 g / / H ⊗2 K g (H ⊗2 H) ⊗2 K µ ⊗2 id ( ( H ⊗2 K g / / K (2) 
The pair (K, g) is referred to as a (Hilbertian) left (H, µ)-module and g is called the left action of (H, µ). The notion of a (Hilbertian) right (H, µ)-module (K, r), with r∶ K ⊗2 H → K, is obtained by symmetry. r is the right action of (H, µ).

(K ⊗2 H) ⊗2 H r ⊗2 id / / K ⊗2 H r K ⊗2 (H ⊗2 H) id ⊗2 µ ( ( K ⊗2 H r / / K (3) 
Let a Hilbert space K being both a left and a right (H, µ)-module (K, g) and (K, r) on (H, µ). (H, g, r) is said to be a Hilbertian (H, µ)-bimodule when furthermore the following diagram commutes.

(H ⊗2 K) ⊗2 H α H,K,H g ⊗2 id / / K ⊗2 H r K H ⊗2 (K ⊗2 H) id ⊗2 r / / H ⊗2 K g O O (4) 
24 Lemma Let (H, µ) be an object of Sem(Hilb) and let K be a Hilbert space.

Let g∶ H ⊗2 K → K be a bounded linear map. (K, g) is a left (H, µ)-module if, and only if, for each x, y ∈ H, z ∈ K, g bil (x, g bil (y, z)) = g bil (xy, z).

By symmetry,

25 Lemma Let (H, µ) be an object of Sem(Hilb) and let K be a Hilbert space.

Let r∶ K ⊗2 H → K be a bounded linear map. (K, r) is a right (H, µ)-module over (H, µ) if, and only if, for each x ∈ K, y, z ∈ H, r bil (r bil (x, y), z) = r bil (x, yz).

Given left (H, µ)-modules (K i , g i ), i = 1, 2, a bounded linear map K 1 f → K 2 is a left (H, µ)-module map or is said to be left (H, µ)-linear, or simply left linear when the following diagram commutes.

H ⊗2 K 1 id ⊗2 f / / g 1 H ⊗2 K 2 g 2 K 1 f / / K 2 (5)
By symmetry left (H, µ)-module (or left (H, µ)-linear) maps are obtained.

3 Example Let (H, µ) be an object of c Sem(Hilb).

1. H is itself a left and right (H, µ)-module under g = µ = r, by associativity of µ. Of course, (H, µ, µ) thus is a bimodule over itself by associativity of µ. Let us introduce the following notations. Let H, K, L be Hilbert spaces. Let γ∶ H × K → L be a bounded bililnear map. One may define H

2. H ⊗2 H is a left (H, µ)-module under H ⊗2 (H ⊗2 H) α -1 H,H,H → (H ⊗2 H) ⊗2 H µ ⊗2 id → H ⊗2 H. It is also a right (H, µ)-module with right action (H ⊗2 H) ⊗2 H α H,H,H → H ⊗2 (H ⊗2 H) id ⊗2 µ → H ⊗2 H, where one recalls that α H,K,L ∶ (H ⊗2 K) ⊗2 L ≃ H ⊗2 (K ⊗2 L)
γ left → B(K, L) and K γ right → B(H, L) by setting (γ left (x))(y) ∶= γ(x, y) =∶ (γ right (y))(x), x ∈ H, y ∈ K.
When γ∶ H ⊗2 K → L is a bounded linear map, or equivalently when γ bil ∶ H × K → L is a weak Hilbert-Schmidt map, then one also defines γ left ∶= (γ bil ) left and γ right ∶= (γ bil ) right .

26 Lemma Let H, K, L be Let H, K, L be Hilbert spaces. Let γ∶ H × K → L be a bounded bililnear map. Then, γ left and γ right are bounded linear maps.

4 Example Let (H, µ) be an object of c Sem(Hilb).

1. For the structure of left or right module over (H, µ), under λ = µ = ρ, one has 

µ left = M = µ right (by commutativity). 2. For the structure g∶ H ⊗2 (H ⊗2 H) → H ⊗2 H of left (H, µ)-module on H ⊗2 H from Example 3.1, one has g left (u)(v⊗w) = (µ ⊗2 id)((u⊗v)⊗w) = µ(u⊗v)⊗w = M u (v) ⊗ w, u, v, w ∈ H, so that g left (u) = M u ⊗2 id on H ⊗ C H.
(u)(v ⊗ w) = (id ⊗2 µ)(v ⊗ (w ⊗ u)) = v ⊗ µ(w ⊗ u) = w ⊗ µ(u ⊗ w) = w ⊗ M u (v) by commutativity of µ. Therefore, r right (u) = id ⊗2 M u .
27 Lemma Let (K, g), (K, g ′ ) be Hilbertian left (H, µ)-modules, and let

K f → K ′ be a bounded linear map. It is left (H, µ)-linear if, and only if, for each u ∈ H, g ′ left (u) ○ f = f ○ g left (u). Proof: Let u ∈ H and v ∈ K. One has f (g(u ⊗ v)) = f (g left (u)(v)) while g ′ ((id ⊗2 f )(u ⊗ v)) = g ′ (u ⊗ f (v)) = g ′ left (u)(f (v)). It is thus clear that if f is left linear, then g ′ left (u) ○ f = f ○ g left (u) for all u. Conversely, let us assume that g ′ left (u) ○ f = f ○ g left (u) for all u. By the above, f ○ g = g ′ ○ (id ⊗2 f ) on H ⊗ C K.
By linearity and continuity, since 

H ⊗ C K is dense in H ⊗2 K,
(u) ○ f = f ○ r right (u).
29 Proposition Let (H, µ) be a Hilbertian Frobenius algebra. Then, for each u ∈ H, M u is normal. In particular, J(H, µ) = A(H, µ).

Proof: Let u, v, w ∈ H. Then,

⟨M † u (M u (v)), w⟩ = ⟨M u (v), M u (w)⟩ = ⟨uv, uw⟩. (6) 
Now let us assume that µ † is right linear. One has

⟨M u (M † u (v)), w⟩ = ⟨M † u (v), M † u (w)⟩ = ⟨v, M u (M † u (w))⟩ = ⟨v, uM † u (w)⟩ = ⟨µ † (v), u ⊗ M † u (w)⟩ = ⟨(id ⊗2 M u )(µ † (v)), u ⊗ w⟩ = ⟨µ † (uv), u ⊗ w⟩ (according to Lemma 27) = ⟨uv, uw⟩. (7) 
The case of left linearity would be treated similarly using commutativity of µ. The last statement is a direct consequence of Corollary 23.

◻

We are now in position to state the following structure theorem which completes Proposition 19 and a corollary that extends Corollary 20.

30 Theorem (Structure Theorem for Hilbertian Frobenius Semigroups) Let (H, µ) be a commutative Hilbertian Frobenius semigroup. Then, H = J⊕ 2 J ⊥ (orthogonal direct sum of Hilbert spaces), J ⊥ is both a closed subalgebra and subcoalgebra of (H, µ), and J = A(H, µ) is also both a closed subalgebra and subcoalgebra. In particular, J and J ⊥ are ideals.

Proof: By Proposition 29, A(H, µ) = J, and since J ⊥ is a subalgebra by Proposition 19, J ⊥ is actually an ideal. Whence J is a subcoalgebra by [START_REF] Poinsot | Hilbertian (function) algebras[END_REF]Theorem 18,p. 15]. ◻

7 Remark As noticed in the Introduction of [START_REF] Poinsot | Hilbertian (function) algebras[END_REF], the proof of [2, Proposition 23, p. 16] contains a mistake. However the statement of this proposition is valid since it is nothing but the special case of the above theorem when µ is counitary. But in fact, in this special case, more may be said (see Theorem 33 below).

31 Corollary Let (H, µ) be a commutative Hilbertian Frobenius semigroup. Under the corresponding restrictions of µ, J ⊥ is a semisimple Hilbertian Frobenius semigroup and J is a radical Hilbertian Frobenius semigroup.

8 Remark Let (H, µ) be a Hilbertian Frobenius semigroup. By Theorem 30, uv =

p J ⊥ (u)p J ⊥ (v) (since J = A(H, µ)) = ∑ x∈G(H,µ) ⟨u, x⟩⟨v, x⟩ x
x 2 as follows from Remark 5. In particular for each x ∈ G(H, µ) and u ∈ H, ux = p J ⊥ (u)x = ⟨u, x⟩x and thus Cx is an ideal. (In particular, xx = ⟨x, x⟩x = x 2 x as already known.)

32 Corollary Let (H, µ) be a commutative Hilbertian Frobenius semigroup. (H, µ) is radical if, and only if, µ = 0.

33 Theorem Let (H, µ) be a commutative Hilbertian Frobenius semigroup. The following assertions are equivalent.

1. (H, µ) is semisimple. 2. (H, µ) is faithful, that is, ker M = (0).
3. µ has a dense range. [START_REF] Bade | The Wedderburn decomposability of some commutative Banach algebras[END_REF]. µ † is one-to-one. 5. µ ○ µ † is one-to-one.

In particular, any commutative special Hilbertian Frobenius semigroup is semisimple.

Proof: The last statement is a consequence of the presumed equivalences. That the two first points are equivalent is clear as J(H, µ) = A(H, µ) (Proposition 29). That the three other assertions are equivalent is due to the general fact that for a bounded linear map K f → L between Hilbert spaces, ker f † = ker(f ○ f † ) = ran(f ) ⊥ (see e.g., [START_REF] Kubrusly | The elements of operator theory[END_REF]Proposition 5.76,p. 390]). It remains for instance to prove that semisimplicity is equivalent to injectivity of µ † . So let us assume that µ † is oneto-one. According to Theorem 30, J(H, µ) = A(H, µ) is a subcoalgebra, that is, µ † (J(H, µ)) ⊆ J(H, µ) ⊗2 J(H, µ). Whence for each x ∈ J(H, µ), µ(µ † (x)) = 0. But as µ ○ µ † is one-to-one, x = 0, that is, J(H, µ) = (0). Finally, let us assume that (H, µ) is semisimple. By the way G(H, µ) is an orthogonal basis of (H, µ) according to Lemma 14. Let u = ∑ x∈G(H,µ) u x x be an arbitrary element of H with

u x = 1 x 2 ⟨u, x⟩. Then, µ † (u) = ∑ x∈G(H,µ) u x x ⊗ x, and thus µ † (u) = 0 ⇔ u = 0, that is, µ † is one-to-one. ◻ 9 Remark
The last statement of Theorem 33 answers by the affirmative the main question of [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF], that is, are all special Hilbertian Frobenius semigroups semisimple?

In the result below are used the notations from Section 2. It shows that the weighted Hilbert spaces are the only semisimple Hilbertian Frobenius semigroups, up to unitary isomorphisms.

34 Proposition Let (H, µ) be a Hilbertian Frobenius semigroup. Then, J(H, µ) ⊥ ≃ ( 2w (H,µ) (G(H, µ)), µ G(H,µ) ) (unitarily so), where 

w (H,µ) ∶ G(H, µ) → [ 1 µ 2 op , +∞[, x ↦ 1 x 2 . (If G(H, µ) = ∅,
δ x = x δ x , x ∈ G(H, µ).
It is a matter of simple verification to prove that Λ is an isomorphism of semigroups. ◻ 5 Some direct consequences

The finite-dimensional case

The following result explains why every finite-dimensional commutative Hilbertian Frobenius monoid is automatically semisimple ( [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF][START_REF] Coecke | A new description of orthogonal bases[END_REF]).

35 Corollary Let (H, µ) be a finite-dimensional commutative Hilbertian Frobenius semigroup. The following assertions are equivalent.

1. (H, µ) has a unit.

2. µ is onto.

3. µ † is one-to-one. 

A dictionary of bases

Let H f → K be a bounded linear map between Hilbert spaces. f is a partial isometry if f ○ f † ○ f = f . Actually f is a partial isometry if, and only if, f † is so ([18, pp. 401-402]).

By a structure of a Hilbertian semigroup of some specific kind on a given Hilbert space H is meant a bounded linear map µ∶ H ⊗2 H → H which makes (H, µ) a Hilbertian semigroup of the desired kind. The following result may be considered as an extension of the summary [8, p. 565] to infinite-dimensional spaces.

Call bounded above (resp. bounded below) a set X of a Hilbert space H such that there exists C > 0 with x ≤ C (resp. C ≤ x ) for each x ∈ X. C is referred to a bound of X. Observe that the empty set is bounded above and below, with any bound C > 0. Recall also that following our terminology (Section 1), an orthogonal set does not contain 0.

37 Theorem Let H be a Hilbert space. There are one-one correspondences between

Non void bounded above orthogonal sets of H and structures of commutative

Hilbertian Frobenius semigroups on H with a non-zero multiplication.

Bounded above orthogonal bases of H and structures of semisimple commutative Hilbertian

Frobenius semigroups on H.

Non void orthonormal sets of H and structures of commutative Hilbertian

Frobenius semigroups on H, whose comultiplication is a non-zero partial isometry.

Orthonormal bases of H and structures of commutative special Hilbertian

Frobenius semigroups. The corresponding semigroups all are unitarily isomorphic.

5. The empty orthogonal set corresponds to the unique structure of radical Frobenius semigroup on H.

Proof: Let X be a non void bounded above orthogonal family of H with bound

C > 0. Let u, v ∈ H. Then, ∑ x∈X x 2 ⟨u, x x ⟩ 2 ⟨v, x x ⟩ 2 ≤ C 2 u 2 v 2 . One thus defines m X ∶ H × H → H by m X (u, v) ∶= ∑ x∈X ⟨u, x⟩⟨v, x⟩ x x 2 . As m X (x, x) = x 2 x, x ∈ X, m X is non-zero. One notices that m X (u, v) = 0 whenever u ∈ X ⊥ or v ∈ X ⊥ . m X is a weak Hilbert-Schmidt mapping since ∑ x,y∈X ⟨m X ( x x , y y ), u⟩ 2 ≤ C 2 u 2 , u ∈ H. Let µ X ∶ H ⊗2 H → H be the unique linear extension of m X , that is, µ X (u ⊗ v) = ∑ x∈X ⟨u, x⟩⟨v, x⟩ x x 2 . (H, µ X
) is of course a Hilbertian semigroup, with a non-zero multiplication. As for u ∈ H, µ X ( x x ⊗ y y ) = δ x,y x, x, y ∈ X, and ⟨µ †

X (u), v ⊗ w⟩ = ⟨u, µ X (v ⊗ w)⟩ = 0 for v ∈ X ⊥ or w ∈ X ⊥ , it follows that µ † X (u) = ∑ x∈X ⟨u, x⟩ x x ⊗ x x from which one sees that G(H, µ X ) = X. More- over µ † X (µ X (u ⊗ v)) = µ † X (∑ x∈X ⟨u, x⟩⟨v, x⟩ x x 2 ) = ∑ x∈X ⟨u, x⟩⟨v, x⟩ x x ⊗ x x while (id ⊗2 µ X )(α H,H,H (µ † X (u)⊗v)) = (id⊗µ X )(∑ x∈X ⟨u, x⟩ x x ⊗( x x ⊗v)) = ∑ x∈X ⟨u, x⟩ x x ⊗ µ X ( x x ⊗ v) = ∑ x∈X ⟨u, x⟩⟨v, x⟩ x x ⊗ x x as µ( x x ⊗ v) = ⟨v, x⟩ x
x . This proves that (H, µ X ) is Frobenius. By the way, if X is an orthogonal basis, then (H, µ X ) is a semisimple commutative Hilbertian Frobenius semigroup.

Conversely, if (H, µ) is a (semisimple) commutative Hilbertian Frobenius semigroup with a non-zero multiplication, thus (H, µ) is not radical, then G(H, µ) is a non-void bounded orthogonal family (basis), with bound µ op > 0 by Lemmas 14 and 16. It is easily checked that µ G(H,µ) = µ. Therefore the first two statements of the theorem are proved.

The third and fourth statements are proved similarly by considering orthonormal families (bases) rather than orthogonal families (bases), and by the following discussion. If X is an orthonormal family, then for

x ∈ X, µ † X (µ X (µ † X (x))) = x ⊗ x = µ † X (x) so that µ † X is indeed a partial isometry since also for u ∈ X ⊥ , µ † (u) = 0 = µ † X (µ X (µ † X (u))). Of course if X = ∅, then µ X = 0 and thus so is µ † X .
Conversely assuming that (H, µ) is a commutative Hilbertian Frobenius semigroup with µ † (or µ) a non-zero partial isometry, then for each

x ∈ G(H, µ), x 2 x ⊗ x = µ † (x 2 ) = µ † (µ(µ † (x))) = µ † (x) = x ⊗ x, so that x = 1, and G(H, µ) is indeed an orthonormal family.
Let X, Y be two orthonormal bases of H. Let X π → Y be a bijection. Then it is easily check that (H, µ X )

Π → (H, µ Y ) is a semigroup isomorphism where Π(x) ∶= π(x), x ∈ X.
The last statement is obvious. ◻

Due to the Lemma below, one may substitute in Theorem 37, "bounded above" by "bounded below" and the resulting statements are still valid.

38 Lemma Let H be a Hilbert space. There is a one-one correspondence Θ between the bounded above and the bounded below orthogonal sets of H, which preserves the cardinality (in particular it sends ∅ to itself). More precisely for each bounded above orthogonal set X of H, X ≃ Θ(X) under x ↦ x x 2 and the corresponding orthonormal sets {

x x ∶ x ∈ X } and { x x ∶ x ∈ Θ(X) } are equal. Proof: Given an orthogonal basis X of H, let Θ(X) ∶= { x x 2 ∶ x ∈ X } is an orthogonal family too. Of course Θ(∅) = ∅. Note that X ≃ Θ(X) under x ↦ x x 2 . Assume that X = ∅. Since for each x ∈ X, x x 2 = 1
x , X is bounded above (resp. below) by C if, and only if, Θ(X) is bounded below (resp. above) by 1 C . Observe that in any case, Θ(Θ(X)) = X so the required bijection is obtained. It is clear that for each orthogonal set X of H, { x

x ∶ x ∈ X } and { x x ∶ x ∈ Θ(X) } are equal. ◻

H * -algebras

It is possible to characterize Hilbertian Frobenius semigroups using Ambrose's concept of H * -algebras [START_REF] Ambrose | Structure theorems for a special class of Banach algebras[END_REF] or conversely to characterize commutative H * -algebras in an involution-free way. Let (H, µ) be a (commutative) Hilbertian algebra and let u ∈ H. By a H * -adjoint of u is meant a member v of H such that M † u = M v , that is, for every w, w ′ ∈ H, ⟨uw, w ′ ⟩ = ⟨w, vw ′ ⟩. (H, µ) is a Hilbertian H * -algebra when every element of H has a H * -adjoint.

39 Proposition Let (H, µ) be a Hilbertian algebra. (H, µ) is a Hilbertian H *algebra if, and only if, (H, µ) a Hilbertian Frobenius semigroup.

Proof: For each u, w ∈ H, (M u ⊗2 id)(µ † (w)) = (µ ⊗2 id)(α -1 ((id ⊗2 µ † )(u ⊗ w)). Indeed let X be an orthonormal basis of H. Then, µ † (w) = ∑ x,y∈X ⟨µ † (w), x ⊗ y⟩x ⊗ y. Therefore, (µ ⊗2 id)(α -1 ((id ⊗2 µ † )(u ⊗ w)) = ∑ x,y∈X ⟨µ † (w), x ⊗ y⟩(ux) ⊗ y = (M u ⊗2 id)(µ † (w)).
Let us assume that (H, µ) is a Hilbertian H * -algebra. Let u ∈ H and let v be a H * -adjoint of u. Let w, w ′ , w ′′ ∈ H. One has

⟨µ † (uw), w ′ ⊗ w ′′ ⟩ = ⟨uw, w ′ w ′′ ⟩ = ⟨w, vw ′ w ′′ ⟩ = ⟨w, M v (w ′ )w ′′ ⟩ = ⟨w, µ((M v ⊗2 id)(w ′ ⊗ w ′′ ))⟩ = ⟨µ † (w), (M v ⊗2 id)(w ′ ⊗ w ′′ )⟩ = ⟨(M † v ⊗2 id)(µ † (w)), w ′ ⊗ w ′′ ⟩ = ⟨(M u ⊗2 id)(µ † (w)), w ′ ⊗ w ′′ ⟩ = ⟨(µ ⊗2 id)(α -1 ((id ⊗2 µ † )(u ⊗ w)), w ′ ⊗ w ′′ ⟩.
(by the above) 

(8) Therefore µ † (uw) -(µ ⊗2 id)(α -1 ((id ⊗2 µ † )(u ⊗ w)) ∈ (H ⊗ C H) ⊥ = 0,
1 x 2 ⟨x, u⟩x. Of course p J (u * ) = 0. Now, let u, v, w ∈ H. Then, ⟨uv, w⟩ = ⟨p J ⊥ (u)p J ⊥ (v), w⟩ (according to Remark 8) = ⟨p J ⊥ (u)p J ⊥ (v), p J ⊥ (w)⟩ (as J ⊥ is a subalgebra by Theorem 30) = ∑ x∈G(H,µ) 1 x 2 ⟨u, x⟩⟨v, x⟩⟨w, x⟩ = ∑ x∈G(H,µ) 1 x 2 ⟨v, x⟩⟨x, u⟩⟨w, x⟩ = ⟨p J ⊥ (v), u * p J ⊥ (w)⟩ = ⟨p J ⊥ (v), u * w⟩ = ⟨v, u * w⟩. (as u * w ∈ J ⊥ ) (9) 
Therefore (H, µ) is a Hilbertian H * -algebra. 

Approximate (co)units

Any semisimple commutative Hilbertian Frobenius semigroup (H, µ) has an approximate unit. (This was already noticed in [START_REF] Abramsky | H * -algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics[END_REF] for H separable and µ isometric, under the assumption, redundant by Theorem 33, of semisimplicity of (H, µ).)

To see that, let us first denote by P fin (X) the set of all finite subsets of some set X directed under inclusion. Let (H, µ) be a commutative Hilbertian Frobenius semigroup. For F ∈ P fin (G(H, µ)), let e F ∶= ∑ x∈F x x 2 . Then, for each u ∈ H, u is the limit of the directed net (ue F ) F = (∑ x∈F ⟨u, x

x ⟩ x x ) F , that is, for each > 0, there exists F ∈ P fin (G(H, µ)) such that for all F ∈ P fin (G(H, µ)) with F ⊆ F , p J ⊥ (u)ue F < . (This is clear since p J ⊥ (u) is precisely the sum of the summable family (⟨u, x

x ⟩ x x ) x∈G(H,µ) .) More generally let (H, µ) be a Hilbertian semigroup and let (e λ ) λ∈Λ be a directed net on H, that is, Λ is a directed set and e λ ∈ H, λ ∈ Λ. (e λ ) λ is an approximate unit when ue λ → u in the norm topology, for each u ∈ H. By its very definition the existence of an approximate unit forces the multiplication µ to have a dense range.

Let (H, µ) be a Hilbertian semigroup and let (H

λ → C) λ∈Λ where Λ is a directed set. Call ( λ ) λ an approximate counit when for each u ∈ H, (id ⊗ λ )(µ † (u)) -u ⊗ 1 H ⊗2 H → 0.
The existence of such an approximate counit forces µ † to be one-to-one. Conversely given a Hilbertian Frobenius semigroup (H, µ), let

F (u) ∶= ∑ x∈F ⟨u, x x ⟩ for F ∈ P fin (G(H, µ)) and u ∈ H. Then, (id ⊗2 F )(µ † (u)) = ∑ x∈F x x ⊗ ⟨u, x x ⟩ → p J ⊥ (u) ⊗ 1. Whence if (H, µ) is semisimple, then F is an approximate counit.
All of this may be combined as a corollary of Theorem 33.

41 Corollary A Hilbertian Frobenius semigroup is semisimple if, and only if, it has an approximate unit if, and only if, it has an approximate counit. In particular each special Hilbertian Frobenius semigroup has an approximate unit and an approximate counit.

Reformulation of the Structure Theorem as an equivalences of categories

In this section is showed that the splitting of an Hilbertian Frobenius semigroup into the orthogonal direct sum of a semisimple and a radical Hilbertian Frobenius semigroups may in fact be recasted into an equivalence between c FrobSem(Hilb) and the product category semisimple,c FrobSem(Hilb) × Hilb.

Let (H, µ) be a commutative Hilbertian Frobenius algebra. The closure ran(µ) of the range of µ is also equal to H 2 , with H 2 ∶= ⟨xy∶ x, y ∈ H⟩. Now (H 2 ) ⊥ = A(H, µ) as it follows easily from the existence of H * -adjoints. Consequently, ran(µ) = J ⊥ by Proposition 29. One now defines P (H, µ) ∶= (J ⊥ , µ J ⊥ ) (see Corollary 31).

42 Proposition (H, µ) ↦ P (H, µ) extends to a functor P from c FrobSem(Hilb) to semisimple,c FrobSem(Hilb) which is a right adjoint left inverse of the full embedding functor E∶ semisimple,c FrobSem(Hilb) ↪ c FromSem(Hilb).

Proof: Let (H, µ) f → (K, γ) be a semigroup map between Hilbertian Frobenius semigroups. As f (H 2 ) ⊆ K 2 , it follows that f (H 2 ) ⊆ f (H 2 ) ⊆ K 2 . Whence P (H, µ) f → P (K, γ
) is defined as the co-restriction of f . In particular, P (f ) = π P (K,γ) ○ f ○ i P (H,µ) and thus P (f ) is bounded. By Corollary 31, P (H, µ) = J ⊥ is a semisimple Hilbertian Frobenius semigroup, under the co-restriction of µ. i P (H,µ) is a semigroup morphism since J(H, µ) ⊥ is a subalgebra, and π P (K,γ) = i † P (K,γ) is a semigroup morphism too since J(K, γ) ⊥ is a subcoalgebra, so that P (f ) is indeed a morphism of semigroups, and thus one obtains the desired functor. P is of course a left inverse of E. Now let (H, µ) be a semisimple Hilbertian Frobenius semigroup and let (K, γ) be a Hilbertian Frobenius semigroup. Let (H, µ)

f → P (K, γ) be a morphism of semigroups. Define f ♯ ∶= (H, µ) f → P (K, γ) i P (K,γ) → (K, γ). Then P (f ♯ ) = f as i P (K,γ) ○ P (f ♯ ) = f ♯ ○ i P (H,µ) = f ♯ = i P (K,γ) ○ f (as P (H, µ) = (H, µ)) and i P (K,γ) is a monomorphism. Now let (H, µ) = P (H, µ) g → (K, γ) such that P (g) = f . Then f ♯ = i P (K,γ) ○ f = i P (K,γ) ○ P (g) = g ○ i P (H,µ) = g. ◻
One may also define a functor J∶ c FrobSem(Hilb) → Hilb as follows. Let f ∶ (H, µ) → (K, γ) be a semigroup map. Then, f † ∶ (K, γ † ) → (H, µ † ) is a cosemigroup map, and thus f † (G(K, γ)) ⊆ G(H, µ) ∪ { 0 }. By linearity and continuity, f † (J(K, γ) ⊥ ) ⊆ J(H, µ) ⊥ and thus f (J(H, µ)) ⊆ J(K, γ) by Lemma 1. Then let J(f ) be the co-restriction of f thus obtained. Clearly this provides a functor J∶ c FrobSem(Hilb) → Hilb.

In the opposite direction let T ∶ Hilb → c FrobSem(Hilb) be the full embedding functor, T (H 11 Remark The functor P should not be confused with the functor J(-) ⊥ occurring in [21, Theorem 24, p. 17]. The functor J as introduced above corresponds to -○ J, where J is as in [21, Theorem 24, p. 17] andis the forgetful functor from radical Frobenius algebras to Hilbert spaces.

f → K) ∶= (H, 0) f → (K, 0).
In the two results below one identifies external and internal orthogonal direct sums.

Let (H, µ) and (K, γ) be two commutative Hilbertian algebras. By additivity of ⊗2 , (H ⊕ 2 K) ⊗2 (H ⊕ 2 K) has the following coproduct presentation.

H ⊗2 H i H ⊗2 i H ( ( H ⊗2 K i H ⊗2 i K v v (H ⊕ 2 K) ⊗2 (H ⊕ 2 K) K ⊗2 H i J ⊗2 i H 6 6 K ⊗2 K i K ⊗2 i K h h (10)
44 Proposition Let (H, µ) and (K, γ) be Hilbertian semigroups. Let ρ∶

(H ⊕ 2 K) ⊗2 (H ⊕ 2 K) → H ⊕ 2 K be defined by ρ ○ (i H ⊗2 i H ) ∶= i H ○ µ, ρ ○ (i K ⊗2 i K ) = i K ○ γ and ρ ○ ((i H ⊗2 i K ) ⊕ 2 (i K ⊗2 i H )) = 0. Then, (H ⊕ 2 K, ρ) is a Hilbertian algebra, (H, µ) i H → (H ⊕ 2 K, ρ) i K ← (K, γ) are morphisms of semigroups, and ρ † ○ i H = (i H ⊗2 i H ) ○ µ † , ρ † ○ i K = (i K ⊗2 i K ) ○ γ † , that is, (H, µ † ) i H → (H ⊕ 2 K, ρ † ) i K ← (K, γ † )
are morphisms of cosemigroups as well.

Moreover if both (H, µ) and (K, γ) are Frobenius, then so is (H ⊕ 2 K, ρ), and in this case, J(H

⊕ 2 K, ρ) = J(H, µ) ⊕ 2 J(K, γ) and J(H ⊕ 2 H, ρ) ⊥ = J(H, µ) ⊥ ⊕ 2 J(K, γ) ⊥ . In particular, if (H, µ) is semisimple and (K, γ) is radical, then J(H ⊕ 2 K, ρ) = K and J(H ⊕ 2 K, ρ) † = H. Proof: That (H ⊕ 2 K, ρ) is indeed a Hilbertian algebra is easily checked. It is then clear, from the very definition of ρ, that (H, µ) i H → (H ⊕ 2 K, ρ) i K ← (K, γ) are morphisms of semigroups. Let x ∈ H, u, u ′ ∈ H, v, v ′ ∈ K. Then, ⟨ρ † (x), (u + v) ⊗ (u ′ + v ′ )⟩ = ⟨ρ † (x), u ⊗ u ′ + u ⊗ v ′ + v ⊗ u ′ + v ⊗ v ′ ⟩ = ⟨x, µ(u ⊗ u ′ ) + γ(v ⊗ v ′ )⟩ = ⟨x, µ(u ⊗ u ′ )⟩ (since γ(v, v ′ ) ∈ K) = ⟨µ † (x), u ⊗ u ′ ⟩ = ⟨i H ⊗2 H (µ † (x)), u ⊗ u ′ + u ⊗ v ′ + v ⊗ u ′ + v ⊗ v ′ ⟩ = ⟨i H ⊗2 H (µ † (x)), (u + v) ⊗ (u ′ + v ′ )⟩. (11) As a matter of fact, ρ † (x) ∈ ((H ⊗2 K) ⊕ 2 (K ⊗2 H) ⊕ 2 (K ⊗2 K)) ⊥ = H ⊗2 H. Likewise ρ † (x) ∈ K ⊗2 K for each x ∈ K. Consequently, ρ † ○ i H = (i H ⊗2 i H ) ○ µ † , ρ † ○ i K = (i K ⊗2 i K ) ○ γ † , and thus (H, µ † ) i H → (H ⊕ 2 K, ρ † ) i K ← (K, γ † ) are morphisms of cosemigroups.
Let us now assume that both (H, µ) and

(K, γ) are Frobenius. Let u, u ′ ∈ H, v, v ′ ∈ K. ρ † (ρ((u + v) ⊗ (u ′ + v ′ ))) = ρ † (µ(u ⊗ u ′ ) + γ(v ⊗ v ′ )) = ρ † (µ(u ⊗ u ′ )) + ρ † (γ(v ⊗ v ′ )) = µ † (µ(u ⊗ u ′ )) + γ † (γ(v ⊗ v ′ )) = (id ⊗2 µ)(α((µ † ⊗id)(u ⊗ u ′ ))) + (id ⊗2 γ)(α((γ † ⊗id)(u ⊗ u ′ ))) = (id ⊗2 ρ)(α((µ † ⊗id)(u ⊗ u ′ )) + α((γ † ⊗id)(u ⊗ u ′ ))) = (id ⊗2 ρ)(α(((µ † + γ † ) ⊗2 id)(u ⊗ u ′ + v ⊗ v ′ ))) = (id ⊗2 ρ)(α(((µ † + γ † ) ⊗2 id)((u + v) ⊗2 (u ′ + v ′ )))) (as γ((H ⊗2 K) ⊕ 2 (K ⊗2 H)) = 0) = (id ⊗2 ρ)(α((ρ † ⊗2 id)((u + v) ⊗2 (u ′ + v ′ )))). (12) Consequently, (H ⊕ 2 K, ρ) is Frobenius as well. Let u + v ∈ A(H ⊕ 2 K, ρ), u ∈ H, v ∈ K. Then 0 = ρ bil (u+v, u ′ +v ′ ) = µ bil (u, u ′ )+γ bil (v, v ′ ). In particular, u ∈ A(H, µ) = J(H, µ) and v ∈ A(K, γ) = J(K, γ), and u + v ∈ J(H, µ) ⊕ 2 J(Kγ). Conversely, let u ∈ J(H, µ), v ∈ J(K, γ). Then, u + v ∈ A(H ⊕ 2 K, ρ) since ρ bil (u + v, u ′ + v ′ ) = µ bil (u, u ′ ) + γ bil (v, v ′ ) = 0 for all u ′ ∈ H, v ′ ∈ K. Thus, J(H ⊕ 2 K, ρ) = A(H ⊕ 2 K, ρ) = J(H, µ) ⊕ 2 J(K, γ). As a result, J(H ⊕ 2 K, ρ) ⊥ = (J(H, µ) ⊕ 2 J(K, γ)) ⊥ = J(H, µ) ⊥ ⊕2 J(K, γ) ⊥ . The last assertion is immediate. ◻ 12 Remark The construction O((H, µ), (K, γ)) ∶= (H ⊕ 2 K, ρ) extends to a functor O∶ c Sem(Hilb) × c Sem(Hilb) → c Sem(Hilb) as follows: let (H, µ) f → (H ′ , µ ′ ) and (K, γ) g → (K ′ , γ ′ ) be morphisms of semigroups, let f ⊕ 2 g∶ H ⊕ 2 K → H ′ ⊕ K ′ , be given by (f ⊕ 2 g)(u + v) = f (u) + g(v), u ∈ H, v ∈ K. Then, O(f, g) ∶= (H ⊕ 2 K, ρ) f ⊕ 2 g → (H ′ ⊕ 2 K ′ , ρ ′
) is a morphism of semigroups. One also has a functor O∶ c FrobSem(Hilb) × c FrobSem(Hilb) → c FrobSem(Hilb) given by co-restriction.

45 Lemma Let f ∶ (H, µ) → (K, γ) be a c FrobSem(Hilb)-morphism, then f = P (f )⊕ 2 J(f ).
46 Proposition c FrobSem(Hilb) is equivalent to semisimple,c FrobSem(Hilb)×Hilb.

Proof:

It suffices to prove that the functor ⟨P, J⟩ from c FrobSem(Hilb) to semisimple,c FrobSem(Hilb)×Hilb, (H, µ) ↦ (P (H, µ), J(H, µ)), is the required equivalence of categories. Let ((H, µ), K) be an object of semisimple,c FrobSem(Hilb) × Hilb. Then, ((H, µ), K) ≃ (P (H ⊕ 2 K, ρ), J(H ⊕ 2 K, ρ)) by Proposition 44. By Lemma 45, ⟨P, V ⟩ is faithful. Let (H, µ), (K, γ) be Frobenius semigroups and let

(P (H, µ) f → P (K, γ), J(H, µ) g → J(K, γ
)) be a pair consisting of a morphism of semigroups and a bounded linear map respectively. Let us consider the bounded linear map

(f ⊕ 2 g)∶ H → K given by (f ⊕ 2 g)(u + v) = f (u) + g(v), u ∈ J(H, µ) † , v ∈ J(H, µ). Let u ′ ∈ J(H, µ) † and v ′ ∈ J(H, µ). Then, (f ⊕ 2 g)((u + v)(u ′ + v ′ )) = (f ⊕ 2 g)(uu ′ ) = f (uu ′ ) = f (u)f (u ′ ) = (f (u) + g(v))(f (u ′ ) + g(v ′ )) = ((f ⊕ 2 g)(u + v))((f ⊕ 2 g)(u ′ + v ′ )). Consequently (f ⊕ 2 g) is a semigroup map. Of course, P (f ⊕ 2 g) = f and J(f ⊕ 2 g) = g, so that ⟨P, J⟩ is full. ◻ 47 Corollary
The categories c FrobSem(FdHilb) and semisimple,c FrobSem(FdHilb)× FdHilb are equivalent.

Let partiso,c FrobSem(Hilb) be the full subcategory of c FrobSem(Hilb) spanned by those Hilbertian Frobenius algebras (H, µ) where µ † is a partial isometry. Recall also that † c FrobSem(Hilb) is the category of special commutative Hilbertian Frobenius semigroups. Let (H, µ) be an object of partiso,c FrobSem(Hilb). As µ † restricts to an isometry from (ker µ † ) ⊥ = (ran µ) ⊥⊥ = J ⊥ to H ⊗2 H ([18, p. 404]), it is clear that P (H, µ) is an object of † c FrobSem(Hilb). The following result then follows easily.

48 Corollary The equivalence from Proposition 46 restricts to an equivalence between partiso,c FrobSem(Hilb) and † c FrobSem(Hilb) × Hilb.

Equivalences of semisimple Frobenius semigroups and weighted pointed sets

The one-one correspondence between structures of semisimple Hilbertian Frobenius semigroups on a given Hilbert space and its bounded below (or above) orthogonal bases (Theorem 37) may be upgraded to an equivalence between semsimple,c FrobSem(Hilb) and a category of pointed sets.

Categories of pointed sets with a weight function

Let WSet • be the following category of weighted pointed sets. Its objects are pointed sets (X, x 0 , α) together with a weight function, i.e., a map α∶ X ∖ {

x 0 } → [C α , +∞[ for some C α > 0. A morphism (X, x 0 , α) f → (Y, y 0 , β) is a base-point preserving map (X, x 0 ) f → (Y, y 0 ) such that • For each y = y 0 , f -1 ({ y }) < +∞,
• There exists a real number M f ≥ 0 such that for all y = y 0 ,

∑ x∈f -1 ({ y }) α(x) ≤ M f β(y).
Under the usual composition this indeed forms a category.

In [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] is introduced the category Set •,<+∞ the objects of which are pointed sets (X, x 0 ) and morphisms (X, x 0 ) f → (Y, y 0 ) are those base-point preserving maps such that (1) f -1 ({ y }) is finite for each y = y 0 and (2)

B f ∶= sup y =y 0 f -1 ({ y }) < +∞. 49 Lemma Set •,<+∞ fully embeds into WSet • . Proof: The functor E∶ Set •,<+∞ → WSet • , E(X, x 0 ) ∶= (X, x 0 , 1) with 1(x) = 1, x = x 0 , E(f ) ∶= f ,
is an injective on objects, fully faithful functor. ◻ 50 Lemma Let f ∈ WSet • ((X, x 0 , α), (Y, y 0 , β)) with β bounded above. Then, f ∈ Set •,<+∞ ((X, x 0 ), (Y, y 0 )).

Proof: Let y = y 0 . f -1 ({ y }) ≤ 1 Cα ∑ x∈f -1 ({ y }) α(x) ≤ M f Cα β(y) ≤ M f
Cα sup y =y 0 β(y) so that sup y =y 0 f -1 ({ y }) ≤ 1 Cα M f sup y =y 0 β(y) < +∞. ◻

Let us define bnd WSet • (resp. unbnd WSet • ) be the full subcategory of WSet • spanned by those objects (X, x 0 , α) with α bounded above (resp. unbounded).

51 Lemma bnd WSet • is equivalent to Set •,<+∞ . Moreover no object of bnd WSet • is isomorphic to an object of unbnd WSet • .

Proof:

By Lemma 50, for (X, x 0 , α)

f → (Y, y 0 , β) with α, β bounded above, (X, x 0 ) f → (Y, y 0 ) is a morphism in Set •,<+∞ .
This defines in an obvious way a functor U ∶ bnd WSet • → Set •,<+∞ . This functor is readily faithful. Let (X, x 0 , α), (Y, y 0 , β) with bounded α, β and let (X,

x 0 ) f → (Y, y 0 ) in Set •,<+∞ . Then, for y = y 0 , ∑ x∈f -1 ({ y }) α(x) ≤ sup x =x 0 α(x) B f ∞ ≤ sup x =x 0 α(x) B f ∞ 1 C β β(y).
Whence U is full. Of course, U is surjective on objects because U (X, x 0 , 1) = (X, x 0 ). Now, let (X, x 0 , α) and (Y, y 0 , β) with α bounded, and β unbounded. Let

(X, x 0 , α) φ → (Y, y 0 , β) be an isomorphism in WSet • . In particular, X φ → Y is a bijection with φ(x 0 ) = y 0 . Let θ ∶= φ -1 which is a morphism in WSet • too. Then, for all x = x 0 , β(φ(x)) = ∑ y∈θ -1 ({ x }) β(y) ≤ M f α(x). In particular, sup y =y 0 β(y) = sup x =x 0 β(φ(x)) ≤ M f sup x =x 0 α(x) < +∞ which is a contradiction. ◻

The set of minimal ideals functor

Let (H, µ) be a Hilbertian Frobenius algebra.

52 Lemma E(H, µ) ⊆ ⟨G(H, µ)⟩ ⊆ J(H, µ) † . More precisely, if e is an idempotent element, then the support of e S e ∶= { g ∈ G(H, µ)∶ ⟨e, g⟩ = 0 } is the (unique) finite subset of G(H, µ) such that e = ∑ g∈Se g g 2 .

Proof: That E(H, µ) ⊆ J(H, µ) † follows from [START_REF] Bade | The Wedderburn decomposability of some commutative Banach algebras[END_REF]Lemma 3.3,p. 112] since H = J(H, µ) ⊥ ⊕ 2 J(H, µ) and J(H, µ) ⊥ is a subalgebra by the Structure Theorem for Hilbertian Frobenius semigroups (Theorem 30).

Let e = ∑ g∈G(H,µ) ⟨e, g g ⟩ g g be an idempotent element. e 2 = ∑ g∈G(H,µ) (since G(H, µ) is an orthogonal family). But for each group-like element g, 1 Lemma 18) and ∑ g∈Se

1 g 2 ⟨e, g⟩ 2 g. But e 2 = e so that for each g ∈ G(H, µ), ⟨e, g⟩ ∈ { 0, 1 }. Let S e ∶= { g ∈ G(H, µ)∶ ⟨e, g⟩ = 0 }. Then, e = ∑ g∈Se
µ 2 op ≤ 1 g 2 (by
1 µ 2 op = Se µ 2
op ≤ e 2 , so that S e < +∞. Uniqueness of S e is clear since ( g g ) g is an orthonormal basis. ◻

As usually let e ≤ f be defined as ef = e, for e, f ∈ E(H, µ), and call minimal an idempotent which is minimal in (E(H, µ), ≤). Let M in(E(H, µ)) be the set of all these minimal idempotent elements.

As Lemma 52 actually establishes a one-one correspondence e ↦ S e , between E(H, µ) and the set P fin (G(H, µ)) of finite subsets of group-like elements, and as under this bijection the product of idempotents corresponds to the intersection of their supports, ≤ corresponds to the usual inclusion of sets. Consequently M in(E(H, µ)) = { g g 2 ∶ g ∈ G(H, µ) }. 

) } = { g g ∶ g ∈ G(H, µ) }.
53 Lemma Let I = He for some idempotent e of (H, µ). Then, I ⊆ J(H, µ) ⊥ and I ⊥ is a modular ideal with modular unit e.

Proof: That I ⊆ J(H, µ) ⊥ is clear since e ∈ J(H, µ) ⊥ (Lemma 52), J(H, µ) ⊥ is a subalgebra (Lemma 18) and J(H, µ)J(H, µ) ⊥ = 0 (Proposition 29). I ⊥ is indeed an ideal (Corollary 40). To prove that e is a modular unit of I ⊥ it suffices to check that ⟨uue, ve⟩ = 0 for each u, v ∈ H, which is left to the readers. ◻

Let I be an ideal of (H, µ) contained in J(H, µ) ⊥ and such that I = (0). Then, I 2 = (0). (Indeed if I 2 = (0), then for each x ∈ I, x 2 = 0. But then x ∈ J(H, µ) ∩ I ⊆ J(H, µ) ∩ J(H, µ) ⊥ = (0), that is, x = 0.) 54 Lemma Let I be a minimal ideal. Then, I = Cg = C g g 2 for a unique group-like element g, in particular I ⊆ J(H, µ) ⊥ . Equivalently, I = Ce = C e e 2 for a unique minimal idempotent element e. e may be characterized as the unit of I qua a semigroup. Finally, (-) ⊥ establishes a one-one correspondence between the set of all maximal regular ideals of (H, µ) and the set M in(H, µ) of all its minimal ideals.

Proof: By the above observation and by Brauer's lemma ([19, p. 162]), I = He for a non-zero idempotent e of (H, µ).

Since I is minimal, I ⊥ is maximal (Corollary 40). It is modular by Lemma 53. Therefore I ⊥ = (Cg) ⊥ for a unique group-like element g of (H, µ). Since Cg is finite dimensional, it is closed and thus I = I ⊥⊥ = (Cg) ⊥⊥ = Cg. Since I ⊆ Cg, I also is finite dimensional so I = Cg. (This in particular shows that I ↦ I ⊥ is a bijection from the set of all minimal ideals of (H, µ) to the set of all its maximal regular ideals since Cg certainly is a minimal ideal for each group-like element g by Remark 8.)

Let h ∈ G(H, µ) such that C g g 2 = I = C h h 2 , then h ∈ Cg but this is possible only if g = h since G(H, µ) is linearly independent (it is an orthogonal family). This proves uniqueness of the group-like generator g of I, and thus also of its idempotent generator g g 2 . That g g 2 is a unit element for I is also clear. ◻

Let I be a minimal ideal of (H, µ). Let g (I) and e (I) be respectively its grouplike and its idempotent generators, provided by Lemma 14 Remark For convenience one still denotes by g (resp. e ) the bijection from M in(H, µ)∪{ 0 } (resp. M in(H, µ)∪{ 0 }) onto G(H, µ)∪{ 0 } (resp. M in(E(H, µ))∪ { 0 }) obtained from the original g (resp. e ) by setting g (0) ∶= 0 (resp. e (0) ∶= 0).

Let (H, µ) be a Hilbertian Frobenius semigroup. One recalls from Lemma 16, that for each g ∈ G(H, µ), g ≤ µ op . (This is true even for G(H, µ) = ∅, or equivalently for µ = 0.) So in particular for each e ∈ M in(E(H, µ)), 1 e = e e 2 ≤ µ op . This is equivalent to 1 µ op ≤ e , e ∈ M in(E(H, µ)) but only for a non void M in(E(H, µ)) or equivalently for µ = 0. Nevertheless even when µ = 0, M in(E(H, µ)) is bounded below since it is void. In order to avoid statements by cases where µ = 0 or µ = 0, one defines the bound of (H, µ).

1 Definition Let (H, µ) be a Hilbertian Frobenius semigroup. Define the bound b(H, µ) > 0 of (H, µ) by b(H, µ) ∶=

1 if µ = 0 µ op if µ = 0 . For each g ∈ G(H, µ),
g ≤ b(H, µ). So in particular for each e ∈ M in(E(H, µ)), 1 e = e e 2 ≤ b(H, µ). This is equivalent, even for µ = 0, to

1 b(H,µ) ≤ e , e ∈ M in(E(H, µ)). One de- fines w (H,µ) ∶ M in(H, µ) → [ 1 b(H,µ) 2 , +∞[ by w (H,µ) (I) ∶= 1 g (I) 2 = e (I) 2 . Let M in • (H, µ) ∶= (M in(H, µ) ∪ { 0 }, 0, w (H,µ)
). One defines bnd,c FrobSem(Hilb) and unbnd,c FrobSem(Hilb) as the full subcategories of c FrobSem(Hilb) spanned by the semigroups (H, µ) with w (H,µ) bounded above, and respectively unbounded above. We also consider semisimple,bnd,c FrobSem(Hilb) and semisimple,unbnd,c FrobSem(Hilb).

Let (H, µ) f → (K, γ) be a semigroup map between Hilbertian Frobenius semigroups. Therefore (K, γ † )

f † → (H, µ † ) is a coalgebra map and thus f † (G(K, γ)) ⊆ G(H, µ) ∪ { 0 }.
Let ∶ M in(K, γ) → M in(H, µ) ∪ { 0 } be given by (J) = 0 if, and only if, f † ( g (J)) = 0, and (J) = I if, and only if, f † ( g (J)) = g (I). Therefore, for each J ∈ M in(K, γ) ∪ { 0 }, (J) = Cf † ( g (J)). (Observe that for J = 0 or for f † ( g (J)) = 0, (J) = C0 = 0.)

Let I ∈ M in(H, µ). Then, ⟨f ( e (I)), e (J) e (J) ⟩ = ⟨ e (I), e (J) f † ( e (J) e (J) 2 )⟩.

Consequently, for J ∈ M in(K, γ), ⟨f ( e (I)), e (J) e (J) ⟩ = 0 if, and only if, f † (g(J)) = 0 or f † (g(J)) = g(I ′ ) with I ′ = I, and ⟨f ( e (I)), e (J) e (J) ⟩ = ⟨ e (I), e (J) g(I)⟩ = e (J) e (I) 2 ⟨ e (I), e (I)⟩ = e (J) if, and only if, f † ( g (J)) = g (I) if, and only if, (J) = I.

Since f is a semigroup map, it sends an idempotent element of (H, µ) to one of (K, γ). Whence the image by f of an idempotent belongs to J(K, γ) ⊥ . Therefore, for each I ∈ M in(H, µ), f ( e (I)) = ∑ J∈M in(K,γ) ⟨f ( e (I)), e (J) e (J) ⟩ e (J) e (J) = ∑ J∈ -1 ({ I }) e (J) e (J) e (J) . Now for 2 for each J ∈ M in(K, γ), so necessarily -1 ({ I }) is finite.

I ∈ M in(H, µ), ∑ J∈ -1 ({ I }) b(K, γ) 2 e (J) 2 = b(K, γ) 2 f ( e (I)) 2 ≤ b(K, γ) 2 f 2 op e (I) 2 < +∞. But 1 ≤ b(K, γ) 2 e (J)
From the equality f ( e (I)) = ∑ J∈ -1 ({ I }) e (J) e (J) e (J) = ∑ J∈ -1 ({ I }) e (J) it follows that ∑ J∈ -1 ({ I }) e (J) 2 = f ( e (I)) 2 ≤ f 2 e (I) 2 for each I ∈ M in(H, µ).

Consequently,

∈ WSet • (M in • (K, γ), M in • (H, µ))
, where is extended to the whole of M in(K, γ) ∪ { 0 } by setting (0) ∶= 0.

Contravariance of f ↦ is clear so that one gets the set of minimal ideals functor M in • ∶ c FrobSem(Hilb) → WSet op

• . One also has the following restrictions

M in • ∶ semisimple,c FrobSem(Hilb) → WSet op • , M in • ∶ ? 1 ,c FrobSem(Hilb) → ? 2 WSet op •
where either ? 1 =? 2 ∈ { bnd, unbnd }, or ? 1 = (semisimple, ? 2 ) with ? 2 ∈ { bnd, unbnd }.

The 2 • functor

Let (X, x 0 , α) be an object of WSet

• . Define α + ∶ X → [C α , +∞[, 0 < C α , by α + (x) = α(x), x = x 0 , α + (x 0 ) ∶= C α .
One may consider the semisimple Hilbertian Frobenius algebra

(( 2 α + (X), ⟨⋅, ⋅⟩ α + ), µ X ) (Proposition 7). Let 2 • (X, x 0 , α) ∶= { u ∈ 2 α + (X)∶ u(x 0 ) = 0 } = δ ⊥ x 0 .
It is a closed subalgebra, since it is even a closed (maximal) ideal as the kernel of ⟨⋅, δ x 0 ⟩, and x 0 ∈ G( 2α + (X), µ X ). The Hilbertian algebra (( 2• (X, x 0 , α), ⟨⋅, ⋅⟩ α + ), (µ X )

δ ⊥ x 0
) is clearly unitarily iso-

morphic to (( 2 α (X ∖ { x 0 }), ⟨⋅, ⋅⟩ α ), µ X∖{ x 0 } ). As a matter of fact, 2 • (X, x 0 , α) is an object of semisimple,c FrobSem(Hilb), with G( 2 • (X, x 0 , α)) = { x α(x) ∶ x ∈ X ∖ { x 0 } } by Proposition 7.
In particular, when α is bounded above (resp. unbounded), then 2 • (X, x 0 , α) is an object of bnd,semisimple,c FrobSem(Hilb) (resp. unbnd,semisimple,c FrobSem(Hilb)).

Let f ∈ WSet • ((X, x 0 , α), (Y, y 0 , β)). Let u ∈ 2 • (Y, y 0 , β). Then, u ○ f ∈ 2

• (X, x 0 , α). Indeed, u(f (x 0 )) = u(y 0 ) = 0. Let A ⊆ X be a finite set. Then,

∑ x∈A∖{ x 0 } α(x) u(f (x)) 2 = ∑ y∈f (A)∖{ y 0 } ∑ x∈f -1 ({ y }) α(x) u(y) 2 ≤ ∑ y =y 0 M f β(y) u(y) 2 = M f u 2 β . (14) 
In particular u • functor from [START_REF] Poinsot | Hilbertian (function) algebras[END_REF] may be regarded as a functor with values in † c FrobSem(Hilb) or even in partiso,c FrobSem(Hilb), rather than in † c Sem(Hilb),

○ f α ≤ M 1 2 f u β . Since 2 • (f )∶ 2 • (Y, y 0 , β) → 2 • (X, x 0 , α), u ↦ u ○ f ,
f ⟩ α = ∑ x =x 0 α(x)u(x) g δ Cg (f (x)). Consequently, (f ♯ ) † (u) = g∈G(H,µ) g ⎛ ⎝ x∈f -1 ({ Cg }) α(x)u(x) ⎞ ⎠ g g = g∈G(H,µ) ⎛ ⎝ x∈f -1 ({ Cg }) α(x)u(x) ⎞ ⎠ g. ( 
) In particular, for x ∈ X ∖{ x 0 }, (f ♯ ) † ( δx α(x) ) = α(x) α(x) g (f (x)) = g (f (x)). (Recall that g (0) = 0 by Remark 14.) This is equivalent to M in • (f ♯ )(Cδ x ) = f (x), x ∈ X ∖{ x 0 }. In other words, M in • (f ♯ ) ○ (X,x 0 ,α) = f . Now let h∶ (H, µ) → 2 • (X, x 0 , α) be a semigroup map such that M in • (h † ) ○ (X,x 0 ,α) = f . Then, for each x = x 0 , x ∈ X, h † ( δx α(x) ) = g (f (x)) = (f ♯ ) † ( δx α(x) ). Since { δx α(x) ∶ x ∈ X ∖ { x 0 } } is dense into 2 • (X, x 0 , α x ) it follows that h † = (f ♯ ) † , that is, h = f ♯ . 16 
The proof for the adjunction will be concluded when naturality of ( (X,x 0 ,α) ) (X,x 0 ,α) will be proved. This is equivalent to the requirement that for each (X, x 0 , α)

f → (Y, y 0 , β), M in • ( 2 • (f ))(Cδ x ) = Cδ f (x) , x ∈ X ∖ { x 0 } with f (x) = y 0 , and also that M in • ( 2 • (f ))(Cδ x ) = 0, x ∈ X ∖ { x 0 } with f (x) = y 0 . But M in • ( 2 • (f ))(Cδ x ) = C(( 2 • (f )) † ( g (Cδ x ))). Naturality thus is equivalent to ( 2 • (f )) † ( δx α(x) ) = δ f (x) β(f (x)) , x ∈ X ∖ { x 0 }, f (x) = y 0 , since δx α(x) = g (Cδ x ) and in this case g (Cδ f (x) ) = δ f (x) β(f (x) , and ( 2 • (f )) † ( δx α(x) ) = 0, x ∈ X ∖ { x 0 }, f (x) = y 0 . So one has to compute ( 2 • (f )) † ( δx α(x) ). Let u ∈ 2 • (X, x 0 , α) and let y ∈ Y ∖ { y 0 }. Then, ⟨( 2 • (f )) † (u), δy β(y) 1 2 ⟩ β = ⟨u, 2 • (f )( δy β(y) 1 2 
)⟩ α

= ∑ x∈X∖{ x 0 } α(x)u(x) δy(f (x)) β(y) 1 2 
.

Therefore

( 2 • (f )) † (u) = ∑ y∈Y ∖{ y 0 } 1 β(y) 1 2 ∑ x∈f -1 ({ y }) α(x)u(x) δy β(y) 1 2 = ∑ y∈Y ∖{ y 0 } ∑ x∈f -1 ({ y }) α(x)u(x) δy β(y) . (18) 
In particular, for each

x ∈ X ∖ { x 0 } with f (x) = y 0 ( 2 • (f )) † ( δx α(x) ) = ∑ y =y 0 δy β(y) ∑ x ′ ∈f -1 ({ y }) α(x ′ ) δx(x ′ ) α(x) = δ f (x) β(f (x)) . (19) 
For each x ∈ X ∖ { x 0 } with f (x) = y 0 , the same computation as above leads as expected to ( 2 • (f )) † ( δx α(x) ) = 0. It remains to prove the statement about the equivalence of categories. The component at (H, µ) of the unit of the above adjunction is by definition, id ♯ M in•(H,µ) = Φ -1 (H,µ) ○π J(H,µ) ⊥ . Since the counit is an isomorphism, the above equivalence restricts to an equivalence between WSet op • and the full subcategory of c FrobSem(Hilb) spanned by those algebras (H, µ) such that π J(H,µ) ⊥ is an isomorphism, that is, the semisimple Hilbertian Frobenius semigroups.

Concerning the last statement one first notices that the adjunction min • ⊣ Therefore µ † is a partial isometry if, and only if, g = 1 for each g ∈ G(H, µ). (The converse implication is due to the fact that for each g ∈ G(H, µ), g 2 g ⊗ g = µ † (µ(µ † (g))) = µ † (g) = g ⊗ g.) ◻

Let partiso,c FrobBisem(Hilb) be the subcategory of partiso,c FrobSem(Hilb) with the same objects but with morphisms preserving both the algebra and the coalgebra structures, that is, with morphism of bisemigroups. Let † c FrobBisem(Hilb) be its full subcategory spanned by the Frobenius algebras with an isometric comultiplication.

Being a morphism of bisemigroups is rather restrictive as show the following result and remark below.

59 Proposition Let f ∈ partiso,c FrobBisem(Hilb)((H, µ), (K, γ)) where µ † is an isometry (that is, (H, µ) is semisimple). Then, f is a partial isometry.

Proof: Since both f and f † are coalgebra maps, f (G(H, µ)) ⊆ G(K, γ) ∪ { 0 } and f † (G(K, γ)) ⊆ G(H, µ) ∪ { 0 }. Therefore for each g ∈ G(H, µ) and h ∈ G(K, γ), f (g) = h ⇔ ⟨f (g), h⟩ = 1 ⇔ ⟨g, f † (h)⟩ = 1 ⇔ g = f † (h). Consequently, for each h ∈ G(K, γ), f (f † (h)) = h when f † (h) = 0 and f (f † (h)) = 0 when f † (h) = 0 and in any case f † (f (f † (h))) = f † (h). Let u ∈ H. Then, f † (u) = ∑ h∈G(K,γ) ⟨u, h⟩f † (h) = ∑ h∈G(K,γ) ⟨u, h⟩f † (f (f † (h))) = f † (f (f † (u))).
Then, f † is a partial isometry and so is also f . ◻

17 Remark In general for f ∶ (Y, y 0 , β) → (X, x 0 , α), 2 • (f ) is not a coalgebra morphism. Indeed if it was the case, then for each

x ∈ X ∖ { x 0 }, δx○f α(x) = 2 (f )( δx α(x) ) = 0 or 2 (f )( δx α(x) ) ∈ G( 2 • (Y, y 0 , β)), that is, δx○f α(x) = δy β(y)
for some y ∈ Y ∖ { y 0 }. Equivalently, for each x ∈ X ∖ { x 0 }, f -1 ({ x }) = ∅ or there exists y ∈ Y ∖ { y 0 } such that f (y) = x and α(f (y)) = β(y), and for each y

′ = y, y ′ ∈ Y ∖ { y 0 }, f (y ′ ) = x. In particular, f -1 ({ x }) ≤ 1 for each x ∈ X ∖ { x 0 }.
Let PInj • be the category of partial injections, that is, the objects are pointed sets and morphism (X, x 0 ) f → (Y, y 0 ) are base-point preserving maps such that for all y ∈ Y ∖ { y 0 }, f -1 ({ y }) ≤ 1.

18 Remark While not being identically presented our category PInj • is isomorphic to the category PInj from in [START_REF] Heunen | On the functor 2[END_REF].

PInj • embeds into WSet • under E(X, x 0 ) ∶= (X, x 0 , 1) (where 1(x) = 1, x = x 0 ) and E(f ) ∶= f as for each y = y 0 , (1) f -1 ({ y }) ≤ 1, and (2) ∑ x∈f -1 ({ y }) 1(x) ≤ 1 = 1(y).
So one may consider the functor PInj op 

) f → (Y, y 0 ), 2 • is even a coalge- bra map as µ † X ( 2 • (f )(u)) = ∑ x =x 0 u(f (x))δ x ⊗ δ x and ( 2 (f ) ⊗2 2 (f ))(δ † Y (u)) =
are chosen as those bounded linear maps which are both semigroup and cosemigroup morphisms. Let c Frob(Hilb) ambi be the corresponding non full subcategory of c FrobSem(Hilb). (One drops the suffix "Sem" to emphasize the fact that both the semigroup and the cosemigroup structures are of equal importance.) Observe that partiso,c FrobBisem(Hilb) is a full subcategory of c Frob(Hilb) ambi . In view to Remark 17 one introduces the category Pinj •,w with 1. objects the weighted pointed sets as in WSet • occurring in the statement of the proposition is the only one which makes commute the following diagram commutes. One now uses the notations from the proof of Theorem 56. One notes immediately that since (X,x 0 ) is an isomorphism in WSet • , it is also an isomorphism in Pinj •,w .

• , 2. arrows (X, x 0 , α) f → (Y, y 0 , β) the partial injections (X, x 0 ) f → (Y, y 0 ) such that for each x ∈ f -1 (Y ∖ { y 0 }), α(x) = β(f (x)).

It is clear that Pinj

WSet op

The unit of the adjunction from Theorem 56 is given by Φ -1 (H,µ) ○ π J(H,µ) ⊥ which is actually both a semigroup map (already known) and a cosemigroup map. To see this one first observes that i J(H,µ) ⊥ is a morphism of semigroups since J(H, µ) ⊥ is a subalgebra, and thus π J(H,µ) ⊥ = i † J(H,µ) ⊥ is a cosemigroup map. Φ -1 (H,µ) ∶ J(H, µ) ⊥ → 2

• (M in • (H, µ)) is also a cosemigroup map as follows directly from Φ -1 (H,µ) (g) = g Φ -1

(H,µ) ( g g ) = g Φ -1 ( e (Cg) e (Cg) ) = g 2 δ Cg = δ Cg w (H,µ) (Cg) for each g ∈ G(H, µ) and the fact that J(H, µ) ⊥ is semisimple (Lemma 5). Note that Φ -1 (H,µ) being bijective and both a semigroup and a cosemigroup map, it is an isomorphism of c Frob(Hilb) ambi (by Lemma 2). It then follows that the adjunction from Theorem 56 provides the desired adjunction. It remains to obtain the equivalence of categories by restriction. But the unit of the adjunction Φ -1 (H,µ) ○ π J(H,µ) ⊥ is an isomorphism (both of semigroups and cosemigroups) if, and only if, so is π J(H,µ) ⊥ if, and only if, π J(H,µ) ⊥ is a bijection (by Lemma 2) if, and only if, (H, µ) is semisimple. ◻

Proper morphisms

Call a WSet • -morphism (X, x 0 , α) f → (Y, y 0 , β) proper when f -1 ({ y 0 }) = { x 0 } or equivalently f (X ∖ { x 0 }) ⊆ Y ∖ { y 0 }. It is clear that every WSet • -isomorphism is proper.

Let WSet be the category with 1. objects the pairs (X, α∶ X → [C, +∞[), C > 0. For a set X, let X + ∶= X + 1, where 1 ∶= { 0 } and + denotes the disjoint union.

Let X f → Y be a map. Define X + f + → Y + by f + ∶= f + id 1 , that is, roughly speaking, f + (x) = f (x), x ∈ X, f + (0) ∶= 0. This provides a functor WSet (-) +

→ WSet • which acts on objects as (X, α) + ∶= (X + , 0, α), and which is injective on objects and faithful. Under this functor WSet is clearly equivalent to the (non full) subcategory WSet •,proper of WSet • whose objects are those of WSet • but with proper morphisms between them.

Let (H, µ) f → (K, γ) be a semigroup morphism between Hilbertian Frobenius semigroups. It is said to be proper when ran(f ) is not included in any maximal modular ideals of (K, γ) or alternatively for each y ∈ G(K, γ), there exists u ∈ H such that ⟨f (u), y⟩ = 0. Properness for f implies that f † (y) = 0 for each y ∈ G(K, γ), and since f † (G(K, γ)) ⊆ G(H, µ) ∪ { 0 }, it follows that actually f † (G(K, γ)) ⊆ G(H, µ). Conversely if f † (G(K, γ)) ⊆ G(H, µ), then for each y ∈ G(K, γ), ⟨f (f † (y)), y⟩ = 0 and thus f is proper. One observes that every semigroup isomorphism is proper.

Let c FrobSem(Hilb) proper be the category whose objects are Hilbertian Frobenius semigroups and morphisms are the proper semigroup morphisms. As usually let semisimple,c FrobSem(Hilb) proper be its full subcategory spanned by the semisimple objects.

the embedding semisimple,c FrobSem(FdHilb) ↪ c FrobSem(FdHilb). One thus only needs to check that f is actually proper for each monoid morphism f and that the co-restricted functor c FrobMon(FdHilb) -→ semisimple,c FrobSem(FdHilb) proper is full.

Given a finite-dimensional Hilbertian Frobenius monoid (H, µ, η), by a direct inspection η(1) = ∑ g∈G(H,µ) g g 2 . The corresponding counit η † ∶ H → C thus is given by η † (u) = ∑ g∈G(H,µ) ⟨u, g g 2 ⟩. In particular for each g ∈ G(H, µ), η † (g) = 1. Let (H, µ, η) f → (H ′ , µ ′ , η ′ ) be a monoid morphism between finite-dimensional Frobenius monoids. Then, f † (G(H ′ , µ ′ )) ⊆ G(H, µ)∪{ 0 } and since f † is compatible with the counits, for each h ∈ G(H ′ , µ ′ ), η † (f † (h)) = (η ′ ) † (h) = 1. As a consequence f is proper.

Let (H, µ, η), (H ′ , µ ′ , η ′ ) be finite-dimensional Frobenius monoids and let (H, µ) f → (H ′ , µ ′ ) be a proper morphism. Then for each h ∈ G(H ′ , µ ′ ), there is one g h ∈ G(H, µ) such that f † (h) = g h as f † (G(H ′ , µ ′ )) ⊆ G(H, µ). Therefore, for each h ∈ G(H ′ , µ ′ ), η † (f † (h)) = η † (g h ) = 1 = (η ′ ) † (h). Therefore (η ′ ) † and η † ○ f † are equal on G(H ′ , µ ′ ) which spans H ′ , therefore they are equal on the whole H ′ , and as a consequence f † ∶ (H ′ , µ ′ , η ′ ) → (H, µ, η) is a comonoid morphism, so that (H, µ, η) → (H, µ) is also a proper semigroup map (in particular, (H, µ † ) f → (K, γ † ) is a cosemigroup map). Let us also define 1,c Frob(FdHilb) ambi to be the category of finite-dimensional Frobenius monoids whose morphisms preserve both the monoid and the comonoid structures (the index "1" recalls that the structures are both unital and counital).

19 Remark Observe that when (H, µ, η) is a finite-dimensional Hilbertian Frobenius monoid with an isometric comultiplication, then ((H, µ, η), µ † ) is a cocommutative cosemigroup object in c Mon(FdHilb) by Proposition 58 and the fact that µ † (η(1)) = ∑ g∈G(H,µ) g ⊗ g. But it is not a bimonoid unless if dim C H ≤ 1, because η † (η(1)) = G(H, µ) .

Let FinSet bij,w be the category of finite weighted sets and bijections between them preserving the weight functions, that is, (X, α) 9 Epilogue: And non-commutativity in all that?

Let X be a non-void set and let x 0 ∈ X. Let m x 0 ∶ 2 (X) × 2 (X) → 2 (X) be given by m x 0 (u, v) ∶= v(x 0 )u. It is of course bounded since m x 0 (u) 2 = v(x 0 ) 2 u 2 ≤ v 2 u 2 . Then m x 0 is a weak Hilbert-Schmidt mapping as ∑ x,y ⟨m x 0 (δ x , δ y ), u⟩ 2 = ∑ x∈X ⟨δ x , u⟩ 2 = u 2 . Let µ x 0 ∶ 2 (X) ⊗2

2 (X) → 2 (X) be its unique bounded linear extension. ( 2 (X), µ x 0 ) is a Hilbertian semigroup, non-commutative as soon as X ∖ { x 0 } = ∅. Since ⟨µ †

x 0 (u), δ x ⊗ δ y ⟩ = δ y,x 0 u(x) for each x, y ∈ X it follows that µ †

x 0 (u) = u ⊗ δ x 0 . Consequently µ x 0 (µ † x 0 (u)) = u, u ∈ 2 (X), that is, µ † x 0 is an isometry.

Moreover for each u, v ∈ 2 (X), µ † x 0 (µ x 0 (u ⊗ v)) = v(x 0 )µ † x 0 (u) = v(x 0 )u ⊗ δ x 0 , (id ⊗2 µ x 0 )(α((µ †

x 0 ⊗2 id)(u ⊗ v))) = (id ⊗2 µ x 0 )(u ⊗ (δ x 0 ⊗ v)) = v(x 0 )u ⊗ δ x 0 and (µ x 0 ⊗2 id)(α -1 ((id ⊗2 µ †

x 0 )(u ⊗ v))) = (µ x 0 ⊗2 id)((u ⊗ v) ⊗ δ x 0 ) = v(x 0 )u ⊗ δ x 0 . Therefore ( 2 (X), µ x 0 ) is Frobenius. To summarize, ( 2 (X), µ x 0 ) is a not necessarily commutative special Frobenius Hilbertian semigroup.

It is easily seen that G( 2 (X), µ x 0 ) = { δ x 0 }. It is also clear that A( 2 (X), µ x 0 ) = { 0 } as uδ x 0 = u, u ∈ 2 (X) and { δ x 0 } ⊥ consists entirely of nilpotent elements as if u(x 0 ) = 0, then u 2 = 0. Also E( 2 (X),

µ x 0 ) = { u ∈ 2 (X)∶ u(x 0 ) = 1 } ∪ { 0 }.
As 2 (X) → C, u ↦ u(x 0 ), is a morphism of algebras it follows that its kernel, namely { δ x 0 } ⊥ = { u∶ u(x 0 ) = 0 } is a two-sided maximal modular ideal, with modular unit δ x 0 . Let I be a modular right ideal of ( 2 (X), m x 0 ), that is, I is right ideal with a left-unit e, that is, ueu ∈ I for each u ∈ 2 (X). As for each u ∈ { δ x 0 } ⊥ , u = u-u(x 0 )e = u-eu ∈ I, it follows that { δ x 0 } ⊥ ⊆ I. By a codimensionality argument it follows that either I = { δ x 0 } ⊥ or I = 2 (X). Consequently J( 2 (X), µ x 0 ) = { δ x 0 } ⊥ and ( 2 (X), µ x 0 ) is not semisimple as soon as X ∖ { x 0 } = ∅. It is not a H * -algebra either for if the annihilator would be equal to the Jacobson radical.

[ 20 ,

 20 Proposition 4.3.12.(a), p. 479]. Let us provide a corollary of [21, Corollary 28, p. 22].
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  Lemma The full subcategory radical,c FrobSem(Hilb) of c FrobSem(Hilb) spanned by the radical commutative Hilbertian Frobenius algebras, is isomorphic to Hilb. Proof: The co-restriction Hilb T → radical,c FrobSem(Hilb) of T is the inverse of the obvious forgetful functor radical,c FrobSem(Hilb) -→ Hilb. ◻

( 1 g 2 )

 2 g∈Se is summable and e 2 = ∑ g∈Se 1 g 2

  54 and which are related by the equalities e (I) = g (I) g (I) 2 and thus also g (I) = e (I) e (I) 2 . This defines maps M in(H, µ) g → G(H, µ) and M in(H, µ) e → M in(E(H, µ)). The proof of the next result is essentially provided by the proof of Lemma 54. 55 Lemma g is a bijection with inverse G(H, µ) C(-) → M in(H, µ), g ↦ Cg, and e is a bijection from M in(H, µ) to M inE(H, µ) with inverse M in(E(H, µ)) C(-) → M in(H, µ), e ↦ Ce.

• 2 •

 2 ○E→ c FrobSem(Hilb). Of course it factors through † c FrobSem(Hilb) ↪ partiso,c FrobSem(Hilb) ↪ c FrobSem(Hilb). But actually, for each partial injection (X, x 0

  in • as defined in the statement is the only functor which makes commute the diagram below. c FrobSem(Hilb) M in• / / WSet op • c Frob(Hilb) ambi ?

2 .

 2 arrows (X, α) f → (Y, β) the maps X f → Y such that (a) f -1 ({ y }) < +∞ for each y ∈ Y , (b) there exists M f ≥ 0 such that for each y ∈ Y , ∑ x∈f -1 ({ y }) α(x) ≤ M f β(y).

  , µ ′ , η ′ ) is a morphism of monoids. This proves that c FrobMon(FdHilb) -→ semisimple,c FrobSem(FdHilb) proper is full. ◻ Let semisimple,c Frob(FdHilb) ambi-proper be the category of finite-dimensional semisimple Frobenius semigroups with morphisms f such that (H, µ) f → (K, γ) is a proper semigroup map and (K, γ) f †

f

  → (Y, β) is given as a bijectionX f → Y such that α(x) = β(f (x)) for each x ∈ X.FinSet bij,w clearly embeds into WSet. 65 Corollary semisimple,c Frob(FdHilb) ambi-proper ≃ 1,c Frob(FdHilb) ambi ≃ FinSet bij,w .

  µ) is semisimple, the converse also holds.

	Proof: The first statement is [21, Lemma 25, p. 19]. Let us assume that (H, µ) is semisimple. Then, by assumption and linearity, (f ⊗2 f ) ○ µ † = γ † ○ f on ⟨G(H, µ)⟩.
	By continuity the maps are equal on ⟨G(H, µ)⟩ = J(H, µ) ⊥ = H by semisimplicity.
		◻
	When (H, µ) is a special Hilbertian algebra, more can be said about G(H, µ).
	First it is an orthonormal family [21, Lemma 27, p. 21], and even an orthonor-
	mal basis of J(H, µ) ⊥ , and secondly it is a discrete space ([21, p. 20]). As a di-
	rect consequence of the above G(H, µ) is an orthonormal basis of H when (H, µ)
	is a semisimple special Hilbertian algebra (H, µ) and for u, v ∈ H, µ(u ⊗ v) =
	∑ x∈G(H,µ) ⟨u, x⟩⟨v, x⟩x. Note here and now that a semisimple special Hilbertial alge-bra thus is a (commutative) †-special Frobenius semigroup (see below).
	A notation: if C is a subcategory of c Sem(Hilb) or of c Sem(FdHilb), then
	semisimple C stands for the full subcategory of C spanned by the Hilbertian algebras
	in C which are semisimple.	
	1.4 Hilbertian Frobenius algebras
	Let H be a Hilbert space and let H ⊗2 H	µ → H be a bounded linear map. Let us
	consider the following diagram where α H,H,H is the component at (H, H, H) of the
	coherence constraint of associativity of Hilb.

  Remark According to Corollary 15 a semisimple Hilbertian Frobenius semigroup (H, µ) is easily described: as G(H, µ) is an orthogonal basis of H = J ⊥ , one has for each u ∈ H a unique expansion as a summable family ∑ x∈X ⟨u, xx ⟩ x x and given u

  1 n → 0 ([20, p. 213]). In general the Jacobson radical of (B, * ) is only contained into the set of all quasi-nilpotent elements but as soon as (B, * ) is commutative both sets are equal [16, Corollary 2.2.6, p. 55]. If H is a Hilbert

	space a linear map H	f → H is referred to as a quasi-nilpotent operator when it is a
	quasi-nilpotent element of B(H).

  element of the Banach algebra ((H, -′ ), µ bil ) ([16, Corollary 2.2.

		6,
	p. 55]).	◻
	A bounded linear operator H	

f → H over a Hilbert space H is said to be normal when

  is the coherence constraint of associativity. Observe that H ⊗2 H with the left and the right actions of (H, µ) as above, is a Hilbertian bimodule.In what follows, one tacitly assumes that H and H ⊗2 H both have the above left or right module structures. 6 Remark It is clear that in view of Remark 1, a commutative Hilbertian algebra (H, µ) is Frobenius if, and only if, µ † ∶ H → H ⊗2 H is either left or right (H, µ)-linear.

  the equality holds on H ⊗2 K, so f is left linear.◻ Let (K, r), (K ′ , r ′ ) be Hilbertian right (H, µ)-modules, and let K ′ be a bounded linear map. It is right (H, µ)-linear if, and only if, for each u ∈ H, r ′ right

	28 Lemma
	By symmetry, one has
	20

f → K

  then w (H,µ) stands for the empty map.)

	Proof: It suffices to prove the result for (H, µ) semisimple. Let us consider the unitary transformation Λ∶ H → 2 w (H,µ) (G(H, µ)) given by Λ( x 1 x ) ∶= w (H,µ) (x) 1 2

◻

  10 Remark The fact that a Hilbertian H * -algebra is a Hilbertian Frobenius semigroup was already noticed in [2, Lemma 6, p. 9]. 40 Corollary Let (H, µ) be a Hilbertian Frobenius semigroup. (-) ⊥ provides an order-reversing involution on the set of closed ideals of (H, µ). In particular a closed subspace of H is an ideal if, and only if, it is a subcoalgebra.Proof: The first statement follows from Proposition 39 and the existence of H *adjoints: let I be an ideal and u ∈ I ⊥ . Let x ∈ H with H * -adjoint y, and let w ∈ I. Then, ⟨ux, w⟩ = ⟨u, yw⟩ = 0. Whence I ⊥ is an ideal too. The second statement is due to [21, Lemmas 14 and 15, p. 14] which jointly assert that I is a closed ideal if, and only if, I ⊥ is a closed subcoalgebra. ◻

  is clearly a semigroup morphism, it follows easily that one has a functor 2• ∶ WSet op • → c FrobSem(Hilb) and thus also the following co-restrictions 2• ∶ WSet op • → semisimple,c FrobSem(Hilb), WSet • → ?,c FrobSem(Hilb), and 2 • ∶ ? WSet • → semisimple,?,c FrobSem(Hilb) where ? stands either for bnd or unbnd.

	2 • ∶ ? 15 Remark The 2

2 •

 2 co-resricts to the adjunction min • ⊣ 2• ∶ c FrobSem(FdHilb) → WFinSet • , where WFinSet • stands for the full subcategory of WSet • spanned by the pointed weighted sets (X, x 0 , α) where X is finite. By finiteness the embedding functor E∶ Set •,<+∞ → WSet • from Lemma 49, provides an equivalence FinSet • ≃ WFinSet • . By restriction again one obtains the expected equivalence. ◻ 16 Remark It is a consequence of Theorem 56 and of Lemma 51 that not all the semisimple Hilbertian Frobenius semigroups (H, µ), (H, γ) on the same Hilbert space H are isomorphic. (In view of Theorem 37 it suffices to consider bounded above orthogonal bases of H, one also bounded below and the other not.) Using some previous results, one obtains the following easily (in particular Proposition 46), by restrictions of the equivalences from Theorem 56. (Item 2 below is proved as follows: one has an adjoint equivalence G • ⊣ 2 • ∶ semisimple, † So the first equivalence is proved. Lemma 51 provides the second equivalence. For the last one it suffices to consider the adjunction M in • ⊣ 2 • ∶ bnd,c FrobSem(Hilb) → Set op •,<+∞ ≃ bnd WSet op • ≃ semisimple,bnd,c FrobSem(Hilb). 3. WSet op • × Hilb ≃ c FrobSem(Hilb). 4. unbnd WSet op • ×Hilb ≃ semisimple,unbnd,c FrobSem(Hilb)×Hilb ≃ unbnd,c FrobSem(Hilb). 5. partiso,c FrobSem(Hilb) ≃ † c FrobSem(Hilb)×Hilb ≃ Set op •,<+∞ ×Hilb ≃ bnd WSet op • × Hilb ≃ semisimple,bnd,c FrobSem(Hilb) × Hilb ≃ bnd,c FrobSem(Hilb).

	bnd WSet op • obtained by restriction, which itself restricts to the expected equiva-
	lence.)
	57 Corollary One has the following equivalences of categories.
	1. 2. † c FrobSem(Hilb) ≃ 6. FinSet op • ≃ † c FrobSem(FdHilb) and FinSet op • ×FdHilb ≃ c FrobSem(FdHilb) ≃
	partiso,c FrobSem(FdHilb).

c Sem(Hilb) ≃ Set op •,<+∞ by [21, Theorem 41, p. 28]. But semisimple, † c Sem(Hilb) = † c FrobSem(Hilb). unbnd WSet op • ≃ semisimple,unbnd,c FrobSem(Hilb).

  •,w embeds (while not fully) into WSet • . 61 Proposition One has an adjunction M in • ⊣ 2 • ∶ c Frob(Hilb) ambi → Pinj op •,w which restricts to an equivalence semisimple,c Frob(Hilb) ambi ≃ Pinj op •,w . Proof: The functor

Let H, K be Hilbert spaces such that U (H) = U (K), then as complex vector spaces H = K. The parallelogram law implies that the norms of U (H) and U (K) comes from a common inner product, and thus H = K as Hilbert spaces.

Observe however that in[START_REF] Palmer | Banach Algebras and the General Theory of * -Algebras: Volume 1, Algebras and Banach Algebras[END_REF] Definition 1.1.11, p. 19] A 1 is a conditional unitization, that is, A 1 is either the usual unitarization of A when A has no unit, or is A itself when A already has a unit.

and as such may be seen as the following co-restriction. 7. [START_REF] Bade | The Wedderburn decomposability of some commutative Banach algebras[END_REF] The main equivalences 56 Theorem One has an adjunction M in • ⊣ 2

• ∶ WSet op • → c FrobSem(Hilb) which restricts to an adjoint equivalence M in • ⊣ 2

• ∶ WSet op • ≃ semisimple,c FrobSem(Hilb). In particular, semisimple,c FrobSem(FdHilb) ≃ FinSet op

• , where FinSet • is the category of finite pointe sets and base-point preserving maps.

Proof: Let (X, x 0 , α) be a weighted pointed set, with

Let (X,x 0 ,α) ∶ (X, x 0 ) → (M in( 2• (X, x 0 , α)) ∪ { 0 }, 0) be given by (X,x 0 ,α) (x) ∶= Cδ x , x = x 0 , and (X,x 0 ,α) (x 0 ) ∶= 0. (X,x 0 ,α) is clearly a pointed bijection. By the above, (X,x 0 ,α) is clearly a WSet • -isomorphism.

Let (H, µ) be a Hilbertian Frobenius algebra. An orthonormal basis for the semigroup 2

• (M in • (H, µ)) is given by (

Whence as a Hilbert space, 2 • (M in • (H, µ)) is unitary isomorphic to J(H, µ) † because an orthonormal basis of the latter is given by { e e ∶ e ∈ M in(E(H, µ)) } (Remark 13). Let Φ (H,µ) ∶ 2

• (M in • (H, µ)) ≃ J(H, µ) ⊥ be the corresponding unitary transformation. For each minimal ideal I of (H, µ), Φ (H,µ) (δ I ) = e (I), and one has

8 Some other equivalences 

As a matter of fact, ((H, µ), µ † ) is a bisemigroup in Hilb if, and only if, for each

(The direct implication is clear, while the converse is due to the fact that

• (Y, y 0 , 1). This provides a functor 2 • ∶ PInj • → partiso,c FrobBisem(Hilb) together with its co-restriction 2

• ∶ PInj • → † c FrobBisem(Hilb). In the opposite direction one has a functor G • ∶ partiso,c FrobBisem(Hilb) → PInj op • given as follows:

given by (X,x 0 ) (x) ∶= δ x , (X,x 0 ) (x 0 ) ∶= 0, is an isomorphism and so in particular a partial injection.

Let (H, µ) be a Hilbertian Frobenius algebra with µ † a partial isometry. Let

) is a semigroup map and in a same way one sees that Φ -1 (H,µ) = Φ † (H,µ) is also a semigroup map so that Φ (H,µ) is a cosemigroup map. By the way f ♯ is a semigroup and a cosemigroup map because so are 2

• (f ), Φ (H,µ) and π J(H,µ) ⊥ . (Indeed, π J(H,µ) ⊥ = i † J(H,µ) ⊥ and J(H, µ) ⊥ is both a semigroup and a cosemigroup map.) Whence f ♯ ∈ partiso,c FrobBisem(Hilb)((H, µ), 2

• (X, x 0 )).

• (X, x 0 ) and so f ′ = f ♯ . It remains to prove the equivalence of categories. The counit = ( (X,x 0 ) ) (X,x 0 ) is already an isomorphism so it suffices to check the conditions under which the unit (η (H,µ) ) (H,µ) , η (H,µ) = Φ (H,µ) ○ π J(H,µ) ⊥ , is an isomorphism. This is clear that it will be so if, and only if, (H, µ) is semisimple, that is, if, and only if, (H, µ) is a † c FrobBisem(Hilb)-object. ◻

Ambidextrous morphisms: Algebra-and-coalgebra maps

Even in the non partial isometric case, that is, even if ((H, µ), µ † ) is not a bisemigroup, it is tempting to see what happens when morphisms of Frobenius semigroups Let (X, α) be a WSet-object. Define 2 (X, α) ∶= ( 2 α (X), µ X ) as given in Section 2. Let (X, α)

One obtains a functor 2 ∶ WSet → c FrobSem(Hilb) proper and a co-restriction still denoted 2 from WSet to semisimple,c FrobSem(Hilb) proper . Now let f ∶ (H, µ) → (K, γ) be a proper morphism between Hilbertian Frobenius semigroups. As

, where 0 is the extension of obtained by setting 0 (0) ∶= 0. As 0 (J) = (J) = 0, J ∈ M in(K, γ), it follows that actually ∈ WSet((M in(K, γ), w (K,γ) ), (M in(H, µ), w (H,µ) )), and from that one has a functor M in∶ c FrobSem(Hilb) proper → WSet.

Let WFinSet be the full subcategory of WSet spanned by the finite weighted sets.

63 Proposition One has an adjunction M in ⊣ 2 ∶ c FrobSem(Hilb) proper → WSet op that restricts to an equivalence semisimple,c FrobSem(Hilb) proper ≃ WSet op . In particular, semisimple,c FrobSem(FdHilb) proper ≃ WFinSet op ≃ FinSet op , where FinSet is the category of finite sets with all maps between them.

Proof:

The adjunction M in • ⊣ 2

• ∶ c FrobSem(Hilb) → WSet • from Theorem 56, clearly restricts to an adjunction M in • ⊣ 2

• ∶ c FrobSem(Hilb) proper → WSet •,proper and thus to the adjunction M in ⊣ 2 ∶ c FrobSem(Hilb) proper → WSet. The counit of this adjunction is still a natural isomorphism while the component Φ -1 (H,µ) ○ π J(H,µ) † at (H, µ) of unit is an isomorphism if, and only if, π J(H,µ) † (using the notations from the proof of Theorem 56) is an isomorphism if, and only if, (H, µ) is semisimple. So the required equivalence is proved.

The last statement is obvious because FinSet is clearly equivalent to WFinSet. ◻

The second statement of the following corollary corresponds to [8, Corollary 7.2, p. 566] as the categories c FrobComon(FdHilb) and c FrobMon(FdHilb) op are isomorphic under the dagger functor (cf. Section 1.4).

64 Corollary One has the equivalences of categories c FrobSem(Hilb) proper ≃ WSet op × Hilb and semisimple,c FrobSem(FdHilb) proper ≃ c FrobMon(FdHilb) ≃ FinSet op .

Proof: As the first statement is clear, one only needs to prove the second, and it is clear that one only needs to prove that the categories c FrobMon(FdHilb) and 

Let (X, α) f → (Y, β) be a FinSet bij,w . Then, of course 2 (f ) is an isomorphism in semisimple,c FrobSem(FdHilb) from 2 (Y, β) to 2 (X, α), and thus it is a proper morphism. Now for u ∈ 2 (X, α, 1) and v ∈ 2 (Y, β, 1), ⟨ 2 (f -1 )(u), v⟩ β = ⟨u ○ f -1 , v⟩ β = ∑ y β(y)u(f -1 (y))v(y) = ∑ x β(f (x))u(x)v(f (x)) = ∑ x α(x)u(x)v(f (x)) = ⟨u, v ○ f ⟩ α = ⟨u, 2 (f )(v)⟩ α , that is, 2 (f -1 ) = 2 (f ) † . Now 2 (f )( δy β(y) ) = 1 β(y) δ y ○ f = 1 β(y) δ f -1 (y) = 1 α(f -1 (y)) δ f -1 (y) . Therefore 2 (f )(G( 2 (Y, β))) ⊆ G( 2 (X, α)). By Lemma 5, 2 (f ) is also a morphism of cosemigroups. Thus it is a (unitary) isomorphism of cosemigroups (in particular, it is proper). The required equivalence follows now easily.

Moreover the above also shows that semisimple,c Frob(FdHilb) ambi-proper is equal to the groupoid semisimple,c FrobSem(FdHilb) iso of finite-dimensional semisimple Frobenius semigroups with isomorphisms of semigroups or semisimple,c FrobSem(FdHilb) unitary , the groupoid of finite-dimensional semisimple Frobenius semigroups with unitary isomorphisms of semigroups. ◻