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Theoretical and experimental
investigation of a 1:3 internal resonance in
a beam with piezoelectric patches

Vinciane Guillot1, Arthur Givois2,3, Mathieu Colin2,

Olivier Thomas2, Alireza Ture Savadkoohi1 and

Claude-Henri Lamarque1

Abstract

Experimental and theoretical results on the nonlinear dynamics of a homogeneous thin beam equipped with piezoelectric
patches, presenting internal resonances, are provided. Two configurations are considered: a unimorph configuration

composed of a beam with a single piezoelectric patch and a bimorph configuration with two collocated piezoelectric

patches symmetrically glued on the two faces of the beam. The natural frequencies and mode shapes are measured and

compared with those obtained by theoretical developments. Ratios of frequencies highlight the realization of 1:2 and 1:3

internal resonances, for both configurations, depending on the position of the piezoelectric patches on the length of the

beam. Focusing on the 1:3 internal resonance, the governing equations are solved via a numerical harmonic balance method

to find the periodic solutions of the system under harmonic forcing. A homodyne detection method is used experimentally

to extract the harmonics of the measured vibration signals, on both configurations, and exchanges of energy between the
modes in the 1:3 internal resonance are observed. A qualitative agreement is obtained with the model.
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1. Introduction

Piezoelectric (PZT) materials constitute an efficient mean of

coupling mechanical vibrations to an electrical circuit.

Several applications are usually targeted such as micro/nano

electromechanical systems (Bhugra and Piazza, 2017; Brand

et al., 2015), vibration control (Bricault et al., 2019; Collet

et al., 2008; Preumont, 2011; Soltani and Kerschen, 2015),

and energy harvesting (Erturk and Inman, 2011; Jacquelin

et al., 2011; Mam et al., 2016). In most of those cases, even if

linear systems are traditionally considered for their sim-

plicity, taking advantage of nonlinearities is of the most

interest (Cao et al., 2015). Among others, in vibration

control and energy harvesting, the synchronized switch

strategies (see, e.g. Richard et al. (1999), Ducarne et al.

(2012) and Lallart (2016)) are intrinsically nonlinear be-

cause of the electronic switching between two electrome-

chanical states synchronized with the structure oscillations.

When a primary structure is nonlinear, fully passive PZT

nonlinear tuned vibration absorbers, that follow its change of

frequency with the increasing vibration amplitude, have

been recently proposed (Lossouarn et al., 2018). Another

concept, the nonlinear energy sink, for which the absorber is

intrinsically nonlinear, has been realized with a PZT shunt

(Silva et al., 2018; Zhou et al., 2014), thanks to nonlinear

electrical circuits.

PZT materials are usually glued on elastic structures and

both can present nonlinear behaviors. The PZT material

nonlinearities were studied to understand their dynamics

(Abdelkefi et al., 2012; Guyomar et al., 1997, 2011;

Parashar and Wagner, 2004; Von Wagner and Hagedorn,

2002; Wolf and Gottlieb, 2001), but if deriving a proper

nonlinear PZT law, thermodynamically consistent, has been

already addressed, obtaining the values of the coefficients

for a practical application seems to be still an open field of

investigation. Moreover, the aforementioned publications

use a classical electric enthalpy function which is a high-
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order (smooth) polynomial in the strain, whereas in

Leadenham and Erturks (2015), a low-order function that

includes the absolute value of the strain (it is, thus, non-

smooth), is proposed and seems to be closer to what is

measured in practice. On the other hand, thin structures are

well known to present geometric nonlinearities, especially

cantilever beams, that have been thoroughly studied in the

past (Anderson et al., 1994, 1996; Crespo Da Silva, 1988;

Pai and Nayfeh, 1990). In this work, only the geometrical

nonlinearities of the beam are taken into account, whereas

the PZT material constitutive law is considered linear.

Contrary to linear systems, nonlinear oscillations can

present mode coupling(s) and energy exchange(s) between

different modes due to internal resonances. This phenome-

non can be used for passive control and/or energy harvesting

(Mook et al., 1985). The creation of internal resonances in

nonlinear systems is influenced by their degrees of non-

linearities. Let us suppose ωq, ωr, and ωk are resonant fre-

quencies of a system, where q, r, and k represent integers

corresponding to a specific frequency. For system which

presents cubic nonlinearities, the internal resonance can

occur if we have ωqx ωr, ωq = 3ωr, and ωkx |±2ωq ± ωr|.

In a system with additional quadratic nonlinearities, besides

the aforementioned conditions, the internal resonance can

emerge if ωq x 2ωr and ωk x ωq ± ωr (Nayfeh, 1979;

Nayfeh and Balachandran, 1989). When an internal reso-

nance is reached, a strong energy exchange between the

modes can arise, depending on the nonlinear coefficients of

the system.

The 1:3 internal resonance has been studied for plates

(Sun et al., 2018; Zhang and Guo, 2012), MEMS

(Czaplewski et al., 2019; Houri et al., 2019; Ramini et al.,

2016), buckled beams (Emam and Nayfeh, 2013), and

clamped–clamped beams (Ghayesh et al., 2012; Özkaya

et al., 2008), demonstrating bifurcations and chaotic be-

haviors. Garg and Dwivedy (2019) used a beam with PZT

materials excited parametrically, where the 1:3 internal

resonance being achieved by an added mass.

The aim of this work was to investigate experimentally

the behavior of an elastic homogeneous beam equipped

with PZT patches presenting a 1:3 internal resonance be-

tween modes. Two configurations are examined: a unim-

orph configuration with only one PZT patch on one side of

the beam, and a bimorph configuration for which two PZT

patches are placed symmetrically on each side of the beam,

as shown in Figure 1. As it will be observed, both con-

figurations present theoretically quadratic and cubic non-

linearities, thus, 1:2 or 1:3 internal resonances can allow

energy exchanges between modes. From the theoretical

developments, it will be deduced that the position of the

PZT patches on the beam can be used to tune the natural

frequencies of some modes to create resonances such as

ω3 x 2ω4 and ω3 x 3ω2, to achieve 1:2 and 1:3 internal

resonances. No other internal resonances were identified

between at least the first four modes. The focus of this study

was to investigate the behavior of the systems, while the 1:3

internal resonance is happening between the second and the

third mode of the structures. The additive mass and stiffness

of PZT patches are used to tune the natural frequencies of

the structure in a 1:3 internal resonance relation to study the

exchanges of energy between the two involved modes. The

PZT patches are not used as sensors or actuators because

this study is a preliminary work to investigate the positive

use of nonlinearities to favor the energy exchanges, before

using the structure as an active beam for energy harvesting

and vibration damping applications.

The article organization is as follows: the experimental

setup and methodology are first presented. Then, modal

analyses of the systems are carried out and experimental

results are compared with those obtained from an analytical

model. Periodic solutions under harmonic excitation of the

system, in the case of 1:3 internal resonance, are obtained

both theoretically and experimentally. Finally, conclusions

are provided.

2. Experimental methodology

Experimentations were achieved on three different sys-

tems: a homogeneous beam without PZT patches, a un-

imorph configuration, and a bimorph configuration

(Figure 1). For the two PZT configurations, the PZT

materials are glued between x = x1 and x = x2 measured

from the clamping. Lb denotes the length of the beam, and

Δ = Lb � x2 is the distance between the end of the PZT

patches and the end of the beam. The mechanical prop-

erties of the homogeneous beam, the PZT materials (we

used a PIC151 PZT material from PI Ceramic), and the

epoxy glue (fromMam et al. (2016)) are defined in Table 1.

2.1. Experimental setup

The apparatus is shown in Figure 2. The vibrating beam

was fixed on the head of a shaker (Brüel & Kjær 4808),

thanks to a homemade clamping system. An accelerometer

was glued on this clamping system, allowing to measure the

base acceleration prescribed to the structures. A scanning

Figure 1. Photograph of the different systems under study:

a homogeneous beam, a unimorph configuration, and a bimorph

configuration. Sketch of the unimorph and bimorph configurations.
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laser vibrometer (Polytec PSV-400) was used to measure

the velocity of several points of the vibrating beam. The

shaker was driven by a power amplifier and a computer with

input/output acquisition cards enabled to generate the input

driving signal and to record the velocity and acceleration

signals.

2.1.1. Detection of the mode shapes and natural frequencies.

From the experimental setup, an experimental modal

analysis was performed. First, we measured the frequency

response functions (FRFs) between the velocity of several

points on the beam and the base acceleration. We first in-

vestigated the influence of the position of the PZT patches

on the natural frequencies and mode shapes, to verify

whether it is possible to tune the natural frequencies to

achieve 1:2 or 1:3 internal resonance, that are

ωjx2ωi or ωjx3ωi (1)

The first four natural frequencies were detected for the

different length of the homogeneous beam Lb. In practice,

the PZT patches are glued at a fixed distance Δ of the free

end of the beam and we changed the position of the beam in

the clamping system, thus, modifying Lb (see Figure 1).

Because the length Lp = x2 � x1 of the PZT patches is fixed,

x1 and x2 are changed according to x1 = Lb�Δ� Lp and x2 =

Lb� Δ. For the unimorph configuration, Δ = 60 mm and the

length Lb of the beam has been increased from 110 mm to

170 mmwith steps of 5 mm. For the bimorph configuration,

Δ = 70 mm and the length Lb of the beam has been increased

from 120 mm to 170 mm with steps of 5 mm. In both cases,

the length of the PZT patches is Lp = 50 mm. Around the

particular lengths for which the 1:2 and 1:3 internal reso-

nance frequency ratios of equation (1) were obtained, the

step was reduced to 1 mm. To obtain the mode shapes, the

FRFs were measured at several points along the length of

the beam, on a line of points in the middle of the upper

surface. Then, the operational deflection shapes at reso-

nances were plotted as an estimation of the mode shapes.

2.1.2. Forced response measurements. We were interested in

the velocity response of the system when excited by

a harmonic base acceleration of frequencyV. In our studies,

the response of the structure was periodic and we used

a homodyne detection to measure the amplitude and the

phase of several harmonics of the signals at fixed excitation

frequencies. The structure was excited at a certain amplitude

of acceleration at several successive frequencies V, stepped

in a given frequency band of interest. Because of the ret-

roaction of the vibrating structure on the shaker, a control

loop was used to keep the excitation amplitude constant

during operations. For each frequency measurement, a time

delay was prescribed to wait for the end of the transient and

to reach a steady state. Then, each amplitude of harmonic

component was calculated by the computer from the ve-

locity signal of the laser vibrometer with the homodyne

detection strategy. It consists in multiplying the velocity

signal by sin(hVt) and cos(hVt) functions and taking the

average of the result to extract the amplitude of the hth

harmonic (see, e.g. Monteil et al. (2015) and Denis et al.

(2018) for details).

Because we focus in this article on a 1:3 internal res-

onance between the second and third modes of the structure,

with a direct driving of the lower mode, the frequency

bandwidth is defined around the second natural frequency

ω2. Then, to measure precisely the response of each of the

involved modes (we assume that the response of the

structure is the modal superposition of only the two modes

involved in the internal resonance), for each frequency

measurement, two experiments were performed, one after

the other. To obtain the response of the second mode, the

laser was first pointed on a vibration node of the third mode

Figure 2. Photograph of the unimorph piezoelectric beam clamped on the head of the shaker (left). Sketch of the experimental setup

(right).

Table 1. Mechanical properties of the homogeneous beam (ex-

perimentally identified), the piezoelectric material PIC151 (from

Thomas et al. (2009)), and epoxy glue (from Mam et al. (2016)).

ρ (kg m�3) Y (GPa) h, hp (mm) b, bp (mm)

Beam 7810 179 0.5 13

PIC151 8500 66.7 0.5 10

Epoxy glue 8000 5 0.01 10
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shape, and, second, the response of the third mode was

obtained by pointing the laser on a vibration node of the

second mode shape.

3. Theoretical modeling

We consider the cantilever beams with PZT patches

sketched in Figure 1. We denote by b × h the width and the

thickness of the elastic layer cross section and by bp × hp the

ones of the PZT patches. Because of the clamped/free

boundary conditions, we assume that in large amplitude

vibrations, the beam remains inextensible (Dowell and

McHugh, 2016). This assumption may be broken by the

PZT patches, in particular in the asymmetric configuration,

because their mode of operation is extension/compression.

However, we assume that this effect is small because of the

axial stiffness of the beam, which is very large than that of

the bending one, and also because we are interested in

bending vibrations that are assumed to be uncoupled of

axial vibrations due to the clamped/free boundary con-

ditions. Parametric excitation is also not considered.

Moreover, we assume a linear PZT constitutive law, mostly

because no available numerical values for those parameters

are available in the literature. As shown in the Appendix 1

section and in Guillot et al. (2019), the axial/bending

coupling due to an asymmetry of the lamination of the

beam (this is the case for the unimorph configuration

(Ducarne et al., 2012)) is exactly canceled by the inex-

tensibility property.

The governing electromechanical equations of the sys-

tem, involving the transverse displacement v(x, t), where t is

the time, and the voltage V(t) across the PZT patches, can be

written as

mðxÞ€vþ ½DðxÞv00�00 þ
�

v0½v0DðxÞv00�0
�0

þ
"

v0
Z L

x

mðxÞ
2

�
Z 0

x

v02dx

�€

dx

#0

þ
h

δ0x2ðxÞ � δ0x1ðxÞ
i

ΘV

�

1þ v02

2

�

¼ pðx; tÞ

(2)

Q ¼ Θ½v0�x2x1
�

1þ v02

2

�

þ CV (3)

where ½v0�x2x1 ¼ v0ðx2Þ � v0ðx1Þ as observed in Ducarne et al.

(2012) and Guillot et al. (2019).

Equation (2) represents the dynamical equilibrium of the

beam and equation (3) the electrical state of the PZT

material.

In the aforementioned equations, m(x) is the mass per

unit length, D(x) is the bending stiffness, p(x, t) is an ex-

ternal force per unit length, Q(t) is the electric charge

contained in one of the electrodes of the PZT patches, and

δ(x) is the Dirac δ function. For the unimorph configuration,

the PZT coupling coefficient is Θ = e31bp(h + hp)/2 and the

electric capacitance isC = ϵ33bp(x2� x1)/hp, where e31 is the

PZT constant and ϵ33 is the dielectric permittivity of the

PZT material (Ducarne et al., 2012), see Table 2. First

equation predicts dynamical equilibrium of the beam and

electrical state of the PZT. For the bimorph configuration,

because the two collocated patches are in series, Θ is the

same and the capacitance C is half that of the unimorph

configuration (Ducarne et al., 2012).

3.1. Tuning of the natural frequencies for 1:2 and

1:3 internal resonance

The linear part of the governing equation (2) is now con-

sidered in short circuit (V = 0)

mðxÞ€vðs; tÞ þ ½DðxÞv00�00 ¼ 0 (4)

and the associated eigenmodes of the stepped beams (the

mass and stiffness addition of the PZT patches are included)

are computed, as explained in Ducarne et al. (2012) and

Guillot et al. (2019). To be rigorous, in the case of the

unimorph configuration, which has a nonsymmetric lami-

nation, the linear axial/bending coupling, not present in

equation (4) because of the inextensibility condition, is

included in those computations, as explained in Ducarne

et al. (2012).

The natural frequencies and mode shapes are computed

for several values of the beam length Lb and of the

placement of the PZT patches, defined by Δ (see Figure 1).

The length of the PZT patches is fixed at Lp = x2 � x1 =

50 mm. Because the bending inertia and stiffness depend on

the location of the PZT patches on the beam, the natural

frequencies depend on the PZT patches’ positions, and one

can find values of (L, Δ) for which the relations one are

fulfilled to create a 1:2 internal resonance between mode 4

and mode 3 or a 1:3 internal resonance between mode 3 and

mode 2. To illustrate these results, the maps of the ratios ω4/

ω3 and ω3/ω2 are plotted as functions of (L, Δ) in Figure 3.

They have been computed with the parameters of the beam

gathered in Table 1 without considering the epoxy layer.

Those plots have to be considered as a qualitative first

insight into the tuning of the natural frequencies, before

a precise experimental tuning, as presented in the next

section. For the unimorph configuration and Δ = 60 mm, the

special lengths Lb = 0.142 mm and Lb = 0.129 mm allow to

reach to the 1:2 and 1:3 internal resonances, respectively. As

for the bimorph configuration, we have Δ = 70 mm and the

Table 2. Piezoelectric and dielectric constant parameters of the

piezoelectric material PIC151 (from Thomas et al. (2009)), with

ϵ0 = 8.854 × 10�12 F/m.

ϵ33 (F/m) e31 (C/m
2)

2068 ϵ0 �14
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special lengths are Lb = 0.158 mm and Lb = 0.152 mm to

achieve the prescribed internal resonances.

3.2. Periodic solutions for the 1:3 internal

resonance

We now discuss the full nonlinear equations of motions.

Because we target a 1:3 internal resonance between the

second and the third modes, we assume that the response of

the system in the steady state, under harmonic forcing of

frequencyV, is mainly governed by those two modes. This

way, only the second and third modes are supposed to

mainly exist, neglecting the effects of other possible modes,

such as the first mode because it is not resonant. We, thus,

expand v(x, t) on the two corresponding mode shapes (f2(x)

and f3(x))

vðx; tÞ ¼ f2ðxÞr2ðtÞ þ f3ðxÞr3ðtÞ (5)

where (r2(t) and r3(t)) are the corresponding unknownmodal

coordinates of the second and third mode, respectively.

Assuming an open-circuit condition (the current is equal to

zero, which leads to Q = 0, see Trindade and Benjeddou

(2009) and Ducarne et al. (2012)), introducing equation (5)

into (2) and (3), multiplying the result successively by f2(x)

and f3(x), and finally using the orthogonality properties of

the modes, one obtains

€r2 þ 2μ1 _r2 þ ω2
2r2 þ N2r

3
2 þ N3r

2
2r3 þ N4r2r

2
3 þ N5r

3
3

þ N6r2
�

r22
�:: þ N7r2ðr2r3Þ:: þ N8r2

�

r23
�:: þ N9r3

�

r22
�::

þ N10r3ðr2r3Þ:: þ N11r3
�

r23
�:: þ N12V ¼ F2 cosðVtÞ

(6)

€r3 þ 2μ2 _rr þ ω2
3r3 þM2r

3
2 þM3r

2
2r3 þM4r2r

2
3 þM5r

3
3

þM6r2
�

r22
�:: þM7r2ðr2r3Þ:: þM8r2

�

r23
�:: þM9r3

�

r22
�::

þM10r3ðr2r3Þ:: þM11r3
�

r23
�:: þM12V ¼ F3 cosðVtÞ

(7)

0 ¼ L1V þ L2r2 þ L3r3 (8)

Modal linear damping terms of coefficients μ1 and μ2
have been added in the aforementioned equations. More-

over, the analytical expressions of all the Ni,Mi, i = 2,…, 12

coefficients can be found in Guillot et al. (2019). They are

here computed according to the geometrical and material

parameters of the systems under study. Finally, F2 and F3 are

the modal forcing amplitude, that are both nonzero because

of the base acceleration driving, equivalent to a uniform

force per unit length p(x, t) = �mγe cos(Vt) (where γe is the

amplitude of the base acceleration prescribed by the shaker)

Figure 3. Theoretical map of the realization of the internal resonance 1:2 and 1:3. Plots of the frequency ratios ω4/ω3 and ω3/ω2 as

functions of the beam length Lb and the position of the piezoelectric patches Δ, for the unimorph and bimorph configurations. The solid

black lines give the 1:2 and 1:3 contour lines. In those computations, the piezoelectric patches are supposed to be perfectly glued on the

elastic layer without the additional epoxy layer.
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and, thus, not orthogonal to the mode shapes. The modal

damping coefficients are experimentally estimated with

the modal damping factors ξ i (μi = ξωi), computed with

the�3 dB bandwidth Δωi at resonance (ξ i = 2Δωi/ωi), in the

case of the lowest amplitude excitation for which no non-

linear coupling occurs. The coefficients Ni and Mi from

equation (6) were calculated from their analytical ex-

pressions deduced from equations (2) and (3) and the me-

chanical and electrical known values from Tables 1 and 2.

The periodic solutions of this system, in the steady state,

are numerically computed by a higher order harmonic balance

coupled to a continuation method (the asymptotic numerical

method) implemented into software Manlab (Arquier et al.,

2005–2019). Because of the targeted 1:3 internal resonance,

we are mainly interested in the first and third harmonic of the

second and third mode modal coordinates r2(t) and r3(t),

respectively, for different forcing amplitudes F. Theoretically,

because the nonlinear forces in equation (6) are odd, all even

harmonics are zero in the periodic responses (they can be

obtained after a symmetry-breaking bifurcation which has not

been observed here). Thus, in the theoretical results, the

second harmonic of the modal coordinates is equal to zero and

was not displayed (see Figures 4 and 5). The displacement v(x,

t) can be constructed from equation (5).

To look at each mode independently, as explained in the

experimental methodology section, the motion of the beam

is measured at two positions successively. First, at the node

of the third mode shape (x = xf3), to measure the contribution

of mode 2, and then, at the node of the second mode shape

(x = xf2), to investigate the contribution of mode 3. Thus,

from equation (5), the beam’s displacements are defined by

At x ¼ xf 3 v
�

xf 3; t
�

¼ f2

�

xf 3
�

r2ðtÞ
At x ¼ xf 2 v

�

xf 2; t
�

¼ f3

�

xf 2
�

r3ðtÞ (9)

For the unimorph configuration, the nodes of the second

and third modes closest to the tip end are defined as xf2x

0.099 mm and xf3 = 0.113 mm, respectively, as for the

bimorph configuration, we have xf2x 0.114 mm and xf3x

0.133 mm.

In addition, because of the excitation bandwidth defined

around the second mode and the internal resonance 1:3

between ω3 and ω2, we have

Vxω2; ω3x3ω2x3V (10)

The evolutions of the different harmonics amplitudes of

v(x = xf2, t) and v(x = xf3, t) versusV are presented in Figures

4 and 5.

Figure 4. Theoretical results for the periodic forced response of the unimorph configuration in 1:3 internal resonance. Harmonics one

and three of the displacements of the beam v(x = xf3, t) (low frequency—mode 2—response, left column) and v(x = xf2, t) (high

frequency—mode 3—response, right column), as a function of the excitation frequency V, for different amplitude of base acceleration

(each color corresponds to a given base acceleration).
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Because of the 1:3 internal resonance, one would

expect that the first harmonic of the low-frequency (LF)

mode two and the third harmonic of the high-frequency

(HF) mode 3 be the dominant harmonics, in the case of

a strong transfer of energy from mode two to mode 3. On

the contrary, those simulations show that the effect of the

1:3 internal resonance, in term of energy transfer between

the modes, is not as strong as it is for other cases (see, e.g.

Cao et al. (2015), Thomas et al. (2003, 2007) and Monteil

et al. (2015)). It would tend to prove that for cantilever

beams in direct bending driving, a 1:3 internal resonance

between two modes (that have been tuned here by the

structural effect of the PZT patches) does not lead to

a strong energy exchange. To the knowledge of authors,

this result is original because no previous work addressed

the 1:3 internal resonance between two modes of a can-

tilever beam. However, further investigations are needed

to fully understand what has to be done on the system to

boost the exchanges of energy. The present case of

a cantilever beam is here rendered complex by the

presence of 20 resonant cubic terms in the oscillators (6),

which a priori have all influence on the energy exchange.

Finally, these results can probably be explained by con-

sidering that the clamped/free boundary conditions lead to

very small geometrically nonlinear effects (the first mode,

for instance, is slightly hardening), as compared for in-

stance with clamped-clamped beams or 2D structures,

such has plates and shells, for which internal resonances

have very strong effects (Amabili, 2008; Monteil et al.,

2015; Thomas et al., 2003, 2007). No experiment was

performed on the beam without PZT materials because for

a homogeneous cantilever beam, no 1:3 ratio of the

natural frequencies is observed in theory, which prevents

any internal resonance to easily occur.

4. Experimental investigation and

comparison to theory

4.1. Tuning of the natural frequencies

With the protocol explained in the previous sections, we

first measured the natural frequencies of the homogeneous

beam as a reference. By plotting the results as a function

of the theoretical frequencies of a cantilever beam ωk ¼
β2kh=L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y=ð12ρÞ
p

(with β1 = 1.875, β2 = 4.694, and β3 =

7.855…), it is possible to estimate the value of the Young’s

modulus Y of the stainless steel because all the other pa-

rameters are known (the geometry has been measured and

the mass density ρ has been obtained by weighing the

beam). We obtained Y = 179 GPa.

Figure 5. Theoretical results for the periodic forced response of the bimorph configuration in 1:3 internal resonance. Harmonics one

and three of the displacements of the beam v(x = xf3, t) (low frequency—mode 2—response, left column) and v(x = xf2, t) (high

frequency—mode 3—response, right column), as a function of the excitation frequency V, for different amplitude of base acceleration

(each color corresponds to a given base acceleration).

7



Then, we measured ω2, ω3, and ω4 for several values of

the beam length, for the two PZT beam configurations

(unimorph and bimorph). Those values are compared with

the theoretical ones in Figure 6. A good agreement is ob-

tained between experiments and theory, better for the un-

imorph configuration than for the bimorph one. The effect of

the epoxy layer has also been investigated and is found to

slightly change the natural frequency values. Those dis-

crepancies can be explained by usual experimental char-

acteristics not taking into account in the model: a nonperfect

clamping (the clamping device, made in steel, is not in-

finitely rigid), some material values not experimentally

identified (the material characteristics of the PZT and the

epoxy layer, see Table 1), the Euler–Bernoulli assumptions

of a rigid cross section without transverse shear, etc. All

those characteristics could be verified with numerical

computations (with a commercial finite-element code) and

are out of the scope of this study because our interest is in the

experimental tuning of the natural frequencies.

As predicted by Figure 3, it is shown that there exist

particular values of the beam length Lb for whichω4/ω3x 2

andω3/ω2x 3, so that 1:2 and 1:3 internal resonances are at

hand. Precisely, setting Lb = 129 mm for the unimorph

configuration (Figure 6(c)) and Lb = 145 mm for the bi-

morph configuration (Figure 6(d)) will lead to the required

frequency ratio to favor a 1:3 internal resonance between the

second and third modes of the beam. As for the internal

resonance 1:2, the special lengths Lb = 0.139 mm and Lb =

0.153 mm allow the desired ratio to occur for the unimorph

and bimorph configurations, respectively. The corre-

sponding natural frequency values can be found in Tables 3

and 4. No other internal resonances were found, at special

lengths Lb, between the other first four modes of the

structure. Tables 3 and 4.

4.2. Mode shapes of the system

The homogeneous beam and both PZT configurations were

set at a length Lb = 170mm, and experiments were conducted

to estimate the mode shapes of the three systems. The ex-

perimental results are shown in Figure 7 along with the

theoretical mode shapes. An excellent agreement between

the test and theory is obtained. One can also observe that

the mode shapes show a overall modification (a change of

curvature) in the area where the PZT patches are glued, as

compared with the mode shape of the homogeneous beam

(without PZT materials). Moreover, this kind of figure is

useful to estimate the positions xf2 and xf3 of the nodes of

mode 2 and 3 for the measurements of the 1:3 internal

resonance presented in the following section. Note that the

Figure 6. Experimental verification of the creation of the internal resonances 1:2 and 1:3 compared with theoretical results. Blue points

correspond to the experimental open-circuit condition and red points to the short circuit one. Theoretical frequencies are calculated in

short-circuit condition. Solid line: computation without the epoxy layer and dotted line: computation with the epoxy layer. (a) and (c)

unimorph configuration with Δ = 60 mm; (b) and (d) bimorph configuration with Δ = 70 mm.
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beam lengths Lb used in the following section are not the

length shown in Figure 7 because of the required particular

tuning of ω3/ω2 = 3.

4.3. Periodic solutions with the 1:3 internal

resonance

Both PZT configurations are settled at the special length Lb
so that ω3/ω2 = 3, to naturally favor the 1:3 internal res-

onance (Lb = 129 mm for the unimorph configuration and

Lb = 145 mm for the bimorph configuration). The system is

excited at different levels of amplitude of the base accel-

eration. We assume that the modes which are in internal

resonance are those which dominate the response of the

system, as shown by equation (5). Then, as shown by

equation (9), pointing the laser at a node of the third mode

(x = xf3) enables to measure the response of mode two only

and pointing the laser at a node of the second mode (x = xf2)

enables to measure the response of mode three only. A

stepped frequency sweep is then performed in a narrow

frequency band around ω2: we choose to directly drive the

LF mode (mode 2) around its resonance and to observe

a transfer of energy toward the HF mode (mode 3). The

results are shown in Figure 8 for the unimorph configuration

and Figure 9 for the bimorph configuration.

From the theoretical analysis, it was shown in Figures 4

and 5 that no strong transfer of energy was observed be-

tween the first harmonic (H1) of the LF mode and the third

harmonic (H3) of the HF mode. Although, the present

experimental results show the opposite. For the unimorph

configuration (Figure 8), the amplitude of the third har-

monic of the HF mode is about five times that of its first

harmonic, whereas H3 for the LF mode is negligible with

respect to H1, meaning that the dominant harmonics of the

HF mode is H3. Moreover, the third harmonics of the HF

mode is about 40 times larger than H1 of the LF mode,

showing that this third harmonic is not directly excited by

the third harmonic of the LF mode. Analogous results are

shown in Figure 9 for the bimorph configuration. This

confirms that a clear transfer of energy from the LF mode to

the HF mode, associated to the 1:3 internal resonance, is at

hand.

The fact that the energy transfer is observed experi-

mentally, whereas it is not clearly predicted by the theo-

retical model is now addressed. In the theoretical model,

only geometrical nonlinearities are considered, with a linear

PZT constitutive law. Several works in the past showed that

nonlinearities in the PZT constitutive law are experimen-

tally observed (among others, see Guyomar et al. (1997,

2011) for a PZT stack with a 33 effect and Parashar and

Wagner, (2004) for a sole PZTceramics) In particular, in the

case of cantilever beams with PZT ceramics in a 31 effect

(see, e.g. VonWagner and Hagedorn (2002) and Leadenham

and Erturk (2015)), the nonlinear PZT material effect seems

to be of the same order of magnitude than the geometrical

one because the first mode of the cantilever beam is ob-

served with a softening nonlinear effect, whereas it is

predicted hardening in the case of geometrical non-

linearities only. From a theoretical point of view, it is also

shown in Guillot et al. (2019) that the nonlinear PZT

constitutive law adds more cubic terms in the model and

also additional quadratic nonlinearities. However, in

practice, some additional work, out of the scope of the

present article, has to be carried out to correctly experi-

mentally identify all the parameters of the constitutive law,

Figure 7. Comparison between the theoretically (lines) and

experimentally (points) obtained second (top) and third (bottom)

mode shapes for: the homogeneous beam (continuous line with

cross points) without piezoelectric materials, the unimorph

configuration (dashed line with x points), and the bimorph con-

figuration (dotted line with star points).

Table 3. Comparison of theoretical and experimental results for

the natural frequencies implicated in the internal resonance 1:2.

ω3 ω3,theo ω4 ω4,theo

Unimorph configuration 2342 2280 4697 4584

Bimorph configuration 1857 1823 3709 3642

Table 4. Comparison of theoretical and experimental results for

the natural frequencies implicated in the internal resonance 1:3.

ω2 ω2,theo ω3 ω3,theo

Unimorph configuration 975.2 962.9 2944 2894

Bimorph configuration 711 686.4 2142 2894
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to obtain a usable theoretical model and compare its results

to experiments. The asymmetry of the structure in the

transverse direction, in the case of the unimorph configu-

ration, canceled by the inextensibility constraint (see

Appendix 1), can also be a factor that could change the

nonlinear behavior of the structure. In shells and laminated

plates, it adds quadratic nonlinearities (Lazarus et al., 2012;

Thomas et al., 2005). We believe that the inextensibility

constraint is very realistic and, thus, that this effect is

probably negligible in practice.

Experimentally, some small amplitudes of the second

harmonics are detected, which are naturally not present in

our theoretical developments because no quadratic non-

linearities are included in the model. From Guillot et al.

(2019), some of the assumed nonlinear terms of the PZT

materials could be responsible for the quadratic behavior,

leading to the detection of second harmonic in the dis-

placements. This can also be explained by unavoidable

imperfections in the beam or by some aeroelastic damping

effects Mam et al. (2016). One can also observe that the

ratio between H2 and H1 for the LF mode is of about 1/20

for the unimorph configuration, whereas it is of about 1/75

for the bimorph configuration. This can be explained by the

nonsymmetric lamination of the unimorph configuration,

which breaks the transverse structural symmetry of the

beam. This effect is not taken into account in the model

because of the inextensibility condition. The Appendix 1

section gives more details about this point.

Figure 8. Experimental results for the periodic forced response of the unimorph configuration in 1:3 internal resonance. First three

harmonics of the signals measured at x = xf3 (low frequency—mode 2—response, left column) and x = xf2 (high frequency—mode 3—

response, right column) on the beam, as a function of the excitation frequencyV, for different amplitude of base acceleration (each color

corresponds to a given base acceleration).
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It is observed that the amplitude of the third harmonic of

the second mode in Figure 8(e) shows different behavior for

the different amplitudes of excitation. Because the ampli-

tudes of the harmonic are really low (0.02 mm maximum),

we assume that they are more related to noise and were not

representative of the real amplitude of the third harmonic.

5. Conclusion

In this study, several results have been obtained about the

design of a cantilever beam with PZT patches to favor

internal resonance and energy exchanges between the

modes. First, both theory and experiments allowed us to

confirm that the position of the PZT patches on the beam

can help to tune the natural frequencies of the beam to

achieve 1:2 and 1:3 internal resonances, between the

fourth and third mode and the second and third mode,

respectively. Experimentally, both 1:2 and 1:3 internal

resonances have been tested, with a success only for the

1:3 internal resonance, on which this article has been

focused. Experimentally, a clear exchange of energy be-

tween the lower mode to the higher one has been exhibited.

However, the theoretical results did not predict such a clear

energy exchange and explanations have been proposed to

improve the model. In particular, PZT constitutive non-

linearities, not included in the model, could have an im-

portant effect on the nonlinear behavior and on the energy

exchanges. In any cases, the measured energy exchange

due to the 1:3 internal resonance could be improved by

connecting the PZT patches to a proper nonlinear circuit,

to enhance the nonlinear effects and achieve an efficient

control of the beam.

Figure 9. Experimental results for the periodic forced response of the bimorph configuration in 1:3 internal resonance. First three

harmonics of the signals measured at x = xf3 (low frequency—mode 2—response, left column) and x = xf2 (high frequency—mode 3—

response, right column) on the beam, as a function of the excitation frequencyV, for different amplitude of base acceleration (each color

corresponds to a given base acceleration).
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Appendix 1

Derivation of the theoretical model

This section is focused on the derivation of the model of

equations (2) and (3) using the strong form of the equations

of motions and a linear piezoelectric constitutive law. It is

complementary to the derivation proposed in Guillot et al.

(2019), where Lagrange equations are used. In essence, we

combine Ducarne et al. (2012), in which linear models of

piezoelectric (unimorph and bimorph) beams are proposed,

and Thomas et al. (2016), in which a geometrically exact

model for a cantilever beam is derived.

From Ducarne et al. (2012), we consider a laminated

beam with K elastic (possibly piezoelectric, all built in the

same material of constant e31) layers whose axial direction

is in the x-direction, with a transverse motion along the

y-direction. There is no dependance on the z coordinate.

The axial stress at a point (x, y) of the beam in the k-th layer

(k = 1,…,K) can be written

σxx ¼ Ykðe� yκÞ � e31E (11)

where Yk is the Young’s modulus of the k-th layer and E is

the electric field. In any elastic layer, e31 = 0. From Thomas

et al. (2016), with Euler–Bernoulli assumptions, the axial

strain e, the curvature κ, the transverse displacement v(x, t),

the axial displacement u(x, t), and the rotation θ(x, t) of the

cross section are related by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ uÞ2 þ v02 � 1

q

; κ ¼ θ0 (12)
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sin θ ¼ v0

1þ e
; cos θ ¼ 1þ u0

1þ e
(13)

Then, the bending moment is, with equation (11)

M ¼
Z

S
yσxxdS ¼ Be� Dκ þ

X

P

p¼1

ΘpVp (14)

where S is the cross section and S is its area and Vp is the

voltage difference across the p-th piezoelectric layer and

B ¼
X

K

k¼1

bk
y2k � y2k�1

2
Y ðkÞ; D ¼

X

K

k¼1

bk
y3k � y3k�1

3
Y ðkÞ;

(15)

Θp ¼ bp
yk þ yk�1

2
e31 (16)

where yk is the vertical position of the interface between

the (k � 1)th and the kth layer. Those constants are, respec-

tively, the axial/bending stiffness, the bending stiffness, and

the piezoelectric coupling in bending.

Considering that the beam is inextensible, which is

mandatory to obtain a simple nonlinear model as observed

in the following, leads to e = 0. Consequently, the beam

generalized constitutive law (14) reduces to

M ¼ �Dκ þ
X

P

p¼1

ΘpVp (17)

The nonlinear equations of motion of the beam, with no

restriction on the cross-section rotation θ (geometrically

exact beam model), with Euler–Bernoulli assumptions, and

rotatory inertia neglected, are Thomas et al. (2016)

8

<

:

ðN cos θ � T sin θÞ0 ¼ m€u;
ðN sin θ þ T cos θÞ0 þ p ¼ m€v;
Tð1þ eÞ þM 0 ¼ 0:

(18)

where m is the mass per unit length of the beam. Then, the

first of the aforementioned equations leads to

N ¼ 1

cos θ

Z x

L

m€udxþ T tan θ (19)

By eliminatingN and T using equation (19) and the last of

equation (18) in the second one, and using the clamped/free

boundary conditions, one obtains

m€v�
�

M 0

ð1þ eÞcos θ

�0
�
�

tan θ

Z x

L

ρS €u dx

�0
¼ p (20)

Finally, using constitutive law (17), expanding all

functions in Taylor series up to the third order in v0

(θ = arcsin v0x v0 + v03/6, 1/cos θx 1 + v02/2, and tan θx
v0(1� v02/2), using the inextensibility conditions (from (12)

e ¼ 00u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p

� 1x� v02=2), and considering

that Θp is zero out of x 2 [x1, x2], one obtains equation (2).

The electric charge of equation (3) is obtained in the same

manner, as explained in Ducarne et al. (2012).

A comment about these equations should be made. If

a part of the beam has a nonsymmetric lamination (it is the

case in the present study for the unimorph beam in the x 2
[x1, x2] area), B ≠ 0 and equation (14) shows that an axial/

bending coupling occurs. In the linear model of Ducarne

et al. (2012), this effect is eliminated in the equations for

a cantilever beam because N = 0, which leads to a modified

bending stiffness called D̂. In the present nonlinear model,

N ≠ 0 because of the geometrical nonlinearities (see

equation (19)), so that one cannot eliminate this axial/

bending coupling of the equations without further as-

sumption. It is the inextensibility condition (e = 0), for-

mulated to eliminate u in the equations, which naturally

cancels the linear axial/bending coupling in equation (14).

However, the axial strain e is clearly nonzero in the non-

symmetric area of the beam. This effect neglected in the

present nonlinear model would probably be responsible of

quadratic nonlinearities.

To give a first step to a more exact model, one has to

compute N by integrating equation (11)

N ¼
Z

S
σxxdS ¼ Ae� Bκ þ

X

P

p¼1

ΞpVp (21)

where A ¼
PK

k¼1bkhkYk and Ξp = bpe31. Eliminating the

axial strain e between (21) and (14) leads to

M ¼ B

A
N � D̂κ þ

X

P

p¼1

Θ̂pVp (22)

Then, eliminating N between (22) and (19) leads to re-

placing (17) by

M ¼ �B

A
M 0 tan θ þ B

A cos θ

Z x

L

m€u dx� D̂κ þ
X

P

p¼1

Θ̂pVp

(23)

where D̂ ¼ D� ðB2=AÞ and Θ̂p ¼ Θp � ðΞB=AÞ are the

modified constants that take into account the elimination of

the axial strain, as introduced in Ducarne et al. (2012). A

Taylor expansion of the functions of θ in v0 up to third order
shows that the additional (underlined) terms are quadratic in

v0. Then, even if the substitution ofM in (20) is not possible

because (23) is now a differential equation in M, it shows

that a nonsymmetric lamination in the beam adds quadratic

terms in the transverse equation of motion.
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