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SOME VARIANTS OF ORPONEN’S THEOREM ON VISIBLE

PARTS OF FRACTAL SETS

CARLOS MATHEUS

Abstract. It was recently established by T. Orponen that the visible parts

from almost every direction of a compact subset of Rn have Hausdorff dimension
at most n− 1

50n
.

In this note, we refine Orponen’s argument in order to show that the visible
parts from almost every direction of a compact subset of Rn have Hausdorff

dimension at most n−min{ 1
5
, 1
n+2
}.

Moreover, we also show that some classes of dynamically defined Cantor

sets K ⊂ Rn with Hausdorff dimension d > max{
√

3,
(n−1)+

√
(n−1)(n+3)

2
}

have visible parts of Hausdorff dimension at most max{ 3d+3
d+3

,
(n+1)d+(n−1)

d+2
}

from almost every direction.

1. Introduction

Let K be a compact subset of the Euclidean space Rn, n ≥ 2. Intuitively, the
visible part Vise(K) of K in the direction e ∈ Sn−1 is the subset of K consisting of
the points which are first hit by a light beam travelling in the direction e emanating
from a certain affine hyperplane orthogonal to e.

More concretely, if πe : Rn → e⊥ denotes the orthogonal projection to the hy-
perplane e⊥ orthogonal to e and 〈., .〉 stands for the usual Euclidean inner product,
then Vise(K) is the collection of ≤e-minimal points of K where ≤e is the partial
order defined by x ≤e y if and only if πe(x) = πe(y) and 〈x, e〉 ≤ 〈y, e〉.

In general, the visible parts Vise(K) are Borel sets because they are the graphs
of lower semi-continuous functions, cf. [4, Remark 2.2 (a)].

By definition, πe(Vise(K)) = πe(K) for all e ∈ Sn−1. Therefore, Mattila’s
extension of Marstrand’s theorem [7] provides the following lower bound on the
Hausdorff dimension of typical visible parts:

dimH(Vise(K)) ≥ min{dimH(K), n− 1}

for Lebesgue almost every e ∈ Sn−1.
The visibility conjecture asserts that the converse inequality is true, i.e., if

dimH(K) > n−1, then dimH(Vise(K)) = n−1 for Lebesgue almost every e ∈ Sn−1
(see, e.g., [8, Problem 11]).

It is known that this conjecture admits a positive answer for several particular
classes of compact subsets of Rn (cf. [4], [2] and [1]). Furthermore, we know that if
K ⊂ Rn is a compact subset with d-Hausdorff measure 0 < Hd(K) <∞, then the
d-Hausdorff measure of Vise(K) is zero for Lebesgue almost every e ∈ Sn−1 (see [5,
Theorem 1.1]).

More recently, T. Orponen [9] obtained an unconditional estimate on the Haus-
dorff dimension of typical visible parts of compact subsets K of Rn: in a nutshell,
he proved that dimH(Vise(K)) ≤ n− 1

50n for Lebesgue almost every e ∈ Sn−1.
In this note, we refine Orponen’s methods to establish the following two results:
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Theorem 1.1. Let K ⊂ Rn be a compact subset. Then, for Lebesgue almost every
e ∈ Sn−1, the Hausdorff dimension of Vise(K) is at most n−min{ 15 ,

1
n+2}.

Theorem 1.2. Let K ⊂ Rn be a product of C2-dynamically defined Cantor sets of
the real line or a self-similar set defined by a finite collection of Euclidean similari-
ties verifying the open set condition. If the Hausdorff dimension of K is dimH(K) >

max{
√

3,
(n−1)+

√
(n−1)(n+3)

2 }, then, for Lebesgue almost every e ∈ Sn−1, the Haus-

dorff dimension of Vise(K) is at most max{ 3d+3
d+3 ,

(n+1)d+(n−1)
d+2 }.

The remainder of this note is divided into two sections: its first half contains the
proof of Theorem 1.1 and its second half is devoted to the proof of Theorem 1.2.

2. Visible parts of general compact subsets

Let K be a compact subset of Rn, n ≥ 2. Up to rescaling, we can (and do)
assume that K ⊂ [0, 1]n. Since the conclusion of Theorem 1.1 always holds when
K has Hausdorff dimension ≤ n−min{ 15 ,

1
n+2}, we can (and do) also assume that

(2.1) n−min

{
1

5
,

1

n+ 2

}
< d := dimH(K) ≤ n.

2.1. Some preliminaries. Recall that the s-dimensional Hausdorff measure at
scale 0 < ρ ≤ ∞ of a subset E ⊂ Rn is

Hsρ(E) := inf


∞∑
i=1

diam(Ui)
s : E ⊂

⋃
i≥1

Ui and diam(Ui) < δ ∀ i ≥ 1


and the s-dimensional Hausdorff measure of E is Hs(E) = lim

ρ→0
Hsρ(E), so that the

Hausdorff dimension of E is

dimH(E) := inf{s : Hs(E) = 0} = sup{s : Hs(E) =∞}.

Recall also that a dyadic cube Q ⊂ [0, 1]n is a cube of the form Q =
n∏
j=1

[
ij
2N
,
ij+1
2N

]

for some N ∈ N and (i1, . . . , in) ∈ {1, . . . , 2N − 1}n. In the sequel, the collection of
dyadic cubes with sides of fixed size 2−N is denoted by D2−N .

In [9, Lemma A.1], Orponen showed the following version of Frostman’s lemma:

Lemma 2.1 (Orponen). Let E ⊂ [0, 1]n be a compact subset. Then, there exists
a Radon measure µ supported on E and a constant 0 < C = C(n) < ∞ such that
µ(B(x, r)) ≤ Crs for all x ∈ Rn, r > 0, and

µ(Q) ≥ C−1 min{Hs∞(E ∩Q),Hn(Q)}
for all dyadic cube Q ⊂ [0, 1]n.

Similarly to Orponen [9], our long-term goal is to apply this lemma to estimate
the Hausdorff dimension of visible parts in typical directions.

For this sake, we fix first some rational parameters

(2.2) n−min

{
1

5
,

1

n+ 2

}
< n− ε0 < s′′0 < s′0 < s0 < d ≤ n,

(2.3) α := min

{
s′′0 − 1, 2− s′0 − (n− 1)

2

}
,

(2.4)
ε0n

2
<
ε1
2
< min{s′′0 − 1, 1} − ε0n

2
− 2ε0,
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and

(2.5) 0 < ε∗ < min

{
s′0 + ε0 − n,

2

3

(
min{s′′0 − 1, 1} − ε0n

2
− 2ε0 −

ε1
2

)}
.

Note that these conditions are mutually compatible: indeed, our assumption (2.1)

allows us to choose s0, s′0, s′′0 and ε0 in (2.2); since ε0 < min
{

1
5 ,

1
n+2

}
and s′0 >

n− ε0, we can select ε1 in (2.4) and ε∗ in (2.5).
Now, we use Lemma 2.1 to get µ supported on K such that

(2.6) µ(B(x, r)) ≤ Crs0

for all x ∈ Rn and r > 0, and

(2.7) µ(Q) ≥ C−1 min{Hs0∞(K ∩Q),Hn(Q)}

for all dyadic cube Q ⊂ [0, 1]n (where 0 < C = C(n) <∞ is a constant).
Recall that (2.6) implies that the s′0-energy of µ is finite, i.e.,

(2.8) Is′0(µ) :=

∫ ∫
dµ(x) dµ(y)

|x− y|s′0
<∞.

Remark 2.2. For later reference, let us remind that the s-energy of a measure θ
can be expressed in terms of the Fourier transform as

Is(θ) =

∫ ∫
dθ(x) dθ(y)

|x− y|s
= c1(s, n)

∫
|θ̂(ξ)|2 · |ξ|s−n dHn(ξ)

where 0 < c1(s, n) <∞ is a constant.

In the sequel, δ = 2−N , N ∈ N, is an arbitrary (small) dyadic scale such that
δε0 is also a dyadic scale.

2.2. Contribution of light cubes. We say that a dyadic cube Q ∈ Dδ is δ-light
when µ(Q) ≤ δn+ε∗ . The portion of K contained in δ-light cubes is denoted by
Kδ,light. Since Dδ has cardinality δ−n, it follows from (2.7) that:

Lemma 2.3. Hs0∞(Kδ,light) ≤ C(n) · δε∗ .

In particular, this lemma says that we can safely focus on the δ-heavy portion
Kδ,heavy := K \Kδ,light of K.

2.3. Exceptional directions. Given a dyadic cube Q ∈ Dδε0 , the restriction of µ
to Q is denoted by µQ. The set of δ-exceptional directions associated to Q is

Eδ,Q :=

{
e ∈ Sn−1 :

∫
e⊥
|µ̂Q(ζ)|2 · |ζ|s

′
0−(n−1) dHn−1(ζ) ≥ δ−ε1

}
.

Since Is′0(µQ) ≤ Is′0(µ), it follows from (2.8) and a change of variables to polar
coordinates in Remark 2.2 that:

Lemma 2.4. Hn−1(Eδ,Q) ≤ c2(s′0, n)Is′0(µ)δε1 for all Q ∈ Dδε0 .

2.4. Good and bad lines. Denote by Le the space of lines parallel to e ∈ Sn−1.
Given a dyadic cube Q ∈ Dδε0 intersecting K, the set Le,δ,bad,Q of δ-bad lines in
direction e associated to Q consists of all lines ` ∈ Le disjoint from K ∩ Q whose
2δ-neighborhood `(2δ) satisfy

# {R ∈ Dδ : R ⊂ Q,R ∩K 6= ∅, R is not light, R ∩ `(2δ) 6= ∅} ≥ δ2ε0−1.
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We say that ` ∈ Le is a δ-good line in the direction e whenever ` /∈ Le,δ,bad,Q
for all Q ∈ Dδε0 intersecting K. The collection of δ-good lines in the direction e is
denoted by Le,δ,good and we define

Le,δ,good :=
⋃

`∈Le,δ,good

`.

Lemma 2.5. Hs
′
0

δ (Vise(K) ∩Kδ,heavy ∩ Le,δ,good) ≤ δε∗ for all δ sufficiently small.

Proof. Let us use a collection Te,δ tubes of width δ whose bases are perpendicular to

e in order to cover [0, 1]n. Since #Te,δ ≤ c3(n)δ−(n−1), our task is reduced to prove
that, for each T ∈ Te,δ, the minimal number N(Vise(K)∩Kδ,heavy∩Le,δ,good∩T, δ)
of δ-balls needed to cover Vise(K) ∩Kδ,heavy ∩ Le,δ,good ∩ T is at most

N(Vise(K) ∩Kδ,heavy ∩ Le,δ,good ∩ T, δ) ≤ c5(n)δε0−1.

Indeed, the estimates above imply that

Hs
′
0

δ (Vise(K) ∩Kδ,heavy ∩ Le,δ,good) ≤ c3(n)c5(n)δ−(n−1)δε0−1δs
′
0 ≤ δε∗

for all δ sufficiently small thanks to the fact that s′0 + ε0 − n > ε∗ (cf. (2.5)).
In order to estimate N(Vise(K)∩Kδ,heavy ∩Le,δ,good ∩T, δ) for a given T ∈ Te,δ,

we consider two scenarios:

(i) for all Q ∈ Dδε0 intersecting K, one has

#{R ∈ Dδ : R ⊂ Q,R ∩K 6= ∅, R is not light, R ∩ T 6= ∅} < δ2ε0−1;

(ii) there exists Q1 ∈ Dδε0 intersecting K with

#{R ∈ Dδ : R ⊂ Q1, R ∩K 6= ∅, R is not light, R ∩ T 6= ∅} ≥ δ2ε0−1.

In the first scenario, we have that N(Vise(K)∩Kδ,heavy∩Le,δ,good∩T, δ) ≤ δε0−1
simply because T can meet at most δ−ε0 dyadic cubes Q ∈ Dδε0 .

In the second scenario, we take Q1 to be a ≤e-minimal dyadic cube with the
property described in (ii) (in the sense that Q1 minimizes inf{〈x, e〉 : x ∈ Q1}
among all dyadic cubes in (ii)). Since the 2δ-neighborhood of any line ` ⊂ T
contains T , we also have

#{R ∈ Dδ : R ⊂ Q1, R ∩K 6= ∅, R is not light, R ∩ `(2δ) 6= ∅} ≥ δ2ε0−1.

Therefore, it follows from the definition of δ-good line that any ` ∈ Le,δ,good included
in T must intersect K ∩Q1.

We affirm that

Vise(K) ∩ Le,δ,good ∩ T ∩Q = ∅
for any dyadic cube Q ∈ Dδε0 with inf{〈x, e〉 : x ∈ Q} > sup{〈y, e〉 : y ∈ Q1}. In
fact, if x ∈ Vise(K) ∩Le,δ,good ∩ T ∩Q, then πe(x) = πe(y) for some y ∈ Q1. Since
〈x, e〉 > 〈y, e〉, one would get x /∈ Vise(K), a contradiction.

Hence, Vise(K) ∩ Le,δ,good ∩ T is covered by the collection of dyadic cubes Q ∈
Dδε0 with inf{〈x, e〉 : x ∈ Q} ≤ sup{〈y, e〉 : y ∈ Q1}. Now, we observe that

• the number of dyadic cubes Q ∈ Dδε0 intersecting T with

inf{〈z, e〉 : z ∈ Q1} ≤ inf{〈x, e〉 : x ∈ Q} ≤ sup{〈y, e〉 : y ∈ Q1}

is bounded by an absolute constant c4(n); for each of them, we will use the
crude bound N(Vise(K) ∩ Le,δ,good ∩ T, δ) ≤ δε0−1 coming from the fact
that Q ∩ T can be covered using at most δε0−1 balls of radius δ;
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• any dyadic cube Q ∈ Dδε0 intersecting T ∩K with

inf{〈z, e〉 : z ∈ Q1} > inf{〈x, e〉 : x ∈ Q}
satisfies

#{R ∈ Dδ : R ⊂ Q1, R ∩K 6= ∅, R is not light , R ∩ `(2δ) 6= ∅} ≤ δ2ε0−1

because of the ≤e-minimality of Q1; the number of such cubes Q is at most
≤ δ−ε0 because T meets at most δ−ε0 dyadic cubes Q ∈ Dδε0 .

By combining the estimates above, we conclude that

N(Vise(K) ∩Kδ,heavy ∩ Le,δ,good ∩ T, δ) ≤ c4(n)δε0−1 + δ−ε0δ2ε0−1 = c5(n)δε0−1.

This completes the proof. �

2.5. Typical visible parts in bad lines. The last step towards the proof of
Theorem 1.1 is the following estimate:

Lemma 2.6. Let Q ∈ Dδε0 be a dyadic cube intersecting K, consider a direction
e /∈ Eδ,Q, and denote Le,δ,bad,Q :=

⋃
`∈Le,δ,bad,Q

`. Then,

Hs
′
0−1∞ (πe(Le,δ,bad,Q)) ≤ δε∗+ε0n

for all δ sufficiently small.

Proof. By contradiction, suppose that Hs
′
0−1∞ (πe(Le,δ,bad,Q)) ≥ δε∗+ε0n. By Orpo-

nen’s version of Frostman’s lemma (cf. Lemma 2.1), we have a probability measure
ν supported on He,δ,Q := πe(Le,δ,bad,Q) such that

ν(B(x, r)) ≤ C(n− 1)δ−ε∗−ε0nrs
′
0−1

for all x ∈ H and r > 0. Thus, our choice of α ≤ s′′0 − 1 < s′0 − 1 in (2.3) (and
Remark 2.2) means that the α-energy of ν satisfies

(2.9) c1(α, n− 1)

∫
|ν̂(ξ)|2 · |ξ|α dξ = Iα(ν) ≤ c6(s′′0 , s

′
0, n)δ−ε∗−ε0n.

Next, we observe that, by definition, any line ` ∈ Le,δ,bad,Q misses K ∩ Q.
Therefore, µQ,e := (πe)∗(µQ) and ν have disjoint supports. Hence, if we fix a
non-negative smooth bump function ϕ on e⊥ ' Rn−1 with total integral one and
ϕ(0) = 1, then

0 =

∫
ϕη ∗ µQ,e dν =

∫
ϕ̂(ηξ)µ̂Q,e(ξ)ν̂(ξ) dξ

=

∫
(1− ϕ̂(c7(n)δξ))ϕ̂(ηξ)µ̂Q,e(ξ)ν̂(ξ) dξ +

∫
ϕ̂(c7(n)δξ)ϕ̂(ηξ)µ̂Q,e(ξ)ν̂(ξ) dξ

:= A2 −A1

for all 0 < η � δ, where ϕη(x) = ϕ(ηx)/ηn−1.
In the sequel, we will reach a contradiction with the identity in the previous

paragraph by showing that |A2| < |A1|. For this sake, we observe that ϕ̂ is a
bounded Lipschitz function with ϕ̂(0) = 1, so that |1− ϕ̂(c7(n)δξ)| ≤ c8(n)δ|ξ| and,
a fortiori,

|A2| ≤ c8(n)δ
s′0−(n−1)

2 +α
2

(∫
|µ̂Q,e(ξ)|2 · |ξ|s

′
0−(n−1) dξ

)1/2(∫
|ν̂(ξ)|2 · |ξ|α dξ

)1/2

thanks to our choice of
s′0−(n−1)

2 +α
2 ≤ 1 in (2.3) and the Cauchy–Schwarz inequality.

By plugging into the previous inequality the facts that our choices in (2.2) and (2.3)

imply
s′0−(n−1)

2 + α
2 ≥ min{s′′0−1, 1}, our assumption e /∈ Eδ,Q allows (by definition)
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to control |µ̂Q(ξ)| (= |µ̂Q,e(ξ)| for ξ ∈ e⊥), and the α-energy of ν is controlled by
(2.9), we derive that

A2 ≤ c9(s′′0 , s
′
0, n)δmin{s′′0−1,1}δ−ε1/2δ−(ε∗+ε0n)/2.

On the other hand, if we write

A1 =

∫
ϕc7(n)δ ∗ ϕη ∗ µQ,e(r) dν(r),

and we recall that ν is supported in He,δ,Q := πe(Le,δ,bad,Q), then we can use the
fact that r ∈ He,δ,Q means ` := π−1e (r) ∈ Le,δ,bad,Q, i.e., `(2δ) meets at least
δ2ε0−1 dyadic cubes R ∈ Dδ included in Q which are not light, to deduce that
µQ(`(2δ)) ≥ δ2ε0−1+n+ε∗ and, a fortiori,

ϕc7(n)δ ∗ ϕη ∗ µQ,e(r) ≥ c10(n)δ2ε0+ε∗

for all r ∈ H and 0 < η � δ. Therefore,

A1 ≥ c10(n)δ2ε0+ε∗

because ν is a probability measure on H.
At this point, we get the desired contradiction A1 > |A2| for δ is sufficiently small

because our choice (2.5) implies that 2ε0 + ε∗ < min{s′′0 − 1, 1} − ε1
2 −

ε∗+ε0n
2 . �

2.6. End of the proof of Theorem 1.1. Let us take a decreasing sequence of
dyadic scales δj → 0 such that δε0j also a dyadic scale. We define the set Eδj of
δj-exceptional directions as

Eδj :=
⋃

Q∈D
δ
ε0
j

Eδj ,Q.

Since #Dη = η−n, it follows from Lemma 2.4 that

Hn−1(Eδj ) ≤ c2(s′0, n)Is′0(µ)δε1−ε0nj .

Therefore, our choice of ε1 > ε0n in (2.4) implies

∞∑
j=1

Hn−1(Eδj ) <∞,

so that the set

E = E(s0, s
′
0, s
′′
0 , ε0, ε1, ε∗) :=

∞⋂
n=1

⋃
j≥n

Eδj

has zero Hn−1-measure.
We affirm that dimH(Vise(K)) ≤ s0 whenever e ∈ Sn−1 \E. In fact, an element

e /∈ E belongs to finitely many Eδj ’s, say e /∈ Eδj for all j ≥ je.
By Lemma 2.3, we have Hs0∞(Vise(K) ∩Kδj ,light) ≤ Hs0∞(Kδj ,light) ≤ C(n) · δε∗j

for all j. Also, by Lemma 2.5, Hs
′
0

δj
(Vise(K) ∩Kδj ,heavy ∩ Le,δj ,good) ≤ δε∗j for all

j sufficiently large. Moreover, Hs
′
0∞

Vise(K) ∩Kδj ,heavy ∩
⋃

Q∈D
δ
ε0
j
,

Q∩K 6=∅

Le,δj ,bad,Q

 ≤
δε∗j for all j ≥ je sufficiently large by Lemma 2.6 (and the fact that #Dδε0j = δ−ε0nj ).

By putting these three estimates together, we derive that if e /∈ E, then

Hs0∞(Vise(K)) ≤ (C(n) + 2)δε∗j
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for all j ≥ je sufficiently large, and, consequently, dimH(Vise(K)) ≤ s0 for all
e /∈ E(s0, s

′
0, s
′′
0 , ε0, ε1, ε∗).

Since s0, s
′
0, s
′′
0 , ε0, ε1, ε∗ are arbitrary rational parameters satisfying (2.2), (2.3),

(2.4) and (2.5), we conclude that

dimH(Vise(K)) ≤ n−min

{
1

5
,

1

n+ 2

}
for Lebesgue almost every e ∈ Sn−1.

3. Typical visible parts of dynamical Cantor sets

In this section, we revisit Orponen’s method described above in order to establish
Theorem 1.2.

3.1. Some preliminaries. It is well-known (see, e.g., [6] and [3]) that the products
of C2-dynamically defined Cantor sets of the real line and the self-similar sets
given by a finite collection of Euclidean similarities verifying the open set condition
defined a class of compact subsets K ⊂ Rn with the following properties:

• K supports a measure µ equivalent to Hd|K , d := dimH(K), such that
C−1rd ≤ µ(B(x, r)) ≤ Crd for all x ∈ K, r > 0;
• there exists λ > 1 such that, for all ρ > 0, K can be covered by a collection
Cρ(K) of disjoint cubes with sizes belonging to the interval [ρ, λρ] such that
their mutual distances are at least λ−1ρ and each of them contain a ball of
radius λ−1ρ about some point of K.

In the context of Theorem 1.2, recall that we are also assuming that

(3.10) n ≥ d > max{
√

3,
(n− 1) +

√
(n− 1)(n+ 3)

2
}.

Furthermore, up to rescaling, we can suppose that K ⊂ [0, 1]n.
Let us now fix some rational parameters

(3.11) max{3d+ 3

d+ 3
,

(n+ 1)d+ (n− 1)

d+ 2
} < n− ε0 < s′′0 < s′0 < s0 < d ≤ n,

(3.12) α := min

{
s′′0 − 1, 2− s′0 − (n− 1)

2

}
,

(3.13)
ε0d

2
<
ε1
2
< min{s′′0 − 1, 1} − ε0d

2
− 2ε0 − d+ n,

and
(3.14)

0 < ε∗ < min

{
s′0 + ε0 − n, 2

(
min{s′′0 − 1, 1} − ε0d

2
− 2ε0 − d+ n− ε1

2

)}
.

Note that these conditions are mutually compatible: indeed, our assumption (3.10)

allows us to choose s0, s′0, s′′0 and ε0 in (3.11); since ε0 < min
{

3−d
d+3 ,

n−d+1
d+2

}
and

s′0 > n− ε0, we can select ε1 in (2.4) and ε∗ in (2.5).
In what follows, δ = 2−N , N ∈ N, is an arbitrary (small) dyadic scale such that

δε0 is also a dyadic scale.
Our plan is to show Theorem 1.2 by following the same arguments from the

previous section after some adjustments in the definitions and arguments.
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3.2. Absence of light cubes. In comparison with the previous section, our cur-
rent setting is technically easier because there are no δ-light cubes in the sense that
any Q ∈ Cδ(K) satisfies

(3.15) µ(Q) ≥ C−1λ−dδd =: c11δ
d.

3.3. Exceptional directions. Given a cube Q ∈ Cδε0 (K), we define

Eδ,Q :=

{
e ∈ Sn−1 :

∫
e⊥
|µ̂Q(ζ)|2 · |ζ|s

′
0−(n−1) dHn−1(ζ) ≥ δ−ε1

}
where µQ = µ|Q. Since s′0 < d, we have that

(3.16) Hn−1(Eδ,Q) ≤ c2(s′0, n)Is′0(µ)δε1

for all Q ∈ Cδε0 (K).

3.4. Good and bad lines. Denote by Le the space of lines parallel to e ∈ Sn−1.
Given a cube Q ∈ Cδε0 (K), the set Le,δ,bad,Q of δ-bad lines in direction e associated
to Q consists of all lines ` ∈ Le disjoint from K ∩Q whose 2δ-neighborhood `(2δ)
satisfy

# {R ∈ Cδ(K) : R ∩Q 6= ∅, R ∩ `(2δ) 6= ∅} ≥ δ2ε0−1.
We say that ` ∈ Le is a δ-good line in the direction e whenever ` /∈ Le,δ,bad,Q

for all Q ∈ Cδε0 (K). The collection of δ-good lines in the direction e is denoted by
Le,δ,good and we define

Le,δ,good :=
⋃

`∈Le,δ,good

`.

Lemma 3.1. Hs
′
0

λδ(Vise(K) ∩ Le,δ,good) ≤ δε∗ for all δ sufficiently small.

Proof. The argument below is parallel to the proof of Lemma 2.5 above. Once
again, let Te,δ be a collection of tubes of width δ whose bases are perpendicular to e
in order to cover [0, 1]n, so that our task is reduced to prove that, for each T ∈ Te,δ,
the minimal number N(Vise(K) ∩ Le,δ,good ∩ T, δ) of balls of radii in the interval
[δ, λδ] needed to cover Vise(K) ∩ Le,δ,good ∩ T is at most

N(Vise(K) ∩ Le,δ,good ∩ T, δ) ≤ c5(n)δε0−1.

In order to estimate N(Vise(K)∩Le,δ,good∩T, δ) for a given T ∈ Te,δ, we consider
two scenarios:

(i) for all Q ∈ Cδε0 (K), one has

#{R ∈ Cδ(K) : R ∩Q 6= ∅, R ∩ T 6= ∅} < δ2ε0−1;

(ii) there exists Q1 ∈ Cδε0 (K) with

#{R ∈ Cδ(K) : R ∩Q1 6= ∅, R ∩ T 6= ∅} ≥ δ2ε0−1.
In the first scenario, we have that N(Vise(K) ∩ Le,δ,good ∩ T, δ) ≤ δε0−1 simply

because T can meet at most δ−ε0 cubes Q ∈ Cδε0 (K).
In the second scenario, we take Q1 to be a ≤e-minimal cube with the property

described in (ii) (in the sense that Q1 minimizes inf{〈x, e〉 : x ∈ Q1} among all
cubes in (ii)). Since the 2δ-neighborhood of any line ` ⊂ T contains T , we also have

#{R ∈ Cδ(K) : R ∩Q1, R ∩ `(2δ) 6= ∅} ≥ δ2ε0−1.
Therefore, it follows from the definition of δ-good line that any ` ∈ Le,δ,good included
in T must intersect K ∩Q1.

We affirm that
Vise(K) ∩ Le,δ,good ∩ T ∩Q = ∅
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for any cube Q ∈ Cδε0 (K) with inf{〈x, e〉 : x ∈ Q} > sup{〈y, e〉 : y ∈ Q1}. In fact,
if x ∈ Vise(K) ∩ Le,δ,good ∩ T ∩ Q, then πe(x) = πe(y) for some y ∈ Q1. Since
〈x, e〉 > 〈y, e〉, one would get x /∈ Vise(K), a contradiction.

Hence, Vise(K)∩Le,δ,good ∩ T is covered by the collection of cubes Q ∈ Cδε0 (K)
with inf{〈x, e〉 : x ∈ Q} ≤ sup{〈y, e〉 : y ∈ Q1}. Now, we observe that

• the number of cubes Q ∈ Cδε0 (K) intersecting T with

inf{〈z, e〉 : z ∈ Q1} ≤ inf{〈x, e〉 : x ∈ Q} ≤ sup{〈y, e〉 : y ∈ Q1}
is bounded by an absolute constant c4(n); for each of them, we will use the
crude bound N(Vise(K) ∩ Le,δ,good ∩ T, δ) ≤ δε0−1 coming from the fact
that Q ∩ T can be covered using at most δε0−1 balls of radius δ;

• any cube Q ∈ Cδε0 (K) intersecting T ∩K with

inf{〈z, e〉 : z ∈ Q1} > inf{〈x, e〉 : x ∈ Q}
satisfies

#{R ∈ Cδ(K) : R ∩Q1 6= ∅, R ∩ `(2δ) 6= ∅} ≤ δ2ε0−1

because of the ≤e-minimality of Q1; the number of such cubes Q is at most
≤ δ−ε0 because T meets at most δ−ε0 cubes Q ∈ Cδε0 (K).

By combining the estimates above, we conclude that

N(Vise(K) ∩ Le,δ,good ∩ T, δ) ≤ c4(n)δε0−1 + δ−ε0δ2ε0−1 = c5(n)δε0−1.

This completes the proof. �

3.5. Typical visible parts in bad lines. Similarly to the previous section, the
last step towards the proof of Theorem 1.2 is the following estimate:

Lemma 3.2. Let Q ∈ Cδε0 (K) be a cube, consider a direction e /∈ Eδ,Q, and denote
Le,δ,bad,Q :=

⋃
`∈Le,δ,bad,Q

`. Then,

Hs
′
0−1∞ (πe(Le,δ,bad,Q)) ≤ δε∗+ε0d

for all δ sufficiently small.

Proof. By contradiction, suppose thatHs
′
0−1∞ (πe(Le,δ,bad,Q)) ≥ δε∗+ε0d. By Lemma

2.1, we have a probability measure ν supported on He,δ,Q := πe(Le,δ,bad,Q) with

ν(B(x, r)) ≤ C(n− 1)δ−ε∗−ε0drs
′
0−1

for all x ∈ H and r > 0. Thus, our choice of α ≤ s′′0 − 1 < s′0 − 1 in (3.12) (and
Remark 2.2) means that the α-energy of ν satisfies

(3.17) c1(α, n− 1)

∫
|ν̂(ξ)|2 · |ξ|α dξ = Iα(ν) ≤ c6(s′′0 , s

′
0, n)δ−ε∗−ε0d.

Next, we observe that, by definition, any line ` ∈ Le,δ,bad,Q misses K ∩ Q.
Therefore, µQ,e := (πe)∗(µQ) and ν have disjoint supports. Hence, if we fix a
non-negative smooth bump function ϕ on e⊥ ' Rn−1 with total integral one and
ϕ(0) = 1, then

0 =

∫
ϕη ∗ µQ,e dν =

∫
ϕ̂(ηξ)µ̂Q,e(ξ)ν̂(ξ) dξ

=

∫
(1− ϕ̂(c7(n)δξ))ϕ̂(ηξ)µ̂Q,e(ξ)ν̂(ξ) dξ +

∫
ϕ̂(c7(n)δξ)ϕ̂(ηξ)µ̂Q,e(ξ)ν̂(ξ) dξ

:= A2 −A1

for all 0 < η � δ, where ϕη(x) = ϕ(ηx)/ηn−1.
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Once more, we will reach a contradiction with the identity in the previous para-
graph by showing that |A2| < |A1|. For this sake, we observe that ϕ̂ is a bounded
Lipschitz function with ϕ̂(0) = 1, so that |1−ϕ̂(c7(n)δξ)| ≤ c8(n)δ|ξ| and, a fortiori,

|A2| ≤ c8(n)δ
s′0−(n−1)

2 +α
2

(∫
|µ̂Q,e(ξ)|2 · |ξ|s

′
0−(n−1) dξ

)1/2(∫
|ν̂(ξ)|2 · |ξ|α dξ

)1/2

thanks to our choice of
s′0−(n−1)

2 + α
2 ≤ 1 in (3.12) and the Cauchy–Schwarz inequal-

ity. By plugging into the previous inequality the facts that our choices in (3.11)

and (3.12) imply
s′0−(n−1)

2 + α
2 ≥ min{s′′0 − 1, 1}, our assumption e /∈ Eδ,Q allows

(by definition) to control |µ̂Q(ξ)| (= |µ̂Q,e(ξ)| for ξ ∈ e⊥), and the α-energy of ν is
controlled by (3.17), we derive that

A2 ≤ c9(s′′0 , s
′
0, n)δmin{s′′0−1,1}δ−ε1/2δ−(ε∗+ε0d)/2.

On the other hand, if we write

A1 =

∫
ϕc7(n)δ ∗ ϕη ∗ µQ,e(r) dν(r),

and we recall that ν is supported in He,δ,Q := πe(Le,δ,bad,Q), then we can use the
fact that r ∈ He,δ,Q means ` := π−1e (r) ∈ Le,δ,bad,Q, i.e., `(2δ) meets at least δ2ε0−1

cubes R ∈ Cδ(K) intersecting Q and verifying (3.15), to deduce that µQ(`(2δ)) ≥
c11δ

2ε0−1+d and, a fortiori,

ϕc7(n)δ ∗ ϕη ∗ µQ,e(r) ≥ c11c10(n)δ2ε0−1+d−(n−1)

for all r ∈ H and 0 < η � δ. Therefore,

A1 ≥ c11c10(n)δ2ε0+d−n

because ν is a probability measure on H.
At this point, we get the desired contradiction A1 > |A2| for δ is sufficiently small

because our choice (3.14) implies that 2ε0+d−n < min{s′′0−1, 1}− ε1
2 −

ε∗+ε0d
2 . �

3.6. End of the proof of Theorem 1.2. Let us take a decreasing sequence of
dyadic scales δj → 0 such that δε0j also a dyadic scale. We define the set Eδj of
δj-exceptional directions as

Eδj :=
⋃

Q∈Cδj (K)

Eδj ,Q.

Since #Cη(K) ≤ c12η
−d (thanks to (3.15) and the finiteness of µ), it follows from

(3.16) that

Hn−1(Eδj ) ≤ c2(s′0, n)Is′0(µ)δε1−ε0dj .

Therefore, our choice of ε1 > ε0d in (3.13) implies

∞∑
j=1

Hn−1(Eδj ) <∞,

so that the set

E = E(s0, s
′
0, s
′′
0 , ε0, ε1, ε∗) :=

∞⋂
n=1

⋃
j≥n

Eδj

has zero Hn−1-measure.
We affirm that dimH(Vise(K)) ≤ s′0 whenever e ∈ Sn−1 \E. In fact, an element

e /∈ E belongs to finitely many Eδj ’s, say e /∈ Eδj for all j ≥ je.
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By Lemma 3.1, Hs
′
0

λδj
(Vise(K)∩Le,δj ,good) ≤ δε∗j for all j sufficiently large. More-

over, Hs
′
0∞

Vise(K) ∩
⋃

Q∈C
δ
ε0
j

(K)

Le,δj ,bad,Q

 ≤ c12δ
ε∗
j for all j ≥ je sufficiently

large by Lemma 3.2 (and the fact that #Cδε0j (K) ≤ c12δ−ε0dj ).

By putting these three estimates together, we derive that if e /∈ E, then

Hs
′
0∞(Vise(K)) ≤ (c12 + 1)δε∗j

for all j ≥ je sufficiently large, and, consequently, dimH(Vise(K)) ≤ s′0 for all
e /∈ E(s0, s

′
0, s
′′
0 , ε0, ε1, ε∗).

Since s0, s
′
0, s
′′
0 , ε0, ε1, ε∗ are arbitrary rational parameters satisfying (3.11), (3.12),

(3.13) and (3.14), we conclude that

dimH(Vise(K)) ≤ max{3d+ 3

d+ 3
,

(n+ 1)d+ (n− 1)

d+ 2
}

for Lebesgue almost every e ∈ Sn−1.
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[1] I. Arhosalo, E. Järvenpää, M. Järvenpää, M. Rams, P. Shmerkin, Visible parts of fractal
percolation, Proc. Edinb. Math. Soc. (2) 55 (2012), 311–331.

[2] K. Falconer, J. Fraser, The visible part of plane self-similar sets, Proc. Amer. Math. Soc.

141 (2013), 269–278.
[3] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
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