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We report a comprehensive small-angle neutron scattering (SANS) study of magnetic correlations in
Mn1−xFexSi at zero magnetic field. To delineate changes of magnetocrystalline anisotropies (MCAs) from effects
due to defects and disorder, we recorded complementary susceptibility and high-resolution specific heat data
and investigated selected compositions of Mn1−xCoxSi. For all systems studied, the helimagnetic transition
temperature and magnetic phase diagrams evolve monotonically with composition consistent with literature.
The SANS intensity patterns of the spontaneous magnetic order recorded under zero-field cooling, which were
systematically tracked over forty angular positions, display strong changes of the directions of the intensity
maxima and smeared out intensity distributions as a function of composition. We show that cubic MCAs
account for the complex evolution of the SANS patterns, where for increasing x the character of the MCAs
shifts from terms that are fourth order to terms that are sixth order in spin-orbit coupling. The magnetic field
dependence of the susceptibility and SANS establishes that the helix reorientation as a function of magnetic field
for Fe- or Co-doped MnSi is dominated by pinning due to defects and disorder. The presence of well-defined
thermodynamic anomalies of the specific heat at the phase boundaries of the skyrmion lattice phase in the doped
samples and properties observed in Mn1−xCoxSi establishes that the pinning due to defects and disorder remains,
however, weak and comparable to the field scale of the helix reorientation. The observation that MCAs, which
are sixth order in spin-orbit coupling, play an important role for the spontaneous order in Mn1−xFexSi and
Mn1−xCoxSi offers a fresh perspective for a wide range of topics in cubic chiral magnets such as the generic
magnetic phase diagram, the morphology of topological spin textures, the paramagnetic-to-helical transition,
and quantum phase transitions.

DOI: 10.1103/PhysRevB.101.104406

I. INTRODUCTION

A. Motivation

Cubic chiral magnets such as MnSi, FeGe, and Fe1−xCoxSi
have been attracting great scientific interest for many decades.
Seminal work in the early 1980s established these materials
as the first examples stabilizing incommensurate modulated
magnetic order consistent with so-called Lifshitz invariants
[1–5]. At the same time, pioneering studies identified mem-
bers of the same material class as prototypical representatives
of weak itinerant-electron magnetism, where the subsequent
development of a self-consistent theory taking into account
the effects of spin fluctuations was found to be in excel-
lent agreement with experiment [6,7]. This set the stage for
the first high-pressure studies of quantum phase transitions
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(QPTs) and the discovery of putative evidence suggesting a
generic breakdown of Fermi liquid theory [8–10]. On a rather
different note, skyrmions as the first example of topological
spin textures could be identified in recent years in the same
materials, opening a new avenue for spintronics applications
[11–15]. Despite their long history, the properties of cubic
chiral magnets represent an active topic of present-day re-
search comprising several independent directions. For many
of these areas, the character and strength of magnetocrys-
talline anisotropies (MCAs) are of great interest.

An important aspect of the different areas of research
pursued in the class of cubic chiral magnets is the pres-
ence of a well-developed hierarchy of energy scales [16].
On the strongest scale, exchange interactions favor parallel
spin alignment. This is followed, on intermediate scales, by
Dzyaloshinsky-Moriya spin-orbit interactions (DMI) permit-
ted in the noncentrosymmetric crystal structure (space group
P213). The weakest energy scale are, finally, higher-order
spin-orbit coupling terms, also known as cubic MCAs. To
leading order these comprise contributions that are fourth and
sixth order in spin-orbit coupling (SOC). As the fourth-order
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terms in SOC by default are expected to be stronger, present-
day investigations have almost exclusively considered this
part only. In contrast, the importance of the sixth-order terms
in SOC has only recently been addressed in a few selected
studies as summarized further below.

Numerous studies have shown, that substitutional doping
of MnSi with Fe or Co sensitively suppresses the onset of long
range magnetic order. In turn, Mn1−xFexSi and Mn1−xCoxSi
allow to put the validity of the description of MnSi and the
class of cubic chiral magnets to a critical test as long-range
helical order collapses, shedding light on the paramagnetic to
helimagnetic transition, the generic appearance of the mag-
netic phase diagram, the evolution of the skyrmion lattice [17],
and the properties of QPTs [18]. This raises the question for
the evolution of the MCAs in Mn1−xFexSi and Mn1−xCoxSi as
a key property controlling the nature of the microscopic mag-
netic structure as well as the formation of domains. However,
as doping generates also defects and disorder, an important
question concerns the influence of defect-related pinning on
the long-range character of the magnetic properties and the
associated phase transitions.

In this paper, we report an investigation of the microscopic
evolution of the magnetic order in Mn1−xFexSi up to xFe =
0.10, complemented by further data in Mn1−xFexSi up to
xFe = 0.22 and selected compositions xCo in Mn1−xCoxSi. For
our study, we combined comprehensive small-angle neutron
scattering experiments with measurements of the magneti-
zation, ac susceptibility, and specific heat. Our methodolog-
ical approach focuses on the determination of the evolu-
tion of spontaneous magnetic order under zero-field cooling
as a function of substitutional doping in Mn1−xFexSi and
Mn1−xCoxSi. In addition, we performed measurements of
the magnetic field dependence of the magnetic order to gain
insights on the interplay of the Zeeman energy with the MCAs
and the effects of pinning and disorder.

As our main result we find a complex variation of the
SANS intensity patterns of the magnetic order in Mn1−xFexSi
and Mn1−xCoxSi under zero-field cooling as a function of
composition. We find further that the effects of defects and
disorder in combination with the MCAs control the helix
reorientation under magnetic field. We show that conventional
cubic MCAs account for all of our experimental findings,
where for increasing x the character of the MCAs shifts from
terms that are fourth order to terms that are sixth order in
spin-orbit coupling. This connects with numerous scientific
questions pursued in the class of cubic chiral magnets.

B. Terminology and outline

For the sake of accessibility, we present in the following a
detailed account of the chain of arguments and the outline of
our paper. It proves to be helpful to begin this account with a
brief introduction to the current understanding of the magnetic
order in defect-free cubic chiral magnets and the terminology
used to describe these properties.

It has long been established that the hierarchical energy
scales in cubic chiral magnets, in the most general case, lead
to the formation of long-wavelength helicoidal modulations
[19–21]. For increasing order of length scales the magnetic
properties of bulk samples comprise (i) the size and the

orientation of the magnetization on atomic scales, (ii) the
wavelength λ and harmonicity of the helicoidal twisting, and
(iii) the direction of the helicoidal modulation vector �Q in the
presence and population of magnetic domains.

Under zero field cooling and below a transition temperature
Tc the helicoidal modulations in MnSi form long-range helical
order. That is, there are equal domain populations for propa-
gation directions �Q along the 〈111〉 easy axes, the twisting
exhibits a simple sinusoidal helical modulation, the magnitude
of the moments is constant, and the moments are oriented
perpendicular to �Q.

Application of a magnetic field affects the magnetic prop-
erties in terms of the Zeeman energy, i.e., the field changes the
magnitude and orientation of the magnetization, the direction
and harmonicity of the helicoidal modulation, and the domain
populations. Above a critical magnetic field Hc1, the modu-
lation vector �Q aligns parallel to the applied field, and the
magnetic moments feature an angle less than 90◦ with respect
to the direction of �Q. In other words, an applied magnetic field
stabilizes a uniform component of the magnetization parallel
to the field direction. Above the so-called upper critical field
Hc2, the modulation collapses, resulting in a field-polarized
(ferromagnetic) state.

In case of a zero-field-cooled state, the magnetic state
for magnetic fields below Hc1 corresponds to a multidomain
helicoidal configuration. For the sake of convenience, this
state is generally referred to as helical order in the literature.
Further, for magnetic fields in the range Hc1 < H < Hc2 the
modulations are referred to as conical state. Thus the charac-
teristic field at Hc1 is widely known as the helical to conical
transition, a terminology ignoring the details of the magnetic
order below Hc1 as well as the character of the reorientation.

Following seminal work in MnSi by Grigoriev [22] and
Maleyev [23], on the helix reorientation, recent studies of
the magnetization suggest the formation of a single domain
state under field cycling across Hc1 for field along the 〈111〉
[24–26]. An analogous single domain state was recently ob-
served in Cu2OSeO3 under field cycling along 〈100〉 [27,28].
A comprehensive account was finally established in recent
high-precision small-angle neutron scattering, magnetization,
and ac susceptibility measurements of the helicoidal modula-
tions and associated evolution of domain populations across
Hc1, which are fully accounted for in terms of leading order
MCAs that are fourth and sixth order in SOC [24]. The main
effect of a magnetic field on the helicoidal order is twofold: (i)
it reorients the helix and thus the vector �Q and (ii) it induces a
finite magnetic polarization, which, in general, is not aligned
with the applied magnetic field as reflected by the asymmetry
of the susceptibility tensor. The modulus of �Q, the magnitude
of the magnetic moment, and the harmonicity of the magnetic
modulation are essentially not affected. Moreover, depending
on crystallographic orientation the value of Hc1 varies sub-
stantially and the characteristics at Hc1 changes, displaying a
crossover, or a first or a second-order transition.

Just below the helical transition temperature Tc entropic
effects associated with thermal fluctuations stabilize the
skyrmion lattice phase in a small magnetic field range
[11,15,29,30]. To leading order, the skyrmion lattice may be
approximated by three helical modulations perpendicular to
the applied magnetic field, where the propagation directions
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enclose angles of 120◦ [11,31]. In the bulk properties of MnSi,
the effects of MCAs result in changes of the temperature
range of the skyrmion lattice phase by a factor of two, ex-
tending over roughly 1 K for the 〈111〉 easy axes and roughly
2 K for the 〈100〉 hard axes. When the field is not aligned
along a crystallographic high-symmetry direction, the MCAs
induce also a slight tilting of the skyrmion lattice plane with
respect to the field direction as well as the in-plane orientation
of the skyrmion lattice with respect to the crystal lattice
[11,29,32–35].

In this paper we focus on the character of spontaneous
magnetic correlations in Mn1−xFexSi and Mn1−xCoxSi, i.e.,
at zero magnetic field, using small angle neutron scattering.
As our main observation, we find an unexpectedly complex
evolution of the intensity pattern as a function of composition.
As previous studies had shown a monotonic evolution of the
helimagnetic transition temperature and the phase boundaries
of the magnetic phase diagram under doping, an important
aspect concerns changes of the MCAs and the importance of
pinning due to defects and disorder.

It proofs to be helpful to begin the presentation of our
results with an account of the bulk properties in Sec. IV. On
the one hand, this allows to emphasize systematic variations
not reported before, while demonstrating consistency with
previous studies. On the other hand, the bulk properties set the
stage for the presentation of the microscopic insights obtained
in SANS for selected temperatures and magnetic fields as the
main focus of our study.

The presentation of the bulk properties focuses on the
signatures of the helix reorientation and the temperature range
of the skyrmion lattice phase, representing the two aspects
where the effects of MCAs are most pronounced. Namely, in
pure MnSi, the helical to conical transition at Hc1 is connected
with distinct signatures both under zero-field cooling and field
cooling, featuring the MCA for field along 〈100〉, 〈110〉, and
〈111〉. Deviations between dM/dH and Reχac additionally re-
flect the characteristics of slow dynamical processes [36,37].

As reported in Sec. IV A, under Fe doping exceeding xFe �
0.04 the signatures of Hc1 in dM/dH and Reχac are only
observed after initial zero-field cooling, whereas no signatures
are observed after field cycling regardless of crystallographic
orientation. Moreover, for xFe � 0.04 values of Hc1 observed
under ZFC are the same for different crystallographic orien-
tations. With increasing xFe the values of Hc1 as extrapolated
to zero temperature, increase by a factor of two and Hc1 de-
creases with increasing temperature as opposed to the lack of
a significant temperature dependence for xFe < 0.04. Similar
changes are also seen for the skyrmion lattice phase, where
we find that the dependence on crystallographic orientation of
the temperature range vanishes for xFe � 0.04. Taken together
this suggests for xFe � 0.04, that isotropic pinning due to
defects and disorder dominates as compared to the MCAs
alone.

Several studies reported spin glass behavior in polycrys-
talline samples of Mn1−xFexSi and Mn1−xCoxSi for large
doping levels [38,39]. In turn, the behavior at Hc1 raises the
question how to better gauge the effects of defects and disor-
der as compared with the hierarchy of energy scales, and if
there are still well-defined thermodynamic phase boundaries
and long-range order under increasing doping. To clarify this

question, we pursued two different approaches. As reported
in Sec. IV B, we performed high-resolution specific heat mea-
surements of the skyrmion lattice phase under Fe doping, rep-
resenting a fragile state confined to a small parameter regime.
Here we find well-defined anomalies of the transition to the
skyrmion lattice order, suggesting that the thermodynamic
phases remain well-defined under doping for x < xc.

Moreover, we considered the evidence for defect-related
pinning of selected compositions of Mn1−xCoxSi, reported in
Sec. IV C. Previous studies had shown that the same changes
of the transition temperature and ordered moment under Fe
doping may be observed for half of the Co concentration
in Mn1−xCoxSi, consistent with the difference of valence
electron count of Mn under Fe and Co doping [18]. While
the amount of disorder under Co doping is a factor of two
smaller as compared with Fe doping, we find that the effects of
defect-related pinning set in at a lower Co concentration. This
implies that the relative importance of defects and disorder
with respect to the MCAs becomes stronger, while the total
strength of the MCAs must be moderately decreasing under
increasing doping. Thus both, the specific heat measurements
in Mn1−xFexSi and the studies of Mn1−xCoxSi, demonstrate
that the effects of pinning and disorder are comparable to
the MCAs such that the associated thermodynamic phase
transitions and long-range order are still well-defined.

As the behavior at Hc1 under Fe doping is dominated by
pinning due to defects and disorder, the helix reorientation
may no longer be used to infer information on the nature and
strength of the MCAs as for pure MnSi. Instead microscopic
information on the domain distribution and helicoidal order
are required. Reported in Sec. V are the results of detailed
SANS studies of Mn1−xFexSi and Mn1−xCoxSi. Combining
data recorded under forty different angular orientations, we
report in Sec. V A the observation of strong changes of
the direction of the modulation �Q of the zero-field cooled
ground state under increasing Fe doping, whereas the modulus
of | �Q| decreases monotonically with increasing xFe. Analo-
gous changes are observed under Co doping as reported in
Sec. V B, where changes of | �Q| as a function of composition
are consistent when xCo is about half of xFe.

Further, following application of a sufficiently large mag-
netic field, a single-domain conical state survives for de-
creasing field below Hc1 as summarized in Sec. V C. Finally,
as reported in Sec. V D, a well-defined diffraction pattern
characteristic of long-range order is observed in the skyrmion
lattice phase as anticipated from the specific heat anomalies.
Thus the combination of bulk properties and SANS data
consistently establish that the effects of defects and disor-
der associated with substitutional doping in Mn1−xFexSi and
Mn1−xCoxSi lead to pinning comparable in strength with
the MCAs. In comparison, the modulation length | �Q|, which
reflects the competition of ferromagnetic exchange and DMI,
displays a moderate monotonic variation as a function of
composition and does not seem to be sensitive to disorder.

Our experimental data raise the question for the origin of
the changes of propagation direction of the helicoidal mod-
ulations at zero field and the implications of these findings.
The discussion reported in Sec. VI addresses these aspects.
Starting with the same MCAs considered in pure MnSi as an
account of the helix reorientation and the detailed orientation
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of the skyrmion lattice order, we show in Sec. VI A that the
changes of easy axis in Mn1−xFexSi and Mn1−xCoxSi may
be explained in terms of a change of the character of the
MCAs from terms that are fourth order in SOC to terms
that are sixth order in SOC. This is followed in Sec. VI B
by a discussion of the implications of this observation for
the broader understanding of cubic chiral magnets. Our paper
closes with a set of conclusions presented in Sec. VII.

II. BROADER CONTEXT

The extended introduction presented in this section serves
to provide more detailed information on the different areas
of research for which the insights gained in our studies
of Mn1−xFexSi and Mn1−xCoxSi are of interest. The entire
section was born out of the refereeing process of this paper,
which highlighted the lack of a suitable review paper on the
role and importance of MCAs in cubic chiral magnets. It may
be readily skipped when familiar with this field of research.
The section begins with an account of further aspects of the
magnetic phase diagram of cubic chiral magnets in Sec. II A,
followed by the paramagnetic-to-helimagnetic transition in
Sec. II B, the properties of the QPT in MnSi in Sec. II C, and
previous studies of Mn1−xFexSi and Mn1−xCoxSi in Sec. II D.
The section closes in Sec. II E with a short account of studies
addressing the microscopic origin of the different interactions.

A. Generic magnetic phase diagram

The hierarchical set of energy scales in the class of cu-
bic chiral magnets is directly reflected in the generic mag-
netic phase diagram as summarized above [19–21]. Well-
established are the formation of multidomain helical order
at zero magnetic field, the helix reorientation at Hc1, the
suppression of the conical modulation above Hc2, and the
skyrmion lattice phase in the vicinity of the paramagnetic-
to-helimagnetic transition. As a function of crystallographic
orientation, the temperature and field range of this high-
temperature skyrmion lattice phase is nearly isotropic.

In contrast, early theoretical calculations suggested, that
skyrmion lattice order could be stabilized by magnetocrys-
talline uniaxial anisotropies which are second order in SOC
and not permitted in cubic chiral magnets [40,41]. By
now, several materials with reduced crystal symmetry have
been identified, which feature skyrmion lattices stabilized by
these uniaxial magnetocrystalline anisotropies [42,43]. Re-
cent studies in Cu2OSeO3 unexpectedly revealed that cer-
tain fourth-order contributions in SOC to the MCAs may
become dominant close to Hc2, where they drive the for-
mation of two new phases for the 〈100〉 direction only, no-
tably a tilted conical state and a low-temperature skyrmion
phase [27,28,44]. Thus the precise orientation of both the
conventional high-temperature skyrmion lattice and the low-
temperature skyrmion phase offer important consistency
checks on the MCAs inferred from the spontaneous magnetic
order and the helix reorientation.

B. Paramagnetic-to-helimagnetic transition

The weak interaction scales associated with higher-order
SOC play also a decisive role for the character of the

fluctuations in the paramagnetic state of the cubic chiral
magnets and for the precise nature of the helimagnetic
phase transition [45]. Well above the helimagnetic transition
temperature, deep in the paramagnetic state, these fluctuations
correspond to conventional (ferromagnetic) paramagnons
dominated by the strongest scale, i.e., the ferromagnetic
exchange interactions. With decreasing temperature the
relative importance of the DMI, representing the intermediate
scale, gain weight and the fluctuations are enhanced on the
length scale of the helical modulation. In turn, the fluctuations
dominate on the surface of a small sphere in reciprocal space,
i.e., the volume in reciprocal space accessible for magnetic
correlations increases resulting in a strong enhancement of
the fluctuations.

As long as the cubic MCAs are weak, the concomitant en-
hancement of the fluctuations suppresses the helimagnetic or-
der until a fluctuation-induced first-order transition takes place
at Tc, leaving behind a fluctuation-disordered (FD) regime
below a crossover, T2. This so-called Brazovskii scenario is
in excellent agreement with neutron scattering, specific heat
and ultrasound attenuation [45–54].

In contrast, when the cubic MCAs are strong, the presence
of the fluctuations may be reduced to specific directions before
the transition takes place. Depending on the remaining phase
space available, a fluctuation-induced first-order transition
may still be expected according to a well-known scenario
proposed by Bak and Jensen [19]. Under an applied magnetic
field the fluctuations will eventually get quenched sufficiently
such that the transition changes from first to second order
at a well-documented field-induced tricritical point [55,56].
Recent neutron scattering studies have been portrayed to ques-
tion the Brazovskii scenario and associated tricritical point
[57]. However, this paper does not offer any insights on the
strength of the MCAs at the heart of the Brazovskii scenario
and does not offer an alternative explanation either. Thus
further evidence on the strength and character of the MCAs
represent a key aspect of understanding the thermodynamic
nature of the paramagnetic-to-helimagnetic transition.

C. Quantum phase transitions under pressure

A major field of research which epitomizes the importance
of fluctuations and stochastic processes for the formation of
novel forms of order concerns QPTs, i.e., phase transitions
at zero temperature. Motivated by the sensitivity to pressure,
selected cubic chiral magnets have been among the first mate-
rials in which QPTs were studied under controlled conditions
using hydrostatic pressure [8,9,58]. Based on the excellent ac-
count of their magnetic properties at ambient pressure as com-
pared with other strongly correlated materials, these studies
have become an important point of reference for the general
understanding of QPTs in d- and f -electron materials [10,59].

A prominent unresolved question represents the nature of a
T 3/2 non-Fermi liquid (NFL) temperature dependence of the
electrical resistivity in MnSi and FeGe above a critical pres-
sure pc at which Tc is suppressed [9,60–65]. Detailed studies
of the Hall effect connect the regime of the NFL resistivity
with topological spin textures, namely skyrmions. However,
as muon spin rotation (μ-SR) and nuclear magnetic resonance
(NMR) studies in MnSi did not detect static magnetic mo-
ments these textures must be dynamic [66–69]. Yet, neutron
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scattering, at least in part of the temperature versus pressure
range of the NFL resistivity, revealed substantial scattering
intensity on the surface of a sphere in reciprocal space with a
radius corresponding to the helical pitch [70,71]. Alluding to
intensity patterns detected in liquid crystals, this observation
has been interpreted as partial magnetic order, where the time
scales probed in neutron scattering, as compared with μ-SR
and NMR, imply a dynamic state in the range between 10−10

and 10−11 s.
Keeping in mind the role of MCAs for the magnetic order

at ambient pressure, where inherently different phases form
in terms of the character and directions of the modulations
with wave vector Q, the nature of the partial magnetic order
has created great interest. A seminal proposal concerned, for
instance, an abundance of magnetic quantum rotons in the
spirit of the Brazovskii transition that is also relevant for the
paramagnetic-to-helimagnetic transition at ambient pressure
[72]. However, in the partially ordered regime most unusual
is the observation of broad neutron scattering maxima along
the crystalline 〈110〉 directions, which could not be reconciled
with the fourth-order SOC contributions considered so far
only. This observation motivated the proposal of complex
multi-Q textures, referred to as spin crystals, which provided
the theoretical framework used in the identification of the
skyrmion lattice order at ambient pressure [73,74].

The observation of partial order at the QPT raises the
question for the precise nature of the MCAs under pressure.
Indeed, basic susceptibility measurements and neutron scat-
tering of the magnetic field dependence suggested unchanged
values of Hc1 and Hc2 of the helimagnetic order under pres-
sure, broadly implying unchanged MCAs [75–77]. However,
recent progress made on the magnetic phase diagram at am-
bient pressure as well as the results reported in this paper
strongly motivate to revisit the MCAs at the pressure-tuned
QPT of MnSi and FeGe.

D. Properties of Mn1−xFexSi and Mn1−xCoxSi

The helimagnetic transition temperature in cubic chiral
magnets responds sensitively to substitutional doping [78,79].
In turn, compositional changes represent an important tool
when trying to identify the microscopic origin of the hierarchy
of energy scales and the effects of fluctuations in cubic chiral
magnets. A question that has not been addressed consequently
concerns, however, the presence of disorder and defects as
well as the putative presence of compositional gradients and
inhomogeneities. From an experimental point of view, these
require additional caution.

Early studies of the electrical resistivity and Mössbauer
spectroscopy in polycrystalline Mn1−xFexSi provided first
evidence of the suppression of helimagnetic order under dop-
ing [80,81]. Likewise, early magnetization measurements and
NMR in polycrystalline Mn1−xCoxSi identified a suppression
of the helimagnetic order with increasing cobalt content [82].
Subsequent small-angle neutron scattering in polycrystalline
Mn1−xFexSi and Mn1−xCoxSi revealed a moderate reduction
of the helical modulation length with increasing x without
comparison between iron and cobalt doping [78,79].

The evolution of the MCAs in Mn1−xFexSi, as inferred
from the magnetic phase diagrams determined by small-angle

neutron scattering and selected magnetization measurements,
was addressed for xFe = 0.06, 0.08, and 0.10 in Ref. [83].
Based on SANS data for xFe = 0.08, the authors suggested
qualitatively that the orientation of the magnetic helix axis
changes from 〈111〉 to 〈100〉 with streaks of intensity con-
necting the two directions. However, sixth-order contributions
in SOC were not considered. Further, the ratio of the DMI to
ferromagnetic exchange was inferred from the helical modula-
tion length, whereas the strength of the magnetic anisotropies
was taken from the field value, Hc1, of the helix reorientation,
assuming that Hc1 is not affected by disorder. As their main
conclusion, the authors suggested that the ferromagnetic ex-
change softens for a critical iron composition of 0.12, repre-
senting the main mechanism controlling the suppression of the
helimagnetic transition. However, such a softening would be
inconsistent with the small change of the fluctuating moment
of the Curie-Weiss dependence observed under doping [18].
In the study reported in the present paper we go experimen-
tally well beyond the work reported in Ref. [83], arriving at
different conclusions.

The putative existence of QPTs in Mn1−xFexSi and
Mn1−xCoxSi was pursued in several studies starting with
measurements of the resistivity [84]. Magnetization, suscep-
tibility, and specific heat data consistently suggested that the
magnetic phase diagram remains essentially unchanged, while
the helimagnetic transition temperature Tc vanishes above a
critical composition (xFe > 0.10 for Mn1−xFexSi and xCo >

0.05 for Mn1−xCoxSi) accompanied by a suppression of T2,
the crossover temperature to the FD regime, above xFe = 0.22
[18,85]. This conjecture was corroborated by neutron spin
echo measurements of the line-width of quasi-elastic scatter-
ing for xFe = 0.08 when approaching Tc, and susceptibility
data for xFe = 0.12 [86]. Moreover, careful comparison of
the effects of cobalt doping in Mn1−xCoxSi with Mn1−xFexSi
revealed remarkably similar behavior. This provided striking
evidence that the number of valence electrons controls the
properties [18,38,87]. In turn, the electronic structure and con-
comitant magnetic properties of Mn1−xFexSi and Mn1−xCoxSi
are surprisingly similar.

In recent years, several studies have addressed the nature of
the fluctuations in Mn1−xFexSi at large doping levels [88–90].
Unfortunately, these studies infer their conclusions from data
recorded at large magnetic fields, where the effects of MCAs
no longer dominate. Likewise, the emergence of a Griffiths’
regime with short-range order driven by the inherent disorder
in Mn1−xFexSi at large doping levels was inferred from large
magnetic fields, where the role of disorder at zero and low
magnetic fields cannot be assessed.

In a different set of studies, magnetization, susceptibility
and SANS were reported for Mn1−xFexSi up to x = 0.32
[91,92]. The magnetization and susceptibility confirmed ear-
lier work, lacking information on anisotropies. Further, the
SANS measurements claim to observe a change of the di-
rection of zero-field-cooled helimagnetic order from 〈111〉 to
〈110〉 without offering any theoretical explanation whatsoever
[92]. Moreover, data reported in this paper was recorded for
one crystallographic orientation only without further infor-
mation on the full three-dimensional intensity distribution. In
addition, the zero-field cooled data exhibit single domain pop-
ulations suggesting either strained samples or the presence of
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a parasitic field, and data were not properly centered shedding
doubts as to the correct determination of the crystallographic
direction of the intensities.

Important insights are here provided by the electrical
transport properties, where a large increase of the residual
resistivity ρ0 raises concerns on the detailed analysis of the
temperature dependent part of the resistivity, �ρ, and a
possible NFL dependence [17,84]. Moreover, the magnetic
properties observed in the magnetization and ac susceptibility
appeared to become more isotropic with increasing x, where
the effects of disorder as opposed to MCAs could not be
assessed for lack of microscopic information. In turn, an
important unresolved question concerns to what extent the
disorder causes a smearing of thermodynamic transitions in
the magnetic phase diagram, thus possibly dominating the
properties at scales much higher than the MCAs.

E. Microscopic origin of interactions

A long history of research on the nature of the magnetic
properties of MnSi together with recent work in Mn1−xFexSi
and Mn1−xCoxSi connect the hierarchical energy scales in
these materials with the framework of itinerant-electron mag-
netism and the Fermi surface. In the history of itinerant-
electron magnetism, the properties of MnSi have been of cen-
tral importance in their own right. In the field-polarized state
of MnSi, the ordered magnetic moment is fully accounted for
by a weakly exchange-split Fermi surface [93–95]. The un-
derlying exchange-enhanced Fermi liquid ground state forms
the starting point for a Ginzburg-Landau model of the ther-
modynamic properties. Taking into account the measured
spectrum of spin fluctuations self-consistently, this model has
provided a remarkably successful quantitative account of the
magnetic equation of state and associated properties such as
the transition temperature [6,7].

Starting from these well-understood electronic properties
of MnSi, recent measurements of the ordinary, anomalous
and topological Hall effect in Mn1−xFexSi and Mn1−xCoxSi
could be explained by ab initio calculations of a rigidly
exchange-split Fermi surface [17,96]. This provided very
sensitive indirect evidence that the details of the Fermi surface
and Berry curvature under doping are correctly predicted by
density functional theory. It established, in particular, that
the effects of spin-orbit coupling in the Fermi surface are
captured satisfactorily. As part of this study, various numerical
tests established that defect related scattering on different
Fermi surface sheets is not relevant for the overall under-
standing of the Hall effect. Moreover, compositional studies
of Mn1−xCoxSi and Mn1−xIrxSi exploring the role of the
valence electron count for the electronic structure confirm the
suitability of rigid exchange splitting in the description of the
electronic structure [87].

A seminal ab initio study attributed the strength of the
DMI in MnSi quantitatively to the Berry curvature of the
electronic structure [97,98] consistent with the Hall effect
[17]. An important test is here the consistency of changes of
|Q| under Fe and Co doping, not attempted before. Last but
not least, numerous studies of weak itinerant electron magnets
attribute MCAs to a small number of electronic states in the

neighborhood of degeneracies in the band structure close to
Fermi energy [99–101].

Taken together, the connection between the hierarchy
of energy scales and their evolution under doping may be
summarized as follows. First, the ferromagnetic exchange
coupling, representing the strongest scale, is associated with
itinerant-electron ferromagnetism and thus the exchange split-
ting. Viewed in terms of the Stoner criterium of itinerant
magnetism this translates into the density of states at the
Fermi level. Second, the DMI as the intermediate scale which
controls the magnitude of twisting, |Q|, reflects the Berry
curvature of the electronic structure. For rigid band splitting
under doping only moderate changes may be expected. Third,
band degeneracies close to the Fermi level are likely to control
the MCAs.

This provides the starting point, when discussing the effect
of doping in Mn1−xFexSi and Mn1−xCoxSi and the plausibility
of a shift of the relative importance of the character of the
MCAs from terms that are fourth to terms the sixth order in
spin-orbit coupling as our main conclusion, while the strength
of the combined effect of defects and disorder with the MCAs
varies only weakly.

III. EXPERIMENTAL METHODS

A. Sample preparation

In our study we investigated large single crystals of MnSi,
Mn1−xFexSi with xFe = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12,
0.16, 0.19, 0.22, and Mn1−xCoxSi with xCo = 0.02, 0.04
grown by means of the optical floating-zone technique un-
der ultra-high vacuum compatible conditions [102–104]. The
growth process and the metallurgical characterization used for
all samples followed the procedure described in Ref. [18].
Data recorded in some of the samples had been reported in
Ref. [18]. We wish to emphasize, that all data reported in this
paper were measured specifically for the present study and
were not reported elsewhere before. The only exception are
the data shown in Fig. 1(a2) for pure MnSi, which had been
reported in Ref. [24], and selected data points in the magnetic
phase diagrams in Figs. 1 and 3, which had been reported in
Ref. [18]. These data are included in the presentation to permit
convenient comparison with previous work.

The following empirical observations establish excellent
compositional homogeneity and the absence of grown-in lat-
tice strain for the entire series of compositions. Namely, mea-
surements of the physical properties of samples cut from the
start and the end of the float-zoned ingots displayed identical
magnetic properties within experimental accuracy, establish-
ing excellent homogeneity. Moreover, optical float-zoning of
seed and feed rods with differing compositions allowed to
prepare single crystals with compositional gradients, where
the distance of the compositional change along the growth
direction corresponded to the length of the molten zone (for
details we refer to Ref. [105]). This implies fast diffusion rates
of the dopants, underscoring the high homogeneity inferred
from the physical properties.

Further, using oriented seed crystals, large single crystals
of pure MnSi with diameters up to 10 mm were prepared for
different studies, where the growth directions were chosen
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FIG. 1. Magnetic phase diagrams, ac susceptibility Re χac, and susceptibility calculated from the magnetization dM/dH of Mn1−xFexSi.
(a1)–(f1) Magnetic phase diagrams as inferred from the susceptibilities and specific heat data for MnSi and Mn1−xFexSi up to xFe = 0.10.
Field values have been corrected for demagnetization effects. [(a2)–(f2)] Comparison of Re χac and dM/dH for magnetic field along the major
crystallographic axes at low temperatures. Notation refers to the following types of field sweeps: (1) increasing field following initial zero-field
cooling, (2) decreasing field starting at +1 T, and (3) increasing field starting at −1 T. Data are shifted vertically by 0.2 between (1), (2), and
(3) for better visibility. [(a3)–(f3)] Susceptibility as a function of temperature at an applied magnetic field selected such that the skyrmion
lattice phase displays the largest temperature range. Data are shown for field along the three major crystallographic axes. Transition fields and
temperatures values are marked for H ‖ 〈100〉 after zero-field cooling only, for better visibility.

to be along 〈100〉, 〈110〉, 〈111〉, and 〈211〉. On a similar
note, carefully inspecting the orientation of the Mn1−xFexSi
and Mn1−xCoxSi single crystals, all of which were prepared
using polycrystalline seeds, there was no evidence suggesting
a trend for preferred growth directions either. Finally, the
distribution of the SANS intensity patterns recorded under
zero-field cooling were the same for equivalent crystallo-
graphic directions as reported below. This contrasts the effects
of uniaxial stress, which have been found to impose changes
of domain populations and preferred propagation directions
of the magnetic modulation [106–108]. Hence, there was no
evidence suggesting grown-in strain, as may be expected from
temperature or compositional gradients during growth.

For the small-angle neutron scattering studies cylinder-
shaped single-crystal samples with a diameter of 6 mm and
a height of typically 10–20 mm were prepared using a wire
saw. The orientation of the samples was determined by means
of x-ray Laue diffraction. For the measurements of the bulk
properties, disks of 1 mm or 2 mm thickness were cut from
the same ingots, where the direction normal to the disk was
oriented along a 〈110〉 axis.

The magnetic susceptibility and specific heat of MnSi were
measured on two cubic samples prepared from the same disk,
where the edges of the cubes had a length of 2 mm. One
cube was oriented such that two surfaces were perpendicular
to 〈100〉 and four surfaces were perpendicular to 〈110〉. The
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second cube was oriented such that two surfaces each were
oriented perpendicular to 〈110〉, 〈111〉, and 〈211〉.

For measurements of the magnetic susceptibility of
Mn1−xFexSi and Mn1−xCoxSi cubic samples were prepared,
where the edges had a length of 1 mm. These samples
were oriented such that two surfaces were perpendicular to
〈100〉 and four surfaces were perpendicular to 〈110〉. The
specific heat of Mn1−xFexSi and Mn1−xCoxSi was measured
in samples representing a quarter of a disk with a radius of
3 mm and a height of 1 mm cut from the same disks used
for the preparation of the cubic samples. For the specific heat
measurements, the magnetic field was applied along the axes
normal to the disks corresponding to 〈110〉.

B. Bulk properties

The magnetization, ac susceptibility, and specific heat were
measured in a Quantum Design physical property measure-
ment system (PPMS). The magnetization was determined
with an extraction technique. The ac susceptibility was mea-
sured at an excitation amplitude of 1 mT and an excitation
frequency of 911 Hz [36]. In comparison to magnetization and
ac susceptibility data reported in Ref. [18], data for the study
reported here were recorded at a much higher density with
improved parameter settings to permit detailed comparison
of Re χac and dM/dH as well as the properties for different
crystallographic orientations. Such a comparison was not
possible with data reported in Ref. [18]. As mentioned above
the susceptibility data as a function of field for pure MnSi
[cf. Fig. 1(a2)] have been shown in Ref. [24] before. None of
the other susceptibility data shown in this paper were reported
before.

The specific heat of MnSi and Mn1−xFexSi for composi-
tions up to xFe = 0.06 was determined by means of a quasi-
adiabatic large heat pulse method where heat pulses had a
typical size of 30% of the temperature of the bath [55]. For
Mn1−xFexSi with xFe = 0.08 and xFe = 0.10 in addition a
conventional small heat pulse method was used, where typical
heat pulses were around 1% of the temperature at the start
of the pulse. The specific heat data shown below, which
focus on the thermodynamic anomalies associated with the
skyrmion lattice phase in Mn1−xFexSi, have not been reported
before. In particular, the data reported in Ref. [18] did not
allow to discern the anomalies of the skyrmion lattice phase.
Likewise, in order to compare data for different field direction
under unchanged demagnetization conditions (not shown, cf.
Ref. [21] for data with field parallel to 〈100〉), the specific
heat of pure MnSi was measured on cube-shaped samples, in
contrast to Ref. [55].

All experimental data are shown as a function of applied
magnetic field without correction for demagnetizing fields,
whereas the magnetic phase diagrams inferred from these data
are shown as a function of internal field. The demagnetizing
factors of the samples were determined by approximating the
sample shapes as rectangular prisms [109].

For what follows, it is helpful to introduce three tempera-
ture versus field histories. Zero-field cooling (ZFC) refers to
a protocol, where the sample is initially cooled down from
a high temperature in zero magnetic field and data recorded
either as a function of magnetic field, or as a function of

temperature once the desired field value had been set. In
contrast, field cooling down (FCD) refers to a protocol, where
data are recorded while cooling the sample from a high tem-
perature in a fixed magnetic field. High-field cooling (HFC)
refers, finally, to a protocol, where the sample is initially
cooled down from a high temperature in a magnetic field
larger than Hc2 (the value of the conical-to-field-polarized
transition). Data are then recorded either as a function of
magnetic field or as a function of temperature once the desired
field value had been set.

Keeping in mind the different temperature versus field pro-
tocols, data recorded as a function of magnetic field presented
in this paper are denoted as follows: (1) increasing field after
zero-field cooling to the desired temperature, (2) decreasing
field starting in the field-polarized state at +1 T, and (3)
increasing field starting in the field-polarized state at −1 T.
Sweeps (2) and (3) correspond to HFC conditions but differ in
terms of the sweep direction.

C. Small-angle neutron scattering

The small-angle neutron scattering measurements were
carried out on the beamlines RESEDA [110–112] and MIRA
[113,114] at the Heinz Maier-Leibnitz Zentrum (MLZ) and
the beamline SANS-II at the Paul Scherrer Institut (PSI).

At MIRA and RESEDA, neutrons were used with a
wavelength λ = 11.5 Å ± 5% and λ = 5.42 Å ± 10%, re-
spectively. On both beamlines neutrons were detected by
means of a CASCADE detector [115] with an active area
of 200 × 200 mm2 (128 × 128 pixels). For the experiments
at MLZ samples were cooled down to 3.5 K with a standard
pulse tube cooler, whereas a 3He insert and a dilution insert
were used for studies at temperatures down to 0.5 K and
50 mK, respectively. Moreover, magnetic fields up to 300 mT
were generated with a bespoke set of water-cooled Helmholtz
coils. At SANS-II neutrons with a wavelength λ = 4.9 Å ±
10% were used, where a 4He cryostat with a superconducting
magnet provided temperatures down to 3 K under horizontal
fields up to 11 T.

In order to track the precise details of the SANS intensity
distribution comprising sharp spots and smeared out features,
data were recorded for 40 different orientations of the incom-
ing neutron beam covering a sample rotation of 180◦. For
the experiments, the setup of sample, cryostat, and magnet
were carefully aligned, where the samples was oriented such
that a 〈110〉 axis corresponded to the vertical axis. During
rocking scans the sample and magnet were rotated together,
where ω denotes the rocking angle. Scattering patterns shown
in the following represent sums over rocking scans. These
patterns are dominated by intensity on a ring in reciprocal
space. In turn, the intensity distribution was evaluated as a
function of the azimuthal angle α, where α = 0 corresponds
to the vertical direction. The radius of the ring, denoted Qh,
corresponds to the size of the helical modulation vector, which
varies as a function of composition as described below.

Unfortunately, quantitative comparison of the neutron
intensities between different samples proves to be rather
difficult, since the measurements were carried out at three
different beamlines and for samples of different shape and
volume. However, as most samples were studied at RESEDA
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under comparable conditions, it is at least possible to note that
the integrated intensities are consistent with the decrease of
the square of the ordered moment as a function of increasing
x [18].

IV. BULK PROPERTIES

The presentation of the bulk properties focuses on those
aspects relevant for the microscopic evolution of the spon-
taneous magnetic order in Mn1−xFexSi and Mn1−xCoxSi
pursued in the present paper. This concerns the magnetic
phase diagrams, putative evidence for the relevance of do-
main populations and disorder-induced pinning, thermody-
namic signatures of phase boundaries, and evidence of mag-
netic anisotropies. The account begins in Sec. IV A with an
overview of the magnetic phase diagrams of Mn1−xFexSi, the
underlying ac susceptibility, and the susceptibility calculated
from the magnetization, continues in Sec. IV B with the spe-
cific heat of Mn1−xFexSi in the regime of the skyrmion lattice
phase, and concludes in Sec. IV C with the phase diagrams
and susceptibilities of Mn1−xCoxSi.

A. Susceptibility and magnetic phase diagrams of Mn1−xFexSi

Shown in Fig. 1(a1) is the magnetic phase diagram of MnSi
in excellent agreement with Refs. [36,55]. The transition tem-
peratures and transition fields shown here were inferred from
the susceptibility (squares) and the specific heat (diamonds)
for field applied along a crystallographic 〈100〉 direction
after zero-field cooling. Six regimes may be distinguished: (i)
multidomain helical order at low magnetic fields, (ii) conical
order at low temperatures under moderate applied fields,
(iii) the field-polarized state for low temperatures and high
fields, (iv) skyrmion lattice order under small applied fields
within the conical state just below Tc, (v) the fluctuation-
disordered (FD) regime of the paramagnetic state just above
Tc, and (vi) the paramagnetic state at high temperatures and
low fields.

As a function of magnetic field the susceptibility of MnSi,
shown in Fig. 1(a2), increases across the helix reorientation at
Hc1, followed by a strong decrease at the transition from the
conical to the field-polarized state. Whereas the susceptibility
calculated from the measured magnetization, dM/dH (open
symbols), displays a pronounced peak at Hc1, there is no such
peak in the real part of the ac susceptibility, Reχac (solid
symbols). This discrepancy reflects the difference of the fast
response of single spins probed by the ac susceptibility as
opposed to the full response of the system tracked in the
magnetization, which includes also slow changes of the prop-
agation vector of entire helical domains [24,36]. In contrast,
dM/dH tracks Reχac accurately at Hc2, the transition between
the conical and the field-polarized state.

Further, in the temperature dependence of the susceptibility
of MnSi, shown in Fig. 1(a3), the regime of the skyrmion
lattice phase corresponds to a reduced value between TA1 and
TA2. Above TA2 the fluctuation-disordered regime is entered
where a point of inflection at Tc2 > TA2 marks the crossover to
the paramagnetic properties at high temperatures. We follow
the convention introduced in Refs. [18,36] and denote the
point of inflection at finite field by Tc2 and at zero field by

T2, i.e., Tc2(H → 0) = T2. Note that, as for the helix reorien-
tation, magnetic field sweeps in the regime of the skyrmion
lattice phase display a pronounced peak in dM/dH that is not
tracked in Re χac (not shown) [36].

The magnetic phase diagram of MnSi displays several
distinct changes as a function of crystallographic orientation,
all of which may be fully accounted for in terms of the
cubic MCAs. Namely, the field value of the reorientation be-
tween the helical and the conical state, denoted Hc1, changes
strongly with crystallographic orientation but is essentially
constant as a function of temperature for each given orien-
tation. Further, subject to field direction the character of the
phase transformation at Hc1 may be either that of a first-
order transition, a second-order transition, or a crossover [24].
In turn, depending on the temperature versus field protocol,
signatures of the susceptibility at Hc1 differ due to differences
of the occupation of the helical domains. In comparison, the
transition field between the conical and the field-polarized
state at Hc2 as a function orientation varies by a few percent
only. Finally, the field range of the skyrmion lattice phase is
essentially insensitive to crystallographic orientation whereas
the temperature range varies by a factor of two.

As a function of increasing iron content the qualitative
appearance of the magnetic phase diagram of Mn1−xFexSi
for xFe � 0.1 remains essentially unchanged as shown in
Figs. 1(b1) to 1(f1). The diagrams are in excellent agree-
ment with the literature [18,83,85,91], representing updated
versions where we have taken into account small changes as
explained below based on the high resolution of our specific
heat data. In view of the isotropic behavior observed in the
susceptibility presented below, the phase diagrams shown here
for Mn1−xFexSi combine data points inferred from the suscep-
tibility for field parallel to 〈100〉 and the specific heat for field
parallel to 〈110〉 in the same diagrams. Typical susceptibility
data as a function of magnetic field recorded at 2 K are shown
in Figs. 1(b2)–1(f2), where magnetic field was applied along
〈100〉 (blue circles), 〈110〉 (green squares), and 〈111〉 (red
diamonds). The analogous temperature dependence at a fixed
applied magnetic field recorded after zero-field cooling are
shown in Figs. 1(b3) to 1(f3).

With increasing iron content the upper critical field Hc2

is essentially unchanged, while the transition temperatures
decrease consistent with previous reports. The field value of
the helix reorientation at Hc1, as determined after zero-field
cooling, features a small increase of its extrapolated zero-
temperature value by a factor of two, and a change of its
temperature dependence.

As a function of the magnetic field, the susceptibilities for
all compositions xFe � 0.04 display the same characteristics
that are reminiscent of MnSi but differ in details as elaborated
in the following. The properties for xFe = 0.02 are interme-
diate between pure MnSi and the samples with xFe � 0.04.
Namely, following zero-field cooling, denoted (1), the ac
susceptibility exhibits an increase at the helix orientation at
Hc1, followed by a pronounced drop at the conical-to-field-
polarized transition Hc2. The transition at Hc1 is accompanied
by a pronounced maximum in dM/dH , whereas no peak
is seen in Re χac for the excitation frequency of 911 Hz.
Moreover, dM/dH and Re χac track each other accurately
across Hc2.
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However, in comparison with MnSi careful inspection of
dM/dH and Reχac reveals several important differences as
a function of crystallographic orientation and field versus
temperature protocols. Namely, in stark contrast to MnSi, the
anomalies at Hc1 do not show any dependence on crystallo-
graphic orientation and the value of Hc1 as extrapolated to
zero temperature increases weakly by a factor of two when
going above xFe ≈ 0.04. Moreover, with increasing temper-
ature Hc1 decreases strongly. All of these characteristics may
be explained in terms of defect-induced pinning and thermally
driven unpinning, where the effects of defects and disorder are
enhanced in comparison to MCAs.

This observation is corroborated by the behavior in field
sweeps starting in the field-polarized state, denoted (2) and
(3). While the field-polarized-to-conical transition at Hc2 is
unchanged, all signatures of the helix reorientation at Hc1

are absent. Indeed, as presented in Sec. V, once the conical
state has been formed the pristine, multidomain helical state
is not recovered under decreasing field strength, even when
sweeping through zero magnetic field [curve (3)]. Instead,
the pinning appears to favor a single-domain state parallel
to the field, without signature of the transition at Hc1 in the
magnetization and ac susceptibility as reported for pure MnSi
under field along 〈111〉 [24–26].

It is interesting to note, that identical differences as com-
pared with MnSi have also been reported for the helix re-
orientation in Fe1−xCoxSi [29,37], namely, isotropic values
of Hc1, a strong decrease with increasing temperature, and
lack of recovery of the helical state once the conical state
has been induced. This suggests that structural disorder and
defects as compared with the strength of MCAs dominates
the properties of the doped cubic chiral magnets. We return
to this question when presenting our neutron scattering results
in Sec. V, which provide clear evidence of defect-induced do-
main pinning and that leading-order contributions to the cubic
MCAs decrease with increasing iron or cobalt concentration.

Similar changes of characteristics as compared to those at
Hc1 are also observed in the temperature dependence of the
ac susceptibility under an applied field after zero-field cooling
shown in Figs. 1(a3) to 1(f3). For the data presented here, the
field value was chosen such that the skyrmion lattice phase
covers the largest possible temperature range. In MnSi, the
skyrmion lattice displays the largest extent as a function of
temperature for field along 〈100〉, while the phase pocket is
smallest for field along 〈111〉, cf. Fig. 1(a3). This behavior
is consistent with easy 〈111〉 axes for the helical modulation.
With increasing xFe, the anisotropy vanishes for xFe � 0.04
as shown in Figs. 1(b3) to 1(f3). For xFe � 0.08, the tem-
perature range for field along 〈100〉 again becomes slightly
larger compared to the other field directions, characteristic of
slightly stronger anisotropies. In addition, with increasing xFe

the signature at TA2 becomes increasingly smeared out, while
the temperature width of the fluctuation-disordered regime
increases both in absolute terms and in units of Tc [83].
Under field cooling the extent of the skyrmion lattice phase
is unchanged (not shown).

Taken together, our susceptibility data establish that the
helix reorientation and the temperature range of the skyrmion
lattice state in Mn1−xFexSi become essentially isotropic for
xFe � 0.04. At the same time, the signatures of the skyrmion

lattice phase are still clearly visible in the susceptibility. In
contrast, once the conical state has been stabilized under
applied magnetic field, the anisotropies are too weak to over-
come the local pinning of the helices due to defects and
disorder. As a result, the helices remain aligned along the
field direction characteristic of a single-domain state without
signatures of a helix reorientation transition in the magnetiza-
tion and susceptibility. This is consistent with the SANS data
presented in Sec. V below.

B. Specific heat of Mn1−xFexSi

The evidence for the effects of disorder and defects under
iron doping seen in the susceptibility at Hc1 and the tem-
perature range of the skyrmion lattice raise the question, to
what extent the different ordered states are still separated by
well-defined thermodynamic phase transitions. Namely, are
the effects of defects and disorder weaker then the ferro-
magnetic exchange and DMI, which drive the formation of
long-range order. Consistent with the literature, it was not
possible to resolve anomalies in the specific heat at Hc1. We
focus therefore on the skyrmion lattice phase.

Shown in Fig. 2(a) is the specific heat for Mn1−xFexSi
with x = 0.04 and fields up to 1 T applied along 〈110〉. For
the large pulse method used here the specific heat displays
much higher resolution as compared with previous studies
[18]. Data for Mn1−xFexSi up to high values of xFe are
highly reminiscent of MnSi [55]. As reported before, for zero
magnetic field the peak at the onset of helical order at Tc is
consistent with the fluctuation-induced first-order transition
observed in MnSi [18,45]. The transition temperature is in
excellent agreement with the susceptibility and small-angle
neutron scattering. The peak resides on top of a broad shoulder
characterized by an invariant crossing point for small fields at
T2 that coincides with a point of inflection in the susceptibility,
i.e., the behavior is consistent with a Vollhardt invariance
[18,116].

For larger magnetic fields the peak in the specific heat
assumes the temperature dependence of a lambda anomaly
characteristic of a second-order mean-field transition. The ev-
idence for such a field-induced tricritical point in Mn1−xFexSi,
akin to pure MnSi, implies that the crossover line between the
paramagnetic and the field-polarized regime emanates from
this point. Based on this conjecture, the position of the lines
shown in the magnetic phase diagrams in Fig. 1 as a guide
to the eye were adjusted as compared with those presented in
Ref. [18].

The properties of a putative Brazovskii transition under
compositional doping are corroborated by the temperature
dependence of the susceptibility, which displays a point of in-
flection at T2, consistent with the isotropic SANS intensity dis-
tributions observed just above Tc [83]. Here the combination
of qualitatively unchanged magnetic phase diagrams with the
clear thermodynamic signatures of the skyrmion lattice phase
suggests strongly that Mn1−xFexSi remains metallurgically
homogeneous under iron doping and may be described by a
combination of a hierarchy of energy scales, where defect-
and disorder-induced pinning exceeds the MCAs.

The much higher resolution of our specific heat data allows
to resolve, to the best of our knowledge for the first time in
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FIG. 2. Specific heat of Mn1−xFexSi for magnetic field parallel to
〈110〉. (a) Specific heat as a function of temperature for xFe = 0.04
and fields up to 1 T. [(b)–(g)] Electronic contribution to the specific
heat divided by temperature, Cel/T , for MnSi and Mn1−xFexSi up
to xFe = 0.10 and fields values around the skyrmion lattice pocket.
Arrows mark the transition temperatures. Data have been shifted
vertically for clarity.

Mn1−xFexSi, the presence of two clearly discernible peaks in
C(T ) for magnetic fields around 0.2 T, cf. Fig. 2(a). Both
peaks are unambiguously connected with the phase transi-
tions of the skyrmion lattice state at TA1 and TA2. Providing
unambiguous evidence of well-defined thermodynamic phase
transitions of the skyrmion lattice phase under iron doping
all the way up to xFe = 0.08, the corresponding data are
shown in Figs. 2(b) to 2(g) in terms of the electronic con-
tribution to the specific heat divided by temperature, Cel/T .
Here lattice contributions were subtracted corresponding to a
Debye temperature ΘD = 513 K that is essentially unchanged
as a function of iron doping [18]. For xFe = 0.10, only the
peak at TA1 is resolved, consistent with the rounding of the
corresponding signatures in the susceptibility.

Thus the following observations reflect the role of defects
and pinning under doping: First, as presented in Sec. IV A,
variations of the temperature range of the skyrmion lattice
phase as a function of crystallographic orientation, which
reflect the effects of MCAs, vanish under doping. Second,
the absolute field range of the skyrmion lattice phase remains
essentially unchanged. Third, the phase transition between
the conical and the skyrmion lattice phase is accompanied
by anomalies in the specific heat. Taken together this un-
derscores, that the effects of pinning are similar in strength
to the MCAs. At the same time the strength of the MCAs
may be changing only weakly. Yet, the skyrmion lattice phase
is thermodynamically well-defined despite of the effects of
pinning and disorder which must still be weak as compared
with the exchange interactions and DMI.

C. Susceptibility and magnetic phase diagrams of Mn1−xCoxSi

An important point of references for our observations of
the magnetic structure in Mn1−xFexSi are data recorded in
Mn1−xCoxSi. Previous magnetization, susceptibility, resistiv-
ity and Hall effect measurements suggested that Mn1−xFexSi
and Mn1−xCoxSi are essentially identical when taking into
account the different valence count. Namely, a cobalt content
of xCo roughly corresponds to an iron content of xFe = 2xCo

[18,38]. Thus, in comparison to Fe doping, the amount of
defects and disorder may be expected to be a factor of two
smaller under Co doping.

The factor of two in concentration is reflected in the evolu-
tion of the anisotropy and the hysteresis of the susceptibility as
illustrated in the second row of Fig. 3. The general appearance
of the data compare well with Mn1−xFexSi, featuring the same
discrepancy of dM/dH and Re χac at Hc1. In particular, the
helix reorientation after zero-field cooling [curve labeled (1)]
is already essentially isotropic for xCo = 0.02, corresponding
to the situation in Mn1−xFexSi with xFe � 0.04. Likewise,
after a magnetic field has been applied, marked (2) and (3), no
signatures suggesting the recovery of a multidomain character
of the helical order are observed for all field directions. This
implies that pinning due to defects and disorder stabilize
a single-domain state under decreasing field. However, as
the number of defects and disorder are smaller under Co
doping, it suggests a moderate reduction of the strength of
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FIG. 3. Magnetic phase diagrams and susceptibility data for
Mn1−xCoxSi. [(a1)–(b1)] Magnetic phase diagrams as inferred from
susceptibility and specific heat data. [(a2)–(b2)] Susceptibility as
a function of field along the major crystallographic axes at low
temperatures. Data are shown for different temperature versus field
protocols (see text for details). For clarity curves are shifted by
an offset. [(a3)–(b3)] Susceptibility as a function of temperature
at the applied magnetic field, for which the temperature range of
the skyrmion lattice state is largest. For clarity transition fields and
transition temperatures are marked for H ‖ 〈100〉 after zero-field
cooling only.

the magnetocrystalline anisotropy potential under increasing
doping in parallel to the effects of defects and disorder.

For the temperature dependence of the susceptibility,
shown in Figs. 3(a3) and 3(b3), the minimum associated
with the skyrmion lattice state is also already rather isotropic

in Mn1−xCoxSi for xCo = 0.02. However, in contrast to all
other samples studied, the susceptibility at low temperatures
for xCo = 0.04 is distinctly lower after field cooling down
(labeled “fcd,” open symbols) as compared to data after
zero-field cooling (zfc, solid symbols). This behavior is char-
acteristic of metastable supercooling of the skyrmion lattice
to low temperatures as reported, for instance, in Fe1−xCoxSi
[29,37], CoxZnyMnz [117], MnSi under moderate hydrostatic
pressure [66], or MnSi under violent quenching [118]. The
possibility of supercooling of the skyrmion lattice is indicated
by a light red shading in the phase diagram. The effect is
most prominent for field along 〈100〉 but present for all major
crystallographic axes.

V. SMALL-ANGLE NEUTRON SCATTERING

The main focus of our SANS measurements concerned the
evolution of the spontaneous magnetic order in Mn1−xFexSi
and Mn1−xCoxSi and the underlying MCAs taking into ac-
count the presence of disorder. In Sec. V A, the SANS data
and the evolution of the scattering patterns in Mn1−xFexSi are
presented. These data are complemented by data recorded in
Mn1−xCoxSi in Sec. V B which shed additional light on the
role of disorder. A second aspect of the effects of disorder
beyond broadening concerns the helix reorientation, of which
the corresponding SANS data are presented in Sec. V C.
Finally, selected data on the skyrmion lattice in Mn1−xFexSi
are presented in Sec. V D, providing a consistency check on
the formation of long-range order and MCAs as inferred from
the spontaneous order.

A. Spontaneous magnetic order in Mn1−xFexSi

Detailed microscopic information on the spontaneous mag-
netic order in Mn1−xFexSi, i.e., after zero-field cooling at
H = 0, was determined by means of small-angle neutron scat-
tering for MnSi and Mn1−xFexSi up to xFe = 0.10. For each
composition data was recorded for 40 different orientations
of the incoming neutron beam covering a sample rotation of
180◦. Shown in Fig. 4 are typical intensity patterns and the
corresponding azimuthal intensity distributions as recorded
at T = 3.5 K in zero magnetic field after zero-field cooling
and an incident neutron beam parallel to the three major
crystallographic axis, namely 〈100〉, 〈110〉, and 〈111〉 (data
for x = 0.1 were recorded at 0.5 K). Since the scattering
patterns include broad distributions we illustrated in Fig. 5 this
distribution of scattering weight on the surface of a sphere in
momentum space with radius Qh. As a function of temperature
the distribution is qualitatively unchanged. We focus therefore
on the behavior in the low-temperature limit only.

In MnSi, sharp intensity maxima are observed at a wave
vector Qh = 0.036 Å−1 along the crystalline 〈111〉 directions
as shown in Figs. 4(a1)–4(a3), 4(A1)–4(A3), and 5(a). This
observation is in excellent agreement with the literature and
confirms the well-established 〈111〉 easy axes for the helical
modulation direction in MnSi [5,11,22,31,45,92]. The radial
width �Q = 0.004 Å−1, the small azimuthal width, �α =
2.74◦, and the rocking width �ω = 1.38◦ are resolution-
limited and characteristic of a small magnetic mosaicity of the
helical order. For an incident neutron beam along 〈100〉 and
〈111〉, no intensity maxima may be seen due to the absence of
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FIG. 4. Small-angle neutron scattering on the helical state of MnSi and Mn1−xFexSi up to xFe = 0.10. In the intensity patterns sections of
reciprocal space that were not covered by the neutron scattering set-up are shown in grey shading. Data for xFe � 0.08 were recorded in zero
field at T = 3.5 K after zero-field cooling; data for xFe = 0.10 were recorded at 0.5 K. [(a1)–(a3)] Typical sums over rocking scans for MnSi.
In the first, second, and third row the incoming neutron beam, n, was parallel to 〈100〉, 〈110〉, and 〈111〉, respectively. [(b1)–(f3)] Sums over
rocking scans for Mn1−xFexSi with increasing iron content from left to right. [(A1)–(F3)] Intensity as a function of the azimuthal angle, α,
corresponding to the panels in the top three rows. The vertical 〈110〉 direction defines α = 0. The intensity is normalized to the peak value, IP,
of each concentration.
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FIG. 5. Depiction of the experimentally observed neutron scat-
tering intensity in zero magnetic field on spheres in reciprocal
space for MnSi and Mn1−xFexSi up to xFe = 0.10. Each sphere
is constructed from the small-angle scattering data recorded for
40 different orientations of the incident neutron beam. The radius
of each sphere corresponds to the modulus of the helical wave
vector observed at the given composition. Angular sections for
xFe = 0.08 in which no data was recorded are shown in light grey
shading.

〈111〉 axes in these scattering planes, as shown in Figs. 4(a1)
and 4(a3), respectively. The weak intensity in the horizontal
〈100〉 direction for incident neutrons along 〈110〉 seen in
Fig. 4(a2) arises from double scattering.

As compared with MnSi, the scattering patterns in
Mn1−xFexSi feature the following major changes as a function
of increasing iron content: (i) the total scattering intensity
decreases consistent with the reduction of the ordered mag-
netic moment [18], (ii) the modulus of the helical wave vector
increases, (iii) the intensity maxima broaden, and (iv) the easy
axes of the helical modulation as inferred from the location of
the intensity maxima changes. These findings are described in
detail in the following.

For xFe = 0.02, the intensity distribution is qualitatively
similar to MnSi with a moderate increase of the helical wave
vector, as well as the azimuthal and the rocking width. Typical

data are shown in Figs. 4(b1) to 4(b3) and 4(B1) to 4(B3). The
corresponding intensity distribution on the surface of a sphere
is shown in Fig. 5(b). This is followed by more substantial
changes for xFe = 0.04, where we find intensity maxima along
the 〈111〉 directions accompanied by considerable broadening
corresponding to an azimuthal and rocking width of ∼10◦
as shown in Figs. 4(c1) to 4(c3) and 4(C1) to 4(C3). In
addition weak scattering intensity may be observed for the
〈110〉 directions. As shown in Fig. 5(c), the latter relates to
streaks of intensity along the 〈110〉 directions connecting the
maxima along the 〈111〉 directions.

Rather surprising seems the scattering pattern for xFe =
0.06, which displays broad intensity maxima around the 〈110〉
directions as shown in Figs. 4(d1)–4(d3), 4(D1)–4(D3), and
5(d). In contrast, neither intensity along the 〈111〉 nor the
〈100〉 axes is observed. Moreover, in comparison to xFe =
0.04 the intensity distribution is slightly sharper.

For xFe = 0.08, the intensity distribution is again qualita-
tively very similar to that observed for xFe = 0.04, i.e., broad
intensity maxima along the 〈111〉 directions are connected
by streaks of intensity across 〈110〉 as shown in Figs. 4(e1)–
4(e3), 4(E1)–4(E3), and 5(e). For xFe = 0.10, the scattering
pattern is again reminiscent of xFe = 0.06, exhibiting broad
intensity maxima around the 〈110〉 directions as shown in
Figs. 4(f1)–4(f3), 4(F1)–4(F3), and 5(f). For xFe � 0.12 (not
shown), very weak uniform scattering intensity on the surface
of a sphere is observed without intensity maxima in specific
directions. This is consistent with the notion that long-range
magnetic order vanishes above xFe = 0.10 as proposed in
several studies [83].

Taken together, the strong variations of the distribution of
scattering intensities observed in small-angle neutron scatter-
ing were unexpected prior to our study and do not appear
to follow a specific evolution with increasing iron concen-
tration. Whereas intensity maxima for 〈111〉 and 〈100〉 may
be reconciled with the previous level of description in terms
of MCAs, the observation of intensity maxima along 〈110〉
were unexpected. As discussed below, on the level that the
distribution of scattering intensity changes very sensitively
with composition and permitting inaccuracies of the precise
value of the composition, our results are consistent with a
study reporting broad intensity maxima along 〈111〉 and 〈100〉
for xFe = 0.08 [83].

Key parameters characterizing the evolution of the sponta-
neous magnetic order in Mn1−xFexSi inferred from the SANS
data are shown in Fig. 6. This plot includes also related
parameters observed in Mn1−xCoxSi, where the underlying
SANS data are presented in the next section. Values shown in
Fig. 6 are plotted as a function of composition reflecting xFe ≈
2 xCo. As a function of increasing iron content the modulus
of the helical wave vector, Qh, increases linearly by a factor
of 3 up to xFe = 0.22, see Fig. 6(a) in agreement with earlier
reports [83,85]. As a new result we find, that Qh under Co
doping increases in perfect agreement with xFe ≈ 2 xCo. This
provides strong evidence, that the DMI is due to the Berry
curvature and the effects of doping well-described by rigid
band splitting, i.e., the DMI is not affected by defects and
disorder [17,97,98]. Moreover, despite of this decrease the
exchange coupling J remains larger than the DMI for all
x. Considering, moreover, the putative evidence for a small
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FIG. 6. Key parameters inferred from the SANS data recorded
in Mn1−xFexSi and Mn1−xCoxSi in zero field, reflecting xFe ≈ 2 xCo

(see text for details) (a) Modulus of the helical wave vector as
a function of increasing iron content xFe. For each concentration,
the temperature of the measurement and key characteristics of the
intensity distribution are stated in the figure. Solid lines correspond
to pronounced maxima, dotted lines indicate streaks of intensity.
[(b)–(d)] Radial width �Q, azimuthal width �α, and rocking width
�ω as a function of increasing xFe. Dashed lines are guides to the
eye. For xFe � 0.12, we observe a sphere of intensity in reciprocal
space where �Q increases whereas �α and �ω may no longer be
determined.

reduction of the strength of the MCAs inferred from the
properties of Mn1−xCoxSi presented above, a well-defined
hierarchy of energy scales exists in Mn1−xFexSi up to the
highest values of x studied.

It is further instructive to keep track of the broadening of
the scattering intensities of the modulus, �Q, as well as the
azimuthal and rocking widths, �α and �ω, as a function of
iron concentration. The radial width of the intensity maxima,
�Q, is shown in Fig. 6(b). Starting from a resolution-limited
value of 0.004 Å−1 in MnSi, �Q increases very weakly for
xFe � 0.10 (xCo � 0.05). In contrast, for xFe � 0.12, where
uniform scattering intensity on a sphere is observed, �Q
increases considerably as a function of increasing xFe. Inter-
estingly, a linear extrapolation of the increase of �Q with x

seems consistent with a suppression of long-range order for
xFe ≈ 0.10 as inferred in earlier studies [83].

The azimuthal width, �α, and rocking width, �ω, of
the intensity maxima, shown in Figs. 6(c) and 6(d), exhibit
tiny values of �α = 2.7◦ and �ω = 1.4◦ in MnSi. These
values increase only weakly by roughly 1◦ in both �α and
�ω for xFe = 0.02. However, for xFe � 0.04 the maxima
increase considerably, assuming large values of the order 10◦.
For xFe � 0.12 neither �α nor �ω may be defined, as the
scattering intensity is uniform on the surface of a sphere in
reciprocal space. The broadening in �α and �ω up to xFe =
0.10 shows the presence of large magnetic mosaicity. It is
interesting to note, that �α and �ω are smaller at xCo = 0.02,
which corresponds to xFe � 0.04. The dependence of �α and
�ω on composition, increasing both abruptly between xFe =
0.02 and xFe = 0.04 and xCo = 0.02 and xCo = 0.04 suggests
some influence of defect- and disorder-related pinning in
the presence of a magnetocrystalline anisotropy potential as
discussed below.

B. Spontaneous magnetic order in Mn1−xCoxSi

In the spirit of considering the bulk properties of
Mn1−xCoxSi as a means to gauge the effects of defects and
disorder presented above, we have also recorded the mi-
croscopic magnetic properties of Mn1−xCoxSi by means of
small-angle neutron scattering. The key parameters inferred
from these data have been shown above together with the data
recorded in Mn1−xFexSi. As shown in Fig. 7, with increasing
cobalt content the helical wave vector, as well as the azimuthal
and rocking width of the intensity maxima increase.

Consistent with previous work on the bulk properties the
effect of a cobalt doping by an amount xCo roughly cor-
responds to an iron doping by an amount 2xFe. For xCo =
0.02, we observe broadened intensity maxima along the 〈111〉
axes reminiscent of Mn1−xFexSi with an iron concentration
of xFe = 0.04. For Mn1−xCoxSi with a cobalt concentration
of xCo = 0.04, very broad maxima are observed along the
〈111〉 axes that are accompanied by intensity along the 〈110〉
directions suggesting that the 〈111〉 axes are connected by
pronounced streaks of intensity in reciprocal space. This
compares with Mn1−xFexSi for an iron concentration of xFe =
0.08. The modulus of the modulation Qh, observed at xCo =
0.02 and 0.04, corresponds quantitatively to those values
observed under Fe doping with xFe ≈ 2 xCo.

While we have studied only two cobalt compositions, it is
interesting to note that we find the same propagation direc-
tions as for the corresponding Mn1−xFexSi compositions with
a factor two higher iron concentration. Yet, the broadening
in Mn1−xCoxSi (especially for xCo = 0.02) is smaller under-
scoring our conclusions, that the evolution of the spontaneous
microscopic magnetic order reflects changes of the MCAs
in the presence of moderate structural disorder and defects
caused by the compositional doping.

C. Field-induced helix reorientation in Mn1−xFexSi

The absence of a signature in the magnetization and
susceptibility of the field-induced helix reorientation under
decreasing magnetic field in Mn1−xFexSi for xFe � 0.04 and
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FIG. 7. Small-angle neutron scattering in the helical state of
Mn1−xCoxSi with xCo = 0.02 and 0.04. Data were recorded in zero
magnetic field at low temperatures (T = 3.5 K) after zero-field cool-
ing. [(a) and (b)] Typical sums over rocking scans for an incoming
neutron beam, n, parallel to 〈100〉 and 〈110〉. [(A) and (B)] Intensity
as a function of the azimuthal angle, α, corresponding to the upper
panels normalized to the peak value IP of each concentration.

Mn1−xCoxSi for xCo � 0.02 when starting from field values
above Hc1 suggests that pinning due to defects and disorder
stabilizes a single domain state, cf. curves labeled (2) and
(3) in Figs. 1 and 3. Field-dependent SANS measurements at
low temperatures were carried out to confirm this scenario mi-
croscopically. Data were recorded in a sequence of two field
sweeps after initial zero-field cooling, first, by a sweep from
zero field to +1 T and second, by a sweep from +1 to −1 T.
To illustrate the sequence of field sweeps the corresponding
data are shown from left to right in Fig. 8, i.e., the field axis
in Figs. 8(b) and 8(d) is inverted to facilitate comparison with
data shown in Figs. 8(a) and 8(c).

Typical data of the evolution of the diffraction pattern as a
function of magnetic field is shown in Fig. 8 for xFe = 0.04
(panels in top row). The associated integrated intensities as
a function of magnetic field for xFe = 0.04 and 0.08 are
shown in Figs. 8(a) and 8(b) as well as Figs. 8(c) and 8(d),
respectively. Following zero-field cooling, helical order with
equally populated domains is observed as presented above
in Fig. 5. Increasing magnetic field, as shown in Figs. 8(a)
and 8(c), stabilizes the conical state above Hc1 until the field-
polarized state is reached above Hc2.

〈 〉

〈 〉

⊗ 〈 〉

〈 〉

〈 〉

FIG. 8. Small-angle neutron scattering on Mn1−xFexSi as a func-
tion of magnetic field. Note the inverted field axis in (b) and (d) to
facilitate comparison with (a) and (c). (a) Intensity of the maxima
corresponding to the helical and the conical state after initial zero-
field cooling for xFe = 0.04. The insets at the top show typical
scattering patterns. (b) Intensity for decreasing field values starting
at +1 T. Once the helical state has been depopulated, it is not
recovered without warming to Tc. [(c) and (d)] Intensity for xFe =
0.08 exhibiting qualitatively the same behavior.

Subsequently sweeping the magnetic field from +1 to
−1 T, as shown in Figs. 8(b) and 8(d), the conical state forms
without noticeable hysteresis below Hc2. However, approach-
ing zero field the intensity pattern remains unchanged that of
the conical state until the field-polarized state is reached again
below −Hc2. This is consistent with the lack of anomalies
in the susceptibility at Hc1 and a single domain state. It is
interesting to note a shallow minimum of the conical intensity
around H = 0, where the intensity does not redistribute to any
other location.

We conclude that once a magnetic field exceeding Hc1 has
been applied the multidomain helicoidal state is not recovered
for all field directions studied. Instead, a single-domain state is
observed for H < Hc2. Since Mn1−xFexSi is subject to defects
and structural disorder introduced by the substitutional doping
of iron on manganese sites, an abundance of local pinning
centers for helices and helical domain walls may be expected.
In combination with the weak MCAs, this provides a natural
mechanism preventing the recovery of the multidomain he-
lical state once a sufficiently large magnetic field has been
applied. In fact, the same defect-related pinning may also
account for the smearing of the intensity maxima in azimuthal
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and radial direction observed at various compositions after
zero-field cooling.

It may be helpful to note that the magnetic modulation
directions in a small sample volume might still rearrange
themselves slightly near-zero field as indicated by the tiny
decrease of the conical intensity, presumably on length scales
of at most a few wavelengths. Unfortunately, our small-angle
neutron scattering set-up is not sensitive to such short-range
effects. However, related magnetic textures were recently
observed using magnetic force microscopy in Fe1−xCoxSi
[119,120]. As both Fe1−xCoxSi and Mn1−xFexSi are subject to
similar amounts of structural disorder, and as both compounds
display similar hysteresis effects in the susceptibility [37], it
seems plausible that the same mechanisms are active in both
materials.

It is finally also important to note that the absolute value of
Hc1 in Mn1−xFexSi after zero-field cooling appears to be quite
large even though all other observations consistently imply
very weak crystalline anisotropies. Taking into account the
strong decrease of Hc1 with increasing temperature sugges-
tive of thermally driven unpinning of domains, the lack of
orientation dependence, and the shape of the anomaly in the
susceptibility at Hc1, we conclude that the field-induced helix
reorientation must indeed be governed by local pinning due
to defects and disorder instead of the MCAs. As a result, it
is not valid to extract quantitative information on the strength
of the MCAs from the value of Hc1, as previously reported in
Ref. [83].

D. Skyrmion lattice in Mn1−xFexSi

High-precision SANS measurements in pure MnSi es-
tablish that the precise orientation of the skyrmion lattice
with respect to the applied field and crystal lattice originates
in MCAs [33]. Contributions that are fourth order in SOC
control tiny tilts of the skyrmion lattice plane against the field
direction, whereas terms that are sixth order in SOC define
the orientation within the skyrmion lattice plane. In order to
confirm consistency of our results with the MCAs inferred at
zero magnetic field, we have also tracked the evolution of the
skyrmion lattice order in the doped samples.

In the phase pocket identified by means of our suscepti-
bility and specific heat measurements, we observe the typical
sixfold scattering pattern for the magnetic field applied paral-
lel to the neutron beam, see Fig. 9. The modulus of the wave
vector in the skyrmion lattice phase corresponds to that of the
helical state. Data shown here do not display equal intensity
for all six spots due to limitations in the rocking scans,
representing a technical constraint frequently encountered.

For xFe = 0.04, the radial, azimuthal, and rocking width of
the intensity maxima are resolution-limited, while the maxima
are broadened for x = 0.08. In agreement with MnSi for field
along 〈110〉, one of the propagation vectors of the skyrmion
lattice is aligned along a 〈110〉 direction within the skyrmion
lattice plane [11,31]. Taken together, this is consistent with the
combined effect of the MCAs and disorder-induced pinning
considered to account for the spontaneous magnetic order
presented below. All of these findings are also consistent with
early neutron scattering data on Mn1−xFexSi for xFe = 0.08
and Mn1−xCoxSi for xCo = 0.04 reported in Ref. [85].

Mn1 xFexSi, Skyrmion phase
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FIG. 9. Small-angle neutron scattering on the skyrmion lattice
state of Mn1−xFexSi. (a) Typical sixfold scattering pattern for xFe =
0.04 for temperature and field values within the skyrmion lattice state
(T = 14.5 K). The magnetic field was applied along the neutron
beam and hence along a 〈110〉 axis. (b) Typical sixfold scattering
pattern for xFe = 0.08 (T = 7.5 K). [(A) and (B)] Intensity as a
function of the azimuthal angle α corresponding to the upper panels
normalized to the peak value IP of each concentration.

VI. DISCUSSION

The discussion of our experimental results is organized
in two parts. We begin with detailed considerations of the
magnetocrystalline anisotropy potential in Sec. VI A, taking
into account both fourth-order and sixth-order terms in SOC.
We then turn to a discussion of the different areas addressed in
the introduction and the potential interest of our findings for
these topics in Sec. VI B.

A. Magnetocrystalline anisotropy potential

Our experimental results comprise two facets. On the one
hand, the bulk properties display an extremely well-behaved
gradual evolution of the helical transition temperature and
the magnetic phase diagram as a function composition. This
is characteristic of highly homogeneous samples with well-
defined thermodynamic phase boundaries in the presence of
weak disorder. On the other hand, the spontaneous mag-
netic order displays strong changes of the intensity patterns,
featuring also evidence of weak disorder effects. However,
considering carefully all conceivable aspects of the sample
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preparation as described in detail in Sec. III A, we could not
find any hints suggesting experimental limitations such as
growth-related strain or compositional gradients. Indeed, all
of our findings may be fully accounted for theoretically by the
usual MCAs as follows.

The well-known phenomenological model of the hierar-
chy of energy scales in cubic chiral magnets is based on a
Ginzburg-Landau ansatz of the free energy density compris-
ing two contributions, f = f0 + fcub. The first term accounts
for the exchange and the Dzyaloshinsky-Moriya interactions
as well as the Zeeman coupling to an externally applied
magnetic field and reads in the notation of Ref. [45]

f0 = 1

2
φ(r − J∇2)φ + Dφ(∇ × φ) + u

4!
(φ2)2 − μ0μφH.

Here, φ is the three-component order parameter field describ-
ing the dimensionless magnetization and r tunes the distance
to the phase transition, while J and u are the stiffness and
the interaction parameter of the ferromagnetic exchange. D
corresponds to the Dzyaloshinsky-Moriya coupling constant
that is proportional to spin-orbit coupling λSOC and H is the
magnetic field. The second term of the free energy density fcub

accounts for the crystalline anisotropies and breaks rotation
symmetry already in zero field. Typically, it either favors easy
〈100〉 or 〈111〉 axes for the propagation vector of the helix
[19].

As discussed in detail in Ref. [24], accurate measurements
of the helix reorientation in MnSi establish the effective
magnetocrystalline anisotropy potential Vhelix for the pitch
orientation, i.e., the unit vector Q̂ = �Q/| �Q|, as

Vhelix(Q̂) = ε
(1)
T

(
Q̂4

x + Q̂4
y + Q̂4

z

)

+ ε
(2)
T

(
Q̂2

xQ̂4
y + Q̂2

yQ̂4
z + Q̂2

z Q̂4
x

) + . . .

Since the magnitude of the pitch Q = D/J ∝ λSOC varies
with spin-orbit coupling λSOC, the first and second term are
expected to scale as a power of λ4

SOC and λ6
SOC, respectively.

As a consequence, the first term in ε
(1)
T may be expected to

dominate generically, determining the orientation of the helix.
In particular, the first term favors either 〈100〉 easy axes for
ε

(1)
T < 0, as observed in Cu2OSeO3 [121,122], or 〈111〉 easy

axes for ε
(1)
T > 0, as observed in MnSi [5]. A transition of

the easy axis as a function of temperature has been reported
in FeGe, consistent with a change of sign of ε

(1)
T [123]. We

have no evidence that such changes of MCA as a function
of temperature are present in Mn1−xFexSi or Mn1−xCoxSi.
In the spirit of a change of magnetocrystalline anisotropy
potential as a function of composition, the scattering pattern
observed in Mn1−xFexSi for xFe = 0.08 has been interpreted
as to provide putative evidence of a reduction of ε(1) under
iron doping without further considerations of the next higher
terms [83].

However, it is important to note that the term in ε(1)

possesses C4 rotation symmetry around the cubic axes that
is not present in the tetrahedral point group T of the crystal
structure. This symmetry is explicitly broken down to C2

symmetry by the next-leading-order term in ε
(2)
T . A detailed

study of the helix reorientation in MnSi establishes that the
second term given here is essential for a full account of
the pitch reorientation transition as a function of increasing
magnetic field [24]. In comparison, further terms that are sixth
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FIG. 10. Crystalline potential Vhelix for different strengths of the
MCAs. The parameter ξ is defined by ε

(1)
T = ε sin ξ and ε

(2)
T =

−ε cos ξ with the energy density ε > 0. (a) Potential for the pitch
orientations Q̂ = (sin φ, cos φ, 0) as a function of the angle φ for
characteristic values of ξ . (b) Potential for Q̂ = ( sin θ√

2
, sin θ√

2
, cos θ ) as

a function of θ . [(c)–(f)] Boltzmann factor at finite temperature on
the unit sphere for the values of ξ shown in (a) and (b).

order in SOC, such as Q̂2
xQ̂2

yQ̂2
z and (Q̂6

x + cycl.), preserve the
C4 symmetry. In the following, we neglect these terms for
simplicity.

In case the first term in ε
(1)
T becomes very small or vanishes,

the second term ε
(2)
T may control the helix orientation in zero

magnetic field favoring either 〈100〉 easy axes for ε
(2)
T > 0

or, interestingly, easy axes close to 〈110〉 for ε
(2)
T < 0. This

scenario, i.e., that ε
(1)
T > 0 is tuned towards zero so that the

pitch orientation is qualitatively influenced by the second term
ε

(2)
T , offers a minimal explanation for the observed intensity

distributions in Mn1−xFexSi, as presented in further detail in
the following.

As the focus of our study concerns the observation of
intensity distributions including gradual variations, we have
calculated the potential landscape as a function of orientation
for selected parameters, shown in Figs. 10(a) and 10(b), and
the associated scattering patterns as depicted on the surface of
a sphere, shown in Figs. 10(c) to 10(f). The former serves to
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document the precise evolution of the minima and maxima
of the potential, whereas the latter serves to permit direct
comparison with the experimental results shown in Fig. 5.
For the sake of ease of presentation and ease of discussion,
we have parametrized the potential Vhelix here in terms of
ε

(1)
T = ε sin ξ and ε

(2)
T = −ε cos ξ for various values, where

ξ represents a tuning parameter and ε represents the total
strength of the potential with ε > 0.

Figure 10(a) displays the potential for pitch orien-
tations Q̂ = (sin φ, cos φ, 0) as a function of φ, while
Fig. 10(b) displays the potential for pitch orientations Q̂ =
( sin θ√

2
, sin θ√

2
, cos θ ) as a function of θ . For this choice of

parameters, the potential exhibits maxima along the cubic
〈100〉 axes and minima along the 〈111〉 directions. The latter
represent global minima for π/2 � ξ > ξcr ≈ 0.18. Note that
for ξ = π/2 the 〈110〉 axes represent saddle points. However,
if the first term of Vhelix in ε

(1)
T becomes sufficiently small

assuming a value in the range 0 � ξ < ξ ∗ ≈ 0.26 a second
set of minima close to 〈110〉 emerges. In fact, these minima
become global as a function of ξ at ξcr by virtue of a first-
order phase transition. The positions of the new minima are
not exactly at 〈110〉, but only close to these directions. In
the limit ξ = 0, the new minima shift towards [1

√
20] and

directions equivalent with respect to the tetrahedral point
group of the crystal structure. Here further terms that are sixth
order in SOC may become relevant for the full account of the
experimental results, which is, however, beyond the scope of
our study.

Further, close to the phase transition as a function of ξ ,
the potential between the 〈111〉 and 〈110〉 directions is very
shallow. This finding is illustrated in Figs. 10(c) through 10(f)
where we show the Boltzmann factor exp[−Vhelixξ

3
dom/(kBT )]

on the unit sphere in order to compare the results of our
calculations directly with the neutron scattering data shown
in Fig. 5. Here, ξdom represents the linear size of a heli-
cal domain, where kB is the Boltzmann constant, and T is
the temperature. For the theoretical results presented here
we set kBT/(ξ 3

domε) = 0.005. For ξ = π/2 (ε(2)
T = 0), the

weight of the scattering intensity is concentrated at 〈111〉, cf.
Fig. 10(c). With decreasing ξ streaks towards 〈110〉 appear
around ξ ∗, cf. Fig. 10(d). This weight of intensity is redis-
tributed at the phase transition, cf. Fig. 10(e), and is concen-
trated at [1

√
20] and equivalent positions for ξ = 0 (ε(1)

T = 0),
cf. Fig. 10(f).

The excellent qualitative agreement of the minimal mag-
netocrystalline anisotropy potential with our experimental
results suggests strongly that in Mn1−xFexSi ξ ≈ π/2 up to
xFe � 0.02 and hence ε

(1)
T � ε

(2)
T . In contrast, for xFe = 0.04

and xFe = 0.08 we find ξ ≈ ξ ∗, while ξ < ξcr applies for
xFe = 0.06 and xFe = 0.10. The same is true for Mn1−xCoxSi
with xFe ≈ 2 xCo. The broadening of the intensity maxima
implies further a tiny value of the potential strength ε. As al-
ready mentioned above, we note that our experimental data do
not allow to unambiguously distinguish between propagation
along 〈110〉 and directions close to the latter as suggested by
the potential Vhelix. However, considering the agreement of the
total number of scattering maxima observed experimentally
with the magnetocrystalline anisotropy potential considered
here, namely eight for the case of 〈111〉 easy axes and twelve
for the case of 〈110〉 easy axes, suggests strongly that the key

aspects are captured appropriately. A quantitative comparison,
however, will require a neutron scattering study with high
angular resolution.

The very shallow nature of the anisotropy landscape in
Mn1−xFexSi, which corresponds to a weak energy scale, is
also corroborated by the neutron scattering results reported
in Ref. [83]. For Mn1−xFexSi with xFe = 0.08, this study
reported broad maxima along 〈100〉 and 〈111〉 connected
by streaks of intensity. While the qualitative character of
this intensity distribution is similar to those observed in our
study, when permitting for inaccuracies of composition, the
positions of the maxima in reciprocal space differ. Such an
intensity distribution may be associated, for instance, with a
small but finite value of ε

(1)
T that changes its sign across the

sample due to inhomogeneities of some kind.
While the magnetocrystalline anisotropy potential we con-

sider here accounts for the intensity patterns, it cannot ex-
plain variations of ξ with composition. In particular, one
might expect a monotonic evolution, whereas we observe
nonmonotonic variations. As summarized in Sec. III, we have
exercised great efforts to rule out extrinsic mechanisms such
as compositional gradients or grow-in strain as the cause
of these nonmonotonic variations of ξ with composition.
Moreover, we have confirmed in several independent mea-
surements the orientation of our samples. In combination
with the monotonic evolution of the transition temperature,
ordered magnetic moment, susceptibility, specific heat, trans-
port properties [17], and modulation wave length as a function
of composition, all of which are characteristic of an excellent
sample quality and compositional homogeneity, we are forced
to consider an intrinsic mechanism that controls ξ . Indeed, ab
initio calculations reported in Ref. [17] suggest that the effects
of doping on the Fermi surface may be approximated well
by a rigid band splitting of the Fermi surface of pure MnSi
that matches the ordered moment under doping. In turn, the
changes of sign might be directly related to subtle intrinsic
details of the Fermi surface. This conjecture identifies the
need for high-resolution ab initio calculations of the magne-
tocrystalline anisotropies in Mn1−xFexSi and Mn1−xCoxSi.

B. Broader implications

The strong changes of intensity patterns with composition
we observe in Mn1−xFexSi and Mn1−xCoxSi are consistent
with cubic MCAs, where the character changes from contri-
butions that are fourth-order to terms that are sixth-order in
SOC. It compares at the same time with the lack of orientation
dependence of the susceptibilities at the helix reorientation,
the decrease of Hc1 with increasing temperature suggestive of
thermally driven unpinning of domains, and the absence of the
signature of the helix reorientation in the magnetization and
susceptibility once the magnetic field exceeded Hc1 together
with the observation of single domain formation in SANS.
All of these findings suggest consistently that the behavior at
Hc1 is dominated by defects and disorder. In turn, our findings
question previous attempts to infer the strength of the MCAs
in Mn1−xFexSi from the value of Hc1 [83].

Moreover, while the sixth-order contributions may be
expected to dominate the details of the helix reorientation
processes in Mn1−xFexSi and Mn1−xCoxSi under magnetic
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field, the effects of disorder clearly prevent more detailed
examination such as those reported recently for MnSi [24].
Instead, the in-plane orientation of the skyrmion lattice as
reported here provides direct information on the sixth-order
terms in SOC. However, it is important to note that high-
precision measurements of the skyrmion lattice alignment
require great efforts to avoid signal contamination by demag-
netizing fields as observed in early work on MnSi [31,33,124].
They are therefore beyond the scope of the work reported
here.

An important question concerns the compatibility of the
shift of character of the MCAs from terms that are fourth
to sixth order in SOC with the microscopic origin of the
hierarchy of energy scales. As summarized in Sec. II E, recent
measurements of the ordinary, anomalous and topological
Hall effects and ab initio calculations in Mn1−xFexSi demon-
strated that the doping and pressure dependence of the elec-
tronic structure is well accounted for by a rigid band splitting
[17]. The quantitative consistency of | �Q| and the Hall effects
between Mn1−xFexSi and Mn1−xCoxSi, where xFe = 2 xCo,
underscores that the ferromagnetic exchange and the DMI
originate in the electronic structure and the Berry curvature
subject to rigid band splitting under doping.

Provided the MCAs are related to degenerate points of
the Fermi surface as may be generic in the class of weak
itinerant-electron magnets [99–101], it is conceivable that
such degeneracies are especially sensitive to defect- and
disorder-related scattering and tiny modifications. In partic-
ular, it seems plausible that defects generate a smearing of
fine details of the electronic structure especially at points
featuring degeneracies such that the character of the MCAs
is affected without changing the overall strength significantly.
Unfortunately, the theoretical and experimental work required
to verify such a mechanism are beyond the scope of the study
presented here.

Regarding the QPT in MnSi and FeGe under hydrostatic
pressures the results of our study offer an unexpected expla-
nation for the observation of the partial magnetic order. While
the broad intensity maxima for the 〈110〉 axes appeared to
be a mystery for a long time, we find here that they may be
explained by a shift of the character of the MCAs where terms
that are sixth order in SOC become important. This was so
far believed to be unlikely. However, it is conceivable that a
related modification of fourth- and sixth-order SOC terms is
also present under pressure. In fact, such a scenario would
also be consistent with a great sensitivity to nonhydrostatic
pressure conditions reported in the literature [70,71,76,77], as
well as the effects of uniaxial pressure [106,107].

It is further important to note that a simple account for the
broad intensity maxima in the 〈110〉 directions of the partially
ordered state such as the changes of the MCAs observed
here, does not rule out dominant topological spin textures as
a key characteristic of the non-Fermi liquid behavior [67].
Indeed, stabilization of skyrmions by means of entropic ef-
fects associated with an abundance of fluctuations does not
require MCAs, which represents an independent stabilization
mechanism [27,28,40,41].

Our observations on the MCAs in Mn1−xFexSi and
Mn1−xCoxSi offer, moreover, a simple explanation for

FIG. 11. Compositional phase diagram of Mn1−xFexSi. With
increasing iron content, xFe, long-range helimagnetic order is sup-
pressed while the magnetic phase diagram remains qualitatively very
similar to pure MnSi. The fluctuation-induced first-order transition
at Tc marks the onset of helimagnetic order (HM). The Vollhardt in-
variance at T2 tracks the crossover between the fluctuation-disordered
(FD) and the paramagnetic regime (PM). In comparison to previous
phase diagrams reported in the literature (cf. Ref. [18]) the behavior
near the critical composition has been amended.

observations reported in Fe1−xCoxSi. SANS measurements
in Fe1−xCoxSi with xCo = 0.20 revealed here an intensity
distribution after zero-field cooling with intensity everywhere
on the surface of a small sphere in reciprocal space featuring
broad maxima along 〈110〉, i.e., an intensity distribution akin
to the partial order in MnSi under pressure [29]. Again small
modifications of the electronic structure near degeneracies of
the Fermi surface may change the character of the MCAs.

On a final note, it is also instructive to revisit the tem-
perature versus composition phase diagram of Mn1−xFexSi
shown in Fig. 11. An important amendment as compared to
the literature [18], concerns the modification of the phase
boundary in the vicinity of the critical concentration between
x = 0.10 and 0.12, where static magnetic order inferred from
the results presented in this study is suppressed. This high-
lights also the putative existence of fluctuating textures or
quantum Brazovskii scenario in the regime below the dotted
line asking for further studies beyond the scope of the work
reported here.

Starting point of the Brazovskii scenario in pure MnSi has
been the observation of small MCAs [55,56]. While recent
studies claim to observe differences to the Brazovski scenario
[57], they do not question the strength of the MCAs and do
not offer an alternative interpretation. In turn, the change of
character of the MCAs without pronounced change of over-
all strength under increasing concentration we report here,
is perfectly consistent with the presence of the fluctuation-
disordered (FD) regime and the associated Brazovskii sce-
nario all the way up to high concentrations. However, under
increasing doping the properties at high concentrations may
eventually be dominated by disorder. This has been consid-
ered in a number of studies on polycrystalline samples, where
short-range order and glassy behavior have been reported
[38,39].
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VII. CONCLUSIONS

Combining comprehensive small-angle neutron scattering
with measurements of the magnetization, ac susceptibility,
and specific heat, we have tracked the evolution of the
magnetic properties of Mn1−xFexSi over a wide range of
compositions. The experimental observations and conjectures
drawn from these data are consistent with measurements in
Mn1−xCoxSi as recorded for selected compositions.

In accord with the literature, the thermodynamic phase di-
agram evolves monotonically with increasing xFe (xCo), where
long-range helimagnetic order is suppressed for a concentra-
tion xFe > 0.10 (xCo > 0.05) [18,83,85]. As a new result we
find, that the helix reorientation at Hc1 for xFe � 0.04 (xCo �
0.02) becomes isotropic, and exhibits a temperature depen-
dence characteristic of thermally driven unpinning, while the
signatures of the helix reorientation, once magnetized, are
suppressed in the magnetization and susceptibility consistent
with single-domain formation observed in SANS. This clearly
establishes that the helix reorientation under doping reflects
the effects of defects and disorder and may no longer be used
to infer the strength of the cubic MCAs. Yet, the observation
of specific heat anomalies at the boundary of the skyrmion
lattice phase shows that the effects of defects and disorder are
still rather weak and similar to the MCAs, i.e., the weakest
scale.

Carefully mapping the spontaneous SANS intensity distri-
bution at zero field revealed, moreover, considerable changes
of the spontaneous (zero-field) intensity distributions in the
helimagnetic state as a function of increasing x. In particular,
for Mn1−xFexSi with xFe = 0.06 and 0.10, broad intensity
maxima around the 〈110〉 directions are observed, which
cannot be explained with MCA terms that are fourth order
in SOC, considered in the literature so far. Instead, all of
our findings may be explained when taking into account
contributions of the MCAs that are sixth order in SOC.

Recognizing the importance of MCAs in Mn1−xFexSi and
Mn1−xCoxSi that are sixth order in SOC as compared to

terms that are fourth order in SOC is of interest to a wide
range of topics. This concerns the generic magnetic phase
diagram, the paramagnetic-to-helimagnetic transition, and the
morphology of topological spin textures. In particular, it offers
a simple explanation for the observation of broad intensity
maxima for the 〈110〉 directions in the partially ordered
state of MnSi at high pressures. Thus our study connects
the complex evolution of the magnetic order in MnSi under
pressure with those under Fe and Co doping, shedding new
light on the possible nature of partial magnetic order and
the QPT in these and related systems. Keeping track of
the magnetic anisotropies vis a vis the comparatively small
amount of defects and disorder, our results underscore the
putative importance of the Brazovskii scenario for the QPTs
in Mn1−xFexSi, Mn1−xCoxSi and related compounds.
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