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SUMMARY

This paper uses machine learning to enrich magnetic resonance angiography and magnetic resonance imaging

acquisitions. A convolutional neural network is built and trained over a synthetic database linking geometrical

parameters and mechanical characteristics of the arteries to blood flow rates and pressures in an arterial network.

Once properly trained, the resulting neural network can be used in order to predict blood pressure in cerebral

arteries noninvasively in nearly real-time. One challenge here is that not all input variables present in the synthetic

database are known from patient-specific medical data. To overcome this challenge, a learning technique, which

we refer to as implicit manifold learning, is employed: in this view, the input and output data of the neural network

are selected based on their availability from medical measurements rather than being defined from the mechanical

description of the arterial system. The results show the potential of the method and that machine learning is an

alternative to costly ensemble based inversion involving sophisticated fluid structure models.
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1. INTRODUCTION

At the junction of optimization, statistics and computer science, machine learning (ML) has gained

tremendous interest throughout all scientific disciplines. One can say without exaggeration that it is a

revolution in the way solutions of scientific problems are considered. This revolution is very noticeable

in biomedical applications with the works of Rahul, Liang et al, Adam et al, Pozin et al, Koeppl et

al, Koprowski et al, Cang et al, Luo et al, Cilla et al [1–9], and also more recently, with the works of

Goceri, Zhang et al, Chen et al, and Nguyen and Wei [10–13], to name just a few. According to several

researchers, ML will undoubtedly continue to significantly revolutionize biomedical research and global

health care in the future [1, 14, 15]. Indeed, fueled by increasingly powerful computers and available

storage capacities, ML methods are able to deal with large, complex and heterogeneous data typically

found in biomedical applications [1, 13–17]. Thus, ML can contribute to identify and engineer features

from the data, perform more robust predictions and therefore lead to more accurate diagnostic algorithms

and individualize patient treatments [15, 18–22].

ML-based strategies most often rely on models applied to a carefully constructed dataset so that

the training and test data are drawn from the same feature space and the same marginal probability

distribution [23]. As pointed out by Ruder [24], these models sorely lacks the ability to generalize to

conditions that are different from those encountered during learning and for which the models might be

unable to make reliable predictions. This is the case, for instance, when a model learns from simulations

and is being applied to deal with actual data. As data from the real world is messy and may contain

several new scenarii, many of which were not present during the learning step, the model tuned from

numerical data suffers from a significant loss in performance or even breaks down completely when

used in practice [24]. In the field of ML, the ability of a model to transfer knowledge to new conditions

is generally known as transfer learning (TL) and this is one of the key features used in this paper.

Many examples exist in the ML literature where TL has been applied successfuly: text categorization,

text and Web-document classification [25–28], learning in real-time strategy game [29], text mining

[27, 30], natural language processing [31], WiFi-based Indoor Localization [32], reinforcement learning

[33–37], to cite a few. In this paper, we apply TL, in particular learning from simulations, to the prediction

of blood pressure in a cardiovascular system.

Learning from simulations is one particular application of TL commonly used in ML when one

needs to deal with data, which is either rare, incomplete, expensive or simply dangerous to obtain

[24]. In all these situations, analytic models or numerical simulations can fill the gap. In previous

works, the use of an algorithm based on ensemble Kalman filter (EnKF) technique coupled to a 0D

compartement network has allowed to noninvasively estimate patient-specific blood pressure in cerebral
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arteries [38, 39]. However, this procedure, which requires inverse problem solving, is too long, expensive

and difficult to integrate in a medical acquisition device. The present work aims at remedying that with

focus on the following three key messages:

• Use supervised ML together with a Convolutional Neural Network (CNN) — a type of ML

algorithms used with great success in miscellaneous image recognition applications and prediction

tasks, such as handwriting recognition and face detection [40–43] — as an alternative to the

ensemble based inversion procedure by EnKF used in our previous works for cerebral blood

pressure estimation. In particular, on the basis of magnetic resonance angiography and magnetic

resonance imaging (MRA & MRI) acquisitions provided by physicians and using a learning

database generated with the same numerical procedure as that used in the inversion procedure,

the aim is to recover the EnKF outcomes previously achieved by Lal et al [38] through the solution

of an inverse problem. This allows to augment/enrich already available information in MRA &

MRI images.

• Use “implicit learning on a manifold” to deal with situations where part of the information in the

input variables are missing while observations are available on some output variables. This is why

the term “implicit” is introduced. The term “manifold” is used to reflect the fact that among all the

variables contained in the database, only a subset of them will be used for the learning. This is like

working on a vector subspace and consists of reorganizing the database into structured variables

in order to take into account unavailable patient-specific data. Therefore, “implicit learning on

a manifold” should not be seen as a particular Artificial Intelligence (AI) algorithm. In fact, it

should be regarded as just a multi-output convolutional neural network. Thus, any multi-output

regression method (e.g. linear models, multi-output random forests or other forms of neural nets

with autoencoding) could have been used instead of this multi-output convolutional neural network

implementation.

• Apply the outcome of the learning from simulations to patient-specific data and we use the

term “transfer” in that sense. The network and its coefficients obtained during the learning from

simulations are kept unchanged when applied on patient-specific data.

The remainder of the paper is organized as follows. First, an overview of the methodology followed

in this work is provided in Section 2. Section 3 details the procedure for building the synthetic database.

Section 4 presents the state of the art in ML and discusses some mathematical aspects of the CNN

approach used in this study. Section 5 illustrates the effectiveness of the method by considering a very

simple problem while Section 6 shows its application for the estimation of blood pressure in cerebral
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arteries. Finally, Section 7 discusses some of the limitations of the present study and Section 8 provides

concluding remarks.

2. PRELIMINARIES

2.1. General methodology

Figure 1 presents the general flowchart for this work with the following main steps:

1. Hemodynamic and morphological data extraction: first, from magnetic resonance angiography

and magnetic resonance imaging acquisitions and segmentation of a 3D time of flight

magnetic resonance angiography (3D-TOF-MRA) — dicom files provided by the Department

of Neuroradiology of the Centre Hospitalier Régional Universitaire de Montpellier (CHRU),

Montpellier, France, — blood flow rates in ascending aorta (AA), right and left internal

carotid arteries (R-ICA and L-ICA) have been extracted using the GTFlow sofware (http:

//www.gyrotools.com/products/gt-flow.html/) together with the morphological

data relevant to geometric measurements and the morphology of some arteries through the use of

the RadiANT DICOM Viewer software (http://www.radiantviewer.com/).

2. Patient-specific arterial network construction: on the basis of these images, a patient-specific

arterial network of 33 arteries as shown in Figure 2 consisting of the aorta, vertebral, carotid and

brachial arteries together with the complete circle of Willis has been then constructed. For more

details, the reader is referred to previous works [38, 39].

3. Machine learning

(a) Database generation: the next step has consisted in generating synthetic data by performing

a series of forward simulations of the blood flow model (M) described in detail below in

Section 2.2. The outcome of these simulations relates the model input parameters (namely,

the blood flow rates in AA, the geometrical (radius r, thickness h, and length l) and

mechanical characteristics (Young moduli) of the 33 arteries as well as the Windkessel three-

element parameters) to the model output parameters (namely, the blood flow and pressure in

the 33 arteries.)

(b) The use of CNN as ML algorithm: subsequently, a multi-output CNN-based approach

was introduced in order to learn on structured variables from the database, the relationship

between CNN input and output parameters, and then, apply the acquired knowledge to

patient-specific data for blood pressure estimation.

(http://www.gyrotools.com/products/gt-flow.html/)
(http://www.gyrotools.com/products/gt-flow.html/)
(http://www.radiantviewer.com/)
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4. Validation: Finally, to test the accuracy of the method, pressure estimated using CNN was

compared with that previously predicted in Lal et al [38] by solving an inverse problem using

EnKF.

Compared with the method used in previous works [38, 39], the novelty in the general framework

proposed here is the use of ML method instead of EnKF-based parameter estimation algorithm.

1.
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[38]

Figure 1. The general framework of the proposed methodology. The numbers on the left side refer to the four
steps of the general methodology described above.
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Figure 2. The 0D arterial network model [38] of the patient-specific upper body arteries and the circle of Willis.
The arterial segments in red and the red circles represent the four arteries of interest examined in the rest of paper

and the WK3 model, respectively.
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2.2. The blood flow model

Mathematical modeling is a powerful tool for a better understanding of the cardiovascular system in an

inexpensive and noninvasive way. There are several cardiovascular models (0D, 1D, 3D) available in the

literature, each coming with its advantages and drawbacks. In this work, we adopted a 0D formulation,

also known as lumped-parameter model, due to its simplicity and effectiveness in describing first order

features of the human cardiovascular system.

In general, the mathematical formulation of the lumped-parameter models is derived by decomposing

the cardiovascular system into single arterial segments or compartments, each segment being represented

with a single electrical circuit, consisting of resistance R, inductance L, and compliance C, as shown

in Figure 3. In this way, the full arterial network is built by connecting single electrical compartments

together.

Figure 3. A single compartment circuit illustration.

Applying the laws of conservation of mass and momentum to a single compartment filled with an

incompressible Newtonian fluid, the following linear first order ordinary differential equations can be

obtained:


CṖout = qin − qout

Lq̇in = Pin − Pout −Rqin,
(1)

where (Pin, qin) and (Pout, qout) refer to the pressure and flow rate at the inlet and outlet of the vascular

segment, respectively. For arteries with a radius r < 0.2 cm, the inertial effect is ignored [44] and the

flow rate is given by qin = (Pin − Pout)/R. Let r, h, l, µ, ρ, and E be the radius, the wall thickness, the

length, the blood viscosity, the blood density and the Young modulus of the arterial segment, respectively.

The three parameters R,L,C are obtained from physical principles (momentum and mass conservation)

applied to the arterial sector and read [45]:

• the viscous flow resistance, R, is derived from the Poiseuille’s equation, which describes the

relation between pressure drop, ∆P , and the steady blood flow, q, through a uniform and rigid

blood vessel: R = 8µl/πr4;

• the inductance of the vessel, L, which represents the acceleration and deceleration of the inertial

blood at each heart beat, is equal to L = ρl/πr2;
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• the vessel compliance, C, which represents the ability of a vessel wall to expand and contract with

changes in pressure, is equal to C = 3πr3l/2Eh.

In order to close the arterial network and accommodate the cumulative effects of vessels beyond the

terminal segments, the three-element Windkessel model (WK3-lumped parameter model) [46, 47] is

prescribed at the outlet of each terminal segment. As a reminder, the equation relating the instantaneous

blood pressure and the flow rate reads as follows:

ṗ(t) +
p

RDC
= RP q̇(t) +

qRT

RDC
, (2)

where p, q, C, RP , and RD refer to the instantaneous pressure at the inlet of the WK3 model, the

instantaneous flow rate, the compliance, the proximal resistance, and the distal resistance of the vascular

beds, respectively, and RT refers to the total peripheral resistance meaning that RT = RP +RD. For

simplicity, the blood flow model — let us refer it to as (M) — can be formally expressed as follows :

(M) :


Ẏ (t) = FX(Y (t))

Y (0) = Y0,

(3)

where Y (t) = (P (t), q(t))>, Y0 is the initial condition, X represents the geometrical parameters of

the problem (i.e r, h, l), the inlet flow rate from AA, the Young moduli, the Windkessel WK3 boundary

conditions [38] at the same time, and FX is a linear or nonlinear function defined by the blood flow

model describing the relation between Y (t) and its time derivatives Ẏ (t). Here and for the rest of the

paper, the notation ‘function with suscript X’, for examle FX , means that the function F depends on

the parameter X . This is a generic formalism for any 0D arterial network and therefore includes the 0D

formulation of the cardiovascular network investigated in the current study (Figure 2). This network is

taken from Lal et al [38] because both studies focus on the same patient.

3. IN SILICO DATABASE GENERATION

In this section, we describe the procedure for generating synthetic data. This data consists of geometrical

parameters (the radius, r, the wall thickness, h, and the length, l), physical parameters (the Young moduli,

E), blood flow rates, q, blood pressures, P for the 33 elements of the arterial model (Figure 2) on top of

the eleven WK3 models used as boundary conditions (the proximal resistances,RP , the distal resistances,

RD, and the compliances, C).
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For a forward simulation using the blood flow model (M) presented in Section 2.2, this data is

interrelated in the sense that the variables r, h, l, E, RP , RD, C of the network associated with the

variable qin, the inlet flow rate (the blood flow rate in AA), represent the input parameters of the

model, which we refer to as model input parameters, and the variables q and P , the output parameters,

which we refer to as model output parameters. As a reminder, the Young moduli E are given by

Eh = r(k1 e
k2r + k3) [48] where k1, k2, k3 are model constants and the inlet flow rate qin is defined

using two components α and τ as follows [38, 39]:

qin(t) =


α sin(πt/τ) if t < τ,

0 otherwise
(4)

where α = 302 ml/s and τ = 0.3 s are nominal values taken from Lal et al [38]. These will be randomly

perturbated below following a Gaussian distribution with means equal to these nominal values and

standard deviations σ, which will be specified later, to produce samples of qin. For more details, the

reader is referred to Lal et al [38].

To generate the database, blood rheological parameters were fixed as: the blood density ρ =

1050 kg·m−3 and the blood viscosity µ = 0.004 Pa·s, and the same WK3 boundary conditions for left

and right pairs of terminal compartments were assumed. This means that the terminal compartments

such as the segment connecting P27 and P25 and the one linking P29 and P14 in Figure 2, for instance,

are assigned with the same WK3 boundary conditions. A series of forward simulations of the blood

flow model (M) is then performed using a series of perturbated model input parameters (q̃in, r̃, h̃,

l̃, Ẽ, R̃P , R̃D, C̃). The series of outcomes obtained from these simulations (P = P̃1, · · · , P̃33, q =

q̃1, · · · , q̃33) associated with the series of perturbated model input parameters constitutes the database.

This is illustrated on Figure 4. Note that, while not expressly stated, all the parameters in the database

representing blood flow rates and pressures are time-dependent. It is also worth noting that the parameters

in the database can be subdivided into two categories: the class of known parameters (easy to measure)

and the class of unknown parameters (difficult to measure). Table I provides a general overview of these

different parameters listed by category.

To obtain the series of perturbated model input parameters for each forward simulation of the blood

flow model (M), we randomly perturbate each model input parameter following a Gaussian distribution

with a mean equals to the nominal value of each input parameter taken from Lal et al [38], and a standard

deviation σ of 5% of this nominal value. The standard deviation σ of 5% of each nominal value is

chosen in order to obtain perturbated model input parameters tending to realistic values encountered in

the literature. E being given by the relation Eh = r(k1 e
k2r + k3), Ẽ is obtained by perturbating the
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parameters appearing in the relation giving E meaning that Ẽh̃ = r̃(k̃1 e
k̃2r̃ + k̃3), where each of the 3

constants k̃1, k̃2, and k̃3 is also obtained from a Gaussian distribution with a mean equals to the nominal

value of each constant k1, k2, and k3 taken from Lal et al [38] and a standard deviation of 5% of this

nominal value.

Model (M)

A series of model output parameters :

qin, r, h, l, E, RP, RD, C

Model input parameters

qin, r, h, l, E, RP, RD, C

perturbations

Figure 4. Illustration of the database generation procedure. In the case studied here, the parameters in red are
considered as known parameters (easy-to-measure parameters) while the remainder is considered to be unknown.

Table I. The two categories of parameters in the database: the known parameters (easy-to-measure parameters)
and the unknown parameters (not-easy-to-measure parameters).

Known parameters Unknown parameters

blood flow rates in AA, q̃in = q̃1 geometrical parameters of the 33 arteries, r̃1, · · · , r̃33, h̃1, · · · , h̃33, l̃1, · · · , l̃33

blood flow rates in R-ICA, q̃21 Young moduli of the 33 arteries, Ẽ1, · · · , Ẽ33

blood flow rates in L-ICA, q̃23 blood pressures in the 33 arteries, P̃1, · · · , P̃33

— blood flow rates in 30 arteries, q̃2, · · · , q̃20, q̃22, q̃24, · · · , q̃33

4. THE STATE OF THE ART IN MACHINE LEARNING

A tremendous number of ML algorithms have been developed, which all share the same goal: to provide

sufficient flexibility to minimize training error but, at the same time, allow generalization to new data

sets, all in a computationally efficient way [1]. Among these algorithms, the most commonly used

ones are Linear Regression, Logistic Regression, Linear Discriminant Analysis, Decision Tree, Support

Vector Machine (SVM), Naive Bayes, k-Nearest Neighbors (kNN), Learning Vector Quantization (LVQ),

K-Means, Bagging, Random Forest, Dimensionality Reduction Algorithms, Convolutional Neural

Networks (CNN), Gradient Boosting algorithms and AdaBoost [49–52]. These algorithms tasks mainly
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include regression, classification, predictive modelling, clustering, association or survival analysis, link

mining, and dimensionality reduction [52–54]. The details of these different algorithms are beyond the

scope of this paper. However, CNN is discussed below because of its ability to manage complicated

relationships between input and output data that are not easily captured by manual measurement [14], its

relevance to biomedical research, its frequent use within the literature [15] and its use within the current

work.

4.1. The implicit CNN : notation and database destination

The first step in our approach is to receive from a user raw data made of a set of scenarii linking input and

output variables (let us refer to them as input data and output data, respectively). In the sequel, as we are

interested in biomedical applications, the considered database will consist of a set of N scenarii linking

n input real variables (these are typically blood flow rates values at temporal discretization points) to m

output real variables (these also typically correspond to blood pressure values at temporal discretization

points): {X ∈ IRn → Y ∈ IRm}whereX = (X1, ..., Xn) and Y = (Y1, ..., Ym). Hence, the required data

is as follows:

X1 = (X1
1 , ..., X

1
n)→ Y 1 = (Y 1

1 , ..., Y
1
m),

...

XN = (XN
1 , ..., X

N
n )→ Y N = (Y N

1 , ..., Y N
m ).

In the applications we are interested in, data is often rare, expensive to obtain or confidential. The aim,

therefore, is not to handle very large amount of data, but rather see the potential of learning of CNNs

based on small amount of data in opposition to big data situations. The destination of the data is rather

classical. The database is splitted in three subsets to be used to train, validate and a posteriori test the

network. In this splitting, the major part of data is used for learning. A second subset is used to make

sure to avoid over-fitting during learning (this is called validation). The third subset is for a posteriori

test of the quality of the network. This kind of splitting is very classical in statistical data treatment and

widely described in dedicated manuscripts [55].

4.2. The implicit CNN algorithm construction

Classical CNN algorithms are usually built to mimic and replicate the investigated physical model

process. This means that in the classical CNN, the input and output data of the neural network are

exactly the same as those used in the physical model considered. This is illustrated in Figure 5 in

the case examined here, where the input data and the output data of the network are directly derived

from the series of perturbated model input parameters and from the series of model output parameters,
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respectively. Note that except the blood flow rates q̃in and (q̃21, q̃23) in the input data and the output data,

respectively, the other parameters constituting the input/output data in the classical CNN are unknown

(not easy to measure). This prevents us from performing the a posteriori test of the quality of the network,

hence the idea of changing the structure of the classical CNN algorithm so that all the known parameters

in the database can be gathered as consisting of the network input data.

The CNN algorithm proposed here, which we refer to as implicit CNN, is not usual. One of its

particularities is that its input data is neither usual nor classical. Indeed, in contrast to the classical

approach, the input and output data of the network in the implicit CNN algorithm does not mimic those

from the physical model. They are rather reorganized in structured variables. The example shown in

Figure 6 demonstrates such organizational change in the implicit CNN : the input data consists of one

subset of the series of perturbated model input parameters, q̃in, and one subset of the series of model

output parameters (blood flow rates q̃1, · · · , q̃33), and the output data consists of the remaining part

of the series of model output parameters (blood pressure P̃1, · · · , P̃33). However, in practice, we are

interested in predicting the blood pressure in a specific artery and not in all at once. Thus, instead of

using all available information as shown in Figure 6, a simpler construction where the input and output

data of the implicit CNN will consist of q̃in and the series of blood flow rates in the artery of interest

on the one hand, and on the other hand, the series of blood pressure in the same artery (see Figures 10

– 13 below) takes over from it. This unusual construction is motivated by the available parameters from

the patient’s MRA & MRI images. Indeed, only the parameters available (known parameters) within

the patient-specific data (see Table I), namely the parameters extracted from MRA & MRI images and

not requiring the resolution of an inverse problem — the blood flow rates in AA, R-ICA and L-ICA,

q̃in, q̃21, and q̃23 (see Figure 2), respectively are used as input data of the network. The idea behind

this construction is to obtain a network capable of linking only the easy-to-measure parameters (known

parameters in model input parameters) from the patient’s MRA & MRI images to the model output

parameters. This implies that the information in the unknown parameters from model input parameters

which are not used for building the network is implicitly contained in the model output parameters used

for the network construction and can therefore be indirectly recovered. This means that exploiting only

known parameters from model input parameters as input data of the network allows to access to hidden

information in the unknown parameters not used. In addition to allowing the a posteriori test of the

quality of the network, this construction avoids the problem of unknown parameter estimation through

inverse problem solving before performing the convolutional neural network construction.

Another particularity of our implicit CNN concerns the definition of the network. In the classical CNN

techniques, the number of layers and the number of hidden variables in each layer must be a priori defined

by the user before the parameters of the network are found through error backpropagation. This is known
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to require lots of know-how by the user. We avoid this a priori definition introducing an incremental

procedure for the definition of the network structure. We proceed in a systematic way combining an

incremental construction of the network with the use of the information available through activation

functions. This means that different network depths are tested with increasing number of layers. For each

of these networks, a maximum number of variables per layer is prescribed. In our case, we consider a

maximum allowance of 200 hidden variables for all layers. Eventually, after this optimization procedure,

only the variables which are found to sufficiently contribute to the network outcome are retained. These

correspond to those with the activation function beyond a given user-defined threshold. The network we

retain is the one with the best fitting capability over the learning database while avoiding overfitting.

This optimization of the network structure is interesting for both the optimization and inference steps.

For the former, once a given variable is found not being of sufficient importance, it is removed from

the optimization set. This means that search activities along this variable are abandoned hence reducing

the size of the optimization space. For the latter, a lighter network will obviously permit more effective

inference steps in term of computational effort. Figure 7 illustrates this procedure for the simple example

given in Section 5. It shows the evolution of the mean average error over the test database for increasing

network depth and the evolution of the cumulative number of the variables of the network. The network,

which shows the best compromise between accuracy and complexity is found to be of depth 20: adding

extra layers and variables do not significantly improve the quality of the results. The results presented

below in Figure 9 corresponds to the outcome of this network. Note also that in our implicit CNN, 1D

convolution operations with Gaussian kernels are used in convolution layers as we handle time series.

The supports of the convolutions are also automatically identified in the same way as the optimal number

of layers of the network.
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A series of model output parameters :
Layers

Classical CNN

Figure 5. The classical CNN construction. The network input data consists of a series of model input parameters
perturbated q̃in, r̃, h̃, l̃, Ẽ, R̃P , R̃D, C̃, and the network output data is composed of the corresponding series of
model output parameters (q̃1, · · · , q̃33 and P̃1, · · · , P̃33 in Figure 2). The known parameters are in red and the

unknown ones are in black.

-qin
Layers

Implicit CNN

Figure 6. The implicit CNN construction. The network input data consists of a series of structured variables:
the series of known parameters from the series of model input parameters perturbated, namely the perturbated
inlet flow rate, q̃in, and the corresponding series of blood flow rates from the series of model output parameters
(q̃1, · · · , q̃33 in Figure 2), and the network output data is composed of the corresponding series of blood pressure
from the series of model output parameters (P̃1, · · · , P̃33 in Figure 2). The known parameters are in red and the

unknown ones are in black.
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(A) (B)

Figure 7. Incremental implicit network construction for the simple example given in Section 5. A: Mean average
errors versus number of layers and B: total number of network cumulative variables versus number of layers.

5. ILLUSTRATION ON A SIMPLE EXAMPLE: CNN AND SOLUTION OF A FOWARD

PROBLEM

Let us illustrate the proposed approach on the solution of an ordinary linear differential equation:



ṗ(t) = fX(t),

q̇(t) = gX(t),

p(0) = p0,

q(0) = q0,

(5)

with X = (X1, X2), fX(t) = X1 cos(X1t+X2), gX(t) = −X1 sin(X1t+X2), p0 = sin(X2), and q0 =

cos(X2).

Setting Y = (p, q)>, HX(t) = (fX(t), gX(t))>, Y (0) = (p(0), q(0))> and Y0 = (p0, q0)>, this

ordinary linear differential equation can be restated as:


Ẏ (t) = HX(t),

Y (0) = Y0.

(6)

The solution Y∗ of the latter differential equation is trivial and we have Y∗(t) = (p∗(t), q∗(t))
> =

(sin(X1t+X2), cos(X1t+X2))>. In order to apply CNN-based technique to this simple problem, a

database containing samples of X ∈ IRn and Y ∈ IRm, is digitally generated.

For the classical CNN, we have n = 2, the size of input data X . Moreover, the solution Y∗ is

represented by Y (output data), a vector of size m = 86 corresponding to the number of points in a

discrete representation of the solution Y∗ (43 for each of the two components of Y ). In this test case,
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the database contains N = 200 samples of Y obtained for 200 values of X . In the applications we are

interested in, N = 200 different scenarii is already quite large as data is often not that easy to obtain.

This choice of 200 samples is not coerced. This is arbitrary and we could, of course, have chosen any

other reasonable number of samples.

For the implicit CNN, data is reconstructed as follows: the input data X ′ is built from a subset of

X and a subset of Y . For instance, one can consider X ′ = (X1, q). The output data Y ′ is made of the

remaining part of Y , p. Thus, the size of input data is now n = 44 (1 for X1 and 43 for q), and that of

output data ism = 43. Note thatX2 belongs neither to the input nor the output but its effect on the output

is present, although not explicitly written.

The results obtained using the classical CNN and the implicit CNN for this simple problem are

illustrated in Figures 8 and 9, respectively. In these Figures, the upper parts (Figures 8A and 9A) show

the networks determined to properly represent the actual “physical" system described in Eq. 6 : a network

consisting of 30 locally fully connected layers with up to 155 hidden variables for the classical CNN,

and a network of 20 locally fully connected layers with up to 84 hidden variables for the implicit one.

By locally fully connected we mean that the variables of two successive layers are connected. In the

remaining part of these Figures (Figures 8B, C and 9B), the desired solution is referred to as Target, the

prediction of the desired solution referred to as CNN, and data used for learning referred to as Learning

data. Comparing the Target and CNN data, the results are very good with a relative error of less than 3 %

and mean absolute errors (MAE) of 0.05 and of 0.024 for the classical and implicit CNN, respectively.

Note that the implicit CNN is able to recover the partial output p without using the explicit knowledge

of the X2 input. This is a big advantage compared to the classical CNN formulation, especially in any

case where X2 is difficult to measure.
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(A)

(B)

(C)

Figure 8. Learning the solution of an ordinary differential equation using a database of 200 available solutions
with the classical CNN. A: the network determined for this problem consists of 28 locally fully connected hidden
layers with up to 155 hidden variables, and B,C: the results of the target solution prediction using the classical

CNN.
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(B)

(A)

Figure 9. Learning the solution of an ordinary differential equation using a database of 200 available solutions
with the implicit CNN. A: the network determined for this problem consists of 18 locally fully connected hidden
layers with up to 84 hidden variables and B: the results of the target solution prediction using the implicit CNN.

6. APPLICATION OF THE IMPLICIT CNN TO 0D BLOOD FLOW MODEL

6.1. A test case with synthetic data

We are interested in the blood flow model (M) presented in Section 2.2 and we would like to build

a database allowing to estimate the blood pressure in some arteries of interest. In practice, for the

hemodynamic applications we are interested in, some parameters are measurable and others not. In

the case investigated here, blood flow rates in AA, R-ICA and L-ICA (qin, q21 and q23, respectively),

and systolic and diastolic blood pressure in left and right brachial arteries (SBP and DBP in L.BRA and

R.BRA, the maximum and the minimum value of P10 and P13), were measured. This information led to

choose both ICAs and both brachial arteries as the arteries of interest. To estimate the blood pressure in
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these four arteries of interest, we first generate the database following the procedure described in Section

3. From this database, four different CNNs, one for each artery of interest and each based on N = 100

samples, were built following the implicit CNN structure for a single artery of interest described in

Section 4.2. To build each CNN, a relationship is created between the input data of size 34 (2 for the

two components α̃ and τ̃ of blood flow rates in AA, q̃in, and 32 for the number of points in a discrete

representation of the blood flow rates in the artery of interest) and the corresponding output data of

size 32 representing the number of points in a discrete representation of blood pressure in the artery of

interest. To be more precise, Figures 10,11,12, and 13, referred to as CNN R-ICA, CNN L-ICA, CNN

R.BRA, and CNN L.BRA, respectively, show the implicit CNN structure for each of the four arteries of

interest ( Figures 10 and 11 for ICAs, and Figures 12 and 13 for brachial arteries). Thus, for each artery

of interest, the input data size is n = 34, the output data size is m = 32, and the number of samples is

N = 100.

-qin
22 Layers

CNN R-ICA
1D convolution operations 

between 2 successive layers 

Gaussian convolution kernel 

up to 64  hidden variables

Figure 10. The implicit CNN for R-ICA. The network input data consists of a series of perturbated inlet flow rates
parameters q̃in and of the corresponding series of blood flow rates in R-ICA (q̃21 in Figure 2) and the network

output data is composed of the corresponding series of blood pressure in R-ICA (P̃21 in Figure 2).

-qin
22 Layers

CNN L-ICA
1D convolution operations 

between 2 successive layers 

Gaussian convolution kernel 

up to 64  hidden variables

Figure 11. The implicit CNN for L-ICA. The network input data consists of a series of perturbated inlet flow rates
parameters q̃in and of the corresponding series of blood flow rates in L-ICA (q̃23 in Figure 2) and the network

output data is composed of the corresponding series of blood pressure in L-ICA (P̃23 in Figure 2).

-qin
21 Layers

CNN R.BRA
1D convolution operations 

between 2 successive layers 

Gaussian convolution kernel 

up to 64  hidden variables

Figure 12. The implicit CNN for R.BRA. The network input data consists of a series of perturbated inlet flow
rates parameters q̃in and of the corresponding series of blood flow rates in R.BRA (q̃10 in Figure 2) and the

network output data is composed of the corresponding series of blood pressure in R.BRA (P̃10 in Figure 2).
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-qin
21 Layers

CNN L.BRA
1D convolution operations 

between 2 successive layers 

Gaussian convolution kernel 

up to 64  hidden variables

Figure 13. The implicit CNN for L.BRA. The network input data consists of a series of perturbated inlet flow rates
parameters q̃in and of the corresponding series of blood flow rates in L.BRA (q̃13 in Figure 2) and the network

output data is composed of the corresponding series of blood pressure in L.BRA (P̃13 in Figure 2).

Each of the four implicit CNNs built as in Figures 10-13 is trained using 99 samples whose the output

data is referred to as Learning data in Figure 14. The last sample whose the output data is referred to

as Target (the desired outcome) is used as testing sample. The results obtained are shown in Figure 14

which illustrates the networks used for R-ICA (Figure 14A) and for the left brachial artery (Figure 14B).

Prediction of the desired blood pressure is referred to as CNN (Figure 14C, E for ICAs, and Figure

14D, F for brachial arteries). It is worth pointing out that for the two networks illustrated here, about

twenty locally fully connected layers with up to 64 hidden variables have been effective in providing

good results, and that using CNN with the same number of layers and hidden variables, similar results

were observed for L-ICA (Figure 14E) and R.BRA (Figure 14F). From Figure 14, the predicted blood

pressure recovers quite well the target blood pressure. Indeed, in all cases, the relative error between

CNN prediction and the target values is less than 4%. Moreover, for the ICAs, the relative error for

systolic and diastolic blood pressure is less than 1%. As for the brachial arteries, they have a relative

error of less than 2% as well for systolic blood pressure as diastolic one.

To assess the relevance of these results and evaluate the skill and the performance of the four implicit

CNNs on new data, a traditional approach is to undertake k-fold cross-validation. This approach consists

first in splitting the N = 100 samples of the database into k roughly equal-sized subsamples [56]. Then,

one of the k subsamples is retained as testing set, and the remaining subsamples are used as learning

data. This process is then repeated k times with each of the k subsample being used for learning. Thus,

all the subsamples are used for both learning and testing and each subsample is used for testing exactly

once. For the choice of k, even if the choice k=10 is very common in the field of applied ML, and is

recommend if one is struggling to choose a value for the dataset, there is no formal rule [16, 57, 58].

However, as pointed out by Kuhn, Gareth, and many others before them, in practice, one perfoms k-fold

cross-validation using k=5 or k=10 [16, 58–60]. In fact, Both values of k have been shown empirically to

yield test error rate estimates that suffer neither from excessively high bias nor from very high variance

[16]. Given these considerations, k-fold cross-validation technique is performed here using k=5, 10, and

100. The case k=100, also known as leave-one-out cross-validation (LOOCV), is also taken into account
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since this case generalizes the results presented above where 99 samples make up the training samples

and only one sample is used as testing sample. Still, for each k-fold cross-validation run, the MAE

obtained are averaged to produce a single estimation, which we refer to as the k-fold mean absolute

errors (k-MAE). Table II shows typical k-MAE values obtained for blood pressure estimation using the

implicit CNN in R-ICA and L.BRA and the corresponding relative errors with respect to the Target

diastolic and systolic blood pressures (DBP and SBP). Just for the record, these Target values (DBP and

SBP, in mmHg) were 110.67 / 161.49 for R-ICA, and 117.59 / 172.73 for L.BRA. The results in Table

II shows that the k-MAE values decrease with the increase in the size of the training dataset meaning

that more learning data leads to fewer errors in the prediction. This is consistent with the results in ML

literature. Moreover, the relative errors with respect to the Target values for the case k=100 (less than

2%) seems to be comparable with the results obtained above without cross-validation using 99 samples

for learning and a single sample for testing. These results being quite encouraging, the next step will

focus on applying the implicit CNN to patient-specific data.

Table II. The k-fold mean absolute errors, k-MAE for k=5, 10, 100 and the corresponding relative errors with
respect to the Target systolic and diastolic blood pressures (SBP and DBP) values in R-ICA and L.BRA. This

shows typical skill scores of the implicit CNN for in-vitro pressure prediction in R-ICA and L.BRA.

Arteries of interest R-ICA, mmHg L.BRA, mmHg

k-MAE Relative errors k-MAE Relative errors

DBP SBP DBP SBP

k=5 7.36 6.65% 4.56% 8.58 7.3% 4.97%
k=10 5.47 4.94% 3.38% 4.81 4.09% 2.78%
k=100 2.03 1.83% 1.26% 2.17 1.84% 1.26%

6.2. A test case using patient-specific PC-MRA& MRI-based data.

The patient-specific data used in the current study has been provided by the Department of

Neuroradiology at the Centre Hospitalier Régional Universitaire de Montpellier (CHRU), Montpellier,

France. Arterial systolic and diastolic blood pressures at rest of a healthy volunteer were measured

before and after image acquisition using a brachial automatic sphygmomanometer (Maglife, Schiller

Medical). The systolic and diastolic values were 125 mmHg and 72 mmHg in the right brachial artery,

and 115 mmHg and 72 mmHg in the left brachial artery. 2D phase-contrast imaging was performed on

a Siemens 3T Skyra MR Scanner. The ascending aorta and the internal carotid arteries (right and left)

2D phase-contrast images were considered for the patient-specific blood flow rates extraction. For more

details, the reader is referred to Lal et al [38].
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(A) (B)

(E)

(C) (D)

(F)

Figure 14. Typical networks determined once for all for estimating blood pressure in R-ICA (A) and in left
brachial artery (B), estimated blood pressure in the four arteries of interest (in R-ICA (C), in left brachial artery
(D), in L-ICA (E), and in right brachial artery (F)) using four different implicit CNNs (n = 34,m = 32, and
N = 100). For R-ICA and L-ICA, the network determined has 22 hidden layers with up to 64 hidden variables,

and for the brachial arteries, there are 21 hidden layers.

For each artery of interest, the implicit CNN built for the synthetic case (Section 6.1) is reused with

patient-specific data. More precisely, the implicit CNN algorithm applies the acquired knowledge during

learning in the synthetic case namely, the relationship between input and output data in each CNN

previously built in the synthetic case (the network and its coefficients obtained during the learning from

simulations are kept unchanged) to patient-specific data. In fact, the testing samples in the synthetic case

are replaced with patient-specific data from the different arteries of interest. Thus, each testing sample

consists now of the 2 variables (α and τ ) modeling the patient-specific inlet flow rate, and the 32 points
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in a discrete representation of the patient-specific blood flow rates in the artery of interest. As a reminder,

R-ICA, L-ICA, R.BRA, and L.BRA are here the arteries of interest. For R-ICA and L-ICA, the implicit

CNNs obtained in the synthetic case are applied to the patient-specific blood flow extracted from MRA

& MRI in the ICAs, which is used as input data. The resulting output, the blood pressure estimated via

CNN in the ICAs is then compared to the desired outcome, the blood pressure previously estimated by

Lal et al [38] in the same arteries but through the solution of an inverse problem using EnKF.

In the same way, for R.BRA and L.BRA, the implicit CNNs built in the synthetic case are applied to

patient-specific blood flow but this time not to those extracted from MRA & MRI (measurements not

available in these arteries) but to those previously predicted in the brachial arteries by Lal et al [38] with

the blood flow model (M) using EnKF. Again, in this case, the resulting outcome, the blood pressure

predicted in the brachial arteries using CNN, is compared to that previoulsy predicted by Lal et al [38] in

the same arteries through the solution of an inverse problem using EnKF. Comparison with the brachial

pressure measurements is also performed to test the accuracy of the method used.

Figure 15 shows a comparative overview between typical results of blood pressure predicted via CNN

(referred to as CNN) and typical results of blood pressure previously predicted via EnKF (referred to

as EnKF). It is observed that secondary peaks in the blood pressure waveforms are well reproduced

with CNN. The same trend was observed for L-ICA and R.BRA. In all cases, for the ICAs, the CNN

simulated waveforms have a relative error of less than 3% in the diastolic and systolic blood pressure.

Tables III and IV summarize the cardiac cycle systolic and diastolic blood pressure estimated using CNN

and that simulated using EnKF, in the four arteries of interest (Table III, for the ICAs and Table IV, for

the brachial arteries). From these Tables, all systolic and diastolic blood pressure predicted using EnKF

and CNN results differ by less than 7%. In addition, in order to give an idea of the prediction error made

by CNN with respect to available blood pressure measurements, the predicted systolic and diastolic

pressure values in the brachial arteries are compared with patient-specific blood pressure measurements.

As reported in Table IV, the relative error obtained using CNN is less than 3% for diastolic pressure

and in the two brachial arteries, less than 6% for systolic pressure in R.BRA but up to 16 % for systolic

pressure in L.BRA. One explanation for this larger error is that the input/output testing sample for this

case is already from previous numerical results — the results perfomed by Lal et al [38] — and not from

patient-specific data extracted from MRA & MRI. Moreover, note that there is a significant difference

between the systolic blood pressure value previously predicted by Lal et al [38] using EnKF in L.BRA

(129.32 mmHg) — what needs to be predicted here — and the systolic pressure measurement value

(115 mmHg). Apart from this extreme case, the agreement between the predicted and measured pressure

values is rather good. This shows that CNN can effectively be a good alternative to the previous method

proposed by Lal et al [38] for blood pressure estimation through the solution of an inverse problem
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using EnKF. This is interesting in terms of cost and computation time. Indeed, learning takes place

in 2 minutes on a 3GHz CPU and a single inference in 0.05 second. The learning time includes the

identification of the suitable network structure. This inference time should be compared to the 7 hours

needed by the ensemble based inversion using EnKF. In other words, if the unit time is the computation

time for pressure estimation by CNN, EnKF requires 240000 times more computation time. A reason for

this extra cost in EnkF is that the EnKF-based technique needs to retrieve first the mechanical properties

of arteries before providing the arterial pressures while machine learning does not need any identification

of the mechanical properties of the arteries in order to retrieve the arterial pressures.

Table III. Validation: comparison of the cardiac cycle systolic blood pressure (SBP) and diastolic blood pressure
(DBP) estimated using CNN with the model simulated values using EnKF in the ICAs. The percentage difference

between the results obtained using CNN and those based on EnKF is stated in bold in parenthesis.

ICA Systolic blood pressure (SBP), mmHg Diastolic blood pressure (DBP), mmHg

CNN EnKF CNN EnKF

Right 114.80
(±0.00)
(0.46%)

114.28 69.23
(±0.04)
(2.32%)

67.656

Left 114.54
(±0.00)
(0.46%)

114.02 69.30
(±0.04)
(2.49%)

67.617

Table IV. Validation: comparison of the cardiac cycle systolic blood pressure (SBP) and diastolic blood pressure
(DBP) estimated using CNN with the model simulated values using EnKF in the brachial arteries. The predicted
pressure values using CNN are also compared to patient-specific brachial pressure measurements. The percentage
difference between the results obtained by CNN and those based on EnKF, and the percentage difference between

the results obtained by CNN and the blood pressure measurements are stated in bold in parenthesis.

BRA Systolic blood pressure (SBP), mmHg Diastolic blood pressure (DBP), mmHg

CNN measurement EnKF CNN measurement EnKF

Right 131.92
(±0.59)
(3.55%)

125
(5.53%)

127.4 73.54
(±0.18)
(6.57%)

72
(2.14%)

69

Left 133.71
(±0.60)
(3.39%)

115
(16.27%)

129.32 73.21
(±0.17)
(6.63%)

72
(1.68%)

68.66



MACHINE LEARNING FOR BLOOD PRESSURE ESTIMATION 25

.

(B)(A)

Figure 15. Prediction of the solution of a cardiovascular problem (patient-specific blood pressure) in R-ICA (A)
and in L.BRA (B) using the network built during training in the synthetic case, in Section 6.1. The 99 available
simulated solutions (blood pressure) are referred to as Learning data, the predicted pressure as CNN, and the

pressure previously estimated using EnKF [38], as EnKF.

7. DISCUSSION AND LIMITATIONS

The objective of the present investigation is to use machine learning in order to propose an alternative

to an ensemble based inversion procedure (EnKF) for cerebral blood pressure estimation. The presented

implicit manifold learning technique is found to be much faster than EnKF yet providing very similar

results in terms of blood pressure signals. The in vitro/in vivo results show good agreement between the

target blood pressures and the outcome of the machine learning procedure. In particular, the previously

predicted SBP and DBP in the four arteries of interest using EnKF are well recovered with machine

learning procedure.

One of the limitations could be the use of a simple cardiovascular model comprising of 0D components

and the modelling of inflow qin using Equation 4. Indeed, several studies have pointed out the

shortcomings of lumped models and of the use of this approximation of inflow and have proposed more

complex/accurate models to better capture the characteristics of blood flow. So we are aware that more

sophisticated physical models can be considered. However, to be able to make a fair comparison, we seek

a supervised learning approach encapsulating the same physics as the one used in our previous studies

[38, 39] with the objective to get the cerebral blood pressure in nearly real time. Again, this is why the

same cardiovascular model and the arterial network have been considered as with the EnKF procedure.

Of course this procedure should receive more testing in a clinical environment.

One particularity of this work is that unlike most learning techniques, the implict learning proposed

here is operational with small data. This should be seen as a constraint and not something we fully

control. Data might come from other teams and we do not always have control of it. Moreover, the

only thing we can be sure of, regardless of the AI algorithm one uses, is that the quality of a database
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decreases with its size because it simply becomes more difficult to guarantee the quality of the data when

the size of the sample is becoming large. Data quality issue can also be related to possible inconsistency

between scenarios (e.g. low and high fidelity prediction of a same situation). This is a classical problem

with supervised learning. Therefore, we think that working with small database is desirable when this

is possible. Furthermore, being able to produce meaningful results with small database will permit to

operate in cases where the learning is carried out not with synthetic data but with real experiments data,

which is obviously more difficult to multiply.

Another particularity of this work is that, in order to make learning and inference more efficient,

learning has been performed on a manifold, using only a subset of the parameters in the database. One

natural question is then how this kind of restriction can affect the results. To address this question,

ablation analysis is performed in the real data case. An ablation study refers to removing some feature

of a model in order to see how that affects the outcomes. As a reminder, the implicit CNN relates only

the inflow qin and blood flow rate in any artery of interest to blood pressure in the same artery. But,

the available information from MRA & MRI images are inflow qin and blood flow rates in R-ICA &

L-ICA. So, when the implicit CNN is performed for predicting blood pressure in R-ICA, the blood flow

rate in L-ICA is systematically ablated and vice-versa. Now all flow rates information available from

MRA & MRI images (namely, inflow qin and blood flow rates in R-ICA & L-ICA) and blood flow rates

previously estimated by Lal et al [38] in R.BRA and L.BRA associated with inflow qin are used as CNN

input data, respectively. This permits to see how the networks output is affected by the addition of this

extra information. The results presented in Figure 16 show that the construction is quite robust with

respect to such ablation.

.

(B)(A)

Figure 16. Ablation analysis for the patient-specific case: CNN1 and CNN2 results are practically the same.
CNN1 represents the predicted blood pressure using parts of the input features (inflow qin and blood flow rate in
a particular artery of interest, in R-ICA (A) and in L.BRA (B) here). This corresponds exactly to what is referred
to CNN in Figure 15. CNN2 is the predicted blood pressure using together inflow qin and blood flow rates in
R-ICA & L-ICA as input data (A) or using at the same time inflow qin and blood flow rates previously estimated

by Lal et al [38] in R.BRA and L.BRA as input data (B).
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8. CONCLUDING REMARKS

The main challenge in this paper has been to use machine learning for blood pressure prediction in

cerebral arteries. We aim our proposal to be faster and more practical than when the pressure is recovered

through the solution of an inverse problem using ensemble methods such as EnKF, yet as accurate.

Hence, machine learning has been applied to the solution of cardiovascular problems together with

a transfer learning strategy using in-silico databases. Indeed, as patient data is rare, a mathematical

model has been used to simulate the relationship between blood flow rates and blood pressure in an

human arterial network. The machine learning tool has been applied to patient-specific blood pressure

estimation to provide a direct link in any couple of arterial blood flow rates and pressure in the upper

body region. The proposed method demonstrated compelling results on synthetic and patient-specific

data. The results suggest that the proposed ML strategy is well-suited for the considered cardiovascular

problem providing real-time estimation of the pressure in patient-specific arteries, which is missing in

standard MRA & MRI acquisition. In comparison with the EnKF-based pressure estimator, the suggested

ML-based estimator provides a substantial gain as regards calculation time. In that sense, we can consider

inference by this machine learning approach to provide pressure distribution in real time augmenting the

MRA-MRI information on the fly.
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