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SOME VARIANTS OF ORPONEN'S THEOREM ON VISIBLE PARTS OF FRACTAL SETS

It was recently established by T. Orponen that the visible parts from almost every direction of a compact subset of R n have Hausdorff dimension at most n -1 50n . In this note, we refine Orponen's argument in order to show that the visible parts from almost every direction of a compact subset of R n have Hausdorff dimension at most n -min{ 1 5 , 1 n+2 }. Moreover, we also show that some classes of dynamically defined Cantor

} have visible parts of Hausdorff dimension at most max{ 3d+3 d+3 , (n+1)d+(n-1) d+2 } from almost every direction.

Introduction

Let K be a compact subset of the Euclidean space R n , n ≥ 2. Intuitively, the visible part Vis e (K) of K in the direction e ∈ S n-1 is the subset of K consisting of the points which are first hit by a light beam travelling in the direction e emanating from a certain affine hyperplane orthogonal to e.

More concretely, if π e : R n → e ⊥ denotes the orthogonal projection to the hyperplane e ⊥ orthogonal to e and ., . stands for the usual Euclidean inner product, then Vis e (K) is the collection of ≤ e -minimal points of K where ≤ e is the partial order defined by x ≤ e y if and only if π e (x) = π e (y) and x, e ≤ y, e .

In general, the visible parts Vis e (K) are Borel sets because they are the graphs of lower semi-continuous functions, cf. [START_REF] Järvenpää | Visible parts and dimensions[END_REF]Remark 2.2 (a)].

By definition, π e (Vis e (K)) = π e (K) for all e ∈ S n-1 . Therefore, Mattila's extension of Marstrand's theorem [START_REF] Marstrand | Some fundamental geometrical properties of plane sets of fractional dimensions[END_REF] provides the following lower bound on the Hausdorff dimension of typical visible parts: dim H (Vis e (K)) ≥ min{dim H (K), n -1} for Lebesgue almost every e ∈ S n-1 .

The visibility conjecture asserts that the converse inequality is true, i.e., if dim H (K) > n-1, then dim H (Vis e (K)) = n-1 for Lebesgue almost every e ∈ S n-1 (see, e.g., [START_REF] Mattila | Hausdorff dimension, projections, and the Fourier transform[END_REF]Problem 11]).

It is known that this conjecture admits a positive answer for several particular classes of compact subsets of R n (cf. [START_REF] Järvenpää | Visible parts and dimensions[END_REF], [START_REF] Falconer | The visible part of plane self-similar sets[END_REF] and [START_REF] Arhosalo | Visible parts of fractal percolation[END_REF]). Furthermore, we know that if K ⊂ R n is a compact subset with d-Hausdorff measure 0 < H d (K) < ∞, then the d-Hausdorff measure of Vis e (K) is zero for Lebesgue almost every e ∈ S n-1 (see [START_REF] Järvenpää | Transversal mappings between manifolds and nontrivial measures on visible parts[END_REF]Theorem 1.1]).

More recently, T. Orponen [START_REF] Orponen | On the dimension of visible parts[END_REF] obtained an unconditional estimate on the Hausdorff dimension of typical visible parts of compact subsets K of R n : in a nutshell, he proved that dim H (Vis e (K)) ≤ n -1 50n for Lebesgue almost every e ∈ S n-1 . In this note, we refine Orponen's methods to establish the following two results: Theorem 1.1. Let K ⊂ R n be a compact subset. Then, for Lebesgue almost every e ∈ S n-1 , the Hausdorff dimension of Vis e (K) is at most n -min{ 1 5 , 1 n+2 }. Theorem 1.2. Let K ⊂ R n be a product of C 2 -dynamically defined Cantor sets of the real line or a self-similar set defined by a finite collection of Euclidean similarities verifying the open set condition. If the Hausdorff dimension of K is dim

H (K) > max{ √ 3, (n-1)+ √ (n-1)(n+3) 2
}, then, for Lebesgue almost every e ∈ S n-1 , the Hausdorff dimension of Vis e (K) is at most max{ 3d+3 d+3 , (n+1)d+(n-1)

d+2

}.

The remainder of this note is divided into two sections: its first half contains the proof of Theorem 1.1 and its second half is devoted to the proof of Theorem 1.2.

Visible parts of general compact subsets

Let K be a compact subset of R n , n ≥ 2. Up to rescaling, we can (and do) assume that K ⊂ [0, 1] n . Since the conclusion of Theorem 1.1 always holds when K has Hausdorff dimension ≤ n -min{ 1 5 , 1 n+2 }, we can (and do) also assume that

(2.1) n -min 1 5 , 1 n + 2 < d := dim H (K) ≤ n. 2.1. Some preliminaries. Recall that the s-dimensional Hausdorff measure at scale 0 < ρ ≤ ∞ of a subset E ⊂ R n is H s ρ (E) := inf    ∞ i=1 diam(U i ) s : E ⊂ i≥1 U i and diam(U i ) < δ ∀ i ≥ 1    and the s-dimensional Hausdorff measure of E is H s (E) = lim ρ→0 H s ρ (E), so that the Hausdorff dimension of E is dim H (E) := inf{s : H s (E) = 0} = sup{s : H s (E) = ∞}. Recall also that a dyadic cube Q ⊂ [0, 1] n is a cube of the form Q = n j=1 [ ij 2 N , ij +1 2 N ]
for some N ∈ N and (i 1 , . . . , i n ) ∈ {1, . . . , 2 N -1} n . In the sequel, the collection of dyadic cubes with sides of fixed size 2 -N is denoted by D 2 -N .

In [9, Lemma A.1], Orponen showed the following version of Frostman's lemma:

Lemma 2.1 (Orponen). Let E ⊂ [0, 1] n be a compact subset. Then, there exists a Radon measure µ supported on E and a constant 0

< C = C(n) < ∞ such that µ(B(x, r)) ≤ Cr s for all x ∈ R n , r > 0, and 
µ(Q) ≥ C -1 min{H s ∞ (E ∩ Q), H n (Q)} for all dyadic cube Q ⊂ [0, 1] n .
Similarly to Orponen [START_REF] Orponen | On the dimension of visible parts[END_REF], our long-term goal is to apply this lemma to estimate the Hausdorff dimension of visible parts in typical directions.

For this sake, we fix first some rational parameters

(2.2) n -min 1 5 , 1 n + 2 < n -ε 0 < s 0 < s 0 < s 0 < d ≤ n, (2.3) α := min s 0 -1, 2 - s 0 -(n -1) 2 , (2.4) ε 0 n 2 < ε 1 2 < min{s 0 -1, 1} - ε 0 n 2 -2ε 0 , and 
(2.5) 0 < ε * < min s 0 + ε 0 -n, 2 3 min{s 0 -1, 1} - ε 0 n 2 -2ε 0 - ε 1 2 .
Note that these conditions are mutually compatible: indeed, our assumption (2.1)

allows us to choose s 0 , s 0 , s 0 and ε 0 in (2.2); since ε 0 < min for all x ∈ R n and r > 0, and

(2.7) µ(Q) ≥ C -1 min{H s0 ∞ (K ∩ Q), H n (Q)} for all dyadic cube Q ⊂ [0, 1] n (where 0 < C = C(n) < ∞ is a constant).
Recall that (2.6) implies that the s 0 -energy of µ is finite, i.e.,

(2.8)

I s 0 (µ) := dµ(x) dµ(y) |x -y| s 0 < ∞.
Remark 2.2. For later reference, let us remind that the s-energy of a measure θ can be expressed in terms of the Fourier transform as

I s (θ) = dθ(x) dθ(y) |x -y| s = c 1 (s, n) | θ(ξ)| 2 • |ξ| s-n dH n (ξ)
where 0 < c 1 (s, n) < ∞ is a constant.

In the sequel, δ = 2 -N , N ∈ N, is an arbitrary (small) dyadic scale such that δ ε0 is also a dyadic scale.

Contribution of light cubes.

We say that a dyadic cube Q ∈ D δ is δ-light when µ(Q) ≤ δ n+ε * . The portion of K contained in δ-light cubes is denoted by K δ,light . Since D δ has cardinality δ -n , it follows from (2.7) that:

Lemma 2.3. H s0 ∞ (K δ,light ) ≤ C(n) • δ ε * .
In particular, this lemma says that we can safely focus on the δ-heavy portion K δ,heavy := K \ K δ,light of K.

2.3. Exceptional directions. Given a dyadic cube Q ∈ D δ ε 0 , the restriction of µ to Q is denoted by µ Q . The set of δ-exceptional directions associated to Q is E δ,Q := e ∈ S n-1 : e ⊥ | µ Q (ζ)| 2 • |ζ| s 0 -(n-1) dH n-1 (ζ) ≥ δ -ε1 . Since I s 0 (µ Q ) ≤ I s 0 (µ), it follows from (2.8
) and a change of variables to polar coordinates in Remark 2.2 that:

Lemma 2.4. H n-1 (E δ,Q ) ≤ c 2 (s 0 , n)I s 0 (µ)δ ε1 for all Q ∈ D δ ε 0 .
2.4. Good and bad lines. Denote by L e the space of lines parallel to e ∈ S n-1 . Given a dyadic cube Q ∈ D δ ε 0 intersecting K, the set L e,δ,bad,Q of δ-bad lines in direction e associated to Q consists of all lines ∈ L e disjoint from K ∩ Q whose 2δ-neighborhood (2δ) satisfy

# {R ∈ D δ : R ⊂ Q, R ∩ K = ∅, R is not light, R ∩ (2δ) = ∅} ≥ δ 2ε0-1 .
We say that ∈ L e is a δ-good line in the direction e whenever / ∈ L e,δ,bad,Q for all Q ∈ D δ ε 0 intersecting K. The collection of δ-good lines in the direction e is denoted by L e,δ,good and we define L e,δ,good := ∈L e,δ,good . Lemma 2.5. H s 0 δ (Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ) ≤ δ ε * for all δ sufficiently small. Proof. Let us use a collection T e,δ tubes of width δ whose bases are perpendicular to e in order to cover [0, 1] n . Since #T e,δ ≤ c 3 (n)δ -(n-1) , our task is reduced to prove that, for each T ∈ T e,δ , the minimal number N (Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ∩ T, δ) of δ-balls needed to cover Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ∩ T is at most

N (Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ∩ T, δ) ≤ c 5 (n)δ ε0-1 .
Indeed, the estimates above imply that

H s 0 δ (Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ) ≤ c 3 (n)c 5 (n)δ -(n-1) δ ε0-1 δ s 0 ≤ δ ε *
for all δ sufficiently small thanks to the fact that

s 0 + ε 0 -n > ε * (cf. (2.5)).
In order to estimate N (Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ∩ T, δ) for a given T ∈ T e,δ , we consider two scenarios:

(i) for all Q ∈ D δ ε 0 intersecting K, one has #{R ∈ D δ : R ⊂ Q, R ∩ K = ∅, R is not light, R ∩ T = ∅} < δ 2ε0-1 ; (ii) there exists Q 1 ∈ D δ ε 0 intersecting K with #{R ∈ D δ : R ⊂ Q 1 , R ∩ K = ∅, R is not light, R ∩ T = ∅} ≥ δ 2ε0-1 .
In the first scenario, we have that N (Vis e (K)∩K δ,heavy ∩L e,δ,good ∩T, δ) ≤ δ ε0-1 simply because T can meet at most δ -ε0 dyadic cubes Q ∈ D δ ε 0 .

In the second scenario, we take Q 1 to be a ≤ e -minimal dyadic cube with the property described in (ii) (in the sense that Q 1 minimizes inf{ x, e : x ∈ Q 1 } among all dyadic cubes in (ii)). Since the 2δ-neighborhood of any line ⊂ T contains T , we also have

#{R ∈ D δ : R ⊂ Q 1 , R ∩ K = ∅, R is not light, R ∩ (2δ) = ∅} ≥ δ 2ε0-1 .
Therefore, it follows from the definition of δ-good line that any ∈ L e,δ,good included in

T must intersect K ∩ Q 1 .
We affirm that Vis e (K) ∩ L e,δ,good

∩ T ∩ Q = ∅ for any dyadic cube Q ∈ D δ ε 0 with inf{ x, e : x ∈ Q} > sup{ y, e : y ∈ Q 1 }. In fact, if x ∈ Vis e (K) ∩ L e,δ,good ∩ T ∩ Q, then π e (x) = π e (y) for some y ∈ Q 1 . Since
x, e > y, e , one would get x / ∈ Vis e (K), a contradiction. Hence, Vis e (K) ∩ L e,δ,good ∩ T is covered by the collection of dyadic cubes Q ∈ D δ ε 0 with inf{ x, e : x ∈ Q} ≤ sup{ y, e : y ∈ Q 1 }. Now, we observe that

• the number of dyadic cubes Q ∈ D δ ε 0 intersecting T with inf{ z, e : z ∈ Q 1 } ≤ inf{ x, e : x ∈ Q} ≤ sup{ y, e : y ∈ Q 1 }
is bounded by an absolute constant c 4 (n); for each of them, we will use the crude bound N (Vis e (K) ∩ L e,δ,good ∩ T, δ) ≤ δ ε0-1 coming from the fact that Q ∩ T can be covered using at most δ ε0-1 balls of radius δ;

• any dyadic cube Q ∈ D δ ε 0 intersecting T ∩ K with inf{ z, e : z ∈ Q 1 } > inf{ x, e : x ∈ Q} satisfies #{R ∈ D δ : R ⊂ Q 1 , R ∩ K = ∅, R is not light , R ∩ (2δ) = ∅} ≤ δ 2ε0-1
because of the ≤ e -minimality of Q 1 ; the number of such cubes Q is at most ≤ δ -ε0 because T meets at most δ -ε0 dyadic cubes Q ∈ D δ ε 0 . By combining the estimates above, we conclude that

N (Vis e (K) ∩ K δ,heavy ∩ L e,δ,good ∩ T, δ) ≤ c 4 (n)δ ε0-1 + δ -ε0 δ 2ε0-1 = c 5 (n)δ ε0-1 .
This completes the proof. . Then,

H s 0 -1 ∞ (π e (L e,δ,bad,Q )) ≤ δ ε * +ε0n
for all δ sufficiently small.

Proof. By contradiction, suppose that

H s 0 -1 ∞
(π e (L e,δ,bad,Q )) ≥ δ ε * +ε0n . By Orponen's version of Frostman's lemma (cf. Lemma 2.1), we have a probability measure ν supported on H e,δ,Q := π e (L e,δ,bad,Q ) such that ν(B(x, r)) ≤ C(n -1)δ -ε * -ε0n r s 0 -1 for all x ∈ H and r > 0. Thus, our choice of α ≤ s 0 -1 < s 0 -1 in (2.3) (and Remark 2.2) means that the α-energy of ν satisfies (2.9)

c 1 (α, n -1) | ν(ξ)| 2 • |ξ| α dξ = I α (ν) ≤ c 6 (s 0 , s 0 , n)δ -ε * -ε0n .
Next, we observe that, by definition, any line ∈ L e,δ,bad,Q misses K ∩ Q. Therefore, µ Q,e := (π e ) * (µ Q ) and ν have disjoint supports. Hence, if we fix a non-negative smooth bump function ϕ on e ⊥ R n-1 with total integral one and

ϕ(0) = 1, then 0 = ϕ η * µ Q,e dν = ϕ(ηξ) µ Q,e (ξ) ν(ξ) dξ = (1 -ϕ(c 7 (n)δξ)) ϕ(ηξ) µ Q,e (ξ) ν(ξ) dξ + ϕ(c 7 (n)δξ) ϕ(ηξ) µ Q,e (ξ) ν(ξ) dξ := A 2 -A 1
for all 0 < η δ, where ϕ η (x) = ϕ(ηx)/η n-1 . In the sequel, we will reach a contradiction with the identity in the previous paragraph by showing that |A 2 | < |A 1 |. For this sake, we observe that ϕ is a bounded Lipschitz function with ϕ(0) = 1, so that |1 -ϕ(c 7 (n)δξ)| ≤ c 8 (n)δ|ξ| and, a fortiori,

|A 2 | ≤ c 8 (n)δ s 0 -(n-1) 2 + α 2 | µ Q,e (ξ)| 2 • |ξ| s 0 -(n-1) dξ 1/2 | ν(ξ)| 2 • |ξ| α dξ 1/2
thanks to our choice of

s 0 -(n-1) 2 
+ α 2 ≤ 1 in (2.
3) and the Cauchy-Schwarz inequality. By plugging into the previous inequality the facts that our choices in (2.2) and (2.3) imply

s 0 -(n-1) 2 + α 2 ≥ min{s 0 -1, 1}, our assumption e / ∈ E δ,Q allows (by definition) to control | µ Q (ξ)| (= | µ Q,e (ξ)| for ξ ∈ e ⊥ )
, and the α-energy of ν is controlled by (2.9), we derive that

A 2 ≤ c 9 (s 0 , s 0 , n)δ min{s 0 -1,1} δ -ε1/2 δ -(ε * +ε0n)/2 .
On the other hand, if we write

A 1 = ϕ c7(n)δ * ϕ η * µ Q,e (r) dν(r),
and we recall that ν is supported in H e,δ,Q := π e (L e,δ,bad,Q ), then we can use the fact that r ∈ H e,δ,Q means := π -1 e (r) ∈ L e,δ,bad,Q , i.e., (2δ) meets at least δ 2ε0-1 dyadic cubes R ∈ D δ included in Q which are not light, to deduce that µ Q ( (2δ)) ≥ δ 2ε0-1+n+ε * and, a fortiori,

ϕ c7(n)δ * ϕ η * µ Q,e (r) ≥ c 10 (n)δ 2ε0+ε *
for all r ∈ H and 0 < η δ. Therefore,

A 1 ≥ c 10 (n)δ 2ε0+ε *
because ν is a probability measure on H. At this point, we get the desired contradiction

A 1 > |A 2 | for δ is sufficiently small because our choice (2.5) implies that 2ε 0 + ε * < min{s 0 -1, 1} -ε1 2 -ε * +ε0n 2 .
2.6. End of the proof of Theorem 1.1. Let us take a decreasing sequence of dyadic scales δ j → 0 such that δ ε0 j also a dyadic scale. We define the set E δj of δ j -exceptional directions as

E δj := Q∈D δ ε 0 j E δj ,Q .
Since #D η = η -n , it follows from Lemma 2.4 that

H n-1 (E δj ) ≤ c 2 (s 0 , n)I s 0 (µ)δ ε1-ε0n j . Therefore, our choice of ε 1 > ε 0 n in (2.4) implies ∞ j=1 H n-1 (E δj ) < ∞, so that the set E = E(s 0 , s 0 , s 0 , ε 0 , ε 1 , ε * ) := ∞ n=1 j≥n E δj has zero H n-1 -measure.
We affirm that dim H (Vis e (K)) ≤ s 0 whenever e ∈ S n-1 \ E. In fact, an element e / ∈ E belongs to finitely many E δj 's, say e / ∈ E δj for all j ≥ j e . By Lemma 2.3, we have

H s0 ∞ (Vis e (K) ∩ K δj ,light ) ≤ H s0 ∞ (K δj ,light ) ≤ C(n) • δ ε * j
for all j. Also, by Lemma 2.5, H s 0 δj (Vis e (K) ∩ K δj ,heavy ∩ L e,δj ,good ) ≤ δ ε * j for all j sufficiently large. Moreover, H

s 0 ∞      Vis e (K) ∩ K δj ,heavy ∩ Q∈D δ ε 0 j , Q∩K =∅ L e,δj ,bad,Q     
≤ δ ε * j for all j ≥ j e sufficiently large by Lemma 2.6 (and the fact that #D δ ε 0 j = δ -ε0n j ). By putting these three estimates together, we derive that if e / ∈ E, then

H s0 ∞ (Vis e (K)) ≤ (C(n) + 2)δ ε * j
for all j ≥ j e sufficiently large, and, consequently, dim H (Vis e (K)) ≤ s 0 for all e / ∈ E(s 0 , s 0 , s 0 , ε 0 , ε 1 , ε * ). Since s 0 , s 0 , s 0 , ε 0 , ε 1 , ε * are arbitrary rational parameters satisfying (2.2), (2.3), (2.4) and (2.5), we conclude that dim H (Vis e (K)) ≤ n -min 1 5 , 1 n + 2 for Lebesgue almost every e ∈ S n-1 .

Typical visible parts of dynamical Cantor sets

In this section, we revisit Orponen's method described above in order to establish Theorem 1.2.

3.1. Some preliminaries. It is well-known (see, e.g., [START_REF] Lima | A combinatorial proof of Marstrand's theorem for products of regular Cantor sets[END_REF] and [START_REF] Hutchinson | Fractals and self-similarity[END_REF]) that the products of C 2 -dynamically defined Cantor sets of the real line and the self-similar sets given by a finite collection of Euclidean verifying the open set condition defined a class of compact subsets K ⊂ R n with the following properties:

• K supports a measure µ equivalent to H d | K , d := dim H (K), such that C -1 r d ≤ µ(B(x, r)) ≤ Cr d for all x ∈ K, r > 0;
• there exists λ > 1 such that, for all ρ > 0, K can be covered by a collection C ρ (K) of disjoint cubes with sizes belonging to the interval [ρ, λρ] such that their mutual distances are at least λ -1 ρ and each of them contain a ball of radius λ -1 ρ about some point of K.

In the context of Theorem 1.2, recall that we are also assuming that

(3.10) n ≥ d > max{ √ 3, (n -1) + (n -1)(n + 3) 2 }.
Furthermore, up to rescaling, we can suppose that K ⊂ [0, 1] n .

Let us now fix some rational parameters

(3.11) max{ 3d + 3 d + 3 , (n + 1)d + (n -1) d + 2 } < n -ε 0 < s 0 < s 0 < s 0 < d ≤ n, (3.12) α := min s 0 -1, 2 - s 0 -(n -1) 2 , (3.13) ε 0 d 2 < ε 1 2 < min{s 0 -1, 1} - ε 0 d 2 -2ε 0 -d + n, and (3.14) 0 < ε * < min s 0 + ε 0 -n, 2 min{s 0 -1, 1} - ε 0 d 2 -2ε 0 -d + n - ε 1 2 .
Note that these conditions are mutually compatible: indeed, our assumption (3.10) allows us to choose s 0 , s 0 , s 0 and ε 0 in (3.11); since ε 0 < min 3-d d+3 , n-d+1 d+2 and s 0 > n -ε 0 , we can select ε 1 in (2.4) and ε * in (2.5).

In what follows, δ = 2 -N , N ∈ N, is an arbitrary (small) dyadic scale such that δ ε0 is also a dyadic scale.

Our plan is to show Theorem 1.2 by following the same arguments from the previous section after some adjustments in the definitions and arguments.

Absence of light cubes.

In comparison with the previous section, our current setting is technically easier because there are no δ-light cubes in the sense that any

Q ∈ C δ (K) satisfies (3.15) µ(Q) ≥ C -1 λ -d δ d =: c 11 δ d . 3.3. Exceptional directions. Given a cube Q ∈ C δ ε 0 (K), we define E δ,Q := e ∈ S n-1 : e ⊥ | µ Q (ζ)| 2 • |ζ| s 0 -(n-1) dH n-1 (ζ) ≥ δ -ε1
where µ Q = µ| Q . Since s 0 < d, we have that

(3.16) H n-1 (E δ,Q ) ≤ c 2 (s 0 , n)I s 0 (µ)δ ε1 for all Q ∈ C δ ε 0 (K).
3.4. Good and bad lines. Denote by L e the space of lines parallel to e ∈ S n-1 . Given a cube

Q ∈ C δ ε 0 (K), the set L e,δ,bad,Q of δ-bad lines in direction e associated to Q consists of all lines ∈ L e disjoint from K ∩ Q whose 2δ-neighborhood (2δ) satisfy # {R ∈ C δ (K) : R ∩ Q = ∅, R ∩ (2δ) = ∅} ≥ δ 2ε0-1 .
We say that ∈ L e is a δ-good line in the direction e whenever / ∈ L e,δ,bad,Q for all Q ∈ C δ ε 0 (K). The collection of δ-good lines in the direction e is denoted by L e,δ,good and we define L e,δ,good := λδ (Vis e (K) ∩ L e,δ,good ) ≤ δ ε * for all δ sufficiently small. Proof. The argument below is parallel to the proof of Lemma 2.5 above. Once again, let T e,δ be a collection of tubes of width δ whose bases are perpendicular to e in order to cover [0, 1] n , so that our task is reduced to prove that, for each T ∈ T e,δ , the minimal number N (Vis e (K) ∩ L e,δ,good ∩ T, δ) of balls of radii in the interval [δ, λδ] needed to cover Vis e (K) ∩ L e,δ,good ∩ T is at most

N (Vis e (K) ∩ L e,δ,good ∩ T, δ) ≤ c 5 (n)δ ε0-1 .
In order to estimate N (Vis e (K)∩L e,δ,good ∩T, δ) for a given T ∈ T e,δ , we consider two scenarios:

(i) for all Q ∈ C δ ε 0 (K), one has

#{R ∈ C δ (K) : R ∩ Q = ∅, R ∩ T = ∅} < δ 2ε0-1 ; (ii) there exists Q 1 ∈ C δ ε 0 (K) with #{R ∈ C δ (K) : R ∩ Q 1 = ∅, R ∩ T = ∅} ≥ δ 2ε0-1 .
In the first scenario, we have that N (Vis e (K) ∩ L e,δ,good ∩ T, δ) ≤ δ ε0-1 simply because T can meet at most δ -ε0 cubes Q ∈ C δ ε 0 (K).

In the second scenario, we take Q 1 to be a ≤ e -minimal cube with the property described in (ii) (in the sense that Q 1 minimizes inf{ x, e : x ∈ Q 1 } among all cubes in (ii)). Since the 2δ-neighborhood of any line ⊂ T contains T , we also have

#{R ∈ C δ (K) : R ∩ Q 1 , R ∩ (2δ) = ∅} ≥ δ 2ε0-1 .
Therefore, it follows from the definition of δ-good line that any ∈ L e,δ,good included in T must intersect K ∩ Q 1 .

We affirm that Vis e (K) ∩ L e,δ,good ∩ T ∩ Q = ∅ for any cube Q ∈ C δ ε 0 (K) with inf{ x, e : x ∈ Q} > sup{ y, e : y ∈ Q 1 }. In fact, if x ∈ Vis e (K) ∩ L e,δ,good ∩ T ∩ Q, then π e (x) = π e (y) for some y ∈ Q 1 . Since

x, e > y, e , one would get x / ∈ Vis e (K), a contradiction. Hence, Vis e (K) ∩ L e,δ,good ∩ T is covered by the collection of cubes Q ∈ C δ ε 0 (K) with inf{ x, e : x ∈ Q} ≤ sup{ y, e : y ∈ Q 1 }. Now, we observe that

• the number of cubes Q ∈ C δ ε 0 (K) intersecting T with inf{ z, e : z ∈ Q 1 } ≤ inf{ x, e : x ∈ Q} ≤ sup{ y, e : y ∈ Q 1 }
is bounded by an absolute constant c 4 (n); for each of them, we will use the crude bound N (Vis e (K) ∩ L e,δ,good ∩ T, δ) ≤ δ ε0-1 coming from the fact that Q ∩ T can be covered using at most δ ε0-1 balls of radius δ;

• any cube Q ∈ C ε 0 (K) intersecting T ∩ K with inf{ z, e : z ∈ Q 1 } > inf{ x, e : x ∈ Q} satisfies #{R ∈ C δ (K) : R ∩ Q 1 = ∅, R ∩ (2δ) = ∅} ≤ δ 2ε0-1 because of the ≤ e -minimality of Q 1 ; the number of such cubes Q is at most ≤ δ -ε0 because T meets at most δ -ε0 cubes Q ∈ C δ ε 0 (K).
By combining the estimates above, we conclude that

N (Vis e (K) ∩ L e,δ,good ∩ T, δ) ≤ c 4 (n)δ ε0-1 + δ -ε0 δ 2ε0-1 = c 5 (n)δ ε0-1 .
This completes the proof. (π e (L e,δ,bad,Q )) ≥ δ ε * +ε0d . By Lemma 2.1, we have a probability measure ν supported on H e,δ,Q := π e (L e,δ,bad,Q ) with ν(B(x, r)) ≤ C(n -1)δ -ε * -ε0d r s 0 -1 for all x ∈ H and r > 0. Thus, our choice of α ≤ s 0 -1 < s 0 -1 in (3.12) (and Remark 2.2) means that the α-energy of ν satisfies

(3.17) c 1 (α, n -1) | ν(ξ)| 2 • |ξ| α dξ = I α (ν) ≤ c 6 (s 0 , s 0 , n)δ -ε * -ε0d .
Next, we observe that, by definition, any line ∈ L e,δ,bad,Q misses K ∩ Q. Therefore, µ Q,e := (π e ) * (µ Q ) and ν have disjoint supports. Hence, if we fix a non-negative smooth bump function ϕ on e ⊥ R n-1 with total integral one and ϕ

(0) = 1, then 0 = ϕ η * µ Q,e dν = ϕ(ηξ) µ Q,e (ξ) ν(ξ) dξ = (1 -ϕ(c 7 (n)δξ)) ϕ(ηξ) µ Q,e (ξ) ν(ξ) dξ + ϕ(c 7 (n)δξ) ϕ(ηξ) µ Q,e (ξ) ν(ξ) dξ := A 2 -A 1 for all 0 < η δ, where ϕ η (x) = ϕ(ηx)/η n-1 .
Once more, we will reach a contradiction with the identity in the previous paragraph by showing that |A 2 | < |A 1 |. For this sake, we observe that ϕ is a bounded Lipschitz function with ϕ(0) = 1, so that |1-ϕ(c 7 (n)δξ)| ≤ c 8 (n)δ|ξ| and, a fortiori,

|A 2 | ≤ c 8 (n)δ s 0 -(n-1) 2 + α 2 | µ Q,e (ξ)| 2 • |ξ| s 0 -(n-1) dξ 1/2 | ν(ξ)| 2 • |ξ| α dξ 1/2
thanks to our choice of 3.17), we derive that A 2 ≤ c 9 (s 0 , s 0 , n)δ min{s 0 -1,1} δ -ε1/2 δ -(ε * +ε0d)/2 . 3.6. End of the proof of Theorem 1.2. Let us take a decreasing sequence of dyadic scales δ j → 0 such that δ ε0 j also a dyadic scale. We define the set E δj of δ j -exceptional directions as has zero H n-1 -measure. We affirm that dim H (Vis e (K)) ≤ s 0 whenever e ∈ S n-1 \ E. In fact, an element e / ∈ E belongs to finitely many E δj 's, say e / ∈ E δj for all j ≥ j e .

On the other hand, if we write

A 1 = ϕ c7(n)δ * ϕ η * µ Q,e
E δj := Q∈C δ j (K) E δj ,Q .

2. 5 .

 5 Typical visible parts in bad lines. The last step towards the proof of Theorem 1.1 is the following estimate: Lemma 2.6. Let Q ∈ D δ ε 0 be a dyadic cube intersecting K, consider a direction e / ∈ E δ,Q , and denote L e,δ,bad,Q := ∈L e,δ,bad,Q

3. 5 .

 5 Typical visible parts in bad lines. Similarly to the previous section, the last step towards the proof of Theorem 1.2 is the following estimate: Lemma 3.2. Let Q ∈ C δ ε 0 (K) be a cube, consider a direction e / ∈ E δ,Q , and denote L e,δ,bad,Q := ∈L e,δ,bad,Q . Then,H s 0 -1 ∞ (π e (L e,δ,bad,Q )) ≤ δ ε * +ε0dfor all δ sufficiently small. Proof. By contradiction, suppose that H s 0 -1 ∞

2 ≤ 2 + α 2 ≥

 222 1 in (3.12) and the Cauchy-Schwarz inequality. By plugging into the previous inequality the facts that our choices in (3.11) and (3.12) imply s 0 -(n-1) min{s 0 -1, 1}, our assumption e / ∈ E δ,Q allows (by definition) to control | µ Q (ξ)| (= | µ Q,e (ξ)| for ξ ∈ e ⊥ ), and the α-energy of ν is controlled by (

  (r) dν(r), and we recall that ν is supported in H e,δ,Q := π e (L e,δ,bad,Q ), then we can use the fact that r ∈ H e,δ,Q means := π -1 e (r) ∈ L e,δ,bad,Q , i.e., (2δ) meets at least δ 2ε0-1 cubes R ∈ C δ (K) intersecting Q and verifying (3.15), to deduce that µ Q ( (2δ)) ≥ c 11 δ 2ε0-1+d and, a fortiori,ϕ c7(n)δ * ϕ η * µ Q,e (r) ≥ c 11 c 10 (n)δ 2ε0-1+d-(n-1)for all r ∈ H and 0 < η δ. Therefore,A 1 ≥ c 11 c 10 (n)δ 2ε0+d-nbecause ν is a probability measure on H. At this point, we get the desired contradiction A 1 > |A 2 | for δ is sufficiently small because our choice (3.14) implies that 2ε 0 +d-n < min{s 0 -1, 1}-ε1 2 -ε * +ε0d 2 .

  Since #C η (K) ≤ c 12 η -d (thanks to(3.15) and the finiteness of µ), it follows from(3.16) thatH n-1 (E δj ) ≤ c 2 (s 0 , n)I s 0 (µ)δ ε1-ε0d j .Therefore, our choice ofε 1 > ε 0 d in (3.13) implies ∞ j=1 H n-1 (E δj ) < ∞,so that the setE = E(s 0 , s 0 , s 0 , ε 0 , ε 1 , ε * ) := ∞ n=1 j≥n E δj

By Lemma 3.1, H s 0 λδj (Vis e (K)∩L e,δj ,good ) ≤ δ ε * j for all j sufficiently large. Moreover, H

L e,δj ,bad,Q   ≤ c 12 δ ε * j for all j ≥ j e sufficiently large by Lemma 3.2 (and the fact that #C δ ε 0 j (K) ≤ c 12 δ -ε0d j ). By putting these three estimates together, we derive that if e / ∈ E, then

for all j ≥ j e sufficiently large, and, consequently, dim H (Vis e (K)) ≤ s 0 for all e / ∈ E(s 0 , s 0 , s 0 , ε 0 , ε 1 , ε * ). Since s 0 , s 0 , s 0 , ε 0 , ε